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Abstract In this paper, based on amerit function of the split feasibility problem (SFP),
we present a Newton projection method for solving it and analyze the convergence
properties of the method. The merit function is differentiable and convex. But its
gradient is a linear composite function of the projection operator, so it is nonsmooth in
general. We prove that the sequence of iterates converges globally to a solution of the
SFP as long as the regularization parameter matrix in the algorithm is chosen properly.
Especially, under some local assumptions which are necessary for the case where the
projection operator is nonsmooth, we prove that the sequence of iterates generated by
the algorithm superlinearly converges to a regular solution of the SFP. Finally, some
numerical results are presented.
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1 Introduction

In this paper, we consider the following problem: find x ∈ C such that

Ax ∈ Q,

where, C and Q are nonempty closed convex sets in�n and�m , respectively, and A is
an m by n real matrix. This problem was called the split feasibility problem (SFP) by
Censor and Elfving [1]. It has important and wide applications in signal processing,
image reconstruction and so on. Hence, it attracts many researchers attention in recent
20 years.

In [1], the authors used their multidistance idea to obtain iterative algorithms for
solving the SFP. Their algorithms, as well as others obtained later involve matrix
inverses at each iteration. In [2], Byrne presented a projection method called the C Q
algorithm for solving the SFP that does not involve matrix inverses, but they assumed
that the orthogonal projections onto C and Q are easily calculated. However, in some
cases it is impossible or needs too much work to exactly compute the orthogonal
projection. Therefore, if this case appears, the efficiency of projection-type methods,
including the C Q algorithm, will be seriously affected. In [3], by using the relaxed
projection technology, Yang presented a relaxed C Q algorithm for solving the SFP,
where he used two halfspaces Ck and Qk in place of C and Q, respectively, at the kth
iteration and the orthogonal projections onto Ck and Qk are easily executed. Recently,
Qu and Xiu [4] gave a new reformulation for the SFP and proposed a new halfspace-
relaxation projection method based on the new reformulation to solve the SFP. For
more effective algorithms and the extensions of the SFP, the readers can see [5–8] and
the survey papers [9,10].

The global convergence of all the algorithms mentioned above were proved. It is
worth noting that most of the algorithms are subject to the gradient projection method
[11]. Projection-type methods represent important tools for finding the approximate
solution of nonlinear programming and variational inequalities. The main idea of in
this technique is to establish the equivalence between the problems related and the
fixed-point problem by using the concept of projection. This alternative formulation
has played a significant part in developing various projection-type methods for solv-
ing nonlinear programming and variational inequalities. It is well known that the
convergence rate of such projection-type methods is linear at best. To our knowledge,
superlinearly convergent algorithm for solving the SFP is not found in the literature.
Studying the algorithm which has a fast convergence rate for solving the SFP is a very
meaningful topic. It is the main purpose of this paper.

Basing on a merit function of the SFP, a Newton projection algorithm is presented
for solving the SFP in this paper. The subproblem of this algorithm is to find an
inexact solution of a convex quadratic programming, where the Newton step is judged
by an inequality satisfied by the projection operator onto the set Q. We analyze the
convergence properties of the method more completely. Under the condition that the
solution set of the SFP is nonempty, we prove that the sequence of iterates converges
globally to a solution of the SFP as long as the regularization parameter matrix is
chosen properly. Further, in the analysis of the convergence rate, we must use the
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second-order term of the merit function. Because the gradient of the merit function is
the linear composite function of the projection operator, it is nonsmooth in general.
So, we have two choices with respect to techniques: (i) we can choose directly a
generalized Hessian from its generalized Jacobian defined by Clarke for the reason
that its gradient is globally Lipschitzian (see, e.g., [12–17]). (ii) We can get its second-
order term by regularing and smoothing its gradient (see, e.g., [18–22]). In this paper,
we adopt the first choice. Under some local assumptions which are necessary for
the case where the projection operator is nonsmooth, we prove that the sequence of
iterates generated by the algorithm superlinearly converges to a regular solution of the
SFP. It is worth noting that the condition of the regular solution is weaker than the
conditions in [23–32]. Because those conditions are the sufficient condition for the
regular solution.

The rest of this paper is organized as follows. Section 2 introduces themerit function
of the SFP and its some related properties and concepts. Section 3 gives the Newton
projection algorithm and proves its global convergence. Under some local assumptions
which are necessary for the casewhere the gradient of themerit function is nonsmooth,
Sect. 4 proves that the iterative sequence generated by the algorithm converges super-
linearly to a regular solution of the SFP. Section 5 contains some numerical results.
Section 6 is concluding remarks in which we point out that the method presented
in this paper can be extended to solve a class of convex optimization which is more
generalized than the SFP or a class of nonsmooth variational inequality problem.

2 A merit function of SFP and its properties

In this section, we introduce a merit function of the SFP and review some properties
of it.

Byrne [10] gave a merit function of the SFP as follows:

f (x) = 1

2
‖Ax − PQ(Ax)‖2. (2.1)

The function f (x) is convex, continuously differentiable on �n and its derivative is
the operator

g(x) = AT (I − PQ)Ax, (2.2)

where, PQ(x) denotes the orthogonal projection from x onto Q, that is,

PQ(x) = argmin{‖x − y‖| y ∈ Q}.

Because Q is a closed convex set, PQ(x) is single valued. For the projection operator,
the following properties are well-known.

Proposition 2.1 For any x, y ∈ �n, we have

(i) ‖PQ(y) − PQ(x)‖ ≤ ‖y − x‖;

(ii) 〈PQ(y) − PQ(x), y − x〉 ≥ ‖PQ(y) − PQ(x)‖2.
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From part (i) of Proposition 2.1, we know that PQ is a globally Lipschitzian operator.
Part (ii) tells us that PQ is co-coercive, thereby is monotone. From (i) and according
to Rademacher’s Theorem, we know that the generalized Jacobian defined by Clarke
∂ PQ(x) exist almost everywhere and has the following property.

Proposition 2.2 ([20]) For x ∈ �n, all V ∈ ∂ PQ(x) are symmetric, positive semi-
definite and ‖V ‖ ≤ 1.

Using Clarke’s generalized Jacobian knowledge ([33,34]), we deduce the following
from Proposition 2.2 and (2.2):

∂g(x)d = AT (I − ∂ PQ(Ax))Ad (2.3)

for all d ∈ �n.

In addition, we also have

Proposition 2.3 ([7]) The following two conclusions hold.

(i) g(x) is globally Lipschitz continuous on �n;
(ii) g(x) is co-coercive on �n, thereby is monotone.

