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Abstract The alternating direction method of multipliers (ADMM) is a benchmark
for solving a two-block linearly constrained convex minimization model whose objec-
tive function is the sum of two functions without coupled variables. Meanwhile, it is
known that the convergence is not guaranteed if the ADMM is directly extended to a
multiple-block convex minimization model whose objective function has more than
two functions. Recently, some authors have actively studied the strong convexity con-
dition on the objective function to sufficiently ensure the convergence of the direct
extension of ADMM or the resulting convergence when the original scheme is appro-
priately twisted. We focus on the three-block case of such a model whose objective
function is the sum of three functions, and discuss the convergence of the direct exten-
sion of ADMM. We show that when one function in the objective is strongly convex,
the penalty parameter and the operators in the linear equality constraint are appropri-
ately restricted, it is sufficient to guarantee the convergence of the direct extension of
ADMM. We further estimate the worst-case convergence rate measured by the iter-
ation complexity in both the ergodic and nonergodic senses, and derive the globally
linear convergence in asymptotical sense under some additional conditions.
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1 Introduction

Many applications can be modeled or reformulated as convex minimization models
with separable objective functions without coupled variables but the variables are
coupled by linear constraints. When the objective function is the sum of two convex
functions without coupled variables, the alternating direction method of multipliers
(ADMM) proposed in [12] has been well studied in the literature. It can be regarded as
a splitting version of the classical augmented Lagrangian method (ALM) in [20,30];
and it has found a variety of applications in many areas, mainly because of its feature
of generating easier subproblems in iterations. We refer to, e.g., [2,10, 13], for some
reviews on the ADMM. On the other hand, there are many applications that can be
modeled or reformulated as a multiple-block linearly constrained convex minimization
model whose objective function is the sum of more than two functions without coupled
variables. In fact, many applications can be captured by a three-block model where
there are three functions in the objective, see e.g., the image alignment problem in [29],
the robust principal component analysis model with noisy and incomplete data in [34],
the latent variable Gaussian graphical model selection in [4,28], the stable principal
component pursuit with nonnegative constraint in [38], the quadratic discriminant
analysis model in [27] and the quadratic conic programming in [22].

Inspired by the mentioned applications, we focus on a three-block linearly con-
strained separable convex minimization model as follows. Let A; withi = 1, 2, 3 and
Z* be real finite-dimensional Euclidean spaces, each equipped with an inner product
(-, +) and its induced norm || - ||; 6; : X; — (—o00, +00] withi = 1,2, 3 be closed
proper convex functions; A; : A; — Z* with i = 1, 2, 3 be linear operators; and
b € Z* be a given vector. We aim at finding a solution point of the model

3 3
min{Z@i(xi)‘ S Aixi=b, xieXi, i= 1,2,3]. (1.1)

i=1 i=1

The solution set of (1.1) is assumed to be nonempty throughout our discussion. In our
analysis, we also use the notations X := (x1, x2, x3) and X := & x A» x X3. Let the
augmented Lagrangian function of (1.1) be

3 2
Z A,-x,- —b

3 3
Lp(x1,x2,x3,2) 1= 2 0i(x;) — <Z, 2 Aixi — b> + %
i=1

i=1 i=1

with z € Z the Lagrange multiplier and > 0 a penalty parameter. Then, the direct
extension of ADMM for (1.1) reads as

@ Springer



On the convergence of the direct extension of ADMM... 41

[ x ' = argmin {Lp(x1, 65, x5, by 2 e 1), (1.2a)
x/2‘+] = arg min {Eﬂ(x{‘+1,x2, x]3‘, zk) | xo € Xz}, (1.2b)
5T = argmin {La(ef T x5t x5, 2 | 3 € A3}, (1.2¢)

3
=2 —p (Z At - b). (1.2d)
i=1

Although it is natural to consider the direct extension of ADMM (1.2a)—(1.2d)
and this scheme does work very well for many concrete applications of (1.1) (e.g.,
[16,29,34,38]), ithas been shown in [5] that the scheme (1.2a)—(1.2d) is not necessarily
convergent if no further conditions are posed on the model (1.1). Some works have been
studied in the literature for guaranteeing the convergence of (1.2a)—(1.2d) and they can
be classified into two categories. The first category is twisting the scheme (1.2a)—(1.2d)
slightly and no more condition is assumed for the original model. For examples, in
[17,18], it was suggested to correct the output of (1.2a)—(1.2d) to generate a new iterate
and the resulting prediction-correction schemes are guaranteed to be convergent. In
[19], the x;-subproblems are twisted slightly to render the convergence. Numerically
the original scheme (1.2a)—(1.2d) usually performs better than all the twisted variants
with provable convergence (see, e.g., [16,34]); and it is the most convenient scheme to
be implemented compared with its variants. In [21], the authors suggested attaching a
shrinkage factor to the Lagrange-multiplier updating step in (1.2d) and it was shown
that the convergence of (1.2a)—(1.2d) is guaranteed when this factor is small enough to
satisfy some error bound conditions. Note that these just-mentioned works are for the
more general case with m > 3 blocks in its objective function. Most recently, it was
studied in [22] that if certain proximal terms are used to regularize the x;-subproblems,
then the convergence of (1.2a)—(1.2d) can be guaranteed only when one function in the

objective of (1.1) is strongly convex. Indeed, a relaxation factor in (0, 1+T‘6) which
was initiated in [11] can be attached to the Lagrange-multiplier updating step (1.2d)
provided that the proximal terms and the penalty parameter 8 are chosen judiciously.

The second category is assuming more conditions on the model (1.1) while retaining
the original iterative scheme (1.2a)—(1.2d). Indeed, prior to the work [5] in which it
was shown that (1.2a)—(1.2d) is not necessarily convergent, it was proved in [14]
that the scheme (1.2a)—(1.2d) is convergent if all the functions 6; are strongly convex
and the penalty parameter § is chosen in a certain interval. Then, in [6,23], this
condition was relaxed and only two or more functions in the objective are required
to be strongly convex to ensure the convergence of (1.2a)—(1.2d). However, assuming
the strong convexity for two functions still excludes most of the applications that can
be efficiently solved by the scheme (1.2a)—(1.2d). Thus, these conditions are only of
theoretical interests and they are usually too strict to be satisfied by the mentioned
applications.

We are thus interested in understanding the gap between the empirical efficiency
of (1.2a)—(1.2d) and the lack of theoretical conditions that can both ensure the con-
vergence of (1.2a)—(1.2d) and be satisfied by some applications of the abstract model
(1.1). As [22], we independently show that the convergence of (1.2a)—(1.2d) can be
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ensured when one function in the objective of (1.1) is strongly convex, the penalty
parameter f is appropriately restricted and some assumptions on the linear operators
A;’s hold—some conditions that hold for some concrete applications of (1.1). Note
that the restriction onto g in [22] is determined through checking the positive definite-
ness of some operators, and it is generally more restrictive than ours because it targets a
setting more general than (1.2a)—(1.2d) with larger step sizes for updating z and semi-
proximal terms for regularizing the x;-subproblems. Moreover, it worths to mention
that such a condition on g is sufficient to theoretically ensure the convergence of
(1.2a)—(1.2d). It is thus usually conservative and can be enlarged in practice to result
in better numerical performance. Another purpose of this paper is establishing the
convergence rate for the scheme (1.2a)—(1.2d), including the worst-case convergence
rate measured by the iteration complexity and the globally linear convergence rate in
asymptotical sense under some additional assumptions. We refer to [6,21,23,24] for
some convergence rate analysis for (1.2a)—(1.2d).

