
Comput Optim Appl (2016) 65:723–751
DOI 10.1007/s10589-016-9845-x

Algebraic rules for computing the regularization
parameter of the Levenberg–Marquardt method

Elizabeth W. Karas1 · Sandra A. Santos2 ·
Benar F. Svaiter3

Received: 18 May 2015 / Published online: 25 April 2016
© Springer Science+Business Media New York 2016

Abstract This paper presents a class ofLevenberg–Marquardtmethods for solving the
nonlinear least-squares problem. Explicit algebraic rules for computing the regulariza-
tion parameter are devised. In addition, convergence properties of this class ofmethods
are analyzed. We prove that all accumulation points of the generated sequence are sta-
tionary. Moreover, q-quadratic convergence for the zero-residual problem is obtained
under an error bound condition. Illustrative numerical experiments with encouraging
results are presented.
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1 Introduction

Given F : Rn → R
m , the nonlinear least-squares (NLS) problem is as follows:

min
x∈Rn

‖F(x)‖2,
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where ‖·‖ is the Euclidean norm. This problem is important fromboth a theoretical and
practical viewpoint [3,18]. The seminal works of Levenberg [12], Morrison [15], and
Marquardt [13] provided a regularization strategy for improving the convergence of
the Gauss–Newton (GN) method. The latter is the first and simplest method to address
the NLS problem. In the GN method, the nonlinear residual function F is replaced
by its linear approximation at the current iterate, so that the NLS problem is solved
by means of a sequence of quadratic problems, without any additional parameter. In
the Levenberg–Marquardt (LM) method, a sequence of quadratic problems is also
generated, and a regularization term is introduced that essentially depends on the
so-called LM parameter.

For very large problems, as those arising in data assimilation, it may be necessary
to make further approximations in the GN method in order to reduce computational
costs. Gratton et al. [10] point out conditions that ensure the convergence of trun-
cated and perturbed GN methods, deriving rates of convergence for the iterations.
Inexact versions of the LM method have also been considered under an error bound
condition. Such a condition is weaker than assuming nonsingularity of the appro-
priate matrix at a solution, namely the Jacobian J F ∈ R

m×n if m = n or the
square matrix J FT J F , otherwise [2,8]. The local convergence of the LM method
has been studied also under an error bound condition. Yamashita and Fukushima
[17] proved q-quadratic convergence for the LM method with the LM parameter
sequence set as μk = ‖F(xk)‖2. Later, this q-quadratic rate was extended by Fan
and Yuan [6] for the setting μk = ‖F(xk)‖δ , with δ ∈ [1, 2]. Fan and Pan [5] have
enlarged upon the analysis for the variation of the exponent for δ ∈ (0, 1) within the
aforementioned update of the LM parameter, showing local superlinear convergence.
Accelerated versions of the LM method have been proposed recently by Fan [4], in
which cubic local convergence was reached. When it comes to complexity analysis,
Ueda and Yamashita [16] have investigated a global complexity bound for the LM
method.

In this work we have devised algebraic rules for computing the LM parameter, so
that μk belongs to an interval that is proportional to ‖F(xk)‖. Under the Lipschitz
continuity of the Jacobian, the rules were generated in order to accept the full LM
step by the Armijo sufficient decrease condition. On the one hand, under the avail-
ability of the Lipschitz constant, we have proved that the full steps are acceptable.
On the other hand, for unknown Lipschitz constants, we have proposed a scheme
for dynamically updating an estimate of such a constant within a well defined and
globally convergent algorithm for solving the NLS problem. The q-quadratic rate of
convergence for the zero-residual problem is obtained under an error bound condition.
Numerical results illustrate the performance of the proposed algorithm for a set of test
problems from the CUTEst, with promising results in terms of both efficiency and
robustness.

The text is organized as follows. The basic results that have generated the proposed
algorithm are presented in Sect. 2. The algorithm and its underlying properties are
given in Sect. 3. The global convergence analysis is provided in Sect. 4, whereas
the local convergence result is developed in Sect. 5. The numerical experiments are
presented and examined in Sect. 6. A summary of the work is given in Sect. 7 and the
tables with the complete numerical results compose the Appendix.
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2 Technical results

We consider F : R
n → R

m of class C1 with an L-Lipschitz continuous Jacobian
J F ∈ R

m×n , that is, for all x, y ∈ R
n ,

‖J F(x) − J F(y)‖ ≤ L‖x − y‖. (1)

On the left hand-side of the inequality above we have the operator norm induced by the
canonical norms in R

n and R
m . More specifically, we are concerned about choosing

the regularization parameter μ in the Levenberg–Marquardt method,

s = −(
J F(x)T J F(x) + μI

)−1
J F(x)T F(x), x+ = x + ts, 0 < t ≤ 1

where x+ is the new iterate and t is the step length.
Initially, a classical result is recalled [3, Lemma 4.1.12].

Lemma 2.1 (Linearization error) For any x, s in Rn,

‖F(x + s) − (F(x) + J F(x)s)‖ ≤ L

2
‖s‖2.

From now on, in this section, s is the Levenberg–Marquardt step at x ∈ R
n , with

regularization parameter μ>0, that is,

s = argmin‖F(x)+ J F(x)s‖2+μ‖s‖2 =−(
J F(x)T J F(x)+μI

)−1
J F(x)T F(x).

(2)

Let φ : R → R be
φ(t) = ‖F(x + ts)‖2. (3)

Note that

φ′(0) = 2〈F(x), J F(x)s〉
= −2〈J F(x)T F(x),

(
J F(x)T J F(x) + μI

)−1
J F(x)T F(x)〉 ≤ 0. (4)

First we analyze the norm of the linearization of F along the direction s.