From (2.1) and (2.2), we can prove easily the following proposition.

Proposition 2.4 ([7]) The following statements are equivalent:

(i) x∗ is a solution of the SFP;
(ii) x∗ ∈ C and f (x∗) = 0;

(iii) x∗ ∈ C and g(x∗) = 0.

From Proposition 2.4, we know that if the solution set of the SFP is nonempty, then
we have

The solution set of the SFP = argmin{ f (x)|x ∈ C}. (2.4)

Thus, solving the SFP is equivalent to solve the convex optimization problem:

min
x∈C

f (x).

Next, we introduce an important concept about nonsmooth analysis used in this
paper .

Definition 2.5 ([15,35]) Suppose F : �n → �m is a locally Lipschitzian function.
We say that F is semismooth at x if for any h ∈ �n, h �= 0, the limit

lim
V ∈∂ F(x+th′)
h′→h,t↓0

{V h′}

exists. F is called semismooth on a set S ⊆ �n if F is semismooth at each x ∈ S.
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Proposition 2.6 ([15])Suppose F : �n → �m is a locally Lipschitzian function. Then
F is semismooth at x if and only if for any h ∈ �n, h �= 0, and ∀ V ∈ ∂ F(x + h), we
have

F(x + h) − F(x) − V h = o(‖h‖).

It was pointed out in [15] that sums, differences, scalar products and compositions
of semismooth functions are still semismooth functions. Especially, when Q is a
polyhedral, the projection operator PQ(·) is semismooth. Thus, from (2.2), we have

Proposition 2.7 Let Q be a polyhedral. Then

(i) PQ(x) is semismooth on �m;
(ii) g(x) is semismooth on �n .

3 Algorithm and its global convergence

In this section, we present an algorithm for solving the SFP and prove its global
convergence. From (2.4), we know that under the condition that the solution set of the
SFP is nonempty, we only need to design algorithm to solve the optimization problem
min{ f (x)|x ∈ C}. As in [2], we assume all the projections in the algorithm are easily
calculated.

Let the natural residual be r(x) = x − PC (x −g(x)). For the current iterate xk ∈ C,

select a positive semidefinite matrix Gk and a regularization parameter μk > 0, and
let

ϕk(z) = g(xk) + (Gk + μk I )(z − xk).

Consider a linearized subproblem: find ẑk ∈ C such that for all z ∈ C,

〈
ϕk(ẑ

k), z − ẑk
〉
≥ 0. (3.1)

As Gk + μk I is positive definite, the subproblem (3.1) always has a unique solution
ẑk, hence with a zero residual

ẑk − PC (ẑk − ϕk(ẑ
k)) = 0.

So, for any εk > 0, the subproblem (3.1) always has inexact solutions zk satisfying

‖ek‖ ≤ εk,

where

ek = zk − PC (zk − ϕk(z
k)).

We now formally state the algorithm.
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Algorithm 3.1 Step 0. Take an x0 ∈ C, and choose parameters η, α, β ∈ (0, 1), ρ ∈
(0, η). Set k := 0.

Step 1. Choose a positive semidefinite matrix Gk = AT (I − Vk)A, where Vk is a
positive semidefinite matrix with ‖Vk‖ ≤ 1, a regularization parameter μk > 0 and
ρk ∈ (0, ρ

Mk
], where Mk = ‖g(xk)‖ + ‖Gk‖ + 2μk + 1. Compute zk, an inexact

solution of the subproblem (3.1), such that

‖ek‖ ≤ ρkμk‖zk − xk‖ · min{‖zk − xk‖, 1}. (3.2)

If zk = xk , then stop.
Step 2. Let yk

C = PC (zk − ϕk(zk)), pk = PQ(Ayk
C ) − PQ(Axk) − Vk A(yk

C − xk).

If
〈pk, Axk − Ayk

C 〉 ≤ (1 − η)μk‖yk
C − xk‖2, (3.3)

then set yk = yk
C , p̂k = g(yk) − ϕk(zk) + ek and go to Step 4.

Step 3. Let yk = xk + λk(zk − xk), where λk = βmk with mk being the smallest
nonnegative integer m such that

‖g(xk + βm(zk − xk)) − g(xk)‖ ≤ α(1 − ρ)μk‖zk − xk‖. (3.4)

Set p̂k = g(yk).

Step 4. Compute

x̂ k = xk − 〈 p̂k, xk − yk〉
‖ p̂k‖2 p̂k;

xk+1 = PC (x̂ k).

Set k: = k + 1, go back to Step 1.
In order to explain the stop criterion and the feasibility of the algorithm, we give

the following two lemmas, which will also be used in both the global convergence and
the convergence rate analysis.

Lemma 3.2 The following inequality holds for all k

〈g(xk), xk − zk〉 ≥ 〈(Gk + (1 − ρ)μk I )(zk − xk), zk − xk〉.

Proof From the definition of yk
C , we have

〈yk
C − zk + ϕk(z

k), xk − yk
C 〉 ≥ 0,
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which, together with (3.2) and the definition of ρk, implies that

〈g(xk), xk − zk〉 ≥ 〈(Gk + μk I )(zk − xk), zk − xk〉
+‖ek‖2 − 〈ϕk(z

k) + zk − xk, ek〉
≥ 〈(Gk + μk I )(zk − xk), zk − xk〉 − 〈ϕk(z

k) + zk − xk, ek〉
≥ 〈(Gk + μk I )(zk − xk), zk − xk〉

−(‖g(xk)‖‖ek‖ + (‖Gk‖ + μk + 1)‖zk − xk‖‖ek‖)
≥ 〈(Gk + μk I )(zk − xk), zk − xk〉

−(‖g(xk)‖ + ‖Gk‖ + μk + 1)ρkμk‖zk − xk‖2
≥ 〈(Gk + (1 − ρ)μk I )(zk − xk), zk − xk〉.

��

Lemma 3.3 For all k, the following inequality is true

〈 p̂k, xk − yk〉 ≥
{

(η − ρ)μk‖yk − xk‖2, if (3.3) holds;
λk(1 − α)(1 − ρ)μk‖zk − xk‖2, otherwise.

