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Abstract This paper proposes a conic approximation algorithm for solving quadratic
optimization problems with linear complementarity constraints.We provide a conic
reformulation and its dual for the original problem such that these three problems
share the same optimal objective value. Moreover, we show that the conic reformu-
lation problem is attainable when the original problem has a nonempty and bounded
feasible domain. Since the conic reformulation is in general a hard problem, some
conic relaxations are further considered. We offer a condition under which both the
semidefinite relaxation and its dual problem become strictly feasible for finding a
lower bound in polynomial time. For more general cases, by adaptively refining the
outer approximation of the feasible set, we propose a conic approximation algorithm
to identify an optimal solution or an ε-optimal solution of the original problem. A
convergence proof is given under simple assumptions. Some computational results
are included to illustrate the effectiveness of the proposed algorithm.
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1 Introduction

Mathematical programs with linear complementarity constraints have been widely
studied and applied [2,14,21,23]. When there is no objective function involved, Ferris
and Pang [14] provided several computational methods for finding a feasible solution.
When the objective function is linear, some algorithms can be found in [18,20,28]. In
this paper, the objective function is taken to be a general quadratic function and we
consider the following quadratic program with linear complementarity constraints:

VQLCP = min
1

2
xT Qx + f T x + c (QLCP)

s.t. x ∈ FLCP,

where Q is an n × n real symmetric matrix, f ∈ R
n , c ∈ R and

FLCP =
{
x ∈ R

n
∣∣x ≥ 0, Ax + b ≥ 0, xT (Ax + b) = 0

}

with A ∈ R
n×n and b ∈ R

n . Here,Rn×n andRn represent the n×n and n dimensional
real spaces, respectively.

In this paper, convexity is not assumed for the quadratic objective function. Some
commonly used notations are adopted throughout the paper. In particular, Rn+ means
the first orthant ofRn andZ+ means the set of nonnegative integers; Sn denotes the set
of real symmetric square matrices of order n; Sn+ is the set of all positive semidefinite
matrices in S

n ; and S
n++ is the set of all positive definite matrices in S

n . The vector
1n = [1, 1, . . . , 1]Tn and the matrix In represents the identity matrix of dimension n.
For a real symmetric matrix X , X � 0 means X ∈ S

n+, X � 0 means X ∈ S
n++, X ≥ 0

means every element of X is nonnegative, and Xi j represents the element in the i-th
row and the j-th column of X . For n by n real matrices A = (Ai j ) and B = (Bi j ),
A · B =trace(AT B) = ∑n

i, j=1 Ai j Bi j . For a set U , int(U ) and ri(U ) denote the sets
of interior points and relative interior points of U , respectively.

From the results of [19], we know problem (QLCP) is in general NP-hard, which
means we cannot find a polynomial-time algorithm to solve it unless P=NP. Many
papers have studied (QLCP) and its subproblems. When the quadratic objective func-
tion is convex, based on the primal-dual relationship and a logical Benders scheme,
Bai et al. [2] proposed an extreme ray/point generation procedure with a two-stage
approach to improve the scheme. Also, (QLCP) is a special quadratic optimization
problem, thus it can be relaxed into a semidefinite programming problem [27]. For
example, Engau et al. [12] introduced a technique of handling cutting planes together
with the interior-point method for solving semidefinite relaxations of binary opti-
mization problems. Besides, for mixed integer quadratically constrained quadratic
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programming problems, a subclass of (QLCP) problems, Saxena et al. [31] provided
a convex relaxation method using the techniques of disjunctive programming and lift-
and-project methodology. They also studiedmethods to build low-dimensional convex
relaxations using projection formulations [32]. Mitchell et al. [28] further described
several methods for tightening relaxations of mathematical programs with comple-
mentarity constraints. Due to the non-negativity constraint of x ≥ 0, such problems
can be equivalently reformulated as completely positive programming (CPP) prob-
lems, which were studied by Burer [8]. Bai et al. [3] exploited and generalized the
results of Burer to quadratic programs over a convex cone including (QLCP) without
any boundedness assumptions. However, CPP relaxation is numerically intractable
since determining whether a given matrix belongs to the class of completely positive
matrices is NP-complete [29]. A basic tractable relaxation is approximating the com-
pletely positive matrices by using doubly nonnegative matrices. Burer [9] proposed
an efficient decomposition technique to approximately solve the doubly nonnega-
tive program, while simultaneously producing lower bounds of the original problem.
Recently, Arima et al. [1] introduced a simplified Lagrangian-CPP relaxation aim-
ing at reducing the numbers of constraints and variables of CPP relaxation. Kim
et al. [22] proposed an efficient computational method for quadratic optimization
with complementarity constraints based on the Lagrangian and doubly nonnegative
relaxation. Based on the convex relaxations for lower bounds, branch-and-bound is
a common and effective scheme to achieve the optimal solution and optimal value
[9,16,24].

Unlike those earlier papers, our approach is to investigate the structure of the feasible
domain of problem (QLCP) and adaptively refine its outer approximation. In this way,
a computable conic relaxation over the cone of nonnegative quadratic functions can
be successively developed to provide a tighter lower bound for (QLCP). Then a conic
approximation algorithm is presented to find either an optimal solution or an ε-optimal
solution with a convergence proof.

Conic approximation methods have recently been used in detecting copositive
matrix over a p-th order cone [38] and solving box constrained quadratic program-
ming problems [25], 0-1 quadratic knapsack problems [37], and completely positive
programming problems [34]. The key idea is to provide an equivalent conic reformu-
lation based on the concept of the cone of nonnegative quadratic functions DF and its
dual cone D∗

F over a given set F [13]. To be more precise, for a given set F ⊆ R
n ,

we let

DF =
{
U ∈ S

n+1
∣∣∣
[
1
x

]T

U

[
1
x

]
≥ 0 for all x ∈ F

}
,

and

D∗
F = cl cone

{[
1
x

] [
1
x

]T

∈ S
n+1

∣∣∣ x ∈ F

}
,
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where “cl” means the closure and “cone” stands for the conic hull of a set, respectively.
When F is bounded and closed, from [25], we know

D∗
F = cone

{[
1
x

] [
1
x

]T

∈ S
n+1

∣∣∣ x ∈ F

}
.

When an equivalent conic reformulation problem is solved, the optimal value of the
original problem may be obtained. However, there are two difficulties for solving the
conic reformulation problem. One is that it could be hard to check whether a matrix
belongs to DF (or D∗

F ) for some given F. For example, when F is Rn+, Murty and
Kabadi [29] proved that this checking is co-NP-complete. The other difficulty is that
there is no guarantee that the conic reformulation and its dual are strictly feasible
for the applicability of the interior-point methods [35]. For the problem (QLCP),

unfortunately, we can prove that when A+AT

2 � 0, the conic reformulation problem is
not strictly feasible.

To overcome the two technical difficulties, we aim to design a feasible outer approx-
imation G of FLCP, i.e., FLCP ⊆ G, for providing a corresponding conic relaxation.
Hopefully, there is a polynomial-time algorithm for checking a matrix belongs to
DG (or D∗

G .) or not. And, hopefully again, the conic relaxation problem and its dual
become strictly feasible.