Lemma 2.2 (Linearization’s norm) For any t ∈ [0, 1],

‖F(x) + t J F(x)s‖2 = ‖F(x)‖2 + t〈J F(x)T F(x), s〉 + (
t2 − t

)‖J F(x)s‖2
−tμ‖s‖2 ≤ ‖F(x)‖2.

Proof

‖F(x) + t J F(x)s‖2 = ‖F(x)‖2 + 2t〈J F(x)T F(x), s〉 + t2‖J F(x)s‖2
= ‖F(x)‖2 + t〈F(x), J F(x)s〉
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+ t〈J F(x)T F(x), s〉 + t2‖J F(x)s‖2
= ‖F(x)‖2 + t〈F(x), J F(x)s〉

+ t〈−(J F(x)T J F(x) + μI )s, s〉 + t2‖J F(x)s‖2
= ‖F(x)‖2 + t〈F(x), J F(x)s〉

+ (t2 − t)‖J F(x)s‖2 − tμ‖s‖2.

Using (4) and the fact that t ∈ [0, 1], we conclude the proof. 	


Now we analyze the norm of F along the direction s.

Lemma 2.3 For any t ∈ [0, 1],

‖F(x + ts)‖2 ≤ ‖F(x)‖2 + t〈F(x), J F(x)s〉 + (t2 − t)‖J F(x)s‖2

+ t‖s‖2
[
L2

4
t3‖s‖2 + Lt‖F(x) + t J F(x)s‖ − μ

]

≤ ‖F(x)‖2 + t〈J F(x)T F(x), s〉 + (t2 − t)‖J F(x)s‖2

+ t‖s‖2
[
L2

4
t3‖s‖2 + Lt‖F(x)‖ − μ

]
.

Proof Let

R(t) = F(x + ts) − (F(x) + t J F(x)s).

Since F(x + ts) = F(x) + t J F(x)s + R(t),

‖F(x + ts)‖2 = ‖F(x) + t J F(x)s‖2 + ‖R(t)‖2 + 2〈F(x) + t J F(x)s, R(t)〉
≤ ‖F(x) + t J F(x)s‖2 + ‖R(t)‖2 + 2‖F(x) + t J F(x)s‖‖R(t)‖
≤ ‖F(x) + t J F(x)s‖2 + ‖R(t)‖2 + 2‖F(x)‖‖R(t)‖

where the first inequality follows from Cauchy–Schwarz inequality and the second
one from Lemma 2.2. From the definition of R(t) and the assumption of J F being
L-Lipschitz continuous, we have that ‖R(t)‖ ≤ Lt2‖s‖2/2. Therefore,

‖F(x + ts)‖2 ≤ ‖F(x) + t J F(x)s‖2 + L2

4
t4‖s‖4 + Lt2‖F(x)‖‖s‖2.

To end the proof, use Lemma 2.2 again. 	


In view of Lemma 2.3 we need a bound for ‖s‖ in order to choose, at a non-
stationary point, a regularization parameterμ. The next technical lemmawill be useful
for obtaining such a bound.
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Lemma 2.4 For any A ∈ R
m×n, b ∈ R

m and μ>0

∥∥(AT A + μI
)−1

AT b
∥∥ ≤ 1

2
√

μ
‖PR(A)b‖,

where R(A) is the range of A and PR(A) is the orthogonal projection onto this sub-
space.

Proof Let b′ = PR(A)b and s = (AT A + μI )−1AT b. Observe that

(
AT A + μI

)
s = AT b′. (5)

We will use an SVD of A. There exist U and V unitary matrices m × m and n × n,
respectively, such that

UT AV = D, di, j =
{

σi , i = j

0, otherwise,

where σi ≥ 0 for all i = 1, . . . ,min{m, n}. Note that V T = V−1, UT = U−1 and

V T AT AV = (UT AV )TUT AV = DT D.

Therefore, pre-multiplying both sides of (5) by V T and using the substitutions

s̃ = V T s, b̃ = UT b′

in (5) we conclude that

DT b̃ = V T (AT A + μI
)
V s̃ = (

DT D + μI
)
s̃.

It follows from this equation that if n ≤ m then

s̃i = σi

σ 2
i + μ

b̃i , i = 1, . . . , n;

while if n>m then

s̃i =
⎧
⎨

⎩

σi

σ 2
i + μ

b̃i , 1 ≤ i ≤ m

0, m < i ≤ n.

Since t/(t2 + μ) ≤ 1/(2
√

μ) for μ>0 and t ≥ 0, we have

‖s̃‖ ≤ 1

2
√

μ
‖b̃‖.

To end the proof, note that ‖s̃‖ = ‖s‖ and ‖b̃‖ = ‖b′‖. 	
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In the following result, the main ingredients for the devised algebraic rules are
established.

Theorem 2.5 For any μ>0,

‖s‖ ≤ 1

2
√

μ
‖P(F(x))‖ ≤ 1

2
√

μ
‖F(x)‖

where P is the orthogonal projection onto the range of J F(x). Moreover, if

μ ≥ L

4

(
2‖F(x)‖ +

√
4‖F(x)‖2 + ‖P(F(x))‖2

)
, (6)

then

‖F(x + s)‖2 ≤‖F(x)‖2 + 〈F(x), J F(x)s〉.

Proof The first part of the theorem, which are the bounds for ‖s‖, follows from (2),
Lemma 2.4 and the metric properties of the orthogonal projection. Combining the first
part of the theorem with Lemma 2.3, we conclude that

‖F(x + s)‖2 ≤‖F(x)‖2 + 〈F(x), J F(x)s〉

+ ‖s‖2
μ

[
L2

16
‖P(F(x))‖2 + L‖F(x)‖μ − μ2

]
.

To end the proof, note that the right hand-side of inequality (6) is the largest root of

the concave quadratic μ 
→ L2

16
‖P(F(x))‖2 + L‖F(x)‖μ − μ2. 	