Proof If (3.3) holds, then from (2.2) and the choice of Gk, we have

〈 p̂k, xk − yk〉 =
〈
g(yk) − ϕk(z

k) + ek, xk − yk
〉

=
〈
g(yk) − g(xk) − (Gk + μk I )(zk − xk) + ek, xk − yk

〉

= 〈AT (I − PQ)Ayk − AT (I − PQ)Axk

−(AT (I − Vk)A + μk I )(zk − xk) + ek, xk − yk〉
= μk‖yk − xk‖2 − 〈PQ(Ayk)

−PQ(Axk) − Vk A(yk − xk), A(xk − yk)〉
−

〈
(Gk + μk I − I )ek, xk − yk

〉

= μk‖yk − xk‖2 − 〈pk, Axk − Ayk〉
−〈(Gk + μk I − I )ek, xk − yk〉,

which, together with (3.2) and (3.3) and the definition of ρk, can derive that

〈 p̂k, xk − yk〉 ≥ ημk‖yk − xk‖2 − (‖Gk‖ + μk + 1)‖ek‖‖yk − xk‖
≥ [η − (‖Gk‖ + μk + 1)

ρk

1 − ρkμk
]μk‖yk − xk‖2

≥ η − (‖Gk‖ + 2μk + 1)ρk

1 − ρkμk
μk‖yk − xk‖2

≥ (η − ρ)μk‖yk − xk‖2.
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Thus, the first inequality is proved. If (3.3) does not hold, then (3.4) holds. From
Lemma 3.2, we have

〈 p̂k, xk − yk〉 = 〈g(yk), xk − yk〉
= λk[〈g(xk), xk − zk〉 + 〈g(yk) − g(xk), xk − zk〉]
≥ λk[(1 − ρ)μk‖zk − xk‖2 − ‖g(yk) − g(xk)‖‖zk − xk‖]
≥ λk(1 − α)(1 − ρ)μk‖zk − xk‖2.

This proves the second inequality. ��
Remark 3.4 FromLemmas (3.2) and (3.2), we know that the stop criterion is sufficient
and necessary, that is, xk ∈ argmin

x∈C
f (x) if and only if zk = xk . From now on, we

assume that zk �= xk for all k, and an infinite sequence {xk} is generated. Next, we are
ready to show that the algorithm is well defined. Firstly, if (3.3) holds, then p̂k �= 0.
Otherwise, from the first inequality of Lemmas (3.3) and (3.2), we obtain that zk = xk .

Secondly, it is obvious that line search rule (3.4) is feasible and p̂k = g(yk) �= 0. In
fact, if g(yk) = 0, then from (3.4) we can know that

‖g(xk)‖ ≤ α(1 − ρ)μk‖zk − xk‖.

Because α ∈ (0, 1) and matrix Gk is positive semidefinite, the above inequality con-
tradicts Lemma 3.2. Overall we have proved that Algorithm 3.1 is well defined.

Lemma 3.5 If argmin
x∈C

f (x) �= ∅, then for ∀x∗ ∈ argmin
x∈C

f (x) and ∀k, we have

〈 p̂k, xk − yk〉2
‖ p̂k‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2.

Proof It is easy to prove that for ∀x̄ ∈ �n, the following equality is true

‖x̂ k − x̄‖2 = ‖xk − x̄‖2 − 〈 p̂k, xk − yk〉2
‖ p̂k‖2

+2
〈 p̂k, xk − yk〉

‖ p̂k‖2 〈 p̂k, x̄ − yk〉. (3.5)

Now take an arbitrary x∗ ∈ argmin
x∈C

f (x), since yk ∈ C, we have

〈g(x∗), yk − x∗〉 ≥ 0.

Using the monotonicity of g(·), we obtain

〈g(yk), yk − x∗〉 ≥ 0. (3.6)
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Let x̄ = x∗ in (3.5), we consider the last term on the right hand side. Let

Fk = 〈 p̂k, xk − yk〉
‖ p̂k‖2 〈 p̂k, x∗ − yk〉.

First suppose (3.3) holds. From the first inequality of Lemma 3.3, we have

〈 p̂k, xk − yk〉 ≥ 0. (3.7)

As yk = PC (zk − ϕk(zk)) and x∗ ∈ C, from the property of projection, we have

〈ϕk(z
k) − ek, x∗ − yk〉 ≥ 0. (3.8)

Thus, form (3.6) and (3.8) and the definition of p̂k, we see that

〈 p̂k, x∗ − yk〉 ≤ 0. (3.9)

Hence, from (3.7) and (3.9), we obtain Fk ≤ 0.
Second, assume (3.4) holds. In this case, p̂k = g(yk), hence, from (3.6), we have

〈 p̂k, x∗ − yk〉 ≤ 0.

So, from the second inequality of Lemma (3.3), we see that 〈 p̂k, xk − yk〉 ≥ 0. Thus
we obtain Fk ≤ 0.

In conclusion, for each k, Fk ≤ 0. Therefore, from the property of projection and
(3.5), we have

‖xk+1 − x∗‖2 ≤ ‖x̂ k − x∗‖2

≤ ‖xk − x∗‖2 − 〈 p̂k, xk − yk〉2
‖ p̂k‖2 ,

i.e., the lemma holds. ��
Lemma 3.6 Suppose that argmin

x∈C
f (x) �= ∅, and there exist constants 0 < m < M

such that for all k and, starting with some index k0, μk ∈ [m, M]. Then

lim
k→∞ ‖zk − xk‖ = 0, lim

k→∞ ‖yk − xk‖ = 0.

Proof From Lemma 3.5, we know that the sequence {xk} is bounded and

lim
k→∞

〈 p̂k, xk − yk〉
‖ p̂k‖ = 0. (3.10)

From Lemma 3.2 and the definition of μk, we have

‖g(xk)‖ ≥ m(1 − ρ)‖zk − xk‖.
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As g(·) is continuous and {xk} is bounded, from the above equality, we see that {zk} is
bounded. Using (3.2) and the boundedness of {Gk}, we know that {yk} and { p̂k} are
also bounded. Hence, from (3.10) we obtain

lim
k→∞〈 p̂k, xk − yk〉 = 0. (3.11)

Below we consider some possible cases. To this end, we divide all indices k into two
classes.

KN = {k|yk = yk
C , i.e., (3.3) holds}.

K A = {k|yk = xk + λk(z
k − xk), λk is obtained by (3.4)}.

It is obvious that KN
⋃

K A = {1, 2, . . .}. From Lemma 3.3 and the definition of μk,

we have

〈 p̂k, xk − yk〉 ≥
{

(η − ρ)m‖yk − xk‖2, if k ∈ KN ;
λk(1 − α)(1 − ρ)m‖zk − xk‖2, if k ∈ K A.

(3.12)

If KN is an infinite sequence, then from (3.11) and the first inequality of (3.12), we
obtain lim

k∈KN ,k→∞ ‖yk − xk‖ = 0. From (3.2), we have

‖zk − xk‖ ≤ 1

1 − ρkμk
‖yk − xk‖

≤ 1

1 − ρ
‖yk − xk‖.

