
Comput Optim Appl (2017) 66:425–451
DOI 10.1007/s10589-016-9873-6

Adaptive smoothing algorithms for nonsmooth
composite convex minimization

Quoc Tran-Dinh1

Received: 24 August 2015 / Published online: 15 September 2016
© Springer Science+Business Media New York 2016

Abstract We propose an adaptive smoothing algorithm based on Nesterov’s smooth-
ing technique in Nesterov (Math Prog 103(1):127–152, 2005) for solving “fully”
nonsmooth composite convex optimization problems. Our method combines both
Nesterov’s accelerated proximal gradient scheme and a new homotopy strategy for
smoothness parameter. By an appropriate choice of smoothing functions, we develop
a new algorithm that has the O (1

ε

)
-worst-case iteration-complexity while preserves

the same complexity-per-iteration as in Nesterov’s method and allows one to auto-
matically update the smoothness parameter at each iteration. Then, we customize our
algorithm to solve four special cases that cover various applications. We also specify
our algorithm to solve constrained convex optimization problems and show its con-
vergence guarantee on a primal sequence of iterates. We demonstrate our algorithm
through three numerical examples and compare it with other related algorithms.

Keywords Nesterov’s smoothing technique · Accelerated proximal-gradient
method · Adaptive algorithm · Composite convex minimization · Nonsmooth convex
optimization

Mathematics Subject Classification 90C25 · 90-08

1 Introduction

This paper develops new smoothing optimization methods for solving the following
“fully” nonsmooth composite convex minimization problem:

B Quoc Tran-Dinh
quoctd@email.unc.edu

1 Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
(UNC), Chapel Hill, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-016-9873-6&domain=pdf

426 Q. Tran-Dinh

F� := min
x∈Rp

{
F(x) := f (x) + g(x)

}
, (1)

where g : Rp → R ∪ {+∞} is a proper, closed and convex function, and f : Rp →
R ∪ {+∞} is a convex function defined by the following max-structure:

f (x) := max
u∈Rn

{
〈x, Au〉 − ϕ(u) : u ∈ U

}
. (2)

Here, ϕ : R
n → R ∪ {+∞} is a proper, closed and convex function, and U is a

nonempty, closed, and convex set in R
n , and A ∈ R

p×n is given.
Clearly, any proper, closed and convex function f can be written as (2) using its

Fenchel conjugate f ∗, i.e., f (x) := sup {〈x, u〉 − f ∗(u) : u ∈ dom(f ∗)}. Hence, the
max-structure (2) does not restrict the applicability of the template (1). Moreover,
(1) also directly models many practical applications in signal and image processing,
machine learning, statistics and data sciences, see, e.g., [4,9,13,15,26,28,32] and the
references quoted therein.

While the first term f is nonsmooth, the second term g remains unspecified. On the
one hand, we can assume that g is smooth and its gradient is Lipschitz continuous. On
the other hand, g can be nonsmooth, but it is equipped with a “tractable” proximity
operator defined as follows: g is said to be tractably proximal if its proximal operator

proxg(x) := argmin
y

{
g(y) + (1/2)‖y − x‖2 : y ∈ dom(g)

}
, (3)

can be computed “efficiently” (e.g., by a closed form or by polynomial time algo-
rithms). In general, computing proxg requires to solve the strongly convex problem
(3), but in many cases, this operator can be obtained in a closed form or by a low-
cost polynomial algorithm. Examples of such convex functions can be found in the
literature including [3,15,28].

Solving nonsmooth convex optimization problems remains challenging, especially
when none of the two nonsmooth terms f and g is equipped with a tractable
proximity operator. Existing nonsmooth convex optimization approaches such as
subgradient-type descent algorithms, dual averaging strategies, bundle-level tech-
niques or derivative-free methods are often used to solve general nonsmooth convex

problems. However, these methods suffer a slow convergence rate (resp., O
(

1
ε2

)
-

worst-case iteration-complexity). In addition, they are sensitive to the algorithmic
parameters such as stepsizes [22].

In his pioneeringwork [24],Nesterov shown that one can solve the nonsmooth struc-
tured convexminimization problem (1)withinO (1

ε

)
iterations. Thismethod combines

a proximity smoothing technique and Nesterov’s accelerated gradient scheme [21] to
achieve the optimal worst-case iteration-complexity, which is much better than the

O
(

1
ε2

)
-worst-case iteration complexity in nonsmooth optimization methods.

Motivated by [24], Nesterov and many other researchers have proposed differ-
ent algorithms using such a proximity smoothing method to solve other problems,
to improve Nesterov’s original algorithm, or to customize his algorithm for spe-

123

Smoothing proximal gradient algorithms... 427

cific applications, see, e.g., [2,6,7,14,17,19,20,23,25,33]. In [5], Beck and Teboulle
generalized Nesterov’s smoothing technique to a generic framework, where they dis-
cussed the advantages and disadvantages of smoothing techniques. In addition, they
also illustrated numerical efficiency between smoothing techniques and proximal-type
methods. In [1,27], the authors studied smoothing techniques for the sum of three con-
vex functions, where one term is Lipschitz gradient, while the others are nonsmooth.

In [11], a variable smoothing method was proposed, which possesses the O
(
ln(k)
k

)
-

convergence rate. This convergence rate is worse than the one in [24]. However, as
a compensation, the smoothness parameter is updated at each iteration. In addition,
their method uses special quadratic proximity functions, while smooths both f and g
under a Lipschitz continuity assumption imposed on f and g.

In [23], Nesterov introduced an excessive gap technique, which requires both pri-
mal and dual schemes using two smoothness parameters. It symmetrically updates
one parameter at each iteration. Nevertheless, this method uses different assump-
tions than our method. Other primal-dual methods studied in, e.g., [12,16] use double
smoothing techniques to solve (1), but only achieveO (1

ε
log

(1
ε

))
-worst-case iteration-

complexity.
Our approach in this paper is also based on Nesterov’s smoothing technique in [24].

To clarify the differences between our method and [23,24], let us first briefly present
Nesterov’s smoothing technique in [24] applying to (1).

Recall that a convex function bU : Rn → R is called a proximity function of U
if it is continuous, and strongly convex with the convexity parameter μb > 0 and
U ⊆ dom(bU). Given bU , we define

ūc := argmin
u

{bU (u) : u ∈ U} and DU := sup
u

{bU (u) : u ∈ U} ∈ [0,+∞).

Here, ūc and DU are called the prox-center and prox-diameter of U w.r.t. bU , respec-
tively. Without loss of generality, we can assume that bU (ūc) = 0 and μb = 1.
Otherwise, we just rescale and shift it.

As shown in [24], given γ > 0 and bU , we can approximate f by fγ as

fγ (x) := max
u

{〈x, Au〉 − ϕ(u) − γ bU (u) : u ∈ U} , (4)

where γ is called a smoothness parameter. Since fγ is smooth and has Lipschitz
gradient, one can apply accelerated proximal gradient methods [4,26] to minimize the
sum fγ (·) + g(·). Using such methods, we can eventually guarantee

F(xk) − F� ≤ min
γ>0

{
2‖A‖2R2

0

γ (k + 1)2
+ γ DU

}

= 2
√
2‖A‖R0

√
DU

(k + 1)
, (5)

where
{
xk

}
is the underlying sequence generated by the accelerated proximal-gradient

method, see [24], and R0 := ‖x0−x�‖. To achieve an ε-solution xk such that F(xk)−
F� ≤ ε, we set γ ≡ γ ∗ := ε

2DU at its optimal value. Hence, the algorithm requires at

most kmax :=
⌊
2
√
2‖A‖R0

√
DUε−1

⌋
iterations.

123

428 Q. Tran-Dinh

Our approach The original smoothing algorithm in [24] has three computational dis-
advantages even with the optimal choice γ ∗ := ε

2DU of γ .

(a) It requires the prox-diameter DU of U to determine γ ∗, which may be expensive
to estimate when U is complicated.

(b) If ε is small and DU is large, then γ ∗ is small, and hence, the strong convexity
parameter of (4) is small. Algorithms for solving (4) have slow convergence speed.

(c) The Lipschitz constant of∇ fγ is γ −1‖A‖2 = 2‖A‖2DUε−1, which is large. This
leads to a small step-size of ε/(2‖A‖2DU) in the accelerated proximal-gradient
algorithm and hence, can have a slow convergence.

Our approach is briefly presented as follows. We first choose a smooth proximity
function bU instead of a general one. We assume that∇bU is Lb-Lipschitz continuous
with the Lipschitz constant Lb ≥ μb = 1. Then, we define fγ (x) as in (4), which is
a smoothed approximation to f as above.

We design a smoothing accelerated proximal-gradient algorithm that can updates γ

from γk to γk+1 at each iteration so that γk+1 < γk by performing only one accelerated
proximal-gradient step [4,26] to minimize the sum Fγk+1 := fγk+1 + g for each value
γk+1 of γ . We prove that the sequence of the objective residuals,

{
F(xk) − F�

}
,

converges to zero up to the O (1
k

)
-rate.

Our contributions Our main contributions can be summarized as follows:

(a) We propose using a smooth proximity function to smooth themax-structure objec-
tive function f in (2), and develop a new smoothing algorithm,Algorithm1, based
on the accelerated proximal-gradient method to adaptively update the smoothness
parameter in a heuristic-free fashion.