The rest of this paper is organized as follows. Some necessary preliminaries for
further analysis are provided in Sect. 2. In Sect. 3, we prove the convergence of the
scheme (1.2a)—(1.2d) under the assumption that one of the three functions in (1.1)
is strongly convex. Then, we establish the worst-case convergence rate measured
by the iteration complexity in the ergodic and nonergodic senses in Sects. 4 and 5,
respectively. In Sect. 6, under some additional conditions, we show that the scheme
(1.2a)—(1.2d) is globally linear convergent. Finally, some concluding remarks are made
in Sect. 7.

2 Preliminaries

In this section, we summarize some notations and preliminaries to be used for further
analysis.

2.1 Notation

We use calligraphic letters (e.g., H, X) to denote spaces, each equipped with an inner
product (-, -) and an associated norm || - ||. All vectors are column vectors. For two
arbitrary vectors x € A7 and y € X, we simply use u = (x, y) to denote their
adjunction. That is, (x, y) denotes the vector (x*, y*)*. For a linear operator A;, we
denote by A7 its adjoint operator.

LetM : 'H — H*beapositive definite linear operator; we use || x || 7 := +/{(x, Mx)
to denote its M-norm and Apyin (M) to denote the smallest eigenvalue of M. For an
identity operator / and a scalar 8 > 0, we simply use ||x||g to denote |x||g;. For a
given linear operator A, its norm is

) | Ax|]
[All:==sup y —1.
a0 U Il

Specially, for a symmetric linear operator A, ||A|| denotes its spectral norm.
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On the convergence of the direct extension of ADMM... 43

We say a function f : H — (—o00, o0] is convex if
fax+ A -y <tf)+A -0 f(), Vx,yeH;
and it is strongly convex with modulus u > 0 if
fax+ A=y =tf(x)+A=-0)f() — %t(l —0Dlx = I’ ¥x,ye™H,

where ¢ € [0, 1].
A multifunction F : 'H = H means that F'(x) is a set in H, see, e.g., [32]. For a
multifunction F : H =2 H, we say that F is monotone if

(x—=y,§-¢)=0, VE€F(x), V{eF(y);
and strongly monotone with modulus p > 0 if
(x—y.E—¢)=plx—yl* VEe F(x), Ve F().

Itis well known, see, e.g., [32], that for a convex function f, df, the subdifferential
of f,is a monotone multifunction; and for a strongly convex function f with modulus
w > 0, df is a strongly monotone multifunction with modulus p. That is, if f is
convex, then for any x, y € dom f

(§=Cx—y)=0, VEedf(x), Veedf(y)

and if f is strongly convex with modulus u > 0, then
(E—¢ox—y) = plx—ylI? VE€df(x), VLedf(y),
where
dom f:={x e H| f(x) < o0}

is the domain of f : H — (—o00,00]. An equivalent inequality for the strong
convexity of f is that

FO) = fFO) + (Ex—y) + %nx — Y% VE €df(y). Vx.y € dom f.

Last, for any two vectors a and b with the same dimensions, we have
2, 1 2
2|{a, b)| < sllall” + Ellbll , 2.1
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for any positive scalar ¢. Obviously, we also have
2 2 1 2
la+0ol” = A+ )lall”+ {1+ < Io1°, ¥Y¢ > 0.
These two inequalities will be frequently used in the proofs to be presented.

2.2 Optimality characterization

In this subsection, we present some variational forms to characterize a solution point
of the model (1.1) under discussion. These characterizations will be the basis of our
convergence analysis to be conducted.

Recall that the Lagrangian function of (1.1) is

L(x1, x2,x3,2) := 01(x1) + 02(x2) + 63(x3) — (2, A1x1 + Azxp + A3xz — b),

where z is the Lagrange multiplier. Solving (1.1) amounts to finding a saddle point
of L(x1, x2, x3, z). That is, finding (X1, X2, X3, 2) € X| x X x A3 x Z such that the
following inequalities hold:

L(X1, X2, X3,2) < L(X1, X2, X3,2) < L(x1, X2, X3, 2),
V(xy,x2,x3,2) € X1 x Ao x A3 x Z.

Let the set of all saddle points of L(x1, x2, x3, z) be denoted by S. Throughout, S is
assumed to be nonempty. Let (X1, X2, X3, Z) € S be an arbitrary solution in S. Then,
we have

0 € 36, (%)) — A%Z, (2.2a)

0 € 302(%2) — A3Z, (2.2b)

0 € 363(%3) — A%Z, (2.2¢)
3

0= A% —b. (2.2d)
i=1

It follows from (2.2a)—(2.2c¢) that, fori = 1, 2, 3, we have
6 (x)) = 0;(Xi) + (2, Aix{ — Ai%}), Vxj € X
if 6; is convex; and
0 = 0,5 + (. Aix] — k) + S — 517 Yxje  (23)
if 6; is strongly convex with the modulus w; > 0.
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In our analysis, we also use the primal-dual gap function (seee.g.,[3,15,21]) defined
as

OB, xB. (X, 2) == max {61(x1) + 62(x2) + 03(x3) — (A1x1 + Azxz + Azxz — b, 2')}
€D
- I,niél {61(x)) +62(x3) +03(x3) — (A1x]+Azxs+Asxy—b, 2) }
X' eBx

where By x B; is a subset of X' x Z. If By x B; contains a solution (X, X2, X3, 2),
then for any (x, z) € Bx x B;, we have

3 3
OB xB. (X, 2) = (Z 0; (xi) — <z > Aixi — b>)

i=l1 i=1

3 3
—(291'()?,') - <Z, ZAN?:' - b>)
i—1 i—1

3
= > 0i(xi) — 6:(R) — (2, Aixi — Aiki))
i=1

3
Wi .
> Zl 71||xi - &7
=
>0, 2.4)

where the equality follows from (2.2d), the second inequality follows from (2.3), and
the last inequality follows from the convexity of 6;, i = 1, 2, 3.

The following lemma gives a sufficient condition for a point to be a saddle point of
L(x1, x2, x3, z). The assertion is an immediate conclusion of (2.4); we thus omit the
proof.

Lemma 2.1 Let (X, 7) be an arbitrary point in interior of Bx x B,. If
IB.xB.(X,2) <0,
then (X, 7) is a saddle point.
Based on this lemma, if (x, z) € Bx x B; and ngxlgz (X, 2) < € for some € > 0,

then we call (X, z) a saddle point of L£(x1, x3, x3, z) with an accuracy of €.
Finally, we use the notation

B2A5A> 0 0
0:=10 B2A%A3 0|, (2.5)
0 0 I

where the operators A and A3 are given in (1.1), and B is the penalty parameter in
the direct extension of ADMM (1.2a)—(1.2d).
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3 Convergence

In this section, we prove the convergence of the direct extension of ADMM (1.2a)-
(1.2d) under the following assumption.

Assumption 3.1 In(1.1), the functions 0] and 8 are convex; the function 65 is strongly
convex with modulus @3 > 0; A and A3 in (1.1) are of full column rank.

Let us first present the variational characterization of the scheme (1.2a)—(1.2d).
Indeed, similar as (2.2a)—(2.2d), the subproblems (1.2a)—(1.2¢) can be characterized
as

0 € 30 (xF 1) — AR + BAT(AIXTT 4+ Apxk + Asxk — b), (3.12)
0 € 30 (xA Ty — A%ZF + BAS(AXT 4 AT 4 Asxk — b)), (3.1b)
0 € 363 (A ™) — A%ZE + BAS(AIXT - AT 4+ AsET b)) (Bu10)

Combining it with the step (1.2d), the (k 4 1)th iterate generated by (1.2a)—(1.2d)
satisfies that for any x| € X1, x} € &2, and x§ € A3,

01 (x}) — 01 (AT — (Arx) — At 2K — BAETT 4 Aok + Asxk — b)) = 0,
(3.2a)
02(x}) — 02 (x5 T — (Aoxh — Apxb T 2K — B(AT! + Apxi T+ Asxk — b)) > 0,
(3.2b)
n3
03(x5) — O34T — (Asxf — Agxd Tl Al > >l - A2,
(3.2¢0)
3
=7 _pg (Z A,-xlf’“rl - b). (3.2d)
i=1

Now, we start to prove the convergence of (1.2a)—(1.2d) under Assumption 3.1.
First, we prove several lemmas.