Remark 2.6 In view of Theorem 2.5, possible choices for μ at a point x are

μ = L

4

(
2‖F(x)‖ +

√
4‖F(x)‖2 + ‖P(F(x))‖2

)
, (7)

or

μ = L

4
(4‖F(x)‖ + ‖P(F(x))‖), (8)

or

μ = 2 + √
5

4
L‖F(x)‖. (9)

The first value is the smallest one and the first two values require the computation of
‖P(F(x))‖, although an upper bound for such a norm can also be used.
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3 The algorithm

Nowwe propose and analyze the Levenberg–Marquard algorithmwith algebraic rules
for computing the regularization parameter.

Algorithm 1.
Input : x0 ∈ R

n , β ∈ (0, 1), η ∈ [0, 1), L0 > 0 and δ ≥ 0 with L0 ≥ δ.

1. k ← 0

2. while J F(xk )
T F(xk ) �= 0 do

3. Set Fk = F(xk ), Jk = J F(xk )

4. Choose μk ∈ [μ−
k , μ+

k ] where Pk is the projection onto the range of Jk ,

μ−
k = Lk

4
(2‖Fk‖ +

√
4‖Fk‖2 + ‖Pk (Fk )‖2), μ+

k = 2 + √
5

4
Lk‖Fk‖

5. Compute sk = −(J Tk Jk + μk I )
−1 J Tk Fk

6. t ← 1

7. while ‖F(xk + tsk )‖2 > ‖Fk‖2 + βt〈sk , J Tk Fk 〉 do
8. t ← t/2
9. end while

10. tk = t
11. xk+1 = xk + tk sk

12. if tk < 1 then
13. Lk+1 = 2Lk
14. else
15. Ared = ‖Fk‖2 − ‖F(xk+1)‖2
16. Pred = ‖Fk‖2 − ‖Fk + Jksk‖2 − μk‖sk‖2 = −〈sk , J Tk Fk 〉
17. if Ared > η Pred then
18. Lk+1 = max{Lk/2, δ}
19. else
20. Lk+1 = Lk
21. end if
22. end if

23. k ← k + 1
24. end while

Concerning Algorithm 1, it is worth noticing that

(i) Iteration �beginswith k = �−1, and endswith k = � if J F(x�−1)
T F(x�−1) �= 0.

(ii) If the algorithm does not end at iteration k + 1, then μk>0, sk is well defined
and it is a descent direction for ‖F(·)‖2. Therefore, the Armijo line search in
Step 6–10 of Algorithm 1 has finite termination. Altogether, Algorithm 1 is well
defined and either it terminates after � steps with J F(x�−1)

T F(x�−1) = 0, or it
generates infinite sequences (xk), (sk), (tk), (μk), (Lk).

(iii) Lk plays the role of the Lipschitz constant of J F . If δ>0, this parameter also
plays the role of a safeguard which prevents Lk from becoming too small.

From now on, we assume that Algorithm 1 with input x0 ∈ R
n , β ∈ (0, 1),

η ∈ [0, 1), L0>0 and δ ≥ 0 does not stop at Step 2 and that (xk), (sk), (tk), (μk), (Lk)

are the (infinite) sequences generated by it.
Next we analyze the basic properties of Algorithm 1.
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Proposition 3.1 If Lk ≥ L, then tk = 1 and Lk+1 = max{Lk/2, δ}.
Proof Suppose that Lk ≥ L . From this assumption and the definition of μk (in Step
4) we have that

μk ≥ L

4

(
2‖F(xk)‖ +

√
4‖F(xk)‖2 + ‖P(F(xk))‖2

)
,

where P is the orthogonal projection onto the range of J F(xk). The first equality of
the proposition follows from the above inequality; the definition of sk (in Step 5);
Theorem 2.5 with μ = μk , x = xk , s = sk ; and Steps 6–10. The second equality
comes from the first one and Steps 12–22. 	

Proposition 3.2 For all k,

δ ≤ Lk ≤ max{L0, 2L}; (10)

and, for infinitely many k, tk = 1.

Proof Since L0 ≥ δ and Lk+1 ≥ max{Lk/2, δ} for all k, the first inequality in (10)
also holds for all k.

Wewill prove the second inequality by induction in k. This inequality holds trivially
for k = 0. Assume that it holds for some k. Steps 12–22 of the algorithm imply that
if tk = 1, then Lk+1 = Lk or Lk+1 = max{δ, Lk/2} ≤ Lk and in both cases the
inequality holds for k + 1. If tk < 1, it follows from Proposition 3.1 that Lk < L and
then Lk+1 = 2Lk ≤ 2L . So the inequality holds for k + 1 and the induction proof is
complete.

To prove the second part of the proposition, suppose that tk < 1 for any k ≥ k0.
Then

Lk = 2k−k0Lk0 , k = k0, k0 + 1, . . .

in contradiction with (10). 	

From Proposition 3.2 and the Step 4 of the algorithm, we have

δ‖F(xk)‖ ≤ μk ≤ 2 + √
5

4
max{L0, 2L}‖F(xk)‖ (11)

for all k.

Proposition 3.3 For each k

‖F(xk+1)‖2 ≤ ‖F(xk)‖2 + βtk〈J F(xk)
T F(xk), sk〉

≤ ‖F(xk)‖2 − βtk
‖J F(xk)T F(xk)‖2
‖J F(xk)‖2 + μk

. (12)
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As a consequence, the sequence
(‖F(xk)‖2

)
is strictly decreasing and

∞∑

k=0

βtk
‖J F(xk)T F(xk)‖2
‖J F(xk)‖2 + μk

≤ ‖F(x0)‖2.