In this paper, we first provide a conic reformulation and its dual for problem
(QLCP) such that these three problems are equivalent in the sense that they share
the same optimal objective value. Moreover, when FLCP is nonempty and bounded,
the conic reformulation problem becomes attainable. However, the conic reformula-
tion is in general a hard problem. This leads us to consider some conic relaxations
for the original problem. Under the assumption that there exists a vector x ∈ R

n

satisfying x > 0 and Ax + b > 0, we can show that if A+AT

2 ≺ 0, then both of
the semidefinite relaxation and its dual for problem (QLCP) become strictly fea-
sible. This implies that a lower bound for problem (QLCP) can be obtained by
using the primal-dual interior point approach. For more general cases, by adap-
tively refining the feasible outer approximation, we provide a conic approximation
algorithm for finding an optimal solution or an ε−optimal solution to problem
(QLCP). To illustrate the proposed approach, the binary quadratic program, which
is a special case of problem (QLCP), is used to highlight some computational
results. The proposed conic approximation algorithm can also be extended to han-
dle quadratic programs with convex quadratic constraints and linear complementarity
constraints.

The rest of the paper is organized as follows. In Sect. 2, a conic reformulation and its
dual for problem (QLCP) are introduced. The strict feasibility issue is also discussed.
We provide a sufficient condition under which the semidefinite relaxation and its dual
are strictly feasible. Then, an idea of how to relax the feasible set for a better conic
relaxation is given. In Sect. 3, we propose a conic approximation method with a con-
vergence proof for finding an ε-optimal solution to problem (QLCP). Some numerical
examples are provided to illustrate the effectiveness of our proposed algorithm in Sect.
4 while a short conclusion is given in Sect. 5.
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2 Conic reformulation and strict feasibility

The conic reformulation over the cone of nonnegative quadratic functions for quadrat-
ically constrained quadratic programs was first studied by Sturm and Zhang [33]. The
conic reformulation problem is in general NP-hard. It is equivalent to a second-order
conic or semidefinite positive programming problem in some special cases, and then
can be solved in polynomial time. Burer [10] listed some special problems with this
property in his recent review paper. With the matrix decomposition method provided
in [33], the optimal solutions of some quadratic optimization problems can be obtained
in polynomial time, e.g., quadratic programs with one quadratic inequality constraint,
one strictly convex equality constraint, or the intersection of one convex quadratic
inequality and one linear inequality constraint. For the cone of nonnegative quadratic
functions over a given set F ⊆ R

n , we have the following simple facts to be used in
this paper:

Lemma 1 [25] If F is a nonempty, bounded, closed set, then

int (DF ) =
{
U ∈ S

n+1
∣∣∣
[
1
x

]T

U

[
1
x

]
> 0, ∀x ∈ F

}
.

Lemma 2 [25] If F ⊆ G ⊆ R
n, then DG ⊆ DF and D∗

F ⊆ D∗
G.

Lemma 3 [37] DRn = D∗
Rn = S

n+1+ .

Lemma 4 [34] For G ⊆ R
n, if G has an interior point, then DG and D∗

G are proper
cones, i.e., they are closed, convex, solid and pointed cones.

The term of “solid” here means a cone has interior points. The conic reformulation
of problem (QLCP) becomes

VQLCP-CR = min
1

2

[
2c f T

f Q

]
· Y (QLCP-CR)

s.t. Y11 = 1,

Y ∈ D∗
FLCP,

where Y11 represents the element in the first row and the first column of the matrix Y .
The conic dual of problem (QLCP-CR) becomes

VQLCP-DR = max σ (QLCP-DR)

s.t.

[
c − σ

f T

2
f
2

Q
2

]
∈ DFLCP,

It is not difficult to see that, following [13,33], problems (QLCP), (QLCP-CR) and
(QLCP-DR) share the same optimal objective value when FLCP 
= ∅. We would like
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to know if problems (QLCP-CR) and (QLCP-DR) are attainable, i.e., there exists a
feasible solution to achieve the optimal value. To answer this question, Ben-Tal et al.
[5] indicate that for a conic optimization problem, if the primal problem is bounded
and its feasible domain has at least one relative interior point, i.e., strictly feasible,
then the dual problem is attainable and the primal and dual problems share the same
optimal value. Hence, we investigate the strict feasibility of problems (QLCP-CR) and
(QLCP-DR) in the next two results.

Theorem 1 If the feasible domain FLCP of problem (QLCP) is nonempty and bounded,
then problem (QLCP-DR) is strictly feasible and bounded above. Consequently, prob-
lem (QLCP-CR) is attainable.

Proof Notice that in this case FLCP is a nonempty, bounded, closed set and problem
(QLCP) is bounded below. Hence problem (QLCP-DR) is bounded above. Let γ =
minx∈FLCP 1

2 x
T Qx + f T x + c and σ = γ − 1. Then Lemma 1 implies that

[
c − σ

f T

2
f
2

Q
2

]
∈ int(DFLCP).

Therefore, problem (QLCP-DR) is strictly feasible and bounded above. Following
Ben-Tal et al. [5], we know the problem (QLCP-CR) is attainable. �


However, since FLCP does not contain any relative interior points, problem
(QLCP-CR) may not be strictly feasible. There is no guarantee that problem
(QLCP-DR) is attainable. The next result shows such a case.

Theorem 2 If A+AT

2 � 0, then problem (QLCP-CR) is not strictly feasible. Moreover,
there is no feasible solution to problem (QLCP) that satisfies the inequality constraints
strictly.

Proof Since FLCP ⊆ R
n , from Lemmas 2 and 3, we know that D∗

FLCP
⊆ S

n+1+ , and

then Y � 0. Because Y11 = 1, we can rewrite Y =
[
1 xT

x X

]
. By the definition of D∗

LCP,

for any Y ∈ D∗
LCP, there exist τk ∈ Z+, λ jk ≥ 0 and x jk ∈ F , j = 1, 2, . . . , τk ,

k = 1, 2, . . . ,+∞, satisfying Y k = ∑τk
j=1 λ jk

[
1
x jk

] [
1
x jk

]T

and Y = limk→∞ Y k .

Since[
0 bT

2
b
2

A+AT

2

]
·
[
1
x jk

] [
1
x jk

]T

= 0,

[
0

eTi
2ei

2 0

]
·
[
1
x jk

] [
1
x jk

]T

≥ 0 and

[
bi

aTi
2ai

2 0

]
·

[
1
x jk

] [
1
x jk

]T

≥ 0, for j = 1, 2, . . . , τk and i = 1, 2, . . . , n, we have

[
0 bT

2
b
2

A+AT

2

]
·

Y = A+AT

2 · X + bT x = 0,

[
0

eTi
2ei

2 0

]
· Y = xi ≥ 0 and

[
bi

aTi
2ai

2 0

]
· Y = aTi x + bi ≥ 0.

Since A+AT

2 and X−xxT are both positive semidefinite, we know A+AT

2 ·(X−xxT ) ≥
0 and
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0 = A + AT

2
· X + bT x ≥ A + AT

2
· xxT + bT x = xT (Ax + b).

Hence, when A+AT

2 � 0, we cannot find any Y satisfying

[
0

eTi
2ei

2 0

]
· Y = xi > 0 and

[
bi

aTi
2ai

2 0

]
· Y = aTi x + bi > 0, for i = 1, 2, . . . , n. This means that we cannot find

any Y ∈ int(D∗
FLCP

) and problem (QLCP-CR) is not strictly feasible. From Lemma
4, we conclude that there is no feasible solution to problem (QLCP) that satisfies the
inequality constraints strictly. �


As far as we know, there is no polynomial-time algorithm to verify whether a
matrix belongs to D∗

FLCP
or not. Nor can we guarantee that problem (QLCP-DR)

is attainable. Therefore, we consider some conic relaxations. The idea is to find an
outer approximation of FLCP, i.e., FLCP ⊆ G such that there exists a polynomial-time
algorithm to verify whether a matrix belongs to D∗

G or not. If this is doable, then we
have a computable conic relaxation problem to approximate problem (QLCP).