(b) We prove up to theO (1
ε

)
-worst-case iteration-complexity for our algorithm as in

[24] to achieve an ε-solution, i.e., F(xk)− F� ≤ ε. Especially, with the quadratic
proximity function bU (·) := (1/2)‖ · −ūc‖2, our algorithm achieve exactly the
O (1

ε

)
-worst-case iteration-complexity as in [24].

(c) We customize our algorithm to handle four important special cases that have a
great practical impact in many applications.

(d) We specify our algorithm to solve constrained convex minimization problems,
and propose an averaging scheme to recover an approximate primal solution with
a rigorous convergence guarantee.

From a practical point of view, we believe that the proposed algorithm can overcome
three disadvantages mentioned previously in the original smoothing algorithm in [24].
However, our condition Lb = 1 on the choice of proximity functions may lead to
some limitation of the proposed algorithm for exploiting further the structures of the
constraint set U . Fortunately, we can identify several important settings in Sect. 4,
where we can eliminate this disadvantage. Such classes of problems cover several
applications in image processing, compressive sensing, and monotropic programming
[3,15,28,34].

Paper organization The rest of this paper is organized as follows. Section 2 briefly
discusses our smoothing technique. Section 3 presents our main algorithm, Algorithm

123

Smoothing proximal gradient algorithms... 429

1, and proves its convergence guarantee. Section 4 handles four special but important
cases of (1). Section 5 specializes our algorithm to solve constrained convex mini-
mization problems. Preliminarily numerical examples are given in Sect. 6. For clarity
of presentation, we move the long and technical proofs to the appendix.

Notation and terminology We work on the real spaces Rp and R
n , equipped with

the standard inner product 〈·, ·〉 and the Euclidean �2-norm ‖ · ‖. Given a proper,
closed, and convex function g, we use dom(g) and ∂g(x) to denote its domain and
its subdifferential at x , respectively. If g is differentiable, then ∇g(x) stands for its
gradient at x .

We denote f ∗(s) := sup {〈s, x〉 − f (x) : x ∈ dom(f)}, the Fenchel conjugate of
f . For a given set X , δX (x) := 0 if x ∈ X and δX (x) := +∞, otherwise, defines
the indicator function of X . For a smooth function f , we say that f is L f -smooth if
for any x, x̃ ∈ dom(f), we have ‖∇ f (x) − ∇ f (x̃)‖ ≤ L f ‖x − x̃‖, where L(f) :=
L f ∈ [0,∞). We denote by F1,1

L the class of all L f -smooth and convex functions f .
We also use μ f ≡ μ(f) for the strong convexity parameter of a convex function f .
Given a nonempty, closed and convex set X , dist (x,X) denotes the distance from x
to X .

2 Smoothing techniques via smooth proximity functions

Let bU be a prox-function of the nonempty, closed and convex set U with the strong
convexity parameter μb = 1. In addition, bU is smooth on U , and its gradient ∇bU
is Lipschitz continuous with the Lipschitz constant Lb ≥ μb = 1. In this case, bU is
said to be Lb-smooth. As a default example, bU (·) := (1/2)‖ ·−ūc‖2 for fixed ūc ∈ U
satisfies our assumptions with Lb = μb = 1. Let ūc be the b-prox-center point of U ,
i.e., ūc := argminu {bU (u) : u ∈ U}. Without loss of generality, we can assume that
bU (ūc) = 0. Otherwise, we consider b̄U (u) := bU (u) − bU (ūc).

Given a convex function ϕ∗(z) := maxu {〈z, u〉 − ϕ(u) : u ∈ U}, we define a
smoothed approximation of ϕ∗ as

ϕ∗
γ (z) := max

u∈U
{〈z, u〉 − ϕ(u) − γ bU (u)} , (6)

where γ > 0 is a smoothness parameter. We note that ϕ∗ is not a Fenchel conjugate
of ϕ unless U = dom(ϕ). We denote by u∗

γ (x) the unique optimal solution of the
strongly concave maximization problem (6), i.e.:

u∗
γ (z) = argmax

u
{〈z, u〉 − ϕ(u) − γ bU (u) : u ∈ U} . (7)

We also define DU := supu {bU (u) : u ∈ U ∩ dom(ϕ)} the b-prox diameter of U . If
U or dom(ϕ) is bounded, then DU ∈ [0,+∞).

Associated with ϕ∗
γ , we consider a smoothed function for f in (2) as

fγ (x) := ϕ∗
γ (A�x) = max

u

{
〈A�x, u〉 − ϕ(u) − γ bU (u) : u ∈ U

}
. (8)

123

430 Q. Tran-Dinh

Then, the following lemma summaries the properties of the smoothed function ϕ∗
γ

defined by (6) and fγ defined by (8), whose proof can be found in [31].

Lemma 1 The function ϕ∗
γ defined by (6) is convex and smooth. Its gradient is given

by∇ϕ∗
γ (z) := u∗

γ (z) which is Lipschitz continuous with the Lipschitz constant Lϕ∗
γ

:=
γ −1. Consequently, for any z, z̄ ∈ R

n, we have

γ

2
‖u∗

γ (z) − u∗
γ (z̄)‖2 ≤ ϕ∗

γ (z) − ϕ∗
γ (z̄) − 〈∇ϕ∗

γ (z), z − z̄〉 ≤ 1

2γ
‖z − z̄‖2. (9)

For fixed z ∈ R
n, ϕ∗

γ (z) is convex w.r.t. γ ∈ R++, and

ϕ∗
γ (z) − (γ̂ − γ)bU (u∗

γ (z)) ≤ ϕ∗
γ̂
(z), ∀γ, γ̂ ∈ R++. (10)

As a consequence, fγ defined by (8) is convex and smooth. Its gradient is given by
∇ fγ (x) = Au∗

γ (A�x), which is Lipschitz continuous with the Lipschitz constant

L fγ := γ −1‖A‖2. In addition, we also have

fγ (x) ≤ f (x) ≤ fγ (x) + γ DU , ∀x ∈ R
p. (11)

We emphasize that Lemma 1 provides key properties to analyze the complexity of our
algorithm in the next setions.

3 The adaptive smoothing algorithm and its convergence

Associated with (1), we consider its smoothed composite convex problem as

F�
γ := min

x∈Rp

{
Fγ (x) := fγ (x) + g(x)

}
. (12)

Similar to [24], the main step of Nesterov’s accelerated proximal-gradient scheme
[4,26] applied to the smoothed problem (12) is expressed as follows:

xk+1 := proxβg

(
x̂ k − β∇ fγ (x̂ k)

)

≡ arg min
x∈Rp

{
g(x) + 1

2β

∥∥x − (
x̂ k − βAu∗

γ (A� x̂ k)
)∥∥2

}
,

(13)

where x̂ k is given, and β > 0 is a given step size, which will be chosen later.
The following lemma provides a descent property of the proximal-gradient step

(13), whose proof can be found in Appendix 1.

Lemma 2 Let xk+1 be generated by (13). Then, for any x ∈ R
p, we have

Fγ (xk+1) ≤ �̂kγ (x) + 1
β
〈xk+1 − x̂ k, x − x̂ k〉 − 1

2

(
2
β

− ‖A‖2
γ

)
‖x̂ k − xk+1‖2, (14)

123

Smoothing proximal gradient algorithms... 431

where

�̂kγ (x) := fγ (x̂ k) + 〈∇ fγ (x̂ k), x − x̂ k〉 + g(x)
≤ Fγ (x) − γ

2 ‖u∗
γ (A�x) − u∗

γ (A� x̂ k)‖2. (15)

We now adopt the accelerated proximal-gradient scheme (FISTA) in [4] to solve (12)
using an adaptive step-size βk+1 := γk+1

‖A‖2 , which becomes

⎧
⎪⎨

⎪⎩

x̂ k := (1 − τk)xk + τk x̃k

xk+1 := proxβk+1g

(
x̂ k − βk+1∇ fγk+1(x̂

k)
)

x̃ k+1 := x̃ k − 1
τk

(x̂ k − xk+1),

(16)

where γk+1 > 0 is the smoothness parameter, and τk ∈ (0, 1].
By letting tk := 1

τk
, we can eliminate x̃ k in (16) to obtain a compact version

{
xk+1 := proxβk+1g

(
x̂ k − βk+1∇ fγk+1(x̂

k)
)

x̂ k+1 := xk+1 + tk−1
tk+1

(xk+1 − xk)
(17)

The following lemma provides a key estimate to prove the convergence of the
scheme (16) (or (17)), whose proof can be found in Appendix 1.

Lemma 3 Let
{
(xk, x̃ k, τk, γk)

}
be the sequence generated by (16). Then

Fγk+1(x
k+1) ≤ (1−τk)Fγk (x

k)+τk F(x)+‖A‖2τ 2k
2γk+1

[
‖x̃ k − x‖2 − ‖x̃ k+1−x‖2

]
−Rk,

(18)
for any x ∈ R

p and Rk is defined by

Rk := τkγk+1bU (u∗
γk+1

(A� x̂ k)) − (1 − τk)(γk − γk+1)bU (u∗
γk+1

(A�xk))
+ (1−τk)γk+1

2 ‖u∗
γk+1

(A�xk) − u∗
γk+1

(A� x̂ k)‖2. (19)

Moreover, the quantity Rk is bounded from below by

Rk ≥ 1
2 (1 − τk)

[
γk+1τk − Lb(γk − γk+1)

]
bU (u∗

γk+1
(A�xk)). (20)

Next, we show one possibility for updating τk and γk , and provide an upper bound
for Fγk (x

k) − F�. The proof of this lemma is moved to Appendix 1.