Lemma 3.1 Suppose Assumption 3.1 holds. For the iterative sequence {(x{‘, x'z‘, xé‘,
ZF )} generated by the direct extension of ADMM (1.2a)—(1.2d), we have

2

(st — Apek, 24— 2H) 2 gy [k — A1 (33)

and

(Alez‘Jrl - Azxg, PR zk>

3 k+1 kg2 3 k k=12 , k+1 ky2
z—[l—oquxz — A+ 1A — AT + 1A - andidt. G4

Proof Setting x} := x* in (3.2¢) yields

k k+1 k k+1 _k+1 M3k k+1,2.
03(x5) — 03(x3T") — (Aszxy — Azxy T ) > = I3 —x3 %
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and setting x} := x§+1 for the kth iteration yields
k+1 k+1 M3 k12
05 (x3+ ) — 6, (x§) — <A3x3+ — Ak, zk> > Sl —
Adding the above two inequalities, we have
(A (5! = 28) 250 = 24 = sl — 25H12,

and the inequality (3.3) is proved.
We now prove (3.4). It follows from (3.2d) that

3
1
> Akt b= o (z" - z"“) . (3.5)
i=l1 ’3

Using (3.5), we can rewrite (3.2b) as

0 (x5) — 6 (x§+l) - <A2x§ — AgxkHl KT g (A3x’3‘ - A3x’3‘+1)> >0, Vx}eX.
(3.6)

Then, setting x} := x5 and x} := x'z‘Jrl in (3.6) for the kth iteration yields

02 (xé‘) ) (x§+l) - <A2x§ — ApxkTl Mg (A3x13‘ - A3x§+l)> >0,
and
%2 (x§+l) — 62 (Xg) - <A2X]2(+1 — Axxy, ¢ — B (1‘13)C§_l - A3X§)> >0,
respectively. Adding these two inequalities, we get
<A2x]2<+1 — Alezcv F kg (A3x§ — A3x§+1) +B (A3xl3{_l — A3x§)> > 0.

Rearranging terms, it follows that
<A2x§+l — Alezc, Zk+1 - Zk>

= B(Aoxk™! — Axak, (Asxk — AhHT) - (Aadh™! = Asxd))

3 5 _
> — 1 Sl AT — Aoxb |1 + S Asxs — Asxf T
20 3
—iA kL p0 kg2 §A k1 qL k2
[|A2xy 2%, g + 1 A3x; 3x3 I3
20 3
= 10 2Xy 2% 11 3 3X3 3X3 FT3 3X3 3X3Mp (>
where the second inequality follows from (2.1). The proof is complete. O
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Lemma 3.2 Suppose Assumption 3.1 holds. Let {(x’f , x’z‘, xé‘ , 25)} be the sequence
generated by the direct extension of ADMM (1.2a)—(1.2d). Then, for all (x|, x5, x5, 2')
e X x Xy x A3 x Z, we have

| B LA e 2]
el )

+ B (A1) — A 4 Aoxg — ApabtL asad — Asdt)

13
+8 <A1xj — Akt Agxk — Azx"“) P S b (.7)

Proof Using (3.2d) and rearranging terms, it follows from (3.2a)—(3.2c) that

91( )_61(k+l)_<A1xi_A1xllc+l k+1+ﬂ<A2(k+1 )+A3(k+1 §))>20
(3.8a)
0 (x}) — 6 (x’;”) <A2x§ — ApxkH kL pas (x§+‘ - x§)> >0,
(3.8b)
65 (5) — 05 (x4+1) — (Aaxf — Agxlt!, 2241 > %llxé — k2, (3.8¢)

Adding (3.8a)—(3.8c) and rearranging terms, we obtain the assertion (3.7) immediately.
O

Now, we need to further analyze the right-hand side of (3.7) and refine the assertion
(3.7). This is done in the following lemma.

Lemma 3.3 Suppose Assumption 3.1 holds. Let {(xll‘ , xlz‘ , x]3‘ ,Z°)} be the sequence

generated by the direct extension of ADMM (1.2a)—(1.2d). Then, for all (x|, x5, x5, Z')
e X x X x X3 x Z, we have

3 3 3
[Z (xkth < ZA AR b>:| [Z 0;(x}) — <zk+l, > Aix] - bﬂ
i=1 i=1
> (nixf = A = At = AuxfZ) + (1t =20 = 0 = 2?)

k k-1 k+1 k2
+ ?||A3x3 — Azx3 ||A3x Az e

”ﬁZ -

1
—@nAzxé—Azxé“u;z—(ﬂmnx”‘ 7 =3 ||A3x"+1 Azxgu,%,z)
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—nAaxk+1 Asx§ |5 = 2Busllcy — <37 — 1F
+28° <Z Aix! — b, Aoxk — Akt 4 Asxk — A3x§“>, (3.9)
i=1
Proof Because of the identity
1 2 2 2
(x,y) =2 (lell + Iyl7 = llx =yl ) (3.10)

it follows that

B <A2x§ — Apxh L Apxk — Azxk+1>

- % {14035 — oxb 113 4 1 40ak ! — Aoxgf — Aok — Aoji3)
and

B <A3xg — AsxktT Agxk — Agxk+1>

= % {14325 = Ase 13 4+ 1 Asxkt = Asxilf — 14sx — Aax 3]
Consequently, we have

BlAx] — ApxtTh b Apx — ApxhT! Asxk — Asndth

3 3
=B <(Z Apx] — b) — (Z Aixftt b), Asxh — Agxk+‘>
i=1 i=1

—B <A3x_g — Asxht! Agxk — A3xk+1>

3
=8 <(Z Aix! — b) - (Z A,'fo - b), Asxk — A3xk+1>
i=1 i=1

1
—3 {14sx = A TG 4 1A — Anfi} - 14aed - A3

<ZA x| — b, Asxk — A3xk+l> <zk — KL Agxk A3xk+l>

1
—5 {1Aax} — AR 4+ 1A — Asx i - A — Asxdi}
> 1
<Z — b, Asxh — A%xk+l>——|lA3x3 Az TS — sl — x5
1
—3 {1Asxt = A - Asxd — asxii3 ) (3.11)
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where the third equality follows from (3.5) and the inequality follows from (3.3). On
the other hand, using (3.4), we have

3
—B <(Z AixEtt - b) + (A3x} — AzxbTh), Apxk — Azxk+l>

=35 ||A2xk+‘ Azx§||§+§nA3x3 AN g+ 3 ||A3x§+‘—A3x§||,%
+B <A3x3+1 — Asx}, Agxk — A2x§+1>
<5 ||A bt — Azx§||§+§||A3x3 Ay MG+ 3 2 Akt - A3x5lI
||Agxk+1 A3x§||é+%||Azx2 A5t
39

5 _ 5
—||Azx2+ — A3 f + S1Asxs — Asxd UG + Sl Asxs ! — Asxdll

k+1 /2
||A AT — A3,

where the inequality follows from (2.1). Then, it holds that

BArx — Anxt, doxd — apad )

3
—B <Z Aix] — b, Agxk — A2x§+‘> — B(Azx; — Apxt!, Aoxh — A T)
3
-B <(Z Apxftt — b) + (Asx} — AzxbTh), Aoxh — Azxk+l>
i=1
3
< ,3<Z Aix] — b, Apxk — Azxk+1>
i=1

1
— 5 {1 — Aaxgif — 1Axx — Anxii})

5
+ 314525 — Asxy 1 - ||A3x"+‘ A33||ﬁ+—||Asx"+1 Asxi |3

1 k1 4
- %HAZXZ Aox, ||,3 + = 3 ||A3X3 A3X3||,5 (3.12)

3
1
<zk+1 -7, ZAixf‘H - b> = <zk+1 — 7,7 - zk+1>

B

1
=5 e e e R o o I CRE

we obtain the assertion (3.9) by combining (3.11), (3.12), (3.13), and (3.7). O
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Now, we are ready to prove the convergence of the direct extension of ADMM
(3.2a)-(3.2d) under Assumption 3.1. The result is summarized in the following theo-
rem.