The simplest computable conic relaxation is to choose G = R
n . In this case, we

have the following semidefinite relaxation of problem (QLCP) [5,27]:

min
1

2

[
2c f T

f Q

]
· Y,

s.t. Y11 = 1,[
0

eTi
2ei

2 0

]
· Y ≥ 0, i = 1, 2, . . . , n,

[
bi

aTi
2ai

2 0

]
· Y ≥ 0, i = 1, 2, . . . , n,

[
0 bT

2
b
2

A+AT

2

]
· Y = 0,

Y � 0.

(QLCP-SDP)

Notice that the proof of Theorem 2 shows that problem (QLCP-SDP) is not strictly

feasible when A+AT

2 � 0. It could diminish the effectiveness of the interior-point
approach. However, the next result shows a case for problem (QLCP-SDP) to be
strictly feasible.

Theorem 3 Assume that there exists an x ∈ R
n satisfying x > 0 and Ax + b > 0.

If A+AT

2 � 0 and A+AT

2 
= 0, then problem (QLCP-SDP) is strictly feasible. The
problem remains strictly feasible when the constraint X ≥ 0 is added.

Proof Let x ∈ R
n satisfy x > 0 and Ax + b > 0. We can find an X ∈ S

n such

that X � xxT and X > 0. For example, X = xxT + In×n . Since A+AT

2 � 0 and
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A+AT

2 
= 0, we know A+AT

2 · (X − xxT ) < 0. Noticing that A+AT

2 · (X − xxT ) < 0,
A+AT

2 · X < A+AT

2 · xxT ≤ 0, we have A+AT

2 · X + bT x < A+AT

2 · xxT + bT x .

If A+AT

2 · X + bT x = 0, then Y =
[
1 xT

x X

]
is a strictly feasible solution.

If A+AT

2 ·X+bT x > 0, then there exists an α > 1 such that A+AT

2 ·(αX)+bT x = 0

and αX � xxT . Hence Y =
[
1 xT

x αX

]
with α > 1 is a strictly feasible solution.

If A+AT

2 · X + bT x < 0, then bT x > 0. Otherwise, A · xxT + bT x ≤ 0, which

contradicts the assumption of xT (Ax + b) > 0. Let k1 = A+AT

2 · xxT + bT x ,

k2 = A+AT

2 · X + bT x and α = k2
k2−k1

, then we have αk1 + (1 − α)k2 = 0. Because

k1 > 0 and k2 < 0,weknow1 > α > 0.Moreover, A+AT

2 ·(αxxT +(1−α)X)+bT x =
α( A+AT

2 ·xxT +bT x)+(1−α)( A+AT

2 ·X+bT x) = 0 and αxxT +(1−α)X−xxT =
(1 − α)(X − xxT ) � 0. Then Y =

[
1 xT

x αxxT + (1 − α)X

]
with 1 > α > 0 becomes

a strictly feasible solution.
As can be seen from the above process, if the additional constraint of X ≥ 0 is

added, the problem remains to be strictly feasible. �

The conic dual of problem (QLCP-SDP) can be expressed as

max σ

s.t.

[
c − σ − ∑n

i=1 λi bi
f T −∑n

i=1 ωi eTi −∑n
i=1 λi aTi −μbT

2
f−∑n

i=1 ωi ei−∑n
i=1 λi ai−μb

2
Q
2 − μ A+AT

2

]
� 0,

ωi ≥ 0, λi ≥ 0, i = 1, 2, . . . , n, μ ∈ R.

(QLCP-SDD)

Notice that problem (QLCP-SDP) is relaxed from problem (QLCP-CR) with FLCP
being relaxed to R

n . Because R
n is unbounded, the strict feasibility of problem

(QLCP-SDD) cannot be inferred by Theorem 1. However, we can show that prob-

lem (QLCP-SDD) becomes strictly feasible when A+AT

2 ≺ 0.

Theorem 4 If A+AT

2 ≺ 0, then problem (QLCP-SDD) is strictly feasible.

Proof When A+AT

2 ≺ 0, there exists a sufficient large number μ > 0 such that
Q
2 − μ A+AT

2 � 0. For fixed ωi > 0 and λi > 0, i = 1, . . . , n, if −σ is a sufficiently
large positive number, thenwe have c−σ −∑n

i=1 λi bi > 0 and 4(c−σ −∑n
i=1 λi bi )−

( f −∑n
i=1 ωi ei −∑n

i=1 λi ai −μb)T (
Q
2 −μ A+AT

2 )−1( f −∑n
i=1 ωi ei −∑n

i=1 λi ai −
μb) > 0. The Schur-complementary theorem then implies that problem (QLCP-SDD)
is strictly feasible. �


On one hand, we have good news that problem (QLCP-CR) is attainable whenever
FLCP is nonempty and bounded, the semidefinite relaxation and its dual are computable
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when A+AT

2 ≺ 0. On the other hand, the attainability of problem (QLCP-DR) is not

guaranteed when A+AT

2 � 0. All these results depend on the properties of FLCP.
From the definition of cone of nonnegative quadratic functions, a key obstacle

of solving problems (QLCP-CR) and (QLCP-DR) is the structure of FLCP = {x ∈
R
n|x ≥ 0, Ax + b ≥ 0, xT (Ax + b) = 0}. We would like to find a better outer

approximation for FLCP based on its structure rather than simply relax it to Rn . Later,
we will discuss how to relax the set FLCP by a set G such that DG and D∗

G can be
checked in polynomial-time.

For problem (QLCP), if the set {x ∈ R
n|x ≥ 0, Ax + b ≥ 0} is bounded, then we

can choose a box T = [u, v] with u ∈ R
n and v ∈ R

n to outer approximate the set
{x ∈ R

n|x ≥ 0, Ax+b ≥ 0}. In this way, we have FLCP = {x ∈ R
n|x ≥ 0, Ax+b ≥

0} ∩ {x ∈ R
n|xT (Ax + b) ≤ 0}, and then FLCP ⊆ T ∩ {x ∈ R

n|xT (Ax + b) ≤ 0}.
An ellipsoid HT can be found such that T ⊆ HT , consequently, FLCP ⊆ HT ∩ {x ∈
R
n|xT (Ax + b) ≤ 0} and DFLCP ⊆ D∗

HT
∩ D∗

{x∈Rn |xT (Ax+b)≤0}. Based on D∗
HT

, using

linear matrix inequality (LMI) representations [25] and relaxing D∗
{x∈Rn |xT (Ax+b)≤0}

by

{
Y ∈ S

n+1
∣∣∣
[
0 bT

2
b
2

A+AT

2

]
· Y ≤ 0

}
, we can obtain a conic relaxation for problem

(QLCP). Lemmas 2 and 3 imply such conic relaxation could fit better than the semi-
definite relaxation. In the next section, we provide details of how to find such a box
T and an ellipsoid HT , and how to improve the conic relaxation for a better lower
bound.

3 Conic approximation algorithm for solving problem (QLCP)

In this section, we introduce a conic approximation algorithm for solving problem
(QLCP) by adaptively refining the outer approximation G of the feasible domain
FLCP under the assumption that FLCP 
= ∅ and the set {x ∈ R

n|x ≥ 0, Ax + b ≥ 0}
is bounded.