Proof The first inequality follows from the stopping condition for the Armijo line
search (Steps 6–10). In view of the definition of sk and μk , and the fact that μk>0,

−〈J F(xk)
T F(xk), sk〉 = 〈J F(xk)

T F(xk), (J F(xk)
T J F(xk) + μk I )

−1 J F(xk)
T F(xk)〉

≥ ‖J F(xk)T F(xk)‖2
‖J F(xk)T J F(xk)‖ + μk

,

which trivially implies the second inequality. The last statement of the proposition
follows directly from (12). 	


4 General convergence analysis

The convergence of Algorithm 1 is examined in the following results.

Proposition 4.1 If the sequence (xk) is bounded, then it has a stationary accumulation
point.

Proof By Proposition 3.2, tk = 1 for infinitely many k. Since (xk) is bounded, there
exists a subsequence (xk j ) convergent to some x̄ , such that tk j = 1 for all j . Thus, by
Proposition 3.3,

∞∑

j=1

β
‖J F(xk j )

T F(xk j )‖2
‖J F(xk j )‖2 + μk j

≤ ‖F(x0)‖2.

Moreover, since F and J F are continuous, ‖F(xk)‖, ‖J F(xk)‖ and μk are bounded.
Hence the sequence (J F(xk j )

T F(xk j )) converges to 0. To end the proof, use again
the continuity of F and J F to conclude that J F(x̄)T F(x̄) = 0. 	


From the bound for the norm of F along the direction s, obtained in Lemma 2.3,
we prove next that the step length is bounded away from zero.

Proposition 4.2 If δ>0, then

tk ≥ 8δ2/L2

1 + 16δ/L

for all k.
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Proof For any t ∈ [0, 1] it holds

L2

4
t3‖sk‖2 + Lt‖F(xk)‖ − μk ≤ t

(
L2

4
‖sk‖2 + L‖F(xk)‖

)
− μk

≤ t

(
L2

16μk
‖F(xk)‖2 + L‖F(xk)‖

)
− μk

≤ t

(
L2

16δ
‖F(xk)‖ + L‖F(xk)‖

)
− δ‖F(xk)‖

= δ‖F(xk)‖
[
t

(
L2

16δ2
+ L

δ

)
− 1

]
, (13)

where the first inequality comes from the bound on t , the second from Theorem 2.5
and the third from the fact that μk ≥ δ‖F(xk)‖, as stated in (11).

From inequality (13) and Lemma 2.3, we have that if

0 ≤ t ≤ 1

L2

16δ2
+ L

δ

= 16δ2/L2

1 + 16δ/L
,

then ‖F(xk + tsk)‖2 ≤ ‖F(xk)‖2 + t〈sk, J F(xk)T F(xk)〉. So, the result follows from
Steps 6–10 of Algorithm 1. 	


We now present the global convergence result of Algorithm 1.

Proposition 4.3 If δ>0, then all accumulation points of the sequence (xk) are sta-
tionary for the function ‖F(x)‖2.
Proof Suppose that (xk j ) converges to some x̄ . From Propositions 3.3 and 4.2, we
have that

∞∑

j=1

‖J F(xk j )
T F(xk j )‖2

‖J F(xk j )‖2 + μk j
< ∞.

It follows from (11) and from the continuity of F and J F that ‖J F(xk j )‖2 + μk j is
bounded. Therefore J F(xk j )

T F(xk j ) converges to 0. 	

A complexity result concerning the stationarity measure of the Algorithm 1 is given

next.

Proposition 4.4 If δ>0 and (xk) is bounded, then

min
i=1,...,k

‖J F(xi )
T F(xi )‖ = O

(
1√
k

)
.
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Proof Define

M = sup
k

{

‖J F(xk)‖2 + 2 + √
5

4
max{L0, 2L}‖F(xk)‖

}

.

Then, by (11) and Propositions 3.3 and 4.2, for any k

k
β

M

(
8δ2/L2

1 + 16δ/L

)
min

i=1,...,k
‖J F(xi )

T F(xi )‖2

≤
k∑

i=1

βti
‖J F(xi )T F(xi )‖2
‖J F(xi )‖2 + μi

≤ ‖F(x0)‖2

and the conclusion follows. 	


5 Quadratic convergence under an error bound condition

Given F : Rn → R
m , consider the system

F(x) = 0 (14)

and let X∗ be its solution set, that is,

X∗ = {x ∈ R
n | F(x) = 0} �= ∅. (15)

Our aim is to prove that (xk) converges quadratically near solutions of (14) where,
locally, ‖F(x)‖ provides an error bound for this system, in the sense of [17, Defini-
tion 1]. For completeness, we present this definition in the sequel (see Definition 5.3).

Define, for γ>0, Sγ : Rn \ X∗ → R
n

Sγ (x) = −
(
J F(x)T J F(x) + γ ‖F(x)‖I

)−1

J F(x)T F(x). (16)

Auxiliary bounds are established in the next two results.

Proposition 5.1 If x ∈ R
n \ X∗, γ>0, s = Sγ (x), and x+ = x + s then

‖J F(x+)T F(x+)‖ ≤ (γ + L)‖F(x)‖‖s‖ + L

2
‖J F(x+)‖‖s‖2.

Proof Direct algebraic manipulations yield

J F(x+)T F(x+) = J F(x)T (F(x) + J F(x)s) + (J F(x+)

−J F(x))T (F(x) + J F(x)s)

+J F(x+)T [F(x+) − (F(x) + J F(x)s)].
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It follows from (16) that J F(x)T (F(x) + J F(x)s) = −γ ‖F(x)‖s. Combining this
result with the above equality, and using the triangle inequality, we have

‖J F(x+)T F(x+)‖ ≤ γ ‖F(x)‖‖s‖ + ‖J F(x+) − J F(x)‖‖F(x) + J F(x)s‖
+ ‖J F(x+)‖‖F(x+) − (F(x) + J F(x)s)‖

≤ γ ‖F(x)‖‖s‖ + L‖F(x)‖‖s‖ + L

2
‖J F(x+)‖‖s‖2,

where the last inequality follows from Assumption (1), Lemmas 2.1 and 2.2. 	