Theorem 3.1 Suppose Assumption 3.1 holds . Let {(xll‘, xlz‘, xlzf, ZK)} be the sequence

generated by the direct extension of ADMM (1.2a)—(1.2d) with B € (0

Then, the sequence {(x{‘, xlzc, xé‘, Zk)} converges to a saddle-point in S.

6143 )
> 17|A3 A5 )
Proof Let (X1, X2, X3, 2) be a saddle point in S. Then, we have

3
> Aiki—b=0. (3.14)

Setting (x], x5, x5, 2) := (X1, X2, X3, 2) in (3.9) and using (3.14), we obtain

3 3 3
[Z (F —<2,2Aixf+1 —b>] —2B " 0:(%)
i=1

i=1

i=1
3

= > (HAixf = A2 = 14 = Aiki3) + (125 — 217 = 124 - 22)
i=2

2 k+1 k2
12. - —||A3x — Ak,

10 _
+ ?||A3x§ — Asxs!
1 N
— g A2xs — Ay I, — (ﬁm - §ﬂ2||A§A3II) s+ — %5017

- (2ﬂu3 —~ gﬂznA;‘Agu) AR L FARr i (3.15)
Since B € (O, %), we have
3

17 2 *
01 :=puz — gﬂ [A3A3] > 0.

Then, (3.15) can be written as

3 3
|:z k+1 < ZA xk+1 >:| —28 29;‘()?;')
i=1

=1

= > (HAixk = A2, = 1A = AigiZ,) + (125 = 217 = 124 - 212)
i=2
10

k=12 k+1 k2
?||A3X3 Azxy - —||A3x * — A3xzllp

”/32
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1
k k+1,2 k+1 k2
= 2014227 — A2l — o1l — x5
k+1 A 2 k k+1,2
—oillx3 T = &501F — [12F = )R (3.16)

Since (X1, X2, X3, ) is a saddle point, it follows from (2.4) that the left-hand side of
(3.16) is nonegative. We thus have

3
N « 10
D HAxf = Aifillg + 1 =217+ AT - Asdl
i=2

3
. . 10 B
< 2 MAxf = Al + 112" = 20 + S l1Asxf — Az
s

1
k k12 k1 kg2
—%”Aﬂz — A2yl — ol — sl
k+1 a2 k k+12
—oillx3 T = &5|1F — [12F = (3.17)

Recall the definition of Q in (2.5). Then, (3.17) can be rewritten as the compact
form

10
[ — Wi + <l Asxd ! — Asxd 2,

o2, 10 .
< IWE = WG + - lAsxf — Asxd g

1
k k+1,2 k+1 k2
— qol42%s — A2y — erlls ™ — 45
k+1 A2 k k412
=il = F° = gt =R (3.18)

where w := (x2, x3, 7).
Thus we have

R 10 R 10 -
W = WiG + S 1Asxg ™ — AsxfI, < W — Wi, + —- 1 43x3 — Asxs s,
(3.19)
indicating that the sequence {w*} is bounded. Rearranging terms for (3.18) yields

1
k k+12 k+1 _ ky2 k1 _ a2 k_ _k+1y2
EllAzxz — A2y g+l — a3t ol = X7+l -2 Al

) 10 B
< (nwk = WG + S l14sxf — Asxg 1||,232)

R 10
- (uw"+1 = WG + S lAsxg ™ - A3x§||§2) :
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Adding both sides of the above inequality for all k, we get

o0
1
k k+1,2 k+1 k2 k+1 _ ~ 2 k k412
Z{EnAzxz—Azxz 5o +o1llxy ™ =251 +or 5T =& 1P+ 1124 = ]
k=1

. 10
< (nw1 — Wi+ 5143 - A3x2u§2) :

and hence

k41 ket 1
kil i

lim ||z¥ — | = lim [|Asxd — Aoxd ™ = lim ||xf — x4
k— 00 k— o0 k— 00 -

= lim |x5T! — &) = 0. (3.20)
k—00

The full column rank of A assumed in Assumption 3.1, (3.20), and (1.2d) then imply
that {xll‘} is also bounded. Hence the iterative sequence {(xll‘, xlz‘, xé‘, N generated by
ADMM (1.2a)-(1.2d) is bounded.

Then, the boundedness of the sequence indicates that it has at least one clus-

ter point. Let (X1, X2, X3,Z) be an arbitrary cluster point of {(x'l‘, x§,x§, zk)} and
ki ki ki . . [ . ..
{7, xy, x57, zXi)} be the subsequence converging to (X1, %2, X3, 7). Taking the limit

along the subsequence in (3.1a)-(3.1c) and using (3.20), we have

0e 891 (f]) — ATZ,
0e 392()22) — A;Z,
0 € 063(x3) — A3Z.

3
Moreover, since ||Z5 — 25t = 8| >0 ijj?‘H — b||, by taking the limit, we have
Jj=1

3
> AjXj —b = 0. Hence, it follows from (2.2a)—(2.2d) that (X1, X2, X3, Z) is a saddle
j=I

point in S and (3.19) means that the whole sequence has only one cluster point. Con-
sequently, the iterative sequence {(xf, x'z‘ , x§, zX)} generated by the direct extension

of ADMM (1.2a)—(1.2d) converges to a saddle point in S. The proof is complete.

Remark 3.1 For some specific applications of the abstract model (1.1), it may not
be difficult to determine the range for 8. For example, for the application of moving
object detection by detecting contiguous outliers studied in [37], it is easy to see that
its model corresponds to (1.1) with A3 = I and u3 = 1. Thus, choosing 8 € (O, %)
can sufficiently ensure the convergence if the scheme (1.2a)—(1.2d) is implemented to
solve the model in [37].
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4 Ergodic worst-case convergence rate

In this section, under Assumption 3.1, we establish the O (1/¢) worst-case convergence
rate measured by the iteration complexity in the ergodic sense for the direct extension
of ADMM (1.2a)—(1.2d). The main result is summarized in the following theorem.

Theorem 4.1 Suppose Assumption 3.1 holds. After t iterations of the direct extension
of ADMM (1.2a)—(1.2d), we can find an approximate solution of (1.1) with an accuracy
of O(1/1).

Proof As proved in Theorem 3.1, the sequence {(x{‘ , x§ , x§ , 25)} generated by the
direct extension of ADMM (1.2a)—(1.2d) is convergent. Thus, there exists a constant
M > 0 such that

lAxfl <M. i=1,2.3, and |*| < M, Vk>0.

Then, it follows from Assumption 3.1 and (3.9) that for all (x|, x}, x3,2') € &} x
Xy x A3 x Z, we have

2;3{29@"“ < ZAka >]

i=1

3
—2B [Z 0 (x}) — <Zk+], > Aix] - b>]
i=1 i=1
3
= > (HAixk = A2, = 14 = Aix1%) + (124 = 212 = 14! = 21?)
i=2

k+1 k2
||A3x + A3x3 ||ﬂ2

10 k k=12
+ ?||A3X3 —Asxy g —

3
+2p2 <Z Aix] — b, Apxk — Apxb T Ak — A3xk+1>.