Following our previous discussions, we need to construct an initial box T in order
to find a good outer approximation of FLCP. For i = 1, . . . , n, consider the following
linear programs:

ui = min xi
s.t. x ≥ 0, (1)

Ax + b ≥ 0,

and

vi = max xi
s.t. x ≥ 0, (2)

Ax + b ≥ 0,
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where xi represents the i-th element of variable x ∈ R
n . Since they are linear programs,

an initial box T = [u, v] can be easily obtained.

Remark 1 If there exists a k such that uk = vk , then obviously xk = uk = vk . We can
construct a new quadratic program with linear complementarity constraints by letting
fi = Qikxk + fi , bi = bi + Aik xk , i = 1, . . . , n, and c = c + 1

2Qkkx2k + fk xk .
Due to the linear complementarity condition, when xk = 0, we need to add the linear
constraint

∑n
i=1 Aki xi + bk ≥ 0. When xk > 0, we need to add

∑n
i=1 Aki xi + bk = 0

to the new problems. Delete the k-th row and k-th column of Q and A, and delete the
k-th row of f and b. Then, we obtain a new problem whose dimensionality is n − 1.
Therefore, we may as well assume that vi > ui for any i = 1, . . . , n.

For 0 < θ < 1, let

HT =
{
x ∈ R

n
∣∣∣4(x − u+v

2 )T θ(Diag(v − u)2)−1(x − u+v
2 )

n
≤ 1

}
(3)

Then HT is an ellipsoidal set that outer approximates the box T [38]. Moreover, let

J = {x ∈ R
n|xT (Ax + b) ≤ 0}

and define G = HT ∩ J . The next result follows,

Theorem 5 If FLCP 
= ∅, {x ∈ R
n|xT (Ax + b) < 0} 
= ∅ and the set {x ∈ R

n|x ≥
0, Ax + b ≥ 0} is bounded, then the outer approximation G = HT ∩ J contains an
interior point.

Proof When FLCP 
= ∅, there exists an x0 ∈ FLCP such that x0 ≥ 0, Ax0 + b ≥ 0
and (x0)T (Ax0 +b) = 0. When 0 < θ < 1, we have {x ∈ R

n|x ≥ 0, Ax +b ≥ 0} ⊆
int(HT ). Hence x0 ∈ int(HT ). Since {x ∈ R

n|xT (Ax + b) < 0} 
= ∅ and HT is an
ellipsoidal set, we can find an x∗ sufficiently close to x0 such that it is interior to G. �


Remark 2 (3) implies the smaller θ is, the larger HT becomes. When θ = 1, it is
the smallest ellipsoid which covers the box T . However, it cannot be guaranteed that
the outer approximation G contains an interior point when θ = 1. Hence, we choose
0 < θ < 1. Based on numerical experiments, we choose = 0.95 in our algorithm.

Theorem 5 and Lemma 4 imply that D∗
G ⊆ D∗

HT
∩ D∗

J and D∗
G contains an interior

point. By the definition of D∗
J , for any Y ∈ D∗

J , there exist τk ∈ Z+, λik ≥ 0 and xik ∈
J , i = 1, 2, . . . , τk , k = 1, 2, . . . ,+∞, satisfying Y k = ∑τk

i=1 λik

[
1
xik

] [
1
xik

]T

and

Y = limk→∞ Y k . Since

[
0 bT

2
b
2

A+AT

2

]
·
[
1
xik

] [
1
xik

]T

≤ 0, we have

[
0 bT

2
b
2

A+AT

2

]
·Y k ≤ 0
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and

[
0 bT

2
b
2

A+AT

2

]
· Y ≤ 0. Let

B =
{
Y ∈ S

n+1
∣∣∣
[
0 bT

2
b
2

A+AT

2

]
· Y ≤ 0

}
,

then D∗
J ⊆ B and D∗

G ⊆ D∗
HT

∩ B.
Because HT is an ellipsoidal set, some linear matrix inequality (LMI) representa-

tions for D∗
HT

can be provided as below.

Theorem 6 [25] For an ellipsoidal set H =
{
x ∈ R

n
∣∣∣(x − d)T P(x − d) ≤ 1

}
with

P ∈ S
n++ and d ∈ R

n, we have Y ∈ D∗
H if and only if

[
dT Pd − 1 −(Pd)T

−Pd P

]
· Y ≤ 0,

Y � 0.

In order to discuss the improvement of D∗
G , we need the next known result.

Lemma 5 [34] Let G = G1 ∪ G2 ∪ · · · ∪ Gm with Gi 
= ∅ for i = 1, 2, . . . ,m, then
DG = DG1 ∩ DG2 ∩ · · · ∩ DGm and D∗

G = D∗
G1

+ D∗
G2

+ · · · + D∗
Gm

.

Replacing D∗
FLCP

by D∗
HT

∩ B in problem (QLCP-CR), we can obtain a computable
conic relaxation problem and achieve a lower bound for problem (QLCP). We further
consider how to improve the lower bound. One intuitive idea is to partition the box
T into a collection of m (m > 1) small boxes such that T = T1 ∪ · · · ∪ Tm with
Ti = [ui , vi ]. Let di = ui+vi

2 and Pi = θ 4
n (Diag(vi − ui )2)−1, then

HTi =
{
x ∈ R

n
∣∣∣(x − di )T Pi (x − di ) ≤ 1

}
,

i = 1, 2, . . . ,m. Let G = G1 ∪ · · · ∪ Gm with Gi = HTi ∩ J , then D∗
G = D∗

G1
+

· · · + D∗
Gm

⊆ (D∗
HT1

∩ B) + · · · + (D∗
HTm

∩ B). Using Lemma 5 and Theorem 6, we
have the following conic relaxation for problem (QLCP):

VQLCP−Relax = min
1

2

[
2c f T

f Q

]
· Y

s.t. Y11 = 1,

Y = Y 1 + · · · + Ym,[
0 bT

2
b
2

A+AT

2

]
· Y i ≤ 0, i = 1, . . . ,m,

[
(di )T Pidi − 1 −(Pidi )T

−Pidi Pi

]
· Y i ≤ 0, i = 1, . . . ,m,

Y i � 0, i = 1, . . . ,m.

(QLCP-Relax)
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Notice that if every Gi , i = 1, . . . ,m, contains an interior point, then problem
(QLCP-Relax) can be solved by an interior-point approach. We denote the optimal
value as VQLCP−Relax and the optimal solution as Y ∗.

The next known result tells us how to decompose an optimal solution Y ∗.

Theorem 7 [25] For the optimal solution Y ∗ = (Y 1)∗ + · · · + (Ym)∗ of problem
(QLCP-Relax), there exists a decomposition running in polynomial time such that

Y ∗ =
m∑
i=1

ri∑
j=1

ξi j

[
1
xi j

] [
1
xi j

]T

satisfying (xi j −di )T Pi (xi j −di ) ≤ 1, ξi j > 0, for i = 1, 2, . . . ,m, j = 1, 2, . . . , ri ,
and

∑m
i=1

∑ri
j=1 ξi j = 1, where ri = rank(Y i ).