Thus, lim
k∈KN ,k→∞ ‖zk − xk‖ = 0.

If K A is an infinite sequence, then from (3.11) and the second inequality of (3.12),
we obtain

lim
k∈K A,k→∞ λk‖zk − xk‖2 = 0. (3.13)

Suppose that there exists an infinite sequence K0 ⊆ K A, such that

lim
k∈K0,k→∞ ‖zk − xk‖ > 0. (3.14)

As {zk} and {xk} are bounded, without loss of generality, we may assume that

lim
k∈K0,k→∞ zk = z̄, lim

k∈K0,k→∞ xk = x̄ .

From (3.14) we know that z̄ �= x̄ . Then by (3.13) and (3.14),

lim
k∈K0,k→∞ λk = 0. (3.15)
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By (3.15), line search rule (3.4) and the definition of μk, when k ∈ K0 and k is
sufficiently large,

‖g(xk + β−1λk(z
k − xk)) − g(xk)‖ ≥ α(1 − ρ)μk‖zk − xk‖

≥ α(1 − ρ)m‖zk − xk‖.

Since (3.15) holds, passing onto the limit as k → ∞,we obtain ‖z̄− x̄‖ = 0,which is a
contradiction. Thuswe obtain lim

k∈K A,k→∞ ‖zk −xk‖ = 0 and lim
k∈K A,k→∞ ‖yk −xk‖ = 0.

��
We now give the global convergence theorem of Algorithm 3.1.

Theorem 3.7 The following two conclusions hold for Algorithm 3.1.

(1) If argmin
x∈C

f (x) �= ∅, then {xk} is bounded. Suppose that there exists a constant

M > 0 such that for all k and, starting with some index k0, μk ∈ [‖r(xk)‖, M].
Then

lim
k→∞ xk = x∗ ∈ argmin

x∈C
f (x). (3.16)

(2) If the sequence {xk} is bounded and starting with some index k0, μk ∈
[‖r(xk)‖, M], then, argmin

x∈C
f (x) �= ∅ and (3.16) holds.

Proof (1) If argmin
x∈C

f (x) �= ∅, then from Lemma 3.5, {xk} is bounded and for any

x∗ ∈ argmin
x∈C

f (x), {‖xk − x∗‖} is monotonically decreasing. So, in order to prove

conclusion (1), it suffices to show that lim inf
k→∞ ‖r(xk)‖ = 0. Suppose the conclusion

does not hold, then it would be

lim inf
k→∞ ‖r(xk)‖ > 0. (3.17)

From the definition of μk, there exists a constant m > 0 such that for all sufficiently
large k, μk ∈ [m, M]. Thus, from Lemmas (3.6) and (3.2), we have

lim
k→∞ ‖zk − xk‖ = 0, lim

k→∞ ‖yk
C − xk‖ = 0. (3.18)

As {xk} is bounded, there is a subsequence K ⊆ {1, 2, · · · } such that

lim
k∈K ,k→∞ xk = x̄ . (3.19)

From (3.18) and (3.19) and the fact that {Gk} and {μk} are bounded, we have

lim
k∈K ,k→∞ ϕk(z

k) = g(x̄). (3.20)
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From the definition of yk
C and the property of projection, for all x ∈ C, we have

〈ϕk(z
k) − ek, x − yk

C 〉 ≥ 0.

Using (3.18), (3.19) and (3.20) and taking limits on both sides of the above inequality
when k ∈ K and k → ∞,

〈g(x̄), x − x̄〉 ≥ 0.

As x can be any point in C, the above inequality means that x̄ ∈ argmin
x∈C

f (x). From

this we can conclude that lim
k→∞ ‖r(xk)‖ = 0, which contradicts (3.17). So part (1) is

proved.
(2) Now suppose that {xk} is bounded and μk ∈ [‖r(xk)‖, M]. In this case we only

need to prove that

lim inf
k→∞ ‖r(xk)‖ = 0,

which implies that argmin
x∈C

f (x) �= ∅, then by conclusion (1) we know that conclusion

(2) also holds. Againwe prove it by contradiction. Suppose (3.17) holds. Then from the
definition ofμk, there exists m > 0 such that for all sufficiently large k, μk ∈ [m, M].
From Lemma 3.2, following the same line as in the proof for Lemma 3.6, we see that
{zk}, {yk} are bounded. Hence, we can select a constant M0 > 0, such that for all k,

we have

max{‖xk‖, ‖zk‖, ‖yk‖} ≤ M0.

We arbitrarily take an x̄ ∈ C, and let

Y = {x ∈ �n|‖x‖ ≤ M0 + ‖x̄‖}
⋂

C.

As x̄ ∈ Y, Y is nonempty. Also, Y is a compact set and to be contained in C. Hence
argmin

x∈Y
f (x) �= ∅. Since {xk}, {zk} and {yk} ⊆ Y, we can regard {xk} as the iter-

ative sequence obtained by using the Algorithm 3.1 for the problem min
x∈Y

f (x). As

argmin
x∈Y

f (x) �= ∅, by the proved conclusion (1), we have

lim
k→∞ xk = x∗ ∈ argmin

x∈Y
f (x). (3.21)

As x̄ ∈ Y, from (3.21), we have

〈g(x∗), x̄ − x∗〉 ≥ 0. (3.22)

Notice that x∗ ∈ C and x̄ can be any point inC, (3.22) implies that x∗ ∈ argmin
x∈C

f (x).

Hence we see that lim
k→∞ ‖r(xk)‖ = 0, which contradicts (3.17). ��
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In Algorithm 3.1, we can choose a special case of Vk, i.e., Vk = 0. Then, from the
monotonicity of PQ(·), we have

〈pk, Axk − Ayk
C 〉 = 〈PQ(Ayk

C ) − PQ(Axk), Axk − Ayk
C 〉 ≤ 0.

So, (3.3) is obvious true. Thus we can drive a special case of Algorithm 3.1, that is,
the following algorithm.

Algorithm 3.8 Step 0. Take an x0 ∈ C, and choose parameters η ∈ (0, 1), ρ ∈ (0, η).

Set k := 0.
Step 1. Choose a positive semidefinite matrix Gk = AT A, a regularization para-

meterμk > 0 and ρk ∈ (0, ρ
Mk

],where Mk = ‖g(xk)‖+‖AT A‖+2μk +1.Compute

zk, an inexact solution of the subproblem (3.1), such that (3.2) holds. If zk = xk, then
stop.