Summing both sides of the above inequality from k = 1 to ¢ yields

o[z )

— |:Z 0; (x)) — <zk+l, ZAixl{ — b>:|]
i=1 i=1

3
10
< D MAix! = Aix{llg + 12" = 17 + - 1 43x; — Asxfll,
i=2
3
+282 <Z Aix] — b, Aaxd — ApxiT 4+ Asx) — Agx’+‘>
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3
10
= 2 A = Al + 112" = 17 + 1433 — AsxSll,
=2

4282 HA2x2 Apxi 4 A3x0 — Azxlt] H

3
> i~
i=1

1 2 1 m2
< D llAix! = Al + 112" =2l

4.1

3
ZAix,{—b s

10
+ 3 I14sx; — Asx3IG, + 867 M
i=1

where the second inequality follows from the Cauchy-Schwarz inequality and the last
one is because of the triangle inequality and the boundedness of {(x{‘, x’2‘, xé‘, ).
Define

t t
:%z :—sz, 1K ——Zx3, and zX —;sz.
—1 k=1

Then, it follows from the convexity of 61, 6>, and 65 that

1 < 1 < 1 <
O1(() = = D 01GY), () = — > 0a(x), and B3(xf) < - D 0r(x5).

k=1 k=1 k=1
4.2)
Combining (4.1) and (4.2) yields
3 3 3 3
Bt [ [Z 6; (xf) — <z/, > Ak — b>i| - [Z 6; (x]) — <z’<, > Aix] - b>“
i=1 i=1 i=1 i=1
3
/ / 10 !/
< Z lAixf = Aixflige + llz' = 217 + 1 Asxs — A5G + 87 M ;AMi —b|. (4.3)

Since {(x{‘, x§, xg‘, z%)} converges to a saddle point, {(x{, x}, x5, z')} also converges

to the same saddle point, and (4.3) implies that

2B1GB x B, (le,xZK,Xf, ZK) <D,

where

D:=  sup IAix! — Aixl1%, + lI2' = 2|12
(', 2) By x Be [z T

3

ZAixi’ —b

10
+3 1Asxs = Asx3l, +88°M
i=1

|
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That is, (xX, zX) is an approximate solution of (1.1) with an accuracy of O(1/¢).
A worst-case O(1/t) convergence rate measured by the iteration complexity in the
ergodic sense is thus established for the direct extension of ADMM (1.2a)—(1.2d).
This completes the proof. O

5 Non-ergodic worst-case convergence rate

In this section, we establish the worst-case convergence rate measured by the iteration
complexity in a non-ergodic sense for the direct extension of ADMM (1.2a)—(1.2d).
Note that a non-ergodic worst convergence rate is generally stronger than its ergodic
counterpart. Thus, we need more assumptions to derive a non-ergodic worst-case
convergence rate. We first make the following additional assumption, and refer to, e.g.
[38], for some applications that this assumption holds.

Assumption 5.1 In (1.1), 61 and 6, are convex, 83 is smooth and V03 is Lipschitz
continuous with constant L3 > 0, 653 is strongly convex with modulus u3z > L3/2;
Ay and A, are of full column rank.

First of all, we need to present the optimality measurement for an iterate generated
by (1.2a)—(1.2d). Recall the optimality condition for the subproblems (1.2a)—(1.2c).
We know that an iterate generated by (1.2a)—(1.2d) satisfies the following inequalities:

01 (xi) — 0 (xf'“) — <A1xi — A]X{(-H, Zk+l + B (Az (XIZ(_H 7)(/2{) + A3z (xé‘“ 7x§))> >0, (51a)

6y (x5) — 02 (xg“) - <A2x§ — Apxkt! 4 g, (xé“ - x§)> >0, (5.1b)

3 () — 0 (1) — {Asf — As ) = Bl — 12, (5.1¢)
3

FHl = —ﬁ(ZA,-xf“ —b). (5.1d)
i=1

Therefore, if we have

Agxk — Akt =0, (5.2a)

Asxk — Apxdt =0, (5.2b)
3

F == At — b =0, (5.2¢)
i=1

then the iterate (xlfH, xé‘“ , xé‘ tl kT generated by (1.2a)—(1.2d) is a saddle point
in S. Naturally, we can use the residual of (5.2)—(5.2c) to measure the optimality of
an iterate generated by (1.2a)—(1.2d).

Define

(5.3)

. { 2u3 — L3 643 }
Bmax := min .

[A54s] " 174345
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It follows from Assumption 5.1 that Bpax > 0. To derive the non-ergodic worst-case
convergence rate, let us first prove a key inequality that will play an important role in
our further analysis.

Lemma 5.1 Suppose Assumption 5.1 holds. Let {(xk+1 xlz“H xé““, K1Y be the

sequence generated by the direct extension of ADMM (1.2a)—(1.2d) with the restriction
B € (0, Bmax). Then we have

1 _ B _ _
sl =P 5 1A - AP 4 A — Aadi?

! p
Zﬁllzk—zk“IIerE{llAsﬁ% AP + 1A — A2

Proof Setting x| := x in (5.1a) yields

0, (xf) —6 ( k+l) _ <A1x1 Alxk“, s

+8 (Az (x]fl - x2) + A3 ( A x§)) > > 0.
Rearranging terms, we have
0 (x]f) -0 (xf“) > <A1x]f - Alx{‘+l,zk+l>
_ﬂ<A1xi{ _A1x1+1 ZA ( k+1)>'

Moreover, setting x| := x} K1 for the kth iteration, we obtain

01 () — 0 (k) > <A1x"+1 — Ak, zk>
/3<A1xk+l Ak, ZA (xk l—xk)>

Adding the above two inequalities and rearranging terms, we have

<A1x]f+l — Al)c’f,zkJrl - zk> > B <A1x1 Al)c]fJrl ZA (x k+1)>
j=2

3
—-B <A1xk+1 Aixt, Y] Aj(xj?—l - x§)> )
j=2
(5.4)
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Similarly, setting xé = x’z‘ and xé = ka in the kth iteration in (5.1b), and adding the
resulting inequalities, we get the followmg inequality:

<A2xk+1 Aoxh, 1 — zk> > —p <A2x§ — Ayt Az - §+1)>
—B(Aaxh ! — Ak, A3 - i), (5.5)
Then, it follows from (5.1c) that
(Agxs ™! — Aaxf, 1 — 2F) > gl — 242 (5.6)

Adding (5.4)—(5.6), we have

3 3
k41 ok kL k
<E Ajx; T — E Ajxj.z z>
j=1 j=1

3
> -3 <A1x{‘ — AlxlfH, ZAj(x;? —x§+1)>

j—2

—ﬂ(Azxé—A2x§+l,A3(x3 §+1)) ﬂ(Azxk“—Azxé‘,A3<x§—1—x§>)

k+1

+ s llx§ T — X7 (5.7)

Further, because of the identity (3.5), we know that
> 1
ZAJka zijj; _ 5 ((Zk N e Zk)) .
j=1 Jj=1

We thus can rewrite the left-hand term of (5.7) as

P

-5~ kﬂ) e

_ Lﬂ {”Z =2 (Zk _ Zk+1) _ (Zk—l . Zk) ”2} _
(5.8)
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Now, we treat the right-hand side of (5.7). Indeed, these terms can be written as

3
_ﬂ<A1x’f—A1xl“ Z(A ok — "+1)> ﬂ<A1xk+1 Alx’f,Z(ijfl—ijf)>
=2
—B <A2x§ — Akt agxk - A3xk+l> 5<A2x’2‘+1 — gk, Agk! - A3x§>