If there exists an xi j with i ∈ {1, 2, . . . ,m} and j ∈ {1, . . . , ri } from the
above decomposition such that xi j ≥ 0, Axi j + b ≥ 0, xi j (Axi j + b) = 0 and
1
2 (x

i j )T Qxi j + f T xi j + c ≤ VQLCP−Relax , then it is an optimal solution of problem
(QLCP). Otherwise, we need a partition of the box T in order to obtain a new outer
approximation for FLCP. Define

z∗ = arg min
z∈{xi j , i=1,...,m, j=1,...,ri}

1

2
zT Qz + f T z + c

as a “sensitive point.” Note that the sensitive point may not be unique. If there are mul-
tiple sensitive points, we choose the one with the smallest i ∈ {1, . . . ,m} and smallest
j ∈ {1, . . . , ri } as the sensitive point. Naturally, if the sensitive point is decomposed
from Y t , t ∈ {1, 2, . . . ,m}, then it belongs to the t-th box. The corresponding box is
then called the sensitive box.

Assuming that Tt = [ut , vt ] is the sensitive box where ut , vt ∈ R
n , we shall split it

in half along the direction perpendicular to the longest edge. First, we find the longest
edge by calculating maxi=1,...,n(v

t
i − uti ) and defining id = argmaxi=1,...,n(v

t
i − uti ).

Then Tt can be split into two boxes: Tt1 = [ut1, vt1] and Tt2 = [ut2, vt2], with
ut1 = ut , vt1i = vti , for i 
= id, vt1id = utid+vtid

2 and vt2 = vt , ut2i = uti for i 
= id,

ut2id = utid+vtid
2 .

Considering the two new boxes, the newly added sets are

Gt j = {x ∈ R
n|(x − dt j )T Pt j (x − dt j ) ≤ 1, xT (Ax + b) ≤ 0}, j = 1, 2,

with dt j = ut j+vt j

2 and Pt j = θ 4
n (Diag(vt j − ut j )2)−1 where 0 < θ < 1. To see

int(Gt j ) = ∅ or not, let us consider the following problem for j = 1, 2:

γ ∗
j = min (x − dt j )T Pt j (x − dt j ) − 1

s.t. xT (Ax + b) ≤ 0.
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Using [33], we know the optimal value of the above problem can actually be found
by solving the following problem in polynomial time:

γ ∗
j = min

[
(dt j )T Pt j dt j − 1 (Pt j dt j )T

Pt j dt j Pt j

]
· Y

s.t. Y11 = 1,[
0 bT

2
b
2

A+AT

2

]
· Y ≤ 0,

Y � 0.

The next result tells us whether int(Gt j ) = ∅ or not.

Theorem 8 Given any 0 < θ < 1, for j = 1, 2, int(Gt j ) = ∅ if and only if γ ∗
j ≥ 0.

Proof If γ ∗
j ≥ 0, then it is clear that int(Gt j ) ⊆ {x ∈ R

n|xT (Ax +b) ≤ 0}∩ int({x ∈
R
n|(x − dt j )T Pt j (x − dt j ) ≤ 1}) = ∅.
If γ ∗

j < 0, then there exists an x0 such that (x0)T (Ax0 + b) ≤ 0 and (x0 −
dt j )T Pt j (x0 − dt j ) < 1. Furthermore, if (x0)T (Ax0 + b) < 0, then x0 ∈ int(Gt j ) =
{x ∈ R

n|(x − dt j )T Pt j (x − dt j ) < 1, xT (Ax + b) < 0}. Otherwise, since (x0 −
dt j )T Pt j (x0 −dt j ) ≤ 1 is an ellipsoidal constraint, we can find a point x∗ sufficiently
close to x0 such that x∗ ∈ int{x ∈ R

n|(x − dt j )T Pt j (x − dt j ) ≤ 1, xT (Ax + b) ≤
0} = int(Gt j ). �


Notice that when int(Gt j ) = ∅, we have FLCP ∩ Tt j = {x ∈ R
n|x ≥ 0, Ax + b ≥

0, xT (Ax + b) ≤ 0, vt j ≥ x ≥ ut j } ⊆ {x ∈ R
n|xT (Ax + b) ≤ 0} ∩ int({x ∈

R
n|(x − dt j )T Pt j (x − dt j ) ≤ 1}) = ∅ with 1 > θ > 0. It means that the set Gt j is

redundant and we may eliminate it and the corresponding box Tt j . Therefore, we can
manage the rectangle sets in T in the following way:

T = T \{Tt }, if γ ∗
1 ≥ 0 and γ ∗

2 ≥ 0; (4)

T = T \{Tt } ∪ {Tt2}, if γ ∗
1 ≥ 0 and γ ∗

2 < 0; (5)

T = T \{Tt } ∪ {Tt1}, if γ ∗
1 < 0 and γ ∗

2 ≥ 0; (6)

T = T \{Tt } ∪ {Tt1} ∪ {Tt2}, if γ ∗
1 < 0 and γ ∗

2 < 0. (7)

Before the algorithm is designed, we notice that Y = Y 1 + · · · + Ym , the objective
and constraint functions are linear over Y in problem (QLCP-Relax). Hence, we have
the next theorem.
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Theorem 9 Solving problem (QLCP-Relax) is equivalent to finding the minimum of
the following problems:

Vi = min
1

2

[
2c f T

f Q

]
· Y

s.t. Y11 = 1,[
0 bT

2
b
2

A+AT

2

]
· Y ≤ 0,

[
(di )T Pidi − 1 −(Pidi )T

−Pidi Pi

]
· Y ≤ 0,

Y � 0, (8)

for i = 1, . . . ,m.

Proof Denote Y ∗ and V ∗ as the optimal solution and optimal value of problem
(QLCP-Relax), respectively. It is obvious that V ∗ ≤ Vi , for i = 1, . . . ,m. Con-
versely, if Vk = min{Vi |i = 1, . . . ,m} and the corresponding optimal solution is Y k ,
then it is easy to prove that Y ∗ = Y 1 + · · · + Ym , with Y i being the zero matrix for
i 
= k, is the optimal solution of problem (QLCP-Relax). �


By the previous theorem, in order to save computation time, whenwe solve problem
(QLCP-Relax) for G = G1 ∪ · · · ∪ Gm , we just need to solve at most two new
problems (8) where i = t1 and (or) i = t2 based on (4–7), then with the records of
optimal solutions and optimal values for other (Vi )s, we can obtain the optimal value
and optimal solution of problem (QLCP-Relax). Furthermore, when decomposing
the optimal solution Y ∗ for problem (QLCP-Relax), we only need to decompose the
optimal solutions of the the two new problems where i = t1 and (or) i = t2. With the
records of former decompositions, we can obtain a new decomposition for Y ∗.

Summarizing the above analysis, we propose a conic approximation algorithm
(CAA) for solving problem (QLCP).

A conic approximation algorithm (CAA) for solving problem (QLCP).

Initialization: Select 0 < θ < 1 and ε > 0. Solve (1) and (2) to find the sensitive box
T = [u, v]. If there exists a k such that uk = vk , then reconstruct a new problem
and go back to Initialization. Otherwise, use (3) to create the ellipsoid HT . Set

δε = 2ε√
(
∑n

i, j=1 v|Qi j | + ∑n
i=1 | fi |)2 + 2ε

∑n
i, j=1 |Qi j | + (

∑n
i, j=1 v|Qi j | + ∑n

i=1 | fi |)
.

(Reasons will be discussed in Remark 3.) Let lb = −∞ be the lower bound and
up = +∞ be the upper bound. Set the iteration number I ter = 1.