Step 2. Set yk = PC (zk − ϕk(zk)), p̂k = g(yk) − ϕk(zk) + ek . Compute

x̂ k = xk − 〈 p̂k, xk − yk〉
‖ p̂k‖2 p̂k;

xk+1 = PC (x̂ k).

Set k := k + 1, and go back to Step 1.

From Theorem 3.7, we can drive the global convergence of Algorithm 3.8.

4 Convergence rate analysis

In this section, we will discuss the convergence rate of the algorithm. To this end,
for the nonsmooth g(·), we first introduce the definition of regular solution [28,36].
Consider a perturbed linear variational inequality problem (V I P(C, gω)), where

gω(x) = g(x∗) + ω + G∗(x − x∗), (4.1)

and G∗ = AT (I − V (x∗))A, where V (x∗) ∈ ∂ PQ(Ax∗).

Definition 4.1 Let x∗ ∈ argmin
x∈C

f (x). We call x∗ a regular solution if there exist

a neighborhood U (x∗) of x∗ and a neighborhood W (0) of the origin, such that for
all ω ∈ W (0), problem (V I P(C, gω)) has a unique solution x(ω) over U (x∗), and
furthermore, x(ω) is Lipschitz continuous over W (0), i.e., there is a constant L∗ > 0,
such that for all ω′ and ω′′ ∈ W (0), we have

‖x(ω′) − x(ω′′)‖ ≤ L∗‖ω′ − ω′′‖,

where L∗ is called a regular Lipschitz constant for the solution x∗.
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It is noticed that [28,36] gave the regular solution for smooth analysis. Although
this concept is applied to optimization, especially in the local convergence analysis
of the algorithms for solving variational inequality problem, most references used the
sufficient condition of regular solution. For example, the sufficient condition used in
[25–27,29] and the references therein was given under the condition that the mapping
F satisfies some local assumptions and some constraint qualifications. Armand et al.,
Kanzow and Fukushima, Peng and Fukushima, Solodov and Svaiter, Sun et al. and
Taji et al. [23,24,28,30–32] used the stronger sufficient condition than those used in
the references mentioned above. Unlike these references, in this section, under some
local assumptions which are necessary for the case where PQ(·) is nonsmooth, we
prove that the sequence of iterates generated by the algorithm superlinearly converges
to a regular solution of the SFP.

Let argmin
x∈C

f (x) �= ∅. We choose Gk = AT (I − V (xk))A, where V (xk) ∈
∂ PQ(Axk) in Algorithm 3.1. From Proposition 2.2, we know that Gk is symmetric
and positive semidefinite and {Gk} is bounded. Choose ρk → 0(k → ∞), μk =
max{‖r(xk)‖, S(xk)t }, t ∈ (0, 1), where

S(xk) = sup

{‖PQ(Axk + u) − PQ(Axk) − V (xk)u‖
‖u‖ |u �= 0, ‖u‖ ≤ ‖r(xk)‖t

}
.

From Propositions 2.1 and 2.2, we know that {S(xk)} is bounded.
Under the above choice, from Theorems (3.7) and (3.16) holds, that is

lim
k→∞ xk = x∗ ∈ argmin

x∈C
f (x).

All the discussions below are about the analysis of the convergence rate of the
sequence {xk} converging to x∗ which aimed to (3.16) under the above choice.

We need the following assumptions.

(A1): lim
k→∞ zk = x∗;

(A2): lim
k→∞ V (xk) = V (x∗), where, V (x∗) is chosen by (4.1);

(A3): lim
k→∞ S(xk) = 0;

(A4): PQ(Axk) − PQ(Ax∗) − V (xk)A(xk − x∗) = o(‖xk − x∗‖).
The above assumptions, especially (A2), (A3) and (A4), are necessary for the

projection operator PQ(·)which is nonsmooth. They have obvious background, which
we will state in detail latter.

Lemma 4.2 Let x∗ be a regular solution and the assumptions (A1), (A2) and (A3)
hold. Then for all sufficiently large k, we have

‖A(yk
C − xk)‖ ≤ ‖r(xk)‖t .
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Proof Let

ω′
k = ϕk(z

k) − ek − g(x∗) − G∗(yk
C − x∗), (4.2)

ω′′
k = g(xk) − r(xk) − g(x∗) − G∗(xk

C − x∗), (4.3)

where xk
C = PC (xk − g(xk)). From the definition of yk

C and xk
C , they are the solution

of perturbation V I P(C, gω′
k ) and V I P(C, gω′′

k ) respectively, where

gω′
k (x) = g(x∗) + ω′

k + G∗(x − x∗), (4.4)

gω′′
k (x) = g(x∗) + ω′′

k + G∗(x − x∗). (4.5)

From assumption (A1) and (3.16), we have

lim
k→∞ yk

C = x∗, lim
k→∞ xk

C = x∗. (4.6)

In addition, from (4.2) and (4.3), we have

lim
k→∞ ω′

k = 0, lim
k→∞ ω′′

k = 0. (4.7)

From (4.6) and (4.7), for all sufficiently large k, we obtain yk
C , xk

C ∈ U (x∗), ω′
k, ω

′′
k ∈

W (0), where U (x∗) and W (0) is defined as in Definition 4.1. From assumption, x∗
is a regular solution. Thus, from Definition 4.1, yk

C and xk
C are the unique solution of

V I P(C, gω′
k ) and V I P(C, gω′′

k ) over U (x∗) and satisfy

‖yk
C − xk

C‖ ≤ L∗‖ω′
k − ω′′

k ‖. (4.8)

From (3.2) and (4.8), we have

‖yk
C − xk‖ ≤ ‖yk

C − xk
C‖ + ‖r(xk)‖

≤ L∗‖ω′
k − ω′′

k ‖ + ‖r(xk)‖
= L∗‖ϕk(z

k) − ek − G∗(yk
C − x∗)

−g(xk) + r(xk) + G∗(xk
C − x∗)‖ + ‖r(xk)‖

= L∗‖(Gk − G∗ + μk I )(zk − xk)

+(I − G∗)r(xk) + (G∗ − I )ek‖ + ‖r(xk)‖
≤ L∗[(‖G∗‖ + 1)‖r(xk)‖ + (‖G∗‖ + 1)‖ek‖

+(‖Gk − G∗‖ + μk)‖zk − xk‖] + ‖r(xk)‖
≤ L∗[(‖G∗‖ + 1)ρkμk + ‖Gk − G∗‖ + μk]‖zk − xk‖

+[L∗(‖G∗‖ + 1) + 1]‖r(xk)‖
≤ L∗[(‖G∗‖ + 1)ρkμk + (‖Gk − G∗‖ + μk)] 1

1 − ρkμk
‖yk

C − xk‖
+[L∗(‖G∗‖ + 1) + 1]‖r(xk)‖. (4.9)
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From the definition of Gk and μk , using assumption (A2) and (A3), we obtain ‖Gk −
G∗‖ → 0, μk → 0(k → ∞). Thus, we can choose sufficiently large k, such that

L∗[(‖G∗‖ + 1)ρkμk + (‖Gk − G∗‖ + μk)] 1

1 − ρkμk
≤ 1

2 + L∗(‖G∗‖ + 1)
.