Proposition 5.2 If x ∈ R

n \ X∗, x̄ ∈ X∗, γ>0, s = Sγ (x), and s̄ = x̄ − x, then

1. ‖F(x) + J F(x)s̄‖ ≤ L

2
‖s̄‖2;

2. ‖F(x)+ J F(x)s‖2+‖J F(x)(s̄−s)‖2+γ ‖F(x)‖(‖s‖2+‖s̄−s‖2) ≤ L2

4
‖s̄‖4+

γ ‖F(x)‖‖s̄‖2.
Proof Since F(x̄) = 0,

F(x) + J F(x)s̄ = F(x) + J F(x)(x̄ − x) − F(x̄)

and the first inequality follows from this equality and Lemma 2.1.
Define

ψγ,x : Rn → R, ψγ,x (u) = ‖F(x) + J F(x)u‖2 + γ ‖F(x)‖‖u‖2.

From item 1 we have

ψγ,x (s̄) ≤ L2

4
‖s̄‖4 + γ ‖F(x)‖‖s̄‖2.

Observe that s = argminu∈Rnψγ,x (u). Since ψγ,x is a quadratic with Hessian
2(J F(x)T J F(x) + γ ‖F(x)‖I ) and it is minimized by s,

ψγ,x (s̄) = ψγ,x (s) + ‖J F(x)(s̄ − s)‖2 + γ ‖F(x)‖‖s̄ − s‖2
= ‖F(x) + J F(x)s‖2 + ‖J F(x)(s̄ − s)‖2 + γ ‖F(x)‖(‖s‖2 + ‖s̄ − s‖2).

The second inequality of the proposition follows from the two above relations. 	

We will analyze the local convergence of the sequence (xk) under the local error

bound condition, as defined next. Such a condition is weaker than assuming nonsin-
gularity of J F(x)T J F(x) for x at the solution set X∗.

Definition 5.3 ([17,Definition1])LetV be anopen subset ofRn such thatV∩X∗ �= ∅,
where X∗ is as in (15). We say that ‖F(x)‖ provides a local error bound on V for the
system (14) if there exists a positive constant c such that

c dist(x, X∗) ≤ ‖F(x)‖
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for all x ∈ V .

The next lemma, which will be instrumental in the main result of this section, was
proved in [7, Corollary 2]. A proof is provided here for the sake of completeness,
where the function F is simply continuously differentiable.

Lemma 5.4 If F : R
n → R

m is continuously differentiable and ‖F(x)‖ provides
an error bound for (14) in a neighborhood V of x∗ ∈ X∗ as in Definition 5.3, then
‖J F(x)T F(x)‖ also provides an error bound for (14) in some neighborhood of x∗.

Proof Suppose that V ⊂ R
n is a neighborhood of x∗ where ‖F(x)‖ provides an error

bound for (14), that is,

c dist(x, X∗) ≤ ‖F(x)‖ ∀x ∈ V .

Define, for x, y ∈ R
n

R(y, x) = F(y) − (F(x) + J F(x)(y − x)) .

Since F is continuously differentiable, there exists r>0 such that B(x∗, r) ⊆ V and

‖R(y, x)‖ ≤ c‖y − x‖/2 ∀y, x ∈ B(x∗, r).

Take x ∈ B(x∗, r/2) and x̄ ∈ arg min
z∈X∗ ‖z − x‖. Then dist(x, X∗) = ‖x̄ − x‖ < r/2,

x̄ ∈ B(x∗, r) and, in view of the above assumptions,

c ‖x̄ − x‖ ≤ ‖F(x)‖, ‖R(x̄, x)‖ ≤ c‖x̄ − x‖/2. (17)

Since F(x̄) = 0, −J F(x)(x̄ − x) = F(x) + R(x̄, x) and

−〈J F(x)T F(x), x̄ − x〉 = −〈F(x), J F(x)(x̄ − x)〉 = ‖F(x)‖2 + 〈F(x), R(x̄, x)〉.

Using the above equalities, Cauchy-Schwarz inequality and (17) we conclude that

‖J F(x)T F(x)‖‖x̄ − x‖ ≥ ‖F(x)‖(‖F(x)‖ − ‖R(x̄, x)‖)
≥ ‖F(x)‖(c ‖x̄ − x‖ − (c/2)‖x̄ − x‖) ≥ c2‖x̄ − x‖2/2.

Therefore, ‖J F(x)T F(x)‖ ≥ (c2/2) dist(x, X∗) for any x ∈ B(x∗, r/2). 	

From now on, in this section, x∗ ∈ R

n , r, c>0 are such that

F(x∗) = 0, c dist(x, X∗) ≤ ‖F(x)‖ ∀x ∈ B(x∗, r). (18)

Another auxiliary result is provided next.

Lemma 5.5 Consider x∗ ∈ R
n, r, c>0 satisfying (18). If x ∈ B(x∗, r) \ X∗, x̄ ∈

arg min
u∈X∗ ‖u − x‖, γ>0, s = Sγ (x) and s̄ = x̄ − x, then
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1. ‖s̄‖ = dist(x, X∗) ≤ ‖F(x)‖/c;
2. ‖s‖ ≤

(
1 + L2

4cγ
‖s̄‖

)1/2

‖s̄‖;

3. ‖F(x) + J F(x)s‖ ≤
(

L2

4c2γ 2 ‖s̄‖2 + 1

cγ
‖s̄‖

)1/2

γ ‖F(x)‖.

Moreover, if ‖s̄‖ ≤ cγ

2L2 then ‖F(x + s)‖2 ≤ ‖F(x)‖2 + 〈s, J F(x)T F(x)〉.
Proof The first relation in item 1 follows trivially from the definition of x̄ while the
second relation comes from (18).