1 1 1 1
- <A3x§ — Akt z (A_,-x_’; — Akt )> - ﬁ(Alx{‘ — At Agak - Apakt )
j=1

2
B <A3x§1 — Agak, > Ak - ij§)> - 5<A1xk+1 — Ak, Apht - Azx’g). (5.9)
=1

Using the identity (3.10), we have

2
k+1 k+1
—B <A3x§ - A3x3+ , Z (ijﬁ - ijj+ )>
Jj=l1

2 2
2 3
B k+12 k _ k+1 k_ k+1
R L e S DIV G | I DIV G E
j=1 Jj=1
(5.10)
and
—B <A1xll‘ - Alxll"H, A2x2 Azxk+l>
2
P 2
= 5 1Ak — AP Aax — AR — | D0 A (e - )
j=I
(5.11)

Then, using (2.1) and (3.3), we have that for all ® > 0

—,3 <A3x§1 — A3x§, Z (A]xk+] ijj?)>

J=1

3
=8 <A3x§—1 — Ak > (ij;?“ - A,-xf) (A3x’<+1 - A3x§)>
j=1
k Zk+1) . (Zkfl . Zk)>

= —<A3x§_l — A3x§, (z
+ B <A3X3 — A3x3, A3xk+1 — A3x]3‘>

k-1 k2 k K+ k2
> =l — 5| —%nAg‘z A2 sl — A
B _ B
—§||A3x§ 1—A3x§||2—5||A3x3 AsxiT2, (5.12)
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and
_B <A1x’f+1 — Ak, Ak - A2x§> >
B _
{||A1xk+l Arxck|? + Ak — A2x§||2} . (5.13)

Substituting (5.10)—(5.13) into (5.9), we have

3
—-B <A1x{‘ — Alxler], Z(ij;? — ij§+l)>

j—2
—5<A1x’;+‘ Alxl,Z(A xkl jx§)>

—p(Axxk — Apxkt Agxk — AT - B Andk ! — apek s - )
B _
> 2 (I1A2ef — A 12 — Ao~ — and )
— L jaget - agp - 2 S1A3™ = Asxd®
2w 3 3

2

3
® - B
+ (m — 5) [EAEE 5 ZAj(xf —xf“) . (5.14)
j=1

Using the identities A%z k1 = v, (x]_,fH) and A;‘zk = V93(x§), and the Lipschitz
continuity of VO3, we obtaln
||A§Zk+l

k+1

k
3380 < Lallg ™ = x4

Combining (5.8) and (5.14), and setting w = L3, it follows from (5.7) that

%nzk LR D i s s - )
> 212 = 4 s = Ak o — Aned )
+(m—%) s — 2512
N (M3 3 ,3||A§A3|| L3) e = k2

! p
zﬁllz"—zk“llerz{llAsxg A ) Agx — A2

where the last inequality is due to the fact that 8 < M The proof is complete. O
quatity A% As] p P
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Based on the above lemma, we are now ready to establish the worst-case con-
vergence rate measured by the iteration complexity in a non-ergodic sense. We can
actually measure this convergence rate by both O(1/¢) and o(1/t) orders. Recall that
we use the residual of (5.2)—(5.2¢) to measure the accuracy of an iterate of the scheme
(3.2a)—(3.2d).

Theorem 5.1 Suppose Assumption 5.1 holds. Let {(x{t1, x5, x50 K41} be the

sequence generated by the direct extension of ADMM (3.2a)—(3.2d) with the restriction
B € (0, Bmax). Then, we have

Sl = 4 B s — A2 4 A0 — st ) = 00170,
Proof First, it follows from (3.18) that

1
20/1A2%8 = A2 G + on g — P 4 12 — P

10 _
W =W + =1 4525 — A I

k%112
= W' =wllg— 52
0 B

—||A3x"+1 A3 5.
(5.15)

Setting
4 = min [ﬁ L]
207 BllA3As] |

it follows that

! B
u[ﬁ||z"—z"+‘||2+5(||A3x3 Ase P + [ Ao - Azx"“n)]

1
k k1 k1 ky2 o opok k12
= 7ollA2xz — Azxy ||ﬂz +orllxs™ =517+ 12 =2

||Wk+l

A 10 _
< W —wig - — WG+ 14335 — Asxy ™ —||A3x"“—A3x§||§z.

(5.16)

15—

Adding these inequalities from k = 1 to ¢, we have

t

! g
Z[ﬁ||z’<—z"“||2+5(||A3x3 AsxH P 4 ) Ao - Azxk“n)]
k=1

1 0 ~ 2 10 1 02
< —1lw = W[5 + —|lAzx; — Azx .
_M[” ||Q 3” 343 33||/32
Then, using Lemma 5.1, we obtain

B
ﬁnz 2+ 5 (1Aaxs = Asxf T2 4 Ao — Ao P)
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1 0 A2 10 1 0,2
< — W — W + — A — A ,
=t [” ||Q 3 l 3X3 3X3 ||/32

which means that

! p
21 =TI+ 5 {1Asd = AP 4 aaxd = gt = 00170,

The proof is complete. O

In Theorem 5.1, we show the worst-case O (1/¢) convergence rate in a nonergodic
sense for the direct extension of ADMM (3.2a)—(3.2d). Indeed, following the work [9],
we can easily refine this O (1/¢) order to an o(1/¢) order, and thus establish a worst-
case o(1/t) convergence rate in a nonergodic sense for the scheme (3.2a)—(3.2d). We
summarize it in the following theorem.

Theorem 5.2 Suppose Assumption 5.1 holds. Let {(x{ ™, x5 x50 M40y pe the
sequence generated by the direct extension of ADMM (3.2a)—(3.2d) with the restriction
B € (0, Bmax)- Then, we have

1 p
_||Zt_zt+1”2+_

2 ; {||A3x3 Azl 2 4 | Agxh — Agxt |2 }=o(l/t). (5.17)

Proof Taking k = ¢t to 2¢ in (5.16) and adding the resulting inequalities, we obtain
1
' [%nz” 24 b S {145 — A3+ 1 And — Aaxd }]

p
<Z—||z = 22 2 {lAae — Asx T 4 Aaeh — Anxd )

1
= >k = 2 2 A - AR 4 ank - 402

P 2B 2
t 1 ﬂ

=3 g = I 4 5 (et = AP o - Aae )
k=1

The limit of the last term in the right-hand side is 0. So, the assertion (5.17) is proved.
O

6 Globally linear convergence
In this section, we show that it is possible to theoretically derive the globally lin-

ear convergence of the direct extension of ADMM (1.2a)—(1.2d) provided that some
strengthen enough conditions are assumed.

@ Springer



On the convergence of the direct extension of ADMM... 63

6.1 Linear convergence under stronger conditions

In this subsection, we prove the linear convergence of the direct extension of ADMM
under the following conditions. We refer to [24] for some existing analysis under
stronger conditions.

Assumption 6.1 In (1.1), 6 is convex; 6, and 63 are strongly convex with modulus
w2 > 0and pu3 > 0, respectively; V6 is Lipschitz continuous with constant L1; Aj
and Az are of full column rank; and A is nonsingular.

First of all, under Assumption 3.1, we can prove a result similar to (3.18). That is,
there exists a constant { = min{%, 01, M2} > 0, such that

k+1 _ a2 k+1 k2
W — Wi —||A3x = Asxsllg

o0 10 .
< W5 = Wi, + A3 — Asxs l||§z—c{||Azx2 Axxy %+ Iy =232

3
=R D = £i||2] : (6.1)

i=2

Then, let us explain the roadmap to prove the linear convergence rate of (1.2a)—(1.2d).
Indeed, according to (6.1), it is clear that we only need to find bounds for the terms
||zk+1 z||2 and ||A1karl Axy ||2 because of the minus term in (6.1). We first

consider ||A1)ck+1 A1%1]12. Tt follows from (3.14) and (3.5) that
1
AT = Ak = E(Zk — ) — (Apxf T — Agiy) — (AaxfT! — Asi).
Therefore, we have

1
k+1 £ 2 Kk k12 k+1 £ 2 k+1 £ 2
AT =A& 53['?”2 — TP Aoy T — Aok |2+ 1| Asxy T — Ass |

(6.2)
Then, we need to consider how to bound the term ||z5*t! — 2||% to derive the linear
convergence of the sequence generated by the scheme (1.2a)—(1.2d). As we show
below, this is exactly why we need to assume Assumption 6.1.