Step1: Solve problem (QLCP-Relax) to obtain the optimal value VQLCP−Relax and
optimal solution Y ∗ according to Theorem 9. Let lb = max{lb, VQLCP−Relax}.
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Decompose

Y ∗ =
m∑
i=1

ri∑
j=1

ξi j

[
1
xi j

] [
1
xi j

]T

according to Theorem 7. If there exists an xi j , i ∈ {1, 2, . . . ,m}, j ∈ {1, . . . , ri }
satisfying xi j ∈ FLCP and 1

2 (x
i j )T Qxi j + f T xi j + c ≤ lb, then it is an optimal

solution of problem (QLCP), stop. Otherwise, find the sensitive point z∗ and the
sensitive box Tt . If the longest edge of the sensitive box is shorter than 2δε√

n
, then

z∗ is an ε−optimal solution, stop. Else, reset

ub = min

[
ub,min

{
1

2
(xi j )T Qxi j + f T xi j + c

∣∣∣xi j ∈ FLCP, i = 1, . . . ,m, j

= 1, . . . , ri }] .

Step2: Construct a new box T according to (4–7) and construct a new outer approx-
imation G using T . Set I ter = I ter + 1, go to Step 1.

We now provide a convergency proof of the proposed algorithm.

Theorem 10 Assume that FLCP 
= ∅ and the set {x ∈ R
n|x ≥ 0, Ax + b ≥ 0} is

bounded. For any given ε > 0, the proposed conic approximation algorithm either
returns an optimal solution to problem (QLCP) or there exists an integer Nε > 0 such
that |VQLCP-Relax − VQLCP| ≤ ε at the Nε-th iteration.

Proof Notice that the objective function of problem (QLCP) is continuous. If a set
F is bounded and closed, then for any given ε > 0, there exists a δε > 0 such that
| 12 xT Qx + f T x + c − ( 12 y

T Qy + f T y + c)| < ε for any x ∈ F , y ∈ F and
‖x − y‖∞ < δε.

From the description of the proposed algorithm, there exists an integer Nε > 0,
a sensitive point z∗ and a feasible point z0 in the sensitive box Tt such that after Nε

iterations, the length of the longest edge of the sensitive box Tt is shorter than
2δε

√
θ√

n
.

Following the structure of HTt , the length of its j-th axis of HTt is equal to
√
n

2
√

θ

times the length of its corresponding j-th edge of Tt . Then ‖z∗ − z0‖∞ ≤ δε and
|VQLCP-Relax − VQLCP| ≤ | 12 (z∗)T Qz∗ + f T z∗ + c− ( 12 (z

0)T Qz0 + f T z0 + c)| ≤ ε.
�


This convergency proof actually claims that under the stated assumptions, the pro-
posed conic approximation algorithm either finds an optimal solution to the problem
(QLCP) or eventually provides an ε-optimal solution of problem (QLCP).

Remark 3 Suppose the initial box is [u, v]. From the partition, we know that, at each
iteration, we split the sensitive box in half along the direction perpendicular to the
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longest edge to achieve two new boxes. Therefore, after taking at most

Nε =
( √

n

2δε

√
θ

)n


n
i=1(vi − ui )

iterations, the length of the longest edge of the sensitive box Tt is smaller than 2δε

√
θ√

n
.

For any given ε > 0, we may calculate δε as follows. If x ∈ R
n , u ≤ y ≤ v and

‖x − y‖∞ ≤ δε, we have maxni=1(xi + yi ) ≤ 2v + δε and

∣∣∣∣
1

2
xT Qx + f T x + c −

(
1

2
yT Qy + f T y + c

)∣∣∣∣

≤
∣∣∣∣
1

2
xT Qx − 1

2
xT Qy + 1

2
xT Qy − 1

2
yT Qy

∣∣∣∣ + | f T (x − y)|

≤
n∑

i, j=1

1

2
|Qi j ||xi + yi ||x j − y j | +

n∑
i=1

| fi ||xi − yi |

≤ 1

2

⎛
⎝

n∑
i, j=1

|Qi j |δε(2v + δε) + 2
n∑

i=1

| fi |δε

⎞
⎠

Then δε can be taken as 2ε√
(
∑n

i, j=1 v|Qi j |+∑n
i=1 | fi |)2+2ε

∑n
i, j=1 |Qi j |+(

∑n
i, j=1 v|Qi j |+∑n

i=1 | fi |)
such that 12 (

∑n
i, j=1 |Qi j |δε(2v+δε)+2

∑n
i=1 | fi |δε) ≤ ε. Consequently, in the worst

case, we need to take

Nε

=
⎛
⎝

√
n(

√
(
∑n

i, j=1 v|Qi j | + ∑n
i=1 | fi |)2 + 2ε

∑n
i, j=1 |Qi j | + (

∑n
i, j=1 v|Qi j | + ∑n

i=1 | fi |))
4ε

√
θ

⎞
⎠

n

× 
n
i=1(vi − ui )

iterations.

3.1 Binary quadratic programming problems

The binary quadratic programming (BQP) problem is a special quadratic program
with linear complementarity constraints. In this subsection, we show a customized
partition for this problem.

Consider the following binary quadratic programming problem:

VBQP = min
1

2
xT Qx + f T x + c (BQP)

s.t. x ∈ {0, 1}n,
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which can be rewritten as

min
1

2
xT Qx + f T x + c

s.t. x ≥ 0,

− Inx + 1n ≥ 0,

xT (−Inx + 1n) = 0,

where 1n = [
1 · · · 1]Tn . Since −In ≺ 0, the assumptions of Theorems 3 and 4 are

satisfied. Then the semidefinite relaxation for problem (BQP) can be solved using an
interior-point algorithm.

It is obvious that the initial box can be taken as [0, 1]n . Assuming T ∗ = [u, v] is
the sensitive box and z∗ is the sensitive point, we can provide a specific partition here.

Given 0 < ρ ≤ 1, 0 < θ < 1 and δ > 0, there are two cases. Here ρ is used to
speed up the convergence. Based on our numerical experiments, ρ can be chosen as
0.2. Moreover, δ is decided by the precision level.
Case 1. z∗ ∈ [0, 1]n .

(1) If z∗ ∈ T ∗, we define id = argmax1≤i≤n{min(z∗i − ui , vi − z∗i )}. Then

wid = 2ρ min(|z∗id − uid |, |z∗id − vid |)√
n√
θ

+ 1
.

We have T ∗
1 = {x |x ∈ T ∗, uid + wid ≥ xid ≥ uid} and T ∗

2 = {x |x ∈ T ∗, vid ≥
xid ≥ vid − wid}.

(2) If z∗ /∈ T ∗, we define id = argmax1≤i≤n{max(ui − z∗i , z∗i − vi )}. Then

wid = 2ρ max(|z∗id − uid |, |z∗id − vid |)√
n√
θ

+ 1
.

When z∗id − vid > 0, we have T ∗
1 = {x |x ∈ T ∗, uid + wid ≥ xid ≥ uid}. Otherwise,

we have T ∗
1 = {x |x ∈ T ∗, vid ≥ xid ≥ vid − wid}.

Case 2. z∗ /∈ [0, 1]n .
Define l = argmax1≤i≤n{max(−z∗i , z∗i − 1)}.
(1) If vl − ul < δ, then

id = arg max
1≤i≤n

{min(z∗i − ui , vi − z∗i )}.

If min(z∗id − uid , vid − z∗id) ≤ 0, stop partitioning, z∗ is the approximate optimal

solution.Otherwise,wid = 2ρ min(|z∗id−uid |,|z∗id−vid |)√
n√
θ
+1

. In this case,we have T ∗
1 = {x |x ∈

T ∗, uid + wid ≥ xid ≥ uid} and T ∗
2 = {x |x ∈ T ∗, vid ≥ xid ≥ vid − wid}.