From item 2 of Proposition 5.2 and item 1 of this lemma, we have that

γ ‖F(x)‖‖s‖2 ≤ L2

4
‖s̄‖4 + γ ‖F(x)‖‖s̄‖2 ≤ L2

4c
‖F(x)‖‖s̄‖3 + γ ‖F(x)‖‖s̄‖2

and

‖F(x) + J F(x)s‖2 ≤ L2

4
‖s̄‖4 + γ ‖F(x)‖‖s̄‖2

≤
(

L2

4c2γ 2 ‖s̄‖2 + 1

cγ
‖s̄‖

)
γ 2‖F(x)‖2,

which trivially imply items 2 and 3, respectively.

To prove the last part of the lemma, suppose that ‖s̄‖ ≤ cγ

2L2 and define

a = L2

4
‖s‖2 + L‖F(x) + J F(x)s‖ − γ ‖F(x)‖, w = L2

cγ
‖s̄‖.

From items 2 and 3, we have

a ≤ L2

4

(
1 + L2

4cγ
‖s̄‖

)
‖s̄‖2 + L

(
L2

4c2γ 2 ‖s̄‖2 + 1

cγ
‖s̄‖

)1/2

γ ‖F(x)‖ − γ ‖F(x)‖

≤
[

L2

4cγ
‖s̄‖

(
1 + L2

4cγ
‖s̄‖

)
+ L

(
L2

4c2γ 2 ‖s̄‖2 + 1

cγ
‖s̄‖

)1/2

− 1

]

γ ‖F(x)‖

=
[
w

4

(
1 + w

4

)
+ w1/2

(
1 + w

4

)1/2 − 1

]
γ ‖F(x)‖,

where the second inequality follows from item 1, and the equality comes from the
definition of w. Observe that since w ≤ 1/2 it follows that a < 0. To end the proof,
use the first inequality in Lemma 2.3 with t = 1 and μ = γ ‖F(x)‖. 	


Note that in Algorithm 1, sk = Sγ (xk) for γ = μk/‖F(xk)‖. In order to simplify
the proofs, define

D = 2 + √
5

4
max{L0, 2L}, γk = μk

‖F(xk)‖ , k ∈ N. (19)
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In view of (11) and the definition of sk in Algorithm 1, for all k ∈ N,

δ ≤ γk ≤ D, sk = Sγk (xk). (20)

Assuming that the residual function F provides an error bound for the solution set
of the NLS zero-residual problem, the local convergence of Algorithm 1 is established
as follows.

Theorem 5.6 Consider x∗ ∈ R
n, r, c>0 satisfying (18). There exists r̃>0 such that if

xk0 ∈ B(x∗, r̃) for some k0, then either Algorithm 1 stops at some xk solution of (14)
or (xk) converges q-quadratically to some x̂ solution of (14).

Proof In view of Lemma 5.4, there exist 0 < r1 ≤ r and c1>0 such that

c1 dist(x, X
∗) ≤ ‖J F(x)T F(x)‖, ∀x ∈ B(x∗, r1). (21)

Define

M1 = max
{‖J F(x)‖ | x ∈ B(x∗, r1)

}
, M2 = 3M1

2
√
2c1

(
D + L

(
1 + 3

4
√
2

))

and

ρ = min

{
c δ

2L2 ,

√
2

3
r1,

1

2M2

}

.

We claim that if

x ∈ B(x∗, ρ) \ X∗, δ ≤ γ ≤ D, s = Sγ (x), x+ = x + s,

x̄ ∈ arg min
u∈X∗ ‖u − x‖, s̄ = x̄ − x, (22)

then

‖s‖ ≤ 3

2
√
2
dist(x, X∗) ≤ 3

2
√
2
ρ, (23)

dist(x+, X∗) ≤ M2 dist(x, X
∗)2 ≤ dist(x, X∗)/2, (24)

‖F(x+)‖2 ≤ ‖F(x)‖2 + 〈s, J F(x)T F(x)〉. (25)

The first inequality in (23) follows from item 2 of Lemma 5.5 and the definitions of
s̄ and ρ. The second inequality comes from the inclusions x∗ ∈ X∗ and x ∈ B(x∗, ρ).

To prove (24) first observe that

‖x+ − x∗‖ ≤ ‖x − x∗‖ + ‖s‖ ≤ ρ + 3

2
√
2
ρ < r1
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which comes from the definition of x+, the triangle inequality, (23) and the definition
of ρ. Consequently, from (21) for x+ and Proposition 5.1,

dist(x+, X∗) ≤ 1

c1
‖J F(x+)T F(x+)‖

≤ 1

c1

(
(γ + L)‖F(x)‖ + L

2
‖J F(x+)‖‖s‖

)
‖s‖.

Since J F is continuous, F(x) = F(x̄) − ∫ 1
0 J F(x̄ − t s̄) s̄ dt . As F(x̄) = 0, we have

‖F(x)‖ ≤
(

max
x∈B(x∗,ρ)

‖J F(x)‖
)

‖s̄‖ ≤ M1‖s̄‖.

Using the two relations displayed above, the bounds for γ in (22), (23), and the
definitions of M1 and M2 we have

dist(x+, X∗) ≤ 3M1

2
√
2c1

(
D + L

(
1 + 3

4
√
2

))
‖s̄‖2 = M2 dist(x, X

∗)2,

which proves the first inequality of (24). The second inequality in (24) comes from
the fact that dist(x, X∗) ≤ ρ and from the definition of ρ.

Our third claim, (25), follows directly from the last result of Lemma 5.5.
Next we define a family of sets on Rn which are, in some sense, well behaved with

respect to Algorithm 1. Define

Wτ =
{

x ∈ R
n

∣∣∣
∣∣
‖x − x∗‖ ≤ 3τ + √

2

3 + √
2

ρ, dist(x, X∗) ≤ (1 − τ)
√
2

3 + √
2

ρ

}

,

W =
⋃

0≤τ<1

Wτ ,

and let

r̃ =
√
2

3 + √
2

ρ.