Thus, from (4.9), we have

‖yk
C − xk‖ ≤ 1

2 + L∗(‖G∗‖ + 1)
‖yk

C − xk‖
+[L∗(‖G∗‖ + 1) + 1]‖r(xk)‖.

Therefore, we have

‖yk
C − xk‖ ≤ [2 + L∗(‖G∗‖ + 1)]‖r(xk)‖,

‖A(yk
C − xk)‖ ≤ ‖A‖[2 + L∗(‖G∗‖ + 1)]‖r(xk)‖.

Because ‖r(xk)‖ → 0(k → ∞), for all sufficiently large k, we have

‖A‖[2 + L∗(‖G∗‖ + 1)]‖r(xk)‖1−t ≤ 1.

Thus, we can get

‖A(yk
C − xk)‖ ≤ ‖r(xk)‖t .

��
Lemma 4.3 The following inequality holds for ∀k

‖x̂ k − yk‖ ≤ ‖ p̂k + μk(yk − xk)‖
μk

.

Proof From the following equality, this conclusion can be proved.

‖ p̂k + μk(yk − xk)‖2 − μ2
k‖x̂ k − yk‖2

= ‖ p̂k‖2 − 2μk〈 p̂k, xk − yk〉 + μ2
k
〈 p̂k, xk − yk〉2

‖ p̂k‖2

= ‖ p̂k − μk
〈 p̂k, xk − yk〉

‖ p̂k‖2 p̂k‖2.

��
Lemma 4.4 Let x∗ be a regular solution and the assumptions (A1), (A2) and (A3)
hold. Then for all sufficiently large k, (3.3) holds.

123



Analysis on Newton projection method for the split... 191

Proof If A(xk − yk
C ) = 0, then (3.3) is obviously true. Now, we suppose that A(xk −

yk
C ) �= 0. From Lemma 4.2, for all sufficiently large k, we have

‖A(yk
C − xk)‖ ≤ ‖r(xk)‖t . (4.10)

Thus, from (4.10) and the definition of μk, we have

〈pk , A(xk − yk
C )〉

=
〈
PQ(Ayk

C ) − PQ(Axk) − V (xk)A(yk
C − xk), A(xk − yk

C )
〉

≤ ‖A‖2 ‖PQ(Axk + A(yk
C − xk)) − PQ(Axk) − V (xk)A(yk

C − xk)‖
‖A(yk

C − xk)‖ ‖yk
C − xk‖2

≤ ‖A‖2 sup
{‖PQ(Axk + u) − PQ(Axk) − V (xk)u‖

‖u‖ |u �= 0, ‖u‖ ≤ ‖r(xk)‖t
}

‖yk
C − xk‖2

= ‖A‖2S(xk)‖yk
C − xk‖2

≤ ‖A‖2S(xk)1−tμk‖yk
C − xk‖2.

From assumption (A3), S(xk) → 0(k → ∞). So, for all sufficiently large k,
‖A‖2S(xk)1−t ≤ 1 − η. Thus, we have

〈pk, A(xk − yk
C )〉 ≤ (1 − η)μk‖yk

C − xk‖2,

i.e., (3.3) holds. ��
Now, we give the theorem of the convergence rate analysis of Algorithm 3.1.

Theorem 4.5 Let x∗ be a regular solution and the assumptions (A1), (A2), (A3)and
(A4) hold. Then {xk} superlinearly converges to x∗, that is,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

Proof By Lemma 4.4, for sufficiently large k, (3.3) holds. Thus, we see that yk =
yk

C , p̂k = g(yk) − ϕk(zk) + ek . Next, we will estimate ‖xk+1 − x∗‖. We have

‖xk+1 − x∗‖ ≤ ‖x̂ k − x∗‖
≤ ‖x̂ k − yk‖ + ‖yk − x∗‖. (4.11)

We first estimate ‖yk − x∗‖. From assumption, x∗ is a regular solution, hence is the
unique solutionwhenω = 0, i.e., the solution to the problem V I P(C, g0) overU (x∗).
Thus, from Definition 4.1, we have

‖yk − x∗‖ ≤ L∗‖ω′
k‖.
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Noting the definition of Gk and G∗, by (3.2) and (4.2) and assumption (A4), we can
get from the above inequality

‖yk − x∗‖ ≤ L∗‖ϕk(z
k) − ek − g(x∗) − G∗(yk − x∗)‖

= L∗‖g(xk) − g(x∗) − G∗(xk − x∗)
+(Gk − G∗ + μk)(z

k − xk) + (G∗ − I )ek‖
= L∗‖AT (PQ(Ax∗) − PQ(Axk) + V (x∗)A(xk − x∗))

+(Gk − G∗ + μk)(z
k − xk) + (G∗ − I )ek‖

≤ L∗[‖A‖‖PQ(Axk) − PQ(Ax∗) − V (x∗)A(xk − x∗)‖
+(‖Gk − G∗‖ + μk)‖zk − xk‖
+(‖G∗‖ + 1)‖ek‖]

≤ L∗‖A‖[‖PQ(Axk) − PQ(Ax∗) − V (xk)A(xk − x∗)‖
+‖V (xk) − V (x∗)‖‖A‖‖xk − x∗‖
+L∗[‖Gk − G∗‖ + μk + (‖G∗‖ + 1)ρkμk]‖zk − xk‖

≤ L∗‖A‖
[

o(‖xk − x∗‖)
‖xk − x∗‖ + ‖V (xk) − V (x∗)‖‖A‖

]
‖xk − x∗‖

+L∗[‖Gk − G∗‖ + μk + (‖G∗‖ + 1)ρkμk] 1

1 − ρkμk
‖yk − xk‖

≤ S1k‖xk − x∗‖ + S2k‖yk − x∗‖, (4.12)

where,

S1k = L∗‖A‖[o(1) + ‖V (xk) − V (x∗)‖‖A‖],
S2k = L∗[‖Gk − G∗‖ + μk + (‖G∗‖ + 1)ρkμk] 1

1 − ρkμk
.