Lemma 6.1 Suppose Assumption 6.1 holds. Let (x1, X2, X3, Z) be a saddle point in
S; let {()ck"’1 k'H §+1, 2Kt} be the sequence generated by the direct extension of
ADMM (1.2a)— (1 2d). Then, there exists a constant o > 0 such that

k+1 212 k+1 22 k k+12 k k+]
12 = 212 < o (I = R0 ek — AP e - 52
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Proof Tt follows from the optimality conditions for the x;- and x;-subproblems that

AT = v, () 4 par (A,»xf _ A,»x{‘“)

3
i=2
and

12 =Vo1(3)).
Using Assumption 6.1 and the Cauchy-Schwarz inequality, we get
3
lAt T = Afzl < Lot = 2+ plan Y (Al - 1)
i=2
and the assertion follows immediately from the non-singularity of A;. O

Now, we can derive the linear convergence of the sequence generated by the scheme
(1.2a)-(1.2d) under Assumptions 3.1 and 6.1.
Theorem 6.1 Suppose Assumptions 3.1and 6.1 hold. Then the sequence {()C{H_l , x]2‘+1 ,
x§+] , 7l )} generated by the direct extension of ADMM (1.2a)—(1.2d) with B €

(O, mf%) converges globally linearly to a saddle point in S.
3 3l

Proof Let (X1, X2, X3, Z) be a saddle point in S. It follows from (6.2) that

3
S )
3 [ 142x5 — Aoxy 1%, 4 I — w517 11 = 2P D I = & ||2]
=2
C 3
> 2 [nzk =D ! —&nZ]
i=2
¢ 1 S
e e FA A AT — Ak
4[ p? Z;'HA;“Ain o o
> = min Iﬁ2 : ] A — Ak )2
12 A3 As |l | A% Asli !
> 2 min Hﬂz ! ! ]x in(ATAD[lx{ T = #p))?
i k) £ min
12 A3 Asll” | A% Asli : :
=7y T = &%, (6.3)
where 7] = f—z min {,32, m, m} Amin(ATA1). In addition, we have
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3
1Azxs — Apxb 1%, + I} — x5 P2 4 12 = 2P DD I - &2

: 12
i=2

> & {ldaek - ApdHZ, + 1k — bR

> 5 {BAmin (434001 — 5H ok — xR

> £ min {$2nin (43420, 1} {1k — 572 + 1k — 1))

= o2 {11k — P e - R (6.4)

where 1) = % min { 8% Amin(A3A2), 1}. Adding (6.3) and (6.4), and using Lemma 6.1,
we have

¢ k k412 k+1 k_ k412 k1 _ o2
> 14263 — A2y TG s — g T+ = P D - R
i=2
k+1 A2 k+12 k k 12
> rllef = 8P o [l = AR - AR
: k+1 A2 k k 1 k 1
> min {z1, 72} {1 = 212 e — BT - AR

min {t1, 2} i1 .0
— I =2

o

=t =2 (6.5)

’

where T = }Tmin {t1, ©»}. Moreover, we have

3
¢ K+l k1 Kk k12 Kl a2
2 14253 — Aoxd TG, + a5 — 52 4t = TR D I —
i=2
{ 3
k k+1,2 k+1 a2
zz{nxg—xg 124 D = &) }
i=2

¢ 3 10 3 1
>2)_- - k _ k+1)2 A k+l—A'A< 27
-2 { 1082 3 b3 =3 Hﬁz +§ ‘32”A;¢Ai I [l Aix; iXi ||ﬂ.

¢ 1 3 10 k1 k1
) A A Aj —A;
267 mm[||A§Az|| ojATA | | 31475~ A ”f‘2+z” A Akl

3

10 . A

=t |||A3x3 A% + D ||A,-x,-k+1—A,~xi|§2], (6.6)
i=2

/ 1 3
where 7' = 2;32 min { TAS Al 10|\A§A3u}'
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Then, it follows from (6.5) and (6.6) that

3
k k+1)2 k k+1)2 k k+1,2 k+1 ~ 2
C{llAzxz—A2x2+ 120+ ok — A2 ik = 2 S e — ]
i=2

3
. 10 A
>t -2+ r’[3||Asx§ — A3y TR + D AT - Aixiugz]
i=2

3
_ 5 10 ‘ .
> min {z, 7'} 125 — 217 + —llAsxf — Asx T2, + D AT — Ak 1%,
3 B = B
1=

. 10
=o' [nw’f*1 — WG + 5 Asxs T - A3x§||§2] : (6.7)

where Q is defined in (2.5) and its positive definiteness is ensured by Assumption 6.1
and o’ = min {r, 14 } Finally, combining (6.1) and (6.7), we obtain

. 10
W = Wig + Sl Asxs ™ — Asxgi

=

10
k ~2 k k—1)2
T IV = WG+ A — As ||ﬂ2],

which implies the linear convergence rate of the generated sequence under the Q-norm.
The proof is complete. O

6.2 Linear convergence under error bound conditions

As mentioned, the linear convergence of the scheme (1.2a)—(1.2d) has been well
investigated under some error bound conditions in [21], which has also inspired the
work [15] for deriving the linear convergence of the original two-block ADMM scheme
in the quadratic programming context, which was further extended to the general case
that the objective functions possess polyhedra subdifferentials [35]. In this subsection,
we provide an alternative proof for the globally linear convergence of (1.2a)—(1.2d)
under some error bound conditions. The new conditions differ from Assumption 6.1
in that no smoothness or strong convexity assumption on the objective function is
assumed.

Assumption 6.2 Letl/ := X x Xy x A3 x Z and let U be a bounded set in /. Then
there exists > 0 such that

dist(u, S) < ndist(0, F(u)), VYu e U, (6.8)
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where u := (x1, x2, x3, ), and

891 (xl) — A Z
062 (x2) —
F(u) = | 003(x3) — A3z |. (6.9)
3
> Aixi—b

i=1

Obviously, using the definition in (6.9) and the optimality condition (2.2a)—(2.2d),
we see that a point # € S if and only if 0 € F(u). Using the result [36, Theorem
3.3], it is clear that the error bound condition (6.8) holds if F is a piecewise linear
multifunction, which is true for the case where 6;’s are, e.g., the /1 - or [,-terms. For
the definition of piecewise linear multifunction or polyhedral multifunction, see, e.g.,
[31,36].

Recall that under Assumption 3.1, we show that there exists a constant { =
min{z;, 01} > 0 such that

k+1 A2 k+1 k2
W =Wl + IIAzx — Asx3 g

”ﬂZ_
+ l2F = 2 bt - f3||2} : (6.10)

~ -1 k+1 1
s||w"—w||2Q+?||A3x3—A3x_’; 22— ¢ { Aok — AoxkH 2+ 1k 2+ 2

where w := (x2, x3, z) and Q is defined by (2.5), see (3.18). To prove the linear con-
vergence rate of the scheme (1.2a)—(1.2d) under Assumption 6.2, it follows from (6.10)
that we only need to bound the term || wktl — |12 because of the minus term in (6.10).
Then, under Assumption 6.2, the key is to find a bound of the term dist(0, F(uk+1 ).
Therefore, we first prove the following lemma.