Since x∗ ∈ X∗, we have W0 = B(x∗, r̃). Hence

B
(
x∗, r̃

) ⊂ W ⊂ B(x∗, ρ) ⊂ B(x∗, r1).

Let xk ∈ W . If J F(xk)T F(xk) = 0 then the algorithm stops at xk and, in view of
(21), F(xk) = 0. Next we analyze the case J F(xk)T F(xk) �= 0. It follows from (20)
and (25) that

xk+1 = xk + Sγk (xk) = xk + sk .
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As xk ∈ W , we have xk ∈ Wτ for some 0 ≤ τ < 1. Therefore, from the triangle
inequality, the definition of Wτ , and (23)

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ + ‖sk‖

≤ 3τ + √
2

3 + √
2

ρ + 3

2
√
2
dist(xk, X

∗)

≤ 3τ + √
2

3 + √
2

ρ + 3

2
√
2

(1 − τ)
√
2

3 + √
2

ρ = 3
( 1+τ

2

) + √
2

3 + √
2

ρ.

Additionally, from (24) and the definition of Wτ we also have

dist(xk+1, X
∗) ≤ 1

2
dist(xk, X

∗) ≤ (1 − τ)
√
2

2(3 + √
2)

ρ =
(
1 − 1+τ

2

)√
2

3 + √
2

ρ.

Altogether we proved that

0 ≤ τ < 1, xk ∈ Wτ , J F(xk)
T F(xk) �= 0 ⇒ xk+1 ∈ W 1+τ

2
.

Suppose that xk0 ∈ B(x∗, r̃). We have just proved that in this case either the
algorithmstops at some xk ∈ X∗ or an infinite sequence is generated and xk ∈ B(x∗, ρ)

for k ≥ k0. Assume that an infinite sequence is generated and define

dk = dist(xk, X
∗).

It follows from (23) and (24) that for k ≥ k0,

‖sk‖ ≤ 3

2
√
2
dk, dk+1 ≤ M2d

2
k ≤ dk

2
. (26)

Hence,
∑∞

j=k0 ‖x j+1−x j‖ ≤ 3
2
√
2

∑∞
j=k0 d j ≤ 3√

2
dk0 . As (xk) is a Cauchy sequence,

it converges to some x̂ . Since dk = dist(xk, X∗) converges to 0, F(x̂) = 0, that is,
x̂ ∈ X∗. By the triangle inequality and the first inequality in (26),

‖xk − x̂‖ ≤ ‖sk‖ +
∞∑

j=k+1

‖s j‖ ≤ 3

2
√
2

⎡

⎣dk +
∞∑

j=k+1

d j

⎤

⎦ .

From the last two inequalities in (26) we have

∞∑

j=k+1

d j ≤
∞∑

j=k

M2d
2
j ≤ M2dk

∞∑

j=k

d j ≤ 2M2d
2
k ≤ dk .
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Therefore, from the two relations displayed above,

dk ≤ ‖xk − x̂‖ ≤ 3√
2
dk,

where the first inequality comes from the inclusion x̂ ∈ X∗. Consequently, using (26)
again and the definition of dk , we conclude that

‖xk+1 − x̂‖ ≤ 3√
2
dk+1 ≤ 3M2√

2
d2k ≤ 3M2√

2
‖xk − x̂‖2,

ensuring the q-quadratic convergence and completing the proof. 	


6 Numerical experiments

In this section we describe numerical experiments to illustrate the practical perfor-
mance of the algorithm. We start with the algorithmic and computational choices for
obtaining the numerical results.

6.1 On the choice of µk

Similarly to the analysis developed for the unconstrained minimization problem (cf.
[11, Prop.1.2]), as the positive scalar μ is a lower bound for the smallest eigenvalue
of J F(x)T J F(x) + μI , it follows that

μ‖s‖2 ≤ 〈s, (J F(x)T J F(x) + μI
)
s〉 = −〈s, J F(x)T F(x)〉 ≤ ‖s‖‖J F(x)T F(x)‖

and so ‖s‖ ≤ ‖J F(x)T F(x)‖
μ

.
By Lemma 2.3, with t = 1,

‖F(x + s)‖2 ≤ ‖F(x)‖2 + 〈F(x), J F(x)s〉 + ‖s‖2
[
L2

4
‖s‖2 + L‖F(x)‖ − μ

]
.

For obtaining μ that ensures
L2

4
‖s‖2 + L‖F(x)‖ − μ ≤ 0, the previous condition

concerning the step gives

L2‖J F(x)T F(x)‖2 + 4L‖F(x)‖μ2 − 4μ3 ≤ 0. (27)

Let μ2 = z, and the concave function ψ : R+ → R given by

ψ(z) = L2‖J F(x)T F(x)‖2 + 4L‖F(x)‖z − 4z3/2.

Consider z0 = L2‖F(x)‖2. Note that ψ(z0) = L2‖J F(x)T F(x)‖2 ≥ 0.
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An iteration of Newton’s method from z0 gives us

z1 = z0 − ψ(z0)

ψ ′(z0)
= L2‖F(x)‖2 + L‖J F(x)T F(x)‖2

2‖F(x)‖ .

Then (27) is guaranteed for all

μ ≥
√

L2‖F(x)‖2 + L‖J F(x)T F(x)‖2
2‖F(x)‖

def= μJ .

Observe that L‖F(x)‖ ≤ μJ , μ+ = 2+√
5

4 L‖F(x)‖ and so 4
2+√

5
μ+ ≤ μJ . Never-

theless, there is no guarantee that μJ ≤ μ+ holds, so we set μk = min{μ+
k , μJ }.