From assumption (A2) and (A3), S1k → 0, S2k → 0(k → ∞). Thus, from (4.12), we
have

‖yk − x∗‖ ≤ S1k

1 − S2k
‖xk − x∗‖. (4.13)

We next estimate ‖x̂ k − yk‖. By Lemmas (4.3), (3.2) and (4.13), we have

‖x̂ k − yk‖ ≤ ‖ p̂k − μk(yk − xk)‖
μk

= ‖g(yk) − ϕk(zk) + ek + μk(yk − xk)‖
μk

= ‖g(yk) − g(xk) − Gk(yk − xk) − (Gk + μk I )ek + ek‖
μk

≤ ‖A‖‖PQ(Ayk) − PQ(Axk) − V (xk)A(yk − xk)‖
μk‖A(yk − xk)‖ ‖A(yk − xk)‖
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+‖Gk‖ + μk + 1

μk
‖ek‖

≤ ‖A‖2S(xk)‖yk − xk‖
μk

+ ‖Gk‖ + μk + 1

μk
‖ek‖

≤
[
‖A‖2S(xk)1−t + (‖Gk‖ + μk + 1)

ρk

1 − ρkμk

]
‖yk − xk‖

≤
[
‖A‖2S(xk)1−t + (‖Gk‖ + μk + 1)

ρk

1 − ρkμk

]

(
S1k

1 − S2k
+ 1

)
‖xk − x∗‖

= S3k

(
S1k

1 − S2k
+ 1

)
‖xk − x∗‖, (4.14)

where, S3k = ‖A‖2S(xk)1−t + (‖Gk‖ + μk + 1) ρk
1−ρkμk

. Because {Gk} is bounded,
ρk → 0(k → ∞), from (A3), we obtain S(xk) → 0(k → ∞). By (4.11), (4.13) and
(4.14), we have

‖xk+1 − x∗‖ ≤
[

S1k

1 − S2k
+ S3k

(
S1k

1 − S2k
+ 1

)]
‖xk − x∗‖.

As S1k → 0, S2k → 0, S3k → 0(k → ∞), we have

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

This completes the proof of this theorem. ��
Remark 4.6 Now we are ready to analyze the background of assumptions (A1), (A2),
(A3) and (A4), which can show that these assumptions are necessary to the nonsmooth
of PQ .

(1) If PQ(·) is semismooth at x∗ (for example, Q is a polyhedron), then from Propo-
sition 2.5, assumption (A4) holds.

(2) If PQ(·) is smooth at x∗ (for example, Q = {z ∈ �m |Bz = b}, where B is a p ×m
matrix and has full row rank), then assumptions (A2), (A3) and (A4) are satisfied.

(3) If PQ(·) is smooth at x∗ and �g(x∗) is positive definite, then assumptions (A2),
(A3) and (A4) are satisfied. Furthermore, by Lemma 3.2, assumption (A1) is also
satisfied. From Lemma 6 of [28], x∗ is a regular solution. Thus, in this case, we
only need to choose Gk = �g(xk), μk = max{‖r(xk)‖, S(xk)t } in Theorem 4.5,
then {xk} superlinearly converges to x∗. It is worth noting that the condition of this
result is weaker than that used in the related literature. For example, in Theorem 4.3
of [30], it not only need that ∇F(x∗) is positive definite, but also need that ∇F(·)
is Hölder continuous around x∗ with degree p. On the other hand, we must point
out that the Algorithm 2.2 of [30] play an enlightenment role for the algorithms
of this paper.
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By an argument analogous to that used in [28], Lemma 6, in the case of nonsmooth,
we can prove that if G∗ is positive definite, then x∗ is a regular solution. In addition,
by Lemma 3.2, we know that (A1) holds. Thus, from Theorem 4.5, we can obtain the
following corollary.

Corollary 4.7 Suppose that G∗ in (4.1) is positive definite and assumptions (A2), (A3)
and (A4) hold. Then, {xk} superlinearly converges to x∗.

Below we give the convergence analysis for the algorithm under the following
assumption.

Assumption (A′
1) : {zk} is bounded and inf

k
λk > 0.

If the assumption (A1) is replaced by (A′
1) in Theorem4.5, whether the convergence

property of the algorithm can also hold? We first give the following lemma.

Lemma 4.8 Suppose that argmin
x∈C

f (x) = {x∗} and assumption (A′
1) holds. Then

lim
k→∞ zk = x∗.

Proof From the assumption, we know that {zk} is bounded. So, we only need to prove
that any of its accumulation point z∗ = x∗. Suppose there exists an infinite sequence
K ⊆ {1, 2, · · · } such that

lim
k∈K ,k→∞ zk = z∗. (4.15)

Because ρk → 0(k → ∞), from (3.2) and (4.15), we have

lim
k∈K ,k→∞ yk

C = z∗. (4.16)

In addition, as {λk} is bounded, without loss of generality, we may assume

lim
k∈K ,k→∞ λk = λ∗. (4.17)

From (4.15) and Lemma 3.2, noting that x∗ ∈ argmin
x∈C

f (x), we can conclude that

〈g(x∗), x∗ − z∗〉 = 0. (4.18)

From the boundedness of {zk}, {yk}, {μk}, {Gk} and Lemma 3.5, we have

lim
k→∞〈 p̂k, xk − yk〉 = 0. (4.19)

If (3.3) holds, then yk = yk
C , p̂k = g(yk) − ϕk(zk) + ek, hence we have

〈g(yk), xk − yk〉 ≥ 〈 p̂k, xk − yk〉. (4.20)
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Thus, from (4.16), (4.18), (4.19) and (4.20) and taking into the monotonicity of
g(·) account, we have

〈g(x∗) − g(z∗), x∗ − z∗〉 = 0,

which, together with the co-coercivity of g(·), implies that

g(x∗) = g(z∗). (4.21)

Choosing any x ∈ C, from (4.18) and (4.21), we have

〈g(z∗), x − z∗〉 = 〈g(x∗), x − x∗〉 + 〈g(x∗), x∗ − z∗〉
= 〈g(x∗), x − x∗〉
≥ 0.

It follows that z∗ = x∗.
If yk = xk + λk(zk − xk), where, λk is generated by linesearch (3.4). Then, from

(4.15) and (4.17), we have

lim
k∈K ,k→∞ yk = y∗ = x∗ + λ∗(z∗ − x∗).

Following the same line as in the above proof, we can get

y∗ = x∗ + λ∗(z∗ − x∗) = x∗.