Lemma 6.2 Let F (u) be defined in (6.9) and (uk = (x{‘, xlzc, x§, ZK)) be the sequence
generated by the direct extension of ADMM (1.2a)—(1.2d). Then, there exists a constant
o > 0 such that

dist* (0, F(u**1)) < o [HAzxz Apxy ! H + HX3 — XAt H +[l2F = zk+1||2] ,

6.11)

where

1
o = max [—2, B2 2IALP + AP 11 A3, 2||A1||2] : (6.12)

B
Proof Tt follows from the optimality condition of the x1-subproblem that

0 €90y (x1+!) = Afh + AT (Axf*! + Ak + asxk — b)),
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which can be alternatively written as (using (1.2d))

Consequently, we have

dist? (0, 861 (xf T — AT < IBATAL (AT —xb) + A (AT )12

< 2B%IAP A2 AT =B 121 A5 f T X8y )2,
(6.13)

Moreover, the optimality condition of the x;-subproblem and (1.2d) indicate that
BASAZ (AT — k) € 30, (T — AL
Hence, we obtain

dis?(0, 862 (x5 T — A32F1) < 1 BAFAZ (AT =) < B2 1AL 1 As (5T —xBy )2
(6.14)

Further, the optimality condition of the x3-subproblem and (1.2d) indicate that
0c 893(xk+1) Atz ket
which means
dist?(0, 963 (x5 ) — A3 =0, (6.15)

In addition, it follows from (1.2d) that

1
E(zk — 2y = AT Ak At (6.16)

Finally, combining (6.13)—(6.16), we obtain

dist? (0, F@* 1)) = dist? (0, 90) (N 1) — AT 4+ dist? (0, 86, (51 — A5K+
+dist? (0, 863 (AT — A3 Ak 4 ap kT Akt g2

<2821 A1 A (T — x2>||2+ﬂ—||z"+l -2

BZ2IA12 + 1A A3 (5T — 22 (6.17)

Therefore, the assertion (6.11) follows immediately from (6.17) and the definition of
o in (6.12). O

Now, we show the globally linear convergence of the direct extension of ADMM
(1.2a)-(1.2d) under Assumptions 3.1 and 6.2.
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Theorem 6.2 Suppose Assumptions 3.1 and 6.2 hold. Then the sequence {(xlf , x’zc , xé‘,

k)} generated by the direct extension of ADMM (1.2a)—(1.2d) with 8 € (O
converges globally linearly to a saddle point in S.

> 17]1A5 A3II)

Proof Let (X1, X2, X3, Z) be a saddle point in S. According to Theorem 3.1, the whole

sequence {(x’l‘ , x§ , x§ , zk)} converges to a saddle point in S. Thus it is bounded.

Because of Assumption 6.2, we know that
dist(u**!, §) < ndist(0, F(u**1)),  Vk >0, (6.18)

which, together with (6.11), implies that

dis? (1, ) < oo {1 Aaxk — Aoxb 2, ek — xEH2 gk - 2
(6.19)

Let us define
00
=(50):
with Q given in (2.5). Then, combining (6.19) with (6.10), we have
lu+! — |w+—wMﬁ“ Asx515

A 10 k—1
snﬁ—wM+34M@—Au3n;—

k k412
+ llz¢ = 242

k+1 k+1
¢ {1405 — Ak 12+ 1k — 24412

R 10 - ¢ 2t
k 2 k k=12 Kk k+1y2 2, k+l
< llu® —ully + ?||A3x3_A3X3 §||x3 —x53 1 - WdISt W, 9).

”/32 -
(6.20)

It follows from (6.18) that
dist3, ("1, §) < ?|M|dist>(0, F*T)),  Vk>o0.

Let u* € S such that disty (u¥, §) = ||uF — u*|| 5. Since (6.20) holds for any saddle
point in S, we have

k1 2 k+1 k)2
"t — w15 + ||A3x — A3zl

. k =12 Sk kg2 28 ok
< distps (u ,S)—i—?HA3x3—A3x3 ||ﬂ2—§||x3 —x3Jr |- — det @t s).
(6.21)
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Setting

ﬂ::min[ 2§ 5 f nd y: 3
108211 A3]1”" 3o || M|

T30+ pon?

we obtain the following inequality:

. . 10

(14 i) [dlstfv, @ S) + dist, L S) + ?||A3x§+1 — A3x§||/232
k+1 %2 9 k+1 _ k2

< llu u”llyy + 3 ||A3x3 Ajzx; ||52

i 10
+i ’dlstﬁ,l(ukﬂ, O+ IAzx5H! — A3x§||§z]

+ (14 p)ydis @ 1, s)

10 - ¢ 1082145020
< llu* — u*||%,[ + ?||A3x§ - A3x§ 1”?;2 - (g T E— ||x§ - JCé{H”2

¢ - )
- (ﬁ - MIIMII) dist® (1, 8)
on
k *12 10 k k—12
< lu® —uly + ?||A3x3 — Azxy ||ﬂ2
. 10 _
= dist3, (uX, $) + ?||A3x’3‘ — Asx} 1||/232
. 10 _
< dist k. ) + ?||A3x§ — Asxk 1||§2, (6.22)

where the second inequality follows from (6.21) and the third one from the definition
of fi. Thus, the inequality (6.22) implies the linear convergence rate of the sequence
generated by the direct extension of ADMM measured by the sum of the distance
under the (y I + M)-norm. The proof is complete. O

Remark 6.1 Note that the direct extension of ADMM (1.2a)—(1.2d) is a splitting,
thus inexact, version of the augmented Lagrangian method in [20,30]; and it has been
proved in [33] that the augmented Lagrangian method is an application of the proximal
point algorithm (PPA) in [25,26]. Since the convergence rate of PPA is known to be
only linear in [33], the linear convergence rate is the most we can expect for the direct
extension of ADMM (1.2a)—(1.2d). The linear convergence rate is indeed ideal for
the generic convex model (1.1), and thus very strict conditions should be posed to
gain this convergence rate. In fact, even for the original ADMM to tackle a two-block
linearly constrained separable convex minimization model, its linear convergence rate
can only be established for special cases (e.g., [1,15]) or generic cases but with strong
assumptions on the model (e.g., [7,8]). Usually, the conditions that can ensure the
linear convergence rate of (1.2a)—(1.2d) are too strict to be satisfied by the majority
of the concrete applications of the abstract model (1.1). In this sense, discussing the
global linear convergence rate for the direct extension of ADMM (1.2a)—(1.2d) only
makes a theoretical sense.
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7 Conclusions

In this paper, we discuss the convergence of the direct extension of alternating direction
method of multipliers (ADMM) for solving a three-block linearly constrained convex
minimization model whose objective function is the sum of three functions without
coupled variables. We show that the convergence of the direct extension of ADMM can
be ensured if one function in the objective is strongly convex, the penalty parameter
is appropriately restricted and some assumptions on the operators in the constraints
hold. This convergence result can well explain why the direct extension of ADMM
is convergent for some applications. We also establish the worst-case convergence
rate measured by the iteration complexity and the globally linear convergence rate
in asymptotical sense under additional assumptions. This is a deeper study on the
convergence of the direct extension of ADMM that may help us better understand
its theoretical aspects. We would like to mention that instead of the original scheme
(1.2a)—(1.2d), we can study the scheme

[ x{‘“ = argmin {C,g(xl,xlg,x{{, & x € X} (7.1a)
x12<+1 = arg min {ﬁﬂ(xfﬂ, x2, x5, 25 | xa € X}, (7.1b)
xé‘“ = arg min {Eg(x{‘“,xé‘“, X3, zk) | x3 € X3}, (7.1¢)

3
Zk+l — Zk _ ]/ﬁ ZAixl(c-H —b), (7.1d)
i=1

where y € (0, 1). Since the relaxation factor y can be arbitrarily close to 1, asymptoti-
cally this scheme has no difference from the direct extension of ADMM (1.2a)—(1.2d).
Similarly, we can discuss the convergence and estimate the convergence rate under
different conditions for the scheme (7.1a)—(7.1d), and indeed, their proofs can be
presented with easier notation than what we present in this paper.
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