(2) If vl − ul ≥ δ, let id = l and wid = 2ρ max(z∗id−vid ,uid−z∗id )√
n√
θ
−1

. If z∗id − 1 > 0

and uid > δ, then we have T ∗
1 = {x |x ∈ T ∗, vid ≥ xid ≥ vid − wid}. Otherwise,
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if z∗id < 0 and vid < 1 − δ, we have T ∗
1 = {x |x ∈ T ∗, uid + wid ≥ xid ≥ uid}.

If z∗id ≥ 0, we have T ∗
1 = {x |x ∈ T ∗, vid ≥ xid ≥ vid − wid} and T ∗

2 = {x |x ∈
T ∗, uid + wid ≥ xid ≥ uid}.

It is easy to see that when 0 < θ < 1, the outer approximation for the feasible set
of problem (BQP) contains an interior point and this partition for problem (BQP) is
more effective than (4–7) for general quadratic programs with linear complementarity
constraints.

Remark 4 Actually, our conic approximation algorithm can also be applied to (BQP)
with several linear constraints. For such case, we only need to add some linear matrix
inequalities to the corresponding conic relaxation problem and the rest of the process
is similar to solving (BQP).

3.2 Quadratic programs with convex quadratic constraints and linear
complementarity constraints

Consider the following quadratic programwith convex quadratic constraints and linear
complementarity constraints:

min
1

2
xT Q0x + f T0 x + c0

s.t.
1

2
xT Qi x + f Ti x + ci ≤ 0, i = 1, . . . , s,

x ≥ 0,

Ax + b ≥ 0,

xT (Ax + b) = 0.

where Qi ∈ S
n+, i = 1, . . . , s.

This problem is an extension of problem (QLCP) that can be solved by the proposed
conic approximation algorithm with some modifications.

First, we notice that there exists a matrix Di such that Qi = Di DT
i for each

i = 1, 2, . . . s. Assume that {x ∈ R
n| 12 xT Qi x + f Ti x + ci ≤ 0, i = 1, . . . , s, x ≥

0, Ax + b ≥ 0} is a bounded set. The method to find an initial box T = [u, v] is
similar to what we did for problem (QLCP). Consider the following problems:

u j = min x j

s.t.

∥∥∥∥∥

[
DT
i x

f Ti x+ci+2
2

]∥∥∥∥∥
2

≤ − f Ti x − ci + 2

2
, i = 1, . . . , s,

x ≥ 0,

Ax + b ≥ 0,
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and

v j = max x j

s.t.

∥∥∥∥∥

[
DT
i x

f Ti x+ci+2
2

]∥∥∥∥∥
2

≤ − f Ti x − ci + 2

2
, i = 1, . . . , s,

x ≥ 0,

Ax + b ≥ 0,

for j = 1, . . . , n and x j represents the j-th element of variable x ∈ R
n . Note that the

above two convex programs can be effectively solved.
Similar outer approximation and partition processes of problem (QLCP) can also

be extended to design a conic approximation algorithm for solving this problem.

4 Numerical examples

In this section, five numerical examples are provided to illustrate the proposed algo-
rithm. All experiments are conducted using MATLAB 2012 on a PC with Intel Core 2
CPU of 2.26 Ghz and 3G memory to show its effectiveness. All convex programming
problems are solved using a MATLAB software package CVX[17]. In the following
examples, we choose θ = 0.95 and ρ = 0.2.

Example 1 Consider the following problem:

min − x21 − 72x1x2 + 14x22 + 53x1 − 28x2
s.t. x2 ≥ x1 ≥ 0,

x1 + x2 ≤ 1,

xT
([−1 1

−1 −1

]
x +

[
0
1

])
= 0.

The objective function is non-convex. Obviously, the feasible solutions are (0, 0)T ,
(0, 1)T and (0.5, 0.5)T , the optimal solution is (0, 1)T and optimal value is −14.
Using the proposed conic approximation algorithm, after 12 iterations, we can obtain
an approximate optimal solution (0.0001, 1.0000)T with an approximate optimal value
−14.0014. The CPU time is 5.4741 s.

Example 2 Consider the problem with n = 3,

Q =
⎡
⎣

18 −1 −1
−1 −7 5
−1 5 19

⎤
⎦ , f = (−9, 6,−3)T , c = 0.

123



116 J. Zhou et al.

A and b are obtained from [15] such that

A =
⎡
⎣

0 −1 2
2 0 −2

−1 1 0

⎤
⎦ , b = (−3, 6,−1)T .

A linear constraint x ≤ (0, 10, 10)T is also added.
By solving problems (1) and (2), we have u = (0, 1, 2)T , v = (0, 3, 3)T and

T = [u, v]. Since u1 = v1 = 0, we know x1 = 0. Using Remark 1, a new 2-dimension
quadratic programwith linear complementarity constraints can be obtained. Using the
proposed conic approximation algorithm, we obtain an approximate optimal solution
(0, 1, 3)T with an approximation optimal value 93.9998 in 12 iterations. The CPU
time is 6.0506 s.

Example 3 Consider an example from [11]. This example dose not completely fit the
form of problem (QLCP), but it still can be solved by the proposed algorithm.

min
1

2
(y − yd)

T H(y − yd) + α

2
(u − ud)

T M(u − ud)

s.t. Nu − Ay ≥ 0,

Nu − Ay − Dy ≥ 0,

(Nu − Ay)T (Nu − Ay − Dy) = 0,

Bu ≤ b.

where variables y ∈ R
2 and u ∈ R, M = α = b = 1, H = D =

[
1 0
0 1

]
, B = 1,

A =
[
2 −1

−1 2

]
and N =

[
3

−1

]
. The objective function is convex.

(1) When yd = (0, 1)T and ud = 1, using the proposed conic approximation algo-
rithm, we obtain an approximate optimal solution (0.5, 0, 0.5)T with an optimal
value 0.7500 in 1 iteration. The CPU time is 0.1623 s.

(2) When yd = (0,−3)T and ud = 1, using the proposed conic approximation algo-
rithm, we obtain an approximate optimal solution (0.4832,−0.0085, 0.4860)T

with an optimal value 4.7233 in 79 iterations. The CPU time is 48.3613 s.
(3) When yd = (0, 1)T and ud = 0, using the proposed conic approximation algo-

rithm, we obtain an approximate optimal solution (0.0010,−0.0000, 0.0010)T

with an optimal value 0.5000 in 1 iteration. The CPU time is 0.1561 s.
(4) When yd = (0,− 1

3 )
T and ud = 0, using the proposed conic approximation algo-

rithm,weobtain an approximate optimal solution (−0.0475,−0.0095,−0.0285)T

with an optimal value 0.0540 in 149 iterations. The CPU time is 83.5579 s.