Lemma 4 Let us choose x̃0 := x0 ∈ dom(F), γ1 > 0, and an arbitrary constant
c̄ ≥ 1. If the parameters τk and γk are updated by

τk := 1

k + c̄
and γk+1 := γ1c̄

k + c̄
, (21)

123

432 Q. Tran-Dinh

then the quantity Rk defined by (19) and the parameters {(τk, γk)} satisfy

γk+1

τ 2k
Rk ≥ −γ 2

1 c̄
2 [(Lb − 1)(k + c̄) + 1]

(k + c̄)2
DU and

(1 − τk)γk+1

τ 2k
= γk

τ 2k−1

. (22)

Moreover, the following estimate holds

Fγk+1(x
k+1) − F� ≤ τ 2k

γk+1

[
(1 − τ0)γ1

τ 20
(Fγ0(x

0) − F�) + ‖A‖2
2

‖x0 − x�‖2 + Sk DU

]

,

(23)

where

Sk := γ 2
1 c̄

2 ∑k
i=0

[
(Lb−1)
(i+c̄) + 1

(i+c̄)2

]
≤ γ 2

1 c̄
2(Lb − 1) (ln(k + c̄) + 1) + γ 2

1 (c̄ + 1).

(24)
In particular, if we choose bU such that Lb = 1, then Sk ≤ γ 2

1 (c̄ + 1).

By (21), the second line of (17) reduces to x̂ k+1 := xk+1 +
(
k+c̄−1
k+c̄+1

)
(xk+1 − xk).

Using this step into (17) and combining the result with the update rule (21), we can
present our algorithm for solving (1) as in Algorithm 1.

Algorithm 1 (Adaptive Smoothing Proximal-Gradient Algorithm)
Initialization:
1: Choose γ1 > 0, c̄ ≥ 1 and x0 ∈ R

p. Set x̂0 := x0.
Iteration: For k = 0 to kmax, perform:
2: Solve the following strongly concave maximization subproblem

û∗
γk+1(x̂

k) := argmax
u∈U

{
〈x̂ k, Au〉 − ϕ(u) − γk+1bU (u)

}
.

3: Perform the following proximal-gradient step with βk+1 := γk+1
‖A‖2 :

xk+1 := proxβk+1g
(
x̂ k − βk+1Aû∗

γk+1(x̂
k)

)
.

4: Update x̂ k+1 := xk+1 +
(
k+c̄−1
k+c̄+1

)
(xk+1 − xk).

5: Compute γk+2 := c̄γ1
k+c̄+1 .

End for

The following theorem proves the convergence of Algorithm 1 and estimates its
worst-case iteration-complexity.

123

Smoothing proximal gradient algorithms... 433

Theorem 1 Let {xk} be the sequence generated by Algorithm 1 using c̄ = 1. Then,
for k ≥ 1, we have

F(xk) − F� ≤ ‖A‖2‖x0 − x�‖2
2γ1k

+ 3γ1DU
k

+ γ1(Lb − 1) (ln(k) + 1) DU
k

. (25)

If bU is chosen so that Lb = 1 (e.g., bU (·) := 1
2‖ · −ūc‖2), then (25) reduces to

F(xk) − F� ≤ ‖A‖2‖x0 − x�‖2
2γ1k

+ 3γ1DU
k

, (∀k ≥ 1). (26)

Consequently, if we set γ1 := R0‖A‖√
6DU

, which is independent of k, then

F(xk) − F� ≤ R0‖A‖√6DU
k

(∀k ≥ 1), (27)

where R0 := ‖x0 − x�‖.
In this case, the worst-case iteration-complexity of Algorithm 1 to achieve an ε-

solution xk to (1) such that F(xk) − F� ≤ ε is kmax := O
(
R0‖A‖√DU

ε

)
.

Proof From (21), c̄ = 1 we have
τ 2k−1
γk

= (k+c̄−1)
c̄γ1(k+c̄−1)2

= 1
γ1k

. Using this bound and

Sk−1 ≤ γ 2
1 (Lb − 1) [ln(k) + 1] + 2γ 2

1 into (23) we get

Fγk (x
k) − F� ≤ 1

γ1k

[
‖A‖2
2

‖x0 − x�‖2 + γ1(1 − τ0)

τ 20
[Fγ0(x

0) − F�]
]

+ (γ1(Lb − 1) [ln(k) + 1] + 2γ1) DU
k

.

Since F(xk) − Fγk (x
k) ≤ γk DU due to (11), and γk = γ1c̄

k+c̄−1 = γ1
k . Substituting this

inequality into the last estimate, and using τ0 = 1
c̄ = 1, we obtain (25).

If we choose bU such that Lb = 1, e.g., bU (·) := (1/2)‖ ·−ūc‖2, then Sk ≤ 2γ 2
1 as

shown in (24). Using this, it follows from (25) that F(xk) − F� ≤ ‖A‖
2γ1k

R2
0 + 3γ1

k+1DU .
By minimizing the right hand side of this estimate w.r.t γ1 > 0, we have γ1 := R0‖A‖√

6DU
and hence, F(xk) − F� ≤ R0‖A‖√6DU

k , which is exactly (27). The last statement is a
direct consequence of (27). ��

For general prox-function bU with Lb > 1, Theorem 1 shows that the convergence

rate of Algorithm 1 is O
(
ln(k)
k

)
, which is similar to [11]. However, when Lb is close

to 1, the last term in (25) is better than [11, Theorem 1].

Remark 1 LetbU (·) := (1/2)‖·−ūc‖2. Then, (27) shows that the number ofmaximum

iterations in Algorithm 1 is kmax :=
⌊
R0‖A‖√6DU

ε

⌋
, which is the same, kmax :=

⌊
2
√
2‖A‖R0

√
DU

ε

⌋
, as in (5) (with different factors,

√
6 and 2

√
2).

123

434 Q. Tran-Dinh

4 Exploiting structures for special cases

For general smooth proximity function bU with Lb > 1, we can achieve the

O
(

(Lb−1) ln(k)
k

)
convergence rate. When Lb = 1, we obtain exactly the O (1

k

)
rate

as in [24]. In this section, we consider three special cases of (1) where we use the
quadratic proximity function bU (·) := (1/2)‖ · −ūc‖2. Then, we specify Algorithm 1
for the Lg-smooth objective function g in (1).

4.1 Fenchel conjugate

Let f ∗ be the Fenchel conjugate of f . We can write f in the form of (2) as

f (x) = max
u

{〈x, u〉 − f ∗(u) : u ∈ dom(f ∗)
}
.

We can smooth f by using bU (u) := (1/2)‖u‖22 as

fγ (x) := max
u∈dom(f ∗)

{
〈x, u〉 − f ∗(u) − (γ /2)‖u‖22

}
= ‖x‖2

2γ
− γ −1

f ∗(γ −1x),

where βh is the Moreau envelope of a convex function h with a parameter β [3]. In
this case, u∗

γ (x) = proxγ −1 f ∗(γ −1x) = γ −1(x − proxγ f (x)). Hence, ∇ fγ (x) =
γ −1(x − proxγ f (x)). The main step, Step 3, of Algorithm 1 becomes

xk+1 = proxγk+1g

(
proxγk+1 f (x̂

k)
)
.

Hence, Algorithm 1 can be applied to solve (1) using the proximal operator of f and

g. The worst-case complexity bound in Theorem 1 becomes O
(
Ddom(f ∗)R0

ε

)
, where

Ddom(f ∗) := max
u∈dom(f ∗)

‖u‖ is the diameter of dom(f ∗).

4.2 Composite convex minimization with linear operator

Weconsider the following composite convex problemwith a linear operator that covers
many important applications in practice, see, e.g., [1,3,15]:

F� := min
x∈Rp

{F(x) := f (Ax) + g(x)} , (28)

where f and g are two proper, closed and convex functions, and A is a linear operator
from R

p to Rn .
Wefirstwrite f (Ax) := maxu {〈Ax, u〉 − f ∗(u) : u ∈ dom(f ∗)}. Next, we choose

a quadratic smoothing proximity function bU (u) := (1/2)‖u − ūc‖2 for fixed ūc ∈
dom(f ∗), and define U := dom(f ∗). Using this smoothing prox-function, we obtain
a smoothed approximation of f (Ax) as follows:

123

Smoothing proximal gradient algorithms... 435

fγ (Ax) := max
u

{
〈Ax, u〉 − f ∗(u) − (γ /2)‖u − ūc‖2 : u ∈ dom(f ∗)

}
.

In this case, we can compute u∗
γ (Ax) = proxγ −1 f ∗

(
ūc + γ −1Ax

)
by using the

proximal operator of f ∗. By Fenchel–Moreau’s decomposition proxγ −1 f ∗(γ −1v) =
γ −1(v − proxγ f (γ v)) as above, we can compute proxγ −1 f ∗ using the proximal oper-
ator of f . In this case, we can specify the proximal-gradient step (13) as

⎧
⎪⎪⎨

⎪⎪⎩

û∗
k := prox

γ −1
k+1 f

∗
(
ūc + γ −1

k+1Ax̂
k
)

= ūc + γ −1
k+1

(
Ax̂k − proxγk+1 f

(
γk+1ūc + Ax̂k

))

xk+1 := proxβk+1g

(
x̂ k − βk+1A�û∗

k

)
,

where βk+1 := γk+1‖A‖−2. Using this proximal gradient step in Algorithm 1, we

still obtain the complexity as in Theorem 1, which is O
(‖x0−x�‖‖A‖√DU

ε

)
, where the

domain U := dom(f ∗) of f ∗ is assumed to be bounded.