From the assumption, we know that λ∗ > 0. It follows immediately from the above
equality that z∗ = x∗. ��

From Lemma 4.8 and Theorem 4.5, we can get the following corollary.

Corollary 4.9 Suppose that argmin
x∈C

f (x) = {x∗}, x∗ is a regular solution and

assumptions (A′
1), (A2), (A3) and (A4) hold. Then, {xk} superlinearly converges to

x∗.

5 Numerical results

To give some insight into the behavior of the algorithms presented in this paper, we
implemented them in MATLAB to solve the following three examples. We use ‖zk −
xk‖ < ε as the stopping criteria. Throughout the computational experiments, the
parameter ε used in Algorithm 3.8 were set as ε = 10−6. In the results reported
below, the approximate solution is referred to the last iteration and the number of
iterations indicated for each test problem and each specified initial point is the number
of main iterations; the number of inner iterations in the subroutine is not included.

123



196 B. Qu et al.

Table 1 Number of iterations
for Algorithm 3.8 being applied
to Example 1

Starting points Number of
iterations

Approximate solution

(0, 0, 0)T 14 (0.3333, 1.3333,−0.6667)T

(1, 1, 1)T 14 (0.3333, 1.3333,−0.6667)T

(1, 2, 3)T 14 (−0.4574, 1.7287,−0.2713)T

(100, −10, 30)T 21 (1.3874, 0.8063,−1.1937)T

Table 2 Number of iterations
for Algorithm 3.8 being applied
to Example 2

Starting points Number of iterations Approximate solution

(0, 0, 0)T 0 (0, 0, 0)T

(1, 1, 1)T 16 (1.0000, 0.8500, 0.5500)T

(1, 2, 3)T 18 (0.0282, 0.5669, 0.6444)T

(10, −5, 10)T 19 (6.1111,−9.5834, 4.0278)T

Example 1 (An �2 − norm problem of linear equations[37])
Find a solution which satisfies that ‖x‖2 ≤ 2 of the following linear equations:

⎧
⎪⎪⎨
⎪⎪⎩

2x1 + 3x2 + x3 = 4
x1 − 2x2 + 4x3 = −5
3x1 + 8x2 − 2x3 = 13
4x1 − x2 + 9x3 = −6

This problem is an SFP for A =

⎛
⎜⎜⎝
2 3 1
1 −2 4
3 8 −2
4 −1 9

⎞
⎟⎟⎠ , C = {x |‖x‖2 ≤ 2} and

Q = {y|y = (4,−5, 13,−6)T }. The test results for Algorithm 3.8 being applied
to Example 1 are listed in Table 1 using different starting points.

Example 2 (A SFP)
Let C = {x ∈ �3|x1 + x2 + x3 ≤ 3}, Q = {y ∈ �4|y1 − 2y2 + 3y3 + 7y4 ≤ 5}.

A =

⎛
⎜⎜⎝
2 −1 3
4 2 5
2 0 2
0 1 1

⎞
⎟⎟⎠ . Find some point x ∈ C with Ax ∈ Q.

The test results for Algorithm 3.8 being applied to Example 2 are listed in Table 2
using different starting points.

Example 3 (A SFP generated randomly[38])
The SFP to find x ∈ C = {x ∈ �n|‖x‖2 ≤ 0.25}, such that Ax ∈ Q =

{y ∈ �m |0.6 ≤ y j ≤ 1, j = 1, 2, · · · , m}, where, the matrix A = (ai j )m×n and
ai j ∈ (0, 50) are generated randomly. Inwhat follows,we denote e1 = (1, 1, · · · , 1)T .
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Table 3 Number of iterations
for Algorithm 3.8 being applied
to Example 3

m n Starting points Number of iterations

10 9 (0, 0, 0)T 8

100e1 49

rand(N,1) 95

50 55 (0, 0, 0)T 11

100e1 36

rand(N,1) 100

Table 4 Number of iterations
for CQ Algorithm being applied
to Example 1

Starting points Number of iterationsApproximate solution

(0, 0, 0)T 55 (0.3333, 1.3333,−0.6667)T

(1, 1, 1)T 56 (0.3333, 1.3333,−0.6667)T

(1, 2, 3)T 56 (−0.1922, 1.5961,−0.4039)T

(100, −10, 30)T 41 (1.3846, 0.8077,−1.1923)T

Table 5 Number of iterations
for CQ Algorithm being applied
to Example 2

Starting points Number of iterations Approximate solution

(0, 0, 0)T 0 (0, 0, 0)T

(1, 1, 1)T 503 (1.0000, 0.8500, 0.5501)T

(1, 2, 3)T 565 (0.0202, 0.5621, 0.6460)T

(10, −5, 10)T 584 (6.0535,−9.6179, 4.0394)T

Table 6 Number of iterations
for CQ Algorithm being applied
to Example 3

m n Starting points Number of iterations

10 9 (0, 0, 0)T 204

100e1 692

rand(N,1) 1591

50 55 (0, 0, 0)T 114

100e1 2371

rand(N,1) 7647

The test results for Algorithm 3.8 being applied to Example 3 are listed in Table 3
using different starting points.

Finally, we also compared the implementation of our algorithm with CQ algorithm
of [2]. For a benchmark, we also tested the CQ algorithm on Examples 1, 2 and 3. The
test results are listed in Tables 4, 5 and 6.

The results given in Tables 1, 2 and 3 are quite promising as these test problems
were solved using just a small amount of iterations. They showed that the algorithms of
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this paper is effective. Tables 1, 2, 3, 4, 5 and 6 tells us that the iteration numbers of our
algorithm are relatively small. The numerical experiments demonstrate the viability
of the new method proposed in this paper. We know that choice of parameter values
affects performance of a method in practice. As this is not the main objective of the
paper, we would not give detailed test in this aspect.

6 Concluding remarks

In this paper, we give two Newton projection methods, that is, Algorithms 3.1 and
3.8 for solving the split feasibility problem. As long as the solution set of the SFP is
nonempty, the two algorithms will converges globally to a solution of the SFP proved
by Theorem 3.7. While Theorem 4.5 and its corollaries prove that Algorithm 3.1
superlinearly converges to a regular solution. It is worth noting that if we do some
feasible modification of Step 3 in Algorithm 3.1, the modified algorithm can solve
a class of convex optimization problem, which is general than the SFP, in which the
gradient of the objective function is nonsmooth, but locally Lipschitzian. Or, it can
also be used to solve a class of nonsmooth and monotone V I P(C, F), where, F is
locally Lipschitzian. For the extended algorithm, we can also prove that the conclusion
corresponding to Theorems 3.7 and 4.5 also hold.
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