Example 4 Consider the following example whose objective function and constraints
are the same as those in Example 1 except that there is one more convex quadratic
constraint:
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Table 1 Beasley instances [4] in Biq Mac Library [36]

Problem CAA QCR Q-MIST

� iterations CPU (s) � iterations CPU (s) � iterations CPU (s)

bqp50_1 9 99.14 4,955 107.80 264 33.22

bqp50_2 11 53.45 840 19.63 159 40.62

bqp50_3 4 10.95 18 1.01 5 0.84

bqp50_4 5 20.40 222 4.93 28 4.12

bqp50_5 5 20.12 160 3.51 16 2.61

bqp50_6 6 30.83 42 0.98 10 1.62

bqp50_7 7 22.63 471 10.10 39 5.67

bqp50_8 11 54.86 246 5.31 30 4.38

bqp50_9 43 330.71 2211 46.57 95 13.44

bqp50_10 18 156.72 6711 139.43 337 43.67

bqp100_1 37 816.91 – – 5875 2775.90

bqp100_2 13 193.21 – – 11,824 5432.40

bqp100_3 33 932.01 124,372 3234.60 1082 602.79

bqp100_4 18 469.72 199,999 8074.80 1507 1131.60

bqp100_5 48 1302.80 – – 1775 871.37

bqp100_6 73 1793.40 – – 19,017 8435.30

bqp100_7 103 2892.60 – – 22,899 10,526.00

bqp100_8 22 572.10 – – 3638 1740.80

bqp100_9 13 301.59 13,649 363.28 255 139.47

bqp100_10 14 262.09 151,021 3804.20 2322 1112.50

min − x21 − 72x1x2 + 14x22 + 53x1 − 28x2
s.t. x2 ≥ x1 ≥ 0,

x1 + x2 ≤ 1,

xT
([−1 1

−1 −1

]
x +

[
0
1

])
= 0,

xT x ≤ 3/5.

The optimal solution is (0.5, 0.5)T and the optimal value is −2.25. We solve the
problem using the proposed conic approximation algorithm. After taking 20 iterations,
we can obtain an approximate optimal solution (0.5002, 0.5002)T with an optimal
value −2.2567. The CPU time is 13.7047 s.

Example 5 BQP and MAX-CUT problems. As stated in Sect. 3.1, BQP and MAX-
CUTare binary quadratic programming problemswhich can be formulated as (QLCP).
These problems are in general NP-hard and are usually used for efficiency test. We
choose some BQP and MAX-CUT benchmarks in Biq Mac Library [36] to test the
proposed conic approximation algorithm (CAA) through comparisonwith two existing
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Table 2 Billionnet and Elloumi instances [6] in Biq Mac Library [36]

Problem CAA QCR Q-MIST

� iterations CPU (s) � iterations CPU (s) � iterations CPU (s)

be100.1 25 702.53 199,999 6,220.00 2380 1167.40

be100.2 33 805.04 – – 4440 2146.10

be100.3 24 580.70 – – 3125 1497.60

be100.4 24 539.50 – – 4200 1999.20

be100.5 56 1339.10 – – 13,286 6007.80

be100.6 32 742.88 – – 4444 2085.70

be100.7 43 1106.70 – – 12,199 5488.60

be100.8 182 4634.20 – – 53,152 23,159.00

be100.9 19 485.95 – – 14,288 6390.30

be100.10 79 2002.00 – – 16,981 7713.20

be120.3.1 31 831.42 – – 111,751 74,005.00

be120.3.2 24 726.26 – – 13,099 9355.40

be120.3.3 21 529.37 – – 23,197 16,193.00

be120.8.1 223 7334.30 – – – –

be120.8.2 252 9223.50 – – 108,423 70,579.00

be120.8.3 42 1273.20 – – 69,944 46,697.00

algorithms - QCR and Q-MIST, where QCR represents a branch-and-bound method
of [26] with lower bounds provided by the semidefinite relaxation proposed in [6] and
Q-MIST is an abbreviation of the “Algorithm Q-MIST” in [7].

WhenCAA is applied to solve BQP, wemay obtain an upper bound in each iteration
by setting

xi =
{
1, z∗i > 1/2

0, z∗i ≤ 1/2, for i = 1, 2, . . . , n,
(9)

as a feasible solution, where z∗i is the sensitive point obtained in Step 1 of CAA. For
BQP problems, our testing instances include those Beasley [4] instances in Biq Mac
Library [36], Billionnet and Elloumi [6] instances in Biq Mac Library [36], and some
randomly generated instances. Each randomly generated BQP instance has an n × n
real symmetric matrix Q with Qi j = Q ji being uniformly distributed over [−50, 50],
and f ∈ R

n with fi being uniformly distributed over [−100, 100]. The problem size n
(number of discrete variables) goes from 10 to 120 with 20 instances being generated
for each n. For MAX-CUT problems, testing instances are generated using rudy [30]
shown in Biq Mac Library [36].

In the numerical experiments, each algorithm is terminated when the relative error
(
|upperbound−lowerbound|

|lowerbound| ) is less than 0.1% or the iterations becomes greater than a
maximum number, which is set to be 1000 for CAA and 200,000 for both“QCR” and
“Q-MIST”. The computational results are reported in Tables 1, 2, 3 and 4, in which the
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Table 4 MAX-CUT instances generated using rudy [30] in Biq Mac Library [36]

Problem CAA QCR Q-MIST

� iterations CPU (s) � iterations CPU (s) � iterations CPU (s)

g05_60.1 43 730.13 – – 1671 500.25

g05_60.2 14 139.96 – – 4464 728.58

g05_60.3 26 429.91 32,579 788.84 924 193.26

g05_80.1 74 1871.20 – – 2872 868.61

g05_80.2 78 1854.90 – – 25,199 6233.80

g05_80.3 276 6715.40 – – – –

g05_100.1 808 34, 311.00 – – – –

g05_100.2 6 161.37 – – 199,801 86,037.00

g05_100.3 981 28, 250.00 – – –

symbol “-” means the instance cannot be solved within the given maximum iterations
and “�” indicates the actual number of iterations in Tables 1, 2, 4 and “the average
number of 20 instances” in Table 3.

Some observations can be made from Tables 1, 2, 3 and 4:

1. In general, QCR is less effective than the proposed CAA and Q-MIST in solving
BQP and MAX-CUT problems in our experiment, in particular, for large size
problems.

2. For BQP problems, Table 2 shows that the proposed CAA clearly outperfoms
Q-MIST for Billionnet and Elloumi instances [6] in Biq Mac Library [36], in
particular, CAA runs orders faster than Q-MIST when n = 120. Table 1 shows
that, for Beasley instances [4] in BiqMac Library [36], Q-MIST outperforms CAA
when n = 50, but the situation reverts when n grows to 100. The same performance
is further evidenced inTable 3 for those randomly generated instanceswith n > 90.
Therefore, the proposed CAA is the most effective one for solving large-size BQP
problems.

3. For MAX-CUT problems, Table 4 again shows that the proposed CAA clearly
outperfoms Q-MIST in almost all of the instances, in particular, CAA runs orders
faster than Q-MIST when n > 80.

4. The overall performance of the proposed CAA is the dominating one. CAA’s
strategy of spending more computation time in each iteration for a tighter bound
to reduce the total number of iterations works very well, in particular, for large-size
problems.

5 Conclusion

In this paper, we have studied a quadratic program with linear complementarity con-
straints, its conic reformulation and conic dual problems.We have shown that when the
feasible domain is nonempty and bounded, the conic reformulation problem becomes
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attainable. Since the conic reformulation problem is in general NP-hard, conic relax-
ations are further considered. Under the assumption that there exists a vector x ∈ R

n

satisfying x > 0 and Ax + b > 0, we can further show that if A+AT

2 ≺ 0, then both
of the semidefinite relaxation and its dual for problem (QLCP) are strictly feasible.
In this case, a primal-dual interior point approach becomes applicable for providing a
lower bound in polynomial time. For more general cases, an adaptive conic approx-
imation algorithm has been proposed with a convergence proof to find an optimal
solution or an ε-optimal solution to a quadratic optimization problem with bounded
linear complementarity constraints. Numerical experiments supports the effectivess
of the proposed conic approximation algorithm for large-size problems.
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