4.3 The decomposable structure

The function ϕ and the set U in (2) are said to be decomposable if they can be
represented as follows:

ϕ(u) :=
m∑

i=1

ϕi (ui), and U := U1 × · · · × Um, (29)

where m ≥ 2, ui ∈ R
ni , Ui ⊆ R

ni and
∑m

i=1 ni = n. In this case, we also say that
problem (1) is decomposable.

The structure (29) naturally arises in linear programming andmonotropic program-
ming. In addition, many nondecomposable problems such as consensus optimization,
empirical risk minimization, conic programming and geometric programming can
also be reformulated into (1) with the structure (29). The decomposable structure (29)
immediately supports parallel and distributed computation. Exploiting this structure,
one can design new parallel and distributed optimization algorithms using the same
approach as in Algorithm 1 for solving (1), see, e.g., [10,13,29,30].

Under the structure (29), we choose a decomposable smoothing function bU (u) :=∑m
i=1 bUi (ui), where bUi is the prox-function of Ui for i = 1, . . . ,m. The smoothed

function fγ for f is decomposable, and is represented as follows:

fγ (x) :=
m∑

i=1

{
f iγ (x) := max

ui∈Ui

{〈x, Aiui 〉 − ϕi (ui) − γ bUi (ui)
}}

. (30)

Let us denote by u∗
γ,i (A

�
i x) the unique solution of the subproblem i in (30) for

i = 1, . . . ,m. Then, under the decomposable structure, the evaluation of fγ and
u∗

γ (A�x) := [u∗
γ,1(A

�
1 x), . . . , u

∗
γ,m(A�

mx)] can be computed in parallel.

123

436 Q. Tran-Dinh

If we apply Algorithm 1 to solve (1) with the structure (29), then we have the
following guarantee on the objective residual:

F(xk) − F� ≤ L A‖x0−x�‖2
2γ1k

+ γ1DU
k (3 + (Lb − 1) (ln(k + 1) + 1)),

where LA := ∑m
i=1 ‖Ai‖2, Lb := max

{
Lbi : 1 ≤ i ≤ m

}
and DU := ∑m

i=1 DUi .

Hence, the convergence rate of Algorithm 1 stated in Theorem 1 is O
(
ln(k)
k

)
. If we

choose bUi (·) := (1/2)‖ · −ūci ‖2 for all i = 1, . . . ,m, then Lb = 1. Consequently,

we obtain the O
(
L AR0

√
DU

ε

)
-worst-case iteration-complexity.

4.4 The Lipschitz gradient structure

If g is smooth and its gradient ∇g is Lipschitz continuous with the Lipschitz constant
Lg > 0, then Fγ := fγ + g ∈ F1,1

L , i.e., ∇Fγ is Lipschitz continuous with the
Lipschitz constant LFγ := Lg + γ −1‖A‖2.

We replace the proximal-gradient step (13) using in Algorithm 1 by the following
“full” gradient step

xk+1 := x̂ k − βk+1
(∇g(x̂ k) + Au∗

γk+1
(A� x̂ k)

)
, (31)

where u∗
γk+1

(A� x̂ k) is computed by (7) and βk+1 := 1
Lg+γ −1

k+1‖A‖2 is a given step-size.
Unlike (21), we update the parameters τk and γk as

τk := 1

k + 1
and γk+1 := kγk‖A‖2

Lgγk + ‖A‖2(k + 1)
,

where γ1 := ‖A‖2
Lg

is fixed. We name this variant as Algorithm 1(b).
The following corollary summarizes the convergence properties of this variant,

whose proof can be found in Appendix 1.

Corollary 1 Assume that g ∈ F1,1
L with the Lipschitz constant Lg ≥ 0. Let {xk} be

the sequence generated by Algorithm 1(b). Then, for k ≥ 1, one has

F(xk) − F� ≤ 3Lg
2k ‖x0 − x�‖2 + ‖A‖2

Lgk

(
2Lb
Lg

+ 1
)
DU + (Lb−1)‖A‖2

L2
gk

(ln(k) + 1) DU .

(32)
If we choose bU such that Lb = 1, then (32) reduces to

F(xk) − F� ≤ 3Lg

2k
‖x0 − x�‖2 + ‖A‖2

L2
gk

(Lg + 2)DU .

Consequently, the worst-case iteration-complexity of Algorithm 1(b) is O
(
1
ε

)
.

123

Smoothing proximal gradient algorithms... 437

5 Application to general constrained convex optimization

In this section, we customize Algorithm 1 to solve the following general constrained
convex optimization problem:

ϕ� := min
u∈Rn

{
ϕ(u) : Au − b ∈ −K, u ∈ U

}
, (33)

where ϕ is a proper, closed and convex function from R
n → R ∪ {+∞}, A ∈ R

p×n ,
b ∈ R

p, U andK are two nonempty, closed and convex set inRn andRp, respectively.
Without loss of generality, we can assume that ϕ and U are decomposable as in (29)
with m ≥ 1.

Associated with the primal setting (33), we consider its dual problem

F� := min
x∈Rp

{
F(x) := max

u∈U
{〈x, Au〉 − ϕ(u)} − 〈b, x〉 + max

r∈K
〈x, r〉

}
. (34)

Clearly, (34) has the same form as (1) with f (x) := max
u

{〈x, Au〉 − ϕ(u) : u ∈ U}
and g(x) := sK(x) − 〈b, x〉, where sK is the support function of K.

We now specify Algorithm 1 to solve this dual problem. Computing u∗
γ (x) requires

to solve the following subproblem:

u∗
γ (x) := argmin

u
{〈x, Au〉 − ϕ(u) − γ bU (u)} .

The proximal-step of g becomes proxg(x) := proxsK(x+b) = (x+b)−projK(x+b),
where projK(·) is the projection onto K. Together with the dual steps, we use an
adaptive weighted averaging scheme

ūk := Γ −1
k

k∑

i=0

τ−1
i γi+1u

∗
γi+1

(x̂ i), and Γk :=
k∑

i=0

τ−1
i γi+1, (35)

to construct an approximate primal solution ūk to an optimal solution u� of (33).
Clearly, we can compute ūk recursively starting from ū0 := 0n as

ūk := (1 − νk)ū
k−1 + νku

∗
γk+1

(x̂ k), where νk := (Γkτk)
−1γk+1 ∈ (0, 1]. (36)

We incorporate this scheme into Algorithm 1 to solve (33). While Algorithm 1 con-
structs an approximate solution to the dual problem (34), (36) allows us to recover an
approximate solution ūk of the primal problem (33). We name this algorithmic variant
as Algorithm 1(c).

We specify the convergence guarantee of Algorithm 1(c) in the following theorem.
The proof of this theorem is given in Appendix 1.

123

438 Q. Tran-Dinh

Theorem 2 Assume that bU is chosen such that Lb = 1, and c̄ = 1 in (21). Let
{(xk, ūk)} be generated by Algorithm 1(c). Then {ūk} ⊂ U and

⎧
⎪⎪⎨

⎪⎪⎩

−‖x�‖dist (
b − Aūk,K) ≤ ϕ(ūk) − ϕ� ≤ ‖A‖2‖x0‖2+2(γ1+2γ 2

1)DU
γ1(k+1) ,

dist
(
b − Aūk,K) ≤

‖A‖2
(

‖x0−x�‖+
√

‖x0−x�‖2+2‖A‖−2(2γ 2
1 +γ1)DU

)

γ1(k+1) .

(37)

Consequently, the worst-case iteration-complexity of Algorithm 1(c) to achieve an
ε-solution ūk such that |ϕ(ūk) − ϕ�| ≤ ε and dist

(
b − Aūk,K) ≤ ε is O (1

ε

)
.

Theorem 2 shows that Algorithm 1(c) has the O (1
ε

)
worst-case iteration-complexity

on the primal objective residual and feasibility violation for (33).

6 Preliminarily numerical experiments

We demonstrate the performance of Algorithm 1 for solving the three well-known
convex optimization problems. The first example is a LASSO problem with �1-loss
[34], the second one is a square-root LASSO studied in [8], and the last example is an
image deblurring problem with a non-smooth data fidelity function (e.g., the �1-norm
or the �2-norm function).

6.1 The �1-�1-regularized LASSO

We consider the �1-�1-regularized LASSO problem studied in [34] as follows:

F� := min
{
F(x) := ‖Bx − b‖1 + λ‖x‖1 : x ∈ R

p}
, (38)

where B and b are defined as in (39), and λ > 0 is a regularization parameter.
The function f (x) := ‖Bx − b‖1 = max

{〈B�u, x〉 − 〈b, u〉 : ‖u‖∞ ≤ 1
}
falls

into the decomposable case considered in Sect. 4.3. Hence, we can smooth f using
the quadratic prox-function to obtain

fγ (x) := max
u

{
〈x, B�u〉 − 〈b, u〉 − (γ /2)‖u‖2 : u ∈ B∞

}
.

Clearly, we can show that u∗
γ (Bx) := projB∞

(
γ −1(Bx − b)

)
. In this case, we also

have DB∞ := 1
2n and U := B∞.

Now, we apply Algorithm 1 to solve problem (39). To verify the theoretical bound
in Theorem 1, we use CVX [18] to solve (39) and obtain a high accuracy approximate
solution x�. Then, we can compute R0 := ‖x0 − x�‖2, and choose γ1 ≡ γ ∗

1 :=
‖B‖R0√
6DB∞

. From Theorem 1, we have F(xk)− F� ≤ R0‖B‖√6DB∞
k , which is the worst-

case bound of Algorithm 1, where k is the iteration number.

123

Smoothing proximal gradient algorithms... 439

Fig. 1 The empirical performance versus the theoretical bounds of the 6 algorithmic variants (left non-
correlated data, right correlated data)

For our comparison, we also implement the smoothing algorithm in [24] using the

quadratic prox-function. As indicated in (5), we set γ ≡ γ ∗ :=
√
2‖B‖R0√
DU (k+1)

. Hence, we

also obtain the theoretical upper bound F(xk) − F� ≤ 2
√
2‖B‖R0

√
DU

(k+1) . We name this
algorithm as Non-adapt. Alg. (non-adaptive algorithm).

The test data is generated as follows: Matrix B ∈ R
n×p is generated randomly

using the standard Gaussian distribution N (0, 1). We consider two cases. In the first
case, we use non-correlated data, while in the second case, we generate B with 50%
correlated columns as B(:, j+1) = 0.5B(:, j)+randn(:). The observedmeasurement
vector b is generated as b := Bx� + N (0, 0.05), where x� is a given s-sparse vector
generated randomly using N (0, 1).

We test both algorithms:Algorithm1 andNon-adapt.Alg. on twoproblem instances
of the size (p, n, s) = (1000, 350, 100) (with and without correlated data, respec-
tively). We sweep along the values of λ to find an optimal value for λ which are
λ = 6.2105 for non-correlated data, and λ = 5.7368 for correlated data, respec-
tively. For comparison, we first select the optimal value for γ1 := γ ∗

1 and γ := γ ∗ in
both algorithms. Then, we consider two cases: (i) γ1 := 10γ ∗

1 and γ := 10γ ∗, and
(i i) γ1 := 0.1γ ∗

1 and γ := 0.1γ ∗.
Figure 1 plots the empirical bounds of the 6 variants versus the theoretical bounds

from 200 to 10,000 iterations. Obviously, both algorithms show their empirical rate
which is much better than their theoretical bound. But if we change the smoothness
parameters, the guarantee is no longer preserved. Algorithm 1 shows a better perfor-
mance than Non-adapt. Alg. in both cases.

6.2 Square-root LASSO

We consider the following well-known square-root LASSO problem:

min
x∈Rp

{
F(x) := ‖Bx − b‖2 + λ‖x‖1

}
. (39)

123

440 Q. Tran-Dinh

Fig. 2 The empirical performance versus the theoretical bounds of the 6 algorithmic variants (left non-
correlated data, right 50%-correlated columns)

As proved in [8], if matrix B is Gaussian, then we can select the regularization para-
meter λ such that we can obtain exact recovery to the true solution x�.

The function f defined by f (x) := ‖Bx − b‖2 can be written as

f (x) = max
u

{
〈B�u, x〉 − 〈b, u〉 : ‖u‖2 ≤ 1

}
.

Let B2 := {u ∈ R
n : ‖u‖2 ≤ 1} be the �2-norm ball. We choose b(u) := 1

2‖u‖22 as a
prox-function for B2. Then, we can smooth f using b(·) := 1

2‖ · ‖22 as

fγ (x) := max
u

{
〈x, B�u〉 − 〈b, u〉 − (γ /2)‖u‖22 : u ∈ B2

}
.

Clearly, u∗
γ (x) := projB2

(
γ −1(Bx − b)

)
is the solution of themaximization problem,

where projB2
is the projection onto B2. Moreover, we have DU = 1

2 .
Now, we apply Algorithm 1 to solve problem (39). We choose c̄ := 1 and set

γ1 ≡ γ ∗
1 := ‖A‖R0√

6DU
, where R0 := ‖x0 − x�‖2. We also estimate the theoretical upper

bound indicated in Theorem 1 for F(xk) − F� using (25), which is ‖A‖R0
√
6DU

k . We
implement the smoothing algorithm in [24] for our comparison by using the same
prox-function. The parameter of this algorithm is set as in the previous example.

The data test is generated as in Sect. 6.1. We also perform the test on two problem
instances of size (p, n, s) = (1000, 350, 100): non-correlated data and correlated
data. We choose the regularization parameter λ as suggested in [8]. We use the same
setting for the smoothness parameter γ in both algorithms as in Sect. 6.1. In this case,
the theoretical upper bound of Algorithm 1 depends on the log term which is scaled
by the condition number of BB�, and is worse than in Non-adapt. Alg. variant.

Figure 2 plots the empirical bounds of the 6 variants versus the theoretical bounds
from 200 to 10, 000 iterations. Obviously, both algorithms show their empirical rate
which is much better than their theoretical bound. Algorithm 1 gives a better per-
formance than the nonadaptive method in this example. We note that the theoretical
bound in Algorithm 1 remains non-optimal, while it is optimal in the nonadaptive one.

123

Smoothing proximal gradient algorithms... 441

Fig. 3 Comparison of Algorithm 1 and Boţ&Hendrich Alg. (left the objective values versus the
number of sweeping points, right convergence of the relative objective residual)

Finally, we compare Algorithm 1 with the variable smoothing algorithm in [11]
(Boţ&Hendrich Alg.). Whlile the first term f (x) := ‖Ax − b‖2 is smoothened
as in Algorithm 1, we smooth the second term g(x) := λ‖x‖1 as

gβ(x) := max
v

{
〈x, v〉 − (β/2)‖v‖22 : ‖v‖∞ ≤ 1

}
.

Then,we update γk andβk as γk = 1
ca(k+1) andβk = 1

cb(k+1) , respectively as suggested
in [11], where ca and cb are two appropriate constants.

We compare Algorithm 1 and Boţ&Hendrich Alg. on a problem instance of
size (p, n, s) = (1000, 350, 100), where the data is generated as in the previous tests.
To find an appropriate value of ca and cb, we sweep ca ∈ [10, 5000] simultaneously
with cb ∈ [0.001, 500]. We obtain ca = 51 and cb = 49. For Algorithm 1, we consider
two cases. In the first case, we set γ1 = γ ∗

1 = 129.5505 computed from the worst-case
bound, while in the second case, we also sweep γ1 ∈ [10, 1000] to find an appropriate
value γ1 = 51. The results of both algorithms are plotted in Fig. 3 for 5000 iterations.

Figure 3 (left) shows that the objective value produced by Algorithm 1 does not
vary much when γ1 ∈ [10, 1000], while, in Boţ&Hendrich Alg., the objective
value changes rapidlywhenwe sweep on ca and cb simultaneously. Hence, it is unclear
how to choose an appropriate value for ca and cb without sweeping. Figure 3 (right)
shows the convergence behavior of both algorithms. Without sweeping, Algorithm 1
has a good empirical convergence rate in the early iterations. With sweeping, both
algorithms perform better in the later iterations. Algorithm 1 has a better performance
than Boţ&Hendrich Alg.

6.3 Image deblurring with the �1 or �2-data fidelity function

We consider an image deblurring problem using the �α-norm fidelity term as

min
X

{
F(X) := ‖A(X) − b‖α + λ‖WX‖1 : X ∈ R

m×q}
, (40)

123

442 Q. Tran-Dinh

Table 1 The PSNR values reported by the 8 algorithmic variants on the 5 test images

Images Cameraman Barbara Lena Boat House

PSNR of 4 algorithms after 300 iterations

Alg. 1 (�1, γ1 = 62) 26.2140 26.8253 27.1793 26.4951 30.9848

Alg. 1 (�1, γ1-sweeping) 26.2693 27.0682 27.5440 26.5519 31.6877

Alg. 1 (�2, γ1 = 62) 26.2128 26.8232 27.1782 26.4923 30.4126

Alg. 1 (�2, γ1-sweeping) 26.2128 26.8232 27.1782 26.4923 30.4126

Nes. Alg. (�1, γ -sweeping) 25.0601 26.1376 26.3776 25.2301 30.2982

Nes. Alg. (�2, γ -sweeping) 25.0908 26.1361 26.3901 25.2364 30.4081

BH Alg. (�1, ca -sweeping) 25.5784 26.3421 26.5916 25.6025 31.1606

BH Alg. (�2, ca -sweeping) 25.4784 26.4421 26.5916 25.6025 31.1606

PSNR of 4 algorithms after 500 iterations

Alg. 1 (�1, γ1 = 62) 27.0371 27.6286 28.1471 27.3116 32.1771

Alg. 1 (�1, γ1-sweeping) 27.1666 27.8449 28.2086 27.4410 32.8647

Alg. 1 (�2, γ1 = 62) 27.0363 27.6279 28.1486 27.3111 32.1710

Alg. 1 (�2, γ1-sweeping) 27.0363 27.6279 28.1486 27.3111 32.1710

Nes. Alg. (�1, γ -sweeping) 25.0857 26.1686 26.4590 26.1321 30.4720

Nes. Alg. (�2, γ -sweeping) 25.0845 26.1686 26.4582 25.2265 30.4718

BH Alg. (�1, ca -sweeping) 26.5030 27.1588 27.1630 27.0277 31.8824

BH Alg. (�2, ca -sweeping) 26.5030 27.1588 27.1630 27.0277 31.8824

PSNR of 4 algorithms after 1000 iterations

Alg. 1 (�1, γ1 = 62) 27.4774 27.8353 28.4224 27.6596 32.9985

Alg. 1 (�1, γ1-sweeping) 27.3291 27.8659 28.4040 27.9482 33.2038

Alg. 1 (�2, γ1 = 62) 27.2524 27.8070 28.4774 27.5268 33.1879

Alg. 1 (�2, γ1-sweeping) 27.2524 27.8070 28.4774 27.5268 33.1879

Nes. Alg. (�1, γ -sweeping) 25.0870 26.1691 26.4602 26.1371 30.4698

Nes. Alg. (�2, γ -sweeping) 25.0867 26.1690 26.4600 25.2267 30.4700

BH Alg. (�1, ca -sweeping) 27.1128 27.8391 27.9327 27.3487 32.6715

BH Alg. (�2, ca -sweeping) 27.1723 27.8205 27.9327 27.3143 32.6715

where α ∈ {1, 2}, A : Rp → R
p (p = m × q) is a blurring kernel, b is an observed

noisy image,W : Rp → R
p is the orthogonal Haar wavelet transformwith four levels,

λ > 0 is the regularizer parameter.
We now apply Algorithm 1 (Alg. 1) to solve problem (40) and compare it with the

nonadaptive variant (Nes. Alg.) and Boţ & Hendrich’s algorithm (BH Alg.) in
[11]. Since A is orthogonal, we can use the quadratic smoothing function as bU (X) :=
(1/2)‖X‖2F . With this choice, we can compute the gradient of u∗

γ (X) defined by (7)
as u∗

γ (X) = projB∗
α
(γ −1(A(X) − b)), where projBα

is the projection onto the dual
norm ball B∗

α of the �α-norm.
We test three algorithms on the five images:cameraman,barbara,lena,boat

and house widely used in the literature. The noisy images are generated as in [4].
Although we use the non-smooth �α-norm function with α = 1 or α = 2, the regu-

123

Smoothing proximal gradient algorithms... 443

larization parameter λ is set to λ := 10−4 as suggested in [4], but it still provides the
best recovery compared to other values in all 5 images.

While we fix γ1 = 62 in Algorithm 1 which is roughly computed from the worst-
case bound, we sweep γ and ca (see Sect. 6.2) in [0.0001, 1000] to choose the best
possible value for Nes. Alg. and BH Alg. in each image (with 300 iterations).
We also set cb = ca as suggested in [11]. For Nes. Alg., we have γ = 1 in the
boat image, while in the other 4 images, γ = 2.5 is the best value. For BH Alg., we
have ca = 0.005 in the cameraman, barbara and boat images, and ca = 0.0025
in the lena and house images. The PSNR (Peak Signal to Noise Ratio [4]) of the 8
algorithms are reported in Table 1.

It shows that the nonsmooth �1-norm objective produces slightly better recovery
images in terms of PSNR than the �2-normobjective inmany cases forAlgorithm1, but
it is not the case in Nes. Alg. and BH Alg. In addition, Algorithm 1 is superior
to Nes. Alg. in all cases, and is also better than BH Alg. in the majority of the
test.We note that the complexity-per-iteration of the four algorithms are essentially the
same, while our new adaptive strategy produces better solutions in terms of PSNR than
the other two methods. In addition, our algorithm significantly improves the PSNR if
we run it further, while the nonadaptive variant does not make any clear progress on
the PSNR value if we continue running it. If we sweep the values of γ1 in Algorithm 1
(γ1-sweeping), we can also improve the results of this algorithm.

Acknowledgements This researchwas partially supported byNSF,GrantNo. 161-9884, andNAFOSTED,
Grant No. 101.01-2014-24.

Appendix: the proof of technical results

This appendix provides the full proof of the technical results presented in the main
text.

The proof of Lemma 2: descent property of the proximal gradient step

Byusing (9)with fγ (x) := ϕ∗
γ (A�x),∇ fγ (x̄) = A∇ϕ∗

γ (A� x̄), z := A�x , z̄ := A� x̄ ,
and ‖A�(x − x̄)‖ ≤ ‖A‖‖x − x̄‖ we can show that

γ

2
‖u∗

γ (A�x) − u∗
γ (A� x̄)‖2 ≤ fγ (x) − fγ (x̄) − 〈∇ fγ (x), x − x̄〉 ≤ ‖A‖2

2γ
‖x − x̂‖2.

Using this estimate, we can show that the proof of (14) can be done similarly as in
[31]. ��

The proof of Lemma 3: key estimate

We first substitute β = γk+1
‖A‖2 into (14) and using (15) to obtain

Fγk+1(x
k+1) ≤ Fγk+1(x

k) − γk+1

2
‖u∗

γk+1
(A�xk) − u∗

γk+1
(A� x̂ k)‖2

123

444 Q. Tran-Dinh

+ ‖A‖2
γk+1

〈
xk+1 − x̂ k, x − x̄ k

〉
− ‖A‖2

2γk+1
‖x̂ k − xk+1‖2.

Multiplying this inequality by (1− τk) and (14) by τk , and summing up the results we
obtain

Fγk+1(x
k+1) ≤ (1 − τk)Fγk+1(x

k) + τk �̂
k
γk+1

(x)

− (1 − τk)γk+1

2
‖u∗

γk+1
(A�xk) − u∗

γk+1
(A� x̂ k)‖2

+ ‖A‖2
γk+1

〈
x̂ k − xk+1, x̂ k − (1 − τk)x

k − τk x
〉
− ‖A‖2

2γk+1
‖x̂ k − xk+1‖2,

where �̂kγ (x) := fγ (x̂ k) + 〈∇ fγ (x̂ k), x − x̂ k〉 + g(x).

From (16), we have τk x̃k = x̂ k − (1 − τk)xk , we can write this inequality as

Fγk+1(x
k+1) ≤ (1 − τk)Fγk+1(x

k) + τk �̂
k
γk+1

(x)

− (1 − τk)γk+1

2
‖u∗

γk+1
(A�xk) − u∗

γk+1
(A� x̂ k)‖2

+ ‖A‖2τ 2k
2γk+1

[
‖x̃ k − x‖2 − ‖x̃ k − τ−1

k (x̂ k − xk+1) − x‖2
]
. (41)

Using (10) with γ := γk+1, γ̂ := γk and z := A�xk , we get

fγk+1(x
k) ≤ fγk (x

k) + (γk − γk+1)bU (u∗
γk+1

(A�xk)),

which leads to (cf : Fγ = fγ + g):

Fγk+1(x
k) ≤ Fγk (x

k) + (γk − γk+1)bU (u∗
γk+1

(A�xk)). (42)

Next, we estimate �̂kγk+1
. Using the definition of fγ and ∇ fγ , we can deduce

�̂kγk+1
(x) := fγk+1(x̂

k) +
〈
∇ fγk+1(x̂

k), x − x̂ k
〉
+ g(x)

= 〈
x̂ k, A�u∗

γk+1
(A� x̂ k)

〉 − ϕ(u∗
γk+1

(A� x̂ k)) − γk+1bU (u∗
γk+1

(A� x̂ k))

+ 〈
x − x̂ k, Au∗

γk+1
(A� x̂ k)

〉 + g(x)

= 〈
x, Au∗

γk+1
(A� x̂ k)

〉 − ϕ(u∗
γk+1

(A� x̂ k)) − γk+1bU (u∗
γk+1

(A� x̂ k)) + g(x)

≤ max
u

{〈
x, Au

〉 − ϕ(u) : u ∈ U} − γk+1bU (u∗
γk+1

(A� x̂ k)) + g(x)

= F(x) − γk+1bU (u∗
γk+1

(A� x̂ k)). (43)

123

Smoothing proximal gradient algorithms... 445

Substituting x̃ k+1 := x̃ k − 1
τk

(x̂ k − xk+1) from the third line of (16) together with
(42), and (43) into (41), we can derive

Fγk+1(x
k+1) ≤ (1 − τk)Fγk (x

k) + τk F(x)

+‖A‖2τ 2k
2γk+1

[
‖x̃ k − x‖2 − ‖x̃ k+1 − x‖2

]
− Rk,

which is indeed (18), where Rk is given by (19).
Finally, we prove (20). Indeed, using the strong convexity and the Lb-smoothness

of bU , we can lower bound

Rk ≥ τkγk+1

2
‖u∗

γk+1
(A� x̂ k) − ūc‖2 + (1 − τk)γk+1

2
‖u∗

γk+1
(A�xk) − u∗

γk+1
(A� x̂ k)‖2

− Lb

2
(1 − τk)(γk − γk+1)‖u∗

γk+1
(A�xk) − ūc‖2.

Letting v̂k := u∗
γk+1

(A� x̂ k) − ūc and vk := u∗
γk+1

(A�xk) − ūc, we write Rk as

2γ −1
k+1Rk ≥ τk‖v̂k‖2 + (1 − τk)‖v̂k − vk‖2 − (1 − τk)(γ

−1
k+1γk − 1)Lb‖vk‖2

= ‖v̂k‖2 − 2(1 − τk)〈v̂k, vk〉 + (1 − τk)
[
1 − (γ −1

k+1γk − 1)Lb
]‖vk‖2

= ‖v̂k − (1 − τk)vk‖2 + (1 − τk)
[
τk − (γ −1

k+1γk − 1)Lb

]
‖vk‖2

≥ (1 − τk)
[
τk − (γ −1

k+1γk − 1)Lb

]
‖vk‖2,

which obviously implies (20). ��

The proof of Lemma 4: the choice of parameters

First, using the update rules of τk and γk in (21), we can express the quantity mk as

mk := γk+1(1 − τk)
[
γk+1τk − Lb(γk − γk+1)

]

τ 2k
= −γ 2

1 c̄
2 [(Lb − 1)(k + c̄) + 1]

(k + c̄)2
.

Moreover, it follows from the properties of bU that

1

2
‖u∗

γk+1
(A�xk) − ūc‖2 ≤ bU (u∗

γk+1
(A�xk)) ≤ DU .

Multiplying the lower bound (20) by γk+1

τ 2k
and combining the result with the last

inequality and the estimate of mk , we obtain the first lower bound in (22).

Next, using the update rules (21) of τk andγk , we have
(1−τk)γk+1

τ 2k
= (k+c̄−1)(k+c̄)2γ1c̄

(k+c̄)(k+c̄)

= γ1c̄(k+c̄−1)2

(k+c̄−1) = γk

τ 2k−1
, which is the second equality in (22).

123

446 Q. Tran-Dinh

Using (18) with the lower bound of Rk from (22), we have

γk+1

τ 2k
�Fk+1+ ‖A‖2

2
‖x̃ k+1− x�‖2 ≤ (1 − τk)γk+1

τ 2k
�Fk + ‖A‖2

2
‖x̃ k − x�‖2+sk DU ,

(44)

where �Fk := Fγk (x
k)− F� and sk := γ 2

1 c̄
2[(Lb−1)(k+c̄)+1]

(k+c̄)2
. Using this inequality and

the relation (1−τk)γk+1

τ 2k
= γk

τ 2k−1
in (22), we can easily show that

γk+1

τ 2k
�Fk+1 + ‖A‖2

2
‖x̃ k+1 − x�‖2 ≤ γk

τ 2k−1

�Fk + ‖A‖2
2

‖x̃ k − x�‖2 + sk DU .

By induction, we obtain from the last inequality that

γk+1

τ 2k
�Fk+1 + ‖A‖2

2
‖x̃ k+1 − x�‖2 ≤ (1 − τ0)γ1

τ 20
�F0 + ‖A‖2

2
‖x̃0 − x�‖2 + Sk DU ,

(45)
which implies (23), where Sk := ∑k

i=0 sk = γ 2
1 c̄

2 ∑k
i=0

[(Lb−1)(i+c̄)+1]
(i+c̄)2

.

Finally, to prove (24), we use two elementary inequalities
∑k+c̄

i=1
1
i < 1+ ln(k + c̄)

and
∑k

i=0
1

(i+c̄)2
≤ 1

c̄2
+ ∑k

i=1
1

(i+c̄−1)(i+c̄) < 1
c̄2

+ 1
c̄ . ��

The proof of Corollary 1: the smooth accelerated gradient method

First, it is similar to the proof of (44), we can derive

γk+1

(Lgγk+1 + ‖A‖2)τ 2k
�Fk+1 + 1

2
‖x̃ k+1 − x�‖2

≤ (1 − τk)γk+1

(Lgγk+1 + ‖A‖2)τ 2k
�Fk + 1

2
‖x̃ k − x�‖2 + ŝk DU ,

where �Fk := Fγk (x
k) − F�, and ŝk := γk+1(1−τk)[Lb(γk−γk+1)−γk+1τk]

τ 2k (Lgγk+1+‖A‖2) .

Next, we impose condition (1−τk)γk+1

τ 2k (Lgγk+1+‖A‖2) = γk

τ 2k−1(Lgγk+‖A‖2) and choose τk =
1

k+1 . Then, we can show from the last condition that γk+1 = kγk‖A‖2
Lgγk+‖A‖2(k+1)

. Now, we

show that γk ≤ γ1
k+1 . Indeed, we have

1
γk+1

= (k+1
k

) 1
γk

+ Lg

‖A‖2k ≥ (k+1
k

) 1
γk
, which

implies that γk+1 ≤ k
k+1γk . By induction, we get γk+1 ≤ γ1

k+1 . On the other hand,

assume that 1
γk+1

= (k+1
k

) 1
γk

+ Lg

‖A‖2k ≤ 1
γk

(
k

k−1

)
for k ≥ 2. This condition leads

to γk ≤ ‖A‖2
Lg(k−1) . Using γk ≤ γ1

k = ‖A‖2
Lgk

due to the choice of γ1, we can show that

γk ≤ ‖A‖2
Lg(k−1) . Hence, with the choice γ1 := ‖A‖2

Lg
, the estimate 1

γk+1
≤ 1

γk

(
k

k−1

)
and

the update rule of γk eventually imply

123

Smoothing proximal gradient algorithms... 447

γ1‖A‖2
(Lgγ1 + 2‖A‖2)k = γ2

k
≤ γk+1 ≤ γ1

k + 1
, ∀k ≥ 1.

This condition leads to
τ 2k−1(Lgγk+‖A‖2)

γk
= Lgτ

2
k−1 + τ 2k−1

γk
‖A‖2 ≤ Lg

k2
+ 3Lg(k−1)

k2
=

3Lg
k . Using the estimates of τk and γk , we can easily show that ŝk ≤ Lb‖A‖2

L2
gk(k+2)

+
Lb‖A‖2

L2
g(k+1)(k+2)

+ (Lb−1)‖A‖2k
Lg(k+1)(k+2) . Hence, we can prove that

Ŝk :=
k∑

i=0

ŝi ≤ 2Lb‖A‖2
L2
g

+ (Lb − 1)‖A‖2
L2
g

k∑

i=0

1

i + 1

= 2Lb‖A‖2
L2
g

+ (Lb − 1)‖A‖2
L2
g

(ln(k) + 1) .

Using this estimate, we can show that

Fγk (x
k) − F� ≤ 3Lg

2k
‖x0 − x�‖2 + 2Lb‖A‖2

L2
gk

DU

+ (Lb − 1)‖A‖2
L2
gk

(ln(k) + 1) DU .

Finally, using the bound (11) and γk ≤ ‖A‖2
Lg(k+1) <

‖A‖2
Lgk

, we obtain (32). ��

The proof of Theorem 2: primal solution recovery

Let �Fk := Fγk (x
k) − F�. Then, by (11), we have �Fk ≥ F(xk) − F� − γk DU ≥

−γk DU . Similar to the proof of Lemma 4, we can prove that

γi+1

τ 2i
�Fi+1 ≤ γi

τ 2i−1

�Fi + γi+1

τi
��̂γi+1(x)

+‖A‖2
2

(
‖x̃ i − x‖2 − ‖x̃ i+1 − x‖2

)
+ si DU , (46)

where si := [(Lb−1)(i+c̄)+1]
(i+c̄)2

as in the proof of Lemma 4, and ��̂kγk+1
(x) =

〈
x, Au∗

γk+1
(x̂ k)

〉−ϕ(u∗
γk+1

(x̂ k))+ g(x)− F� = 〈
x, Au∗

γk+1
(x̂ k)−b

〉−ϕ(u∗
γk+1

(x̂ k))+
sK(x) − F�. Summing up this inequality from i = 1 to i = k and using τ0 = 1 and
x̃0 = x0, we obtain

γk+1

τ 2k
�Fk+1 ≤

k∑

i=1

γi+1

τi
��̂γi+1(x) + ‖A‖2

2

(
‖x̃1 − x‖2 − ‖x̃ k+1 − x‖2

)

+ γ1�F1 + Sk DU , (47)

123

448 Q. Tran-Dinh

where Sk := ∑k
i=1 si . Now, using again (46) with k = 1, x0 = x̃0 and τ0 = 1, we get

γ1�F1 ≤ γ1τ0��̂γ1(x) + ‖A‖2
2

(‖x0 − x�‖2 − ‖x̃1 − x�‖2)
. Using this into (47), one

yields

γk+1

τ 2k
�Fk+1 ≤

k∑

i=0

γi+1

τi

(〈
x, Au∗

γi+1
(x̂ i) − b

〉 − ϕ(u∗
γi+1

(x̂ i)) + sK(x) − F�
)

+‖A‖2
2

‖x0 − x‖2 + Sk DU . (48)

Combining ūk defined by (35) with wi := γi+1
τi

, and the convexity of ϕ, we have

k∑

i=0

γi+1

τi

(〈
x, Au∗

γi+1
(x̂ i) − b

〉 − ϕ(u∗
γi+1

(x̂ i))
)

≤ Γk

(〈
x, Aūk − b

〉 − ϕ(ūk)
)

.

Substituting this into (48) and then using �Fk+1 ≥ −γk+1DU we get

−γ 2
k+1

τ 2k
DU ≤ Γk

(〈
x, Aūk − b

〉 − ϕ(ūk) + sK(x) − F�
)

+ ‖A‖2
2

‖x0 − x‖2+Sk DU ,

which implies

F� ≤ 〈
x, Aūk − b

〉 − ϕ(ūk) + sK(x) + ‖A‖2
2Γk

‖x0 − x‖2 + DU
Γk

(
γ 2
k+1

τ 2k
+ Sk

)

.