6.2 On the computation of the step sk

The equivalence between the problems

min
s

1

2
‖Jks + Fk‖2 + μ

2
‖s‖2 and min

s

1

2

∥
∥∥∥

(
Jk√
μk I

)
s +

(
Fk
0

)∥∥∥∥

2

implies that the system

(
J Tk Jk + μk I

)
s + J Tk Fk = 0 (28)

may be handled by the normal equations as follows (cf. [14])

(
J Tk

√
μk I

) [( Jk√
μk I

)
s +

(
Fk
0

)]
= 0.

As an alternative to the Cholesky factorization of J Tk Jk + μk I , the QR factorization

of

(
Jk√
μk I

)
avoids performing the product J Tk Jk :

(
Jk√
μk I

)
= Q

(
Rμ

0

)
,

where Q ∈ R
(m+n)×(m+n) is orthogonal and Rμ ∈ R

n×n is upper triangular. Indeed,
the economic version of the factorization may be used, and just the first n columns
of the orthogonal matrix Q are computed. The direction s is thus obtained from the
system (28) by means of the relationship

J Tk Jk + μk I = RT
μ Rμ.
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6.3 About the backtracking scheme

Besides the simple bisection of Steps 6–10 of Algorithm 1, we have implemented
a quadratic–cubic interpolation scheme (cf. [3, §6.3.2]). As this scheme performed
slightly better in preliminary experiments, it was used in the reported results.

6.4 About the initialization of the sequence (Lk)

We set L0 = 10−6 and Lmin = 10−12, compute x1 and define L1 = max{ ‖J F(x1)−J F(x0)‖F√
n‖x1−x0‖ , Lmin

}
. After that, the updating scheme follows Steps 12–22 of

Algorithm 1.

6.5 The results

The tests were performed in a notebook DELL Intel Core i7-4510U, CPU@2.00GHz
× 4, with 16GB RAM, Inspiron 5000 - i15 5547-A30, 64-bit, using Matlab 2014a,
v. 8.3.

The set of test problems consists of all 53 problems from theCUTEst collection [9]
such that the nonlinear equations F(x) = 0 are recast from feasibility instances, i.e,
problems without objective function, with nonlinear equality constraints and without
fixed variables for which the Jacobian matrix is available. The constraint bodies and
Jacobians were evaluated in sparse format. The initial point x0 was always the default
of the collection.

To put our approach in perspective, the same problems were addressed by two
distinct approaches. Thefirst one is theSelf-adaptiveLevenberg–MarquardtAlgorithm
of Fan and Pan in [5], which is close to the scheme proposed in this paper. The second
one is the modular code lsqnonlin (available within the Matlab software), based
on the Levenberg–Marquardt Method [12,13,15]. The remaining parameters of the
Algorithm 1 were defined by β = 10−4, η = 10−4 and δ = 10−8. These parameters
are the default values suggested in [5] for the parameters that play a similar role to
ours. The choices of Fan and Pan denoted by p0 and m correspond to our η and δ,
respectively. Moreover, the parameter δ of Fan and Pan was set as 1.

Summing up, there are four strategies under analysis:

• CH: Algorithm 1 with Cholesky factorization for computing sk ;
• QR: Algorithm 1 with QR factorization for computing sk ;
• FP: Fan and Pan’s algorithm [5, Alg. 2.1], with Cholesky factorization for com-
puting the step and the aforementioned parameters and values;

• LM: The Levenberg–Marquardt algorithm (an option of the routine lsqnonlin
of Matlab).

Concerning the implemented stopping criteria, we have adopted the same number-
ing of the exit flags as the routine lsqnonlin. Setting εmac as the machine precision,
the stopping criteria commom to the four strategies were the following:

(1) Convergence to a solution with relative stationarity:
‖J F(xk)T F(xk))‖∞ ≤ 10−10 max{‖(J F(x0)T F(x0))‖∞,

√
εmac};
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(2) Change in x (too small): ‖xk+1 − xk‖ ≤ 10−9
(√

εmac + ‖xk+1‖
)
;

(3) Change in the norm of the residue (too small): |‖F(xk+1)‖2 − ‖F(xk)‖2| ≤
10−6‖F(xk)‖2;

(4) Computed search direction (too small): ‖sk‖ ≤ 10−9;
(0) Maximum number of functional evaluations exceeded max = {2000, 10n}.
Besides, as strategy FP does not compute the step length tk , the next criterion was

included only for the strategies CH, QR and LM:

(-4) Line search failed, as the step length is too small: |tk | ≤ 10−15.

Let f ∗ be the objective function value obtained by a strategy Swhen this strategy is
applied to a given problem with the default initial point. We consider that the strategy
S has found a solution (cf. [1]) if

f ∗ − fmin

max{1, fmin} ≤ 10−4, (29)

where fmin is the smallest function value found among all the strategies under com-
parison.

All outputs are reported in the Appendix. Tables 1, lists the 53 test problems. The
table columns display the name of the problem; the dimensions (n andm); the number
of iterations (#Iter); the number of function evaluations (#Fun); the function value
at the last iterate ( f ∗); the CPU time in seconds (CPU), and the reason for stopping
(exit). We observe that the stopping criteria 2 and -4 were never activated during the
tests. The results of the four solvers CH, QR, FP and LM, respectively, are displayed
row by row for each problem.

As it is usual to have some variation of the CPU time from one execution of an
algorithm to the other, for each problem we ran nine times all the solvers and we
considered the average CPU time of the last eight runs, discarding the CPU time of the
first one. The symbol † indicates that the obtained solution does not satisfy (29). It is
worth mentioning that CH and FP performed one Cholesky factorization per iteration.
The only exception occurred at a single iteration of the problem 10FOLDTR for CH
and of the problems 10FOLDTR and ARGLBLE for FP. In these three