By arranging this inequality, we get

inf
r∈K

〈
x, b− Aūk −r

〉+ϕ(ūk) ≤ −F� + ‖A‖2
2Γk

‖x0− x‖2+ DU
Γk

(
γ 2
k+1

τ 2k
+ Sk

)

, (49)

where we use the relation −sK(x) = − supr∈K〈x, r〉 = infr∈K〈x,−r〉. On the other
hand, by the saddle point theory for the primal and dual problems (33) and (34), for
any optimal solution x�, we can show that

−F� = ϕ� ≤ ϕ(u) − 〈x�, Au − b + r〉, ∀u ∈ U , r ∈ K.

Since this inequality holds for any r ∈ K and u ∈ U , by using u = ūk , it leads to

inf
r∈K

〈
x�, Aūk − b + r

〉 − ϕ(ūk) ≤ F�. (50)

Combining (49) and (50) yields

min
r∈K

{〈
x� − x, r + Aūk − b

〉 − ‖A‖2
2Γk

‖x0 − x‖2
}

≤ DU
Γk

(
γ 2
k+1

τ 2k
+ Sk

)

, ∀x ∈ R
p.

(51)

123

Smoothing proximal gradient algorithms... 449

Taking x := x0 − ‖A‖−2Γk(Aūk − b + r) for any r ∈ K, we obtain from (51) that

min
r∈K

{
Γk

‖A‖2 ‖Aūk + r − b‖2 + 2
〈
Aūk − b + r, x� − x0

〉
}

≤ 2DU
Γk

(
γ 2
k+1

τ 2k
+ Sk

)

,

which implies (by the Cauchy–Schwarz inequality)

min
r∈K

{
Γk‖Aūk − b + r‖2 − 2‖A‖2‖Aūk − b + r‖‖x� − x0‖

}

≤ 2‖A‖2DU
Γk

(
γ 2
k+1

τ 2k
+ Sk

)

.

By elementary calculations and dist
(
b − Aūk,K) = inf

{‖Aūk − b + r‖ : r ∈ K}
,

we can show from the last inequality that

dist
(
b − Aūk,K

)
≤ ‖A‖2

Γk

[
‖x0 − x�‖ +

√

‖x0 − x�‖2 + 2

‖A‖2
(
Sk + γ 2

k+1

τ 2k

)
DU

]
.

(52)

To prove the first estimate of (37), we use (49) with x = 0p and F� = −ϕ� to get

ϕ(ūk) − ϕ� ≤ 1

Γk

[‖A‖2
2

‖x0‖2 +
(γ 2

k+1

τ 2k
+ Sk

)
DU

]
. (53)

Since we apply Algorithm 1(c) to solve the dual problem (34) using bU such that
Lb = 1, we have Sk ≤ 2γ 2

1 . Then, by using γk+1 = c̄γ1
k+c̄ , and τk := 1

k+c̄ , we can

show that
γ 2
k+1

τ 2k
= γ1c̄. Moreover, we also have Γk := ∑k

i=0
γi+1
τi

= γ1c̄(k + 1).

Using these estimates, and Sk ≤ 2γ 2
1 from (4) into (52) and (53) we obtain (37).

For the left-hand side inequality in the first estimate of (37), we use a simple bound
−‖x�‖dist (b − Au,K) ≤ ϕ(u) − ϕ� for u = ūk ∈ U from the saddle point theory as
in (50). ��

References

1. Andreas, A., Marco, S., Suykens, J.: Hybrid conditional gradient-smoothing algorithms with applica-
tions to sparse and low rank regularization. In:Andreas,A.,Marco, S., Suykens, J. (eds.)Regularization,
Optimization, Kernels, and Support Vector Machines, pp. 53–82. CRC Press, Boca Raton (2014)

2. Baes, M., and Bürgisser, M.: Smoothing techniques for solving semi-definite programs with many
constraints. Optimization Online (2009)

3. Bauschke, H.H., Combettes, P.: Convex Analysis and Monotone Operators Theory in Hilbert Spaces.
Springer, New York (2011)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding agorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

5. Beck, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM J. Optim.
22(2), 557–580 (2012)

123

450 Q. Tran-Dinh

6. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery.
SIAM J. Imaging Sci. 4(1), 1–39 (2011)

7. Becker, S., Candès, E.J., Grant, M.: Templates for convex cone problems with applications to sparse
signal recovery. Math. Prog. Comput. 3(3), 165–218 (2011)

8. Belloni, A., Chernozhukov, V., Wang, L.: Square-root LASSO: pivotal recovery of sparse signals via
conic programming. Biometrika 94(4), 791–806 (2011)

9. Ben-Tal, A., and Nemirovski, A.: Lectures on modern convex optimization: Analysis, algorithms, and
engineering applications, volume 3 of MPS/SIAM Series on Optimization. SIAM (2001)

10. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical methods. Prentice
Hall, Englewood Cliffs (1989)

11. Boţ, R., Hendrich, C.: A variable smoothing algorithm for solving convex optimization problems. TOP
23(1), 124–150 (2012)

12. Bot, R.I., Hendrich, C.: A double smoothing technique for solving unconstrained nondifferentiable
convex optimization problems. Comput. Optim. Appl. 54(2), 239–262 (2013)

13. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

14. Chen, J., Burer, S.: A first-order smoothing technique for a class of large-scale linear programs. SIAM
J. Optim. 24(2), 598–620 (2014)

15. Combettes, P., Pesquet, J.-C.: Fixed-PointAlgorithms for Inverse Problems in Science andEngineering,
Chapter Proximal Splitting Methods in Signal Processing, pp. 185–212. Springer, New York (2011)

16. Devolder, O., Glineur, F., Nesterov, Y.: Double smoothing technique for large-scale linearly constrained
convex optimization. SIAM J. Optim. 22(2), 702–727 (2012)

17. Goldfarb, D., Ma, S.: Fast alternating linearization methods of minimization of the sum of two convex
functions. Math. Prog. A 141(1), 349–382 (2012)

18. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N. (eds.)
Global Optimization: From Theory to Implementation, Nonconvex Optimization and Its Applications,
pp. 155–210. Springer, New York (2006)

19. Necoara, I., Suykens, J.A.K.: Applications of a smoothing technique to decomposition in convex
optimization. IEEE Trans. Autom. Control 53(11), 2674–2679 (2008)

20. Nedelcu, V., Necoara, I., Tran-Dinh, Q.: Computational complexity of inexact gradient augmented
lagrangian methods: application to constrained MPC. SIAM J. Optim. Control 52(5), 3109–3134
(2014)

21. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence
o(1/k2). Doklady AN SSSR 269 (Soviet Math. Dokl.), 543–547 (1983)

22. Nesterov, Y.: Introductory lectures on convex optimization: a basic course. Applied Optimization, vol.
87. Kluwer Academic Publishers, Dordrecht (2004)

23. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16(1),
235–249 (2005)

24. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Prog. 103(1), 127–152 (2005)
25. Nesterov, Y.: Smoothing technique and its applications in semidefinite optimization. Math. Prog.

110(2), 245–259 (2007)
26. Nesterov, Y.: Gradient methods for minimizing composite objective function. Math. Prog. 140(1),

125–161 (2013)
27. Orabona, F., Argyriou, A., and Srebro, N.: PRISMA: proximal iterative smoothing algorithm. Tech.

Report., pp. 1–21 (2012). http://arxiv.org/abs/1206.2372
28. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)
29. Rockafellar, R.T.: Monotropic programming: a generalization of linear programming and network

programming. In: Rockafellar, R.T. (ed.) Convexity and Duality in Optimization, pp. 10–36. Springer,
New York (1985)

30. Tran-Dinh, Q.: Sequential Convex Programming and Decomposition Approaches for Nonlinear Opti-
mization. PhD Thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering
(ESAT/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Bel-
gium (2012)

31. Tran-Dinh, Q., Cevher, V.: A primal-dual algorithmic framework for constrained convexminimization,
pp. 1–54. Tech. Report, LIONS (2014)

32. Tran-Dinh, Q., Kyrillidis, A., Cevher, V.: Composite self-concordant minimization. J. Mach. Learn.
Res. 15, 374–416 (2015)

123

http://arxiv.org/abs/1206.2372

Smoothing proximal gradient algorithms... 451

33. Tran-Dinh, Q., Savorgnan, C., Diehl, M.: Combining Lagrangian decomposition and excessive gap
smoothing technique for solving large-scale separable convex optimization problems. Compt. Optim.
Appl. 55(1), 75–111 (2013)

34. Yang, J., Zhang, Y.: Alternating direction algorithms for �1 -problems in compressive sensing. SIAM
J. Sci. Comput. 33(1–2), 250–278 (2011)

123

	Adaptive smoothing algorithms for nonsmooth composite convex minimization
	Abstract
	1 Introduction
	2 Smoothing techniques via smooth proximity functions
	3 The adaptive smoothing algorithm and its convergence
	4 Exploiting structures for special cases
	4.1 Fenchel conjugate
	4.2 Composite convex minimization with linear operator
	4.3 The decomposable structure
	4.4 The Lipschitz gradient structure

	5 Application to general constrained convex optimization
	6 Preliminarily numerical experiments
	6.1 The ell1-ell1-regularized LASSO
	6.2 Square-root LASSO
	6.3 Image deblurring with the ell1 or ell2-data fidelity function

	Acknowledgements
	Appendix: the proof of technical results
	The proof of Lemma 2: descent property of the proximal gradient step
	The proof of Lemma 3: key estimate
	The proof of Lemma 4: the choice of parameters
	The proof of Corollary 1: the smooth accelerated gradient method
	The proof of Theorem 2: primal solution recovery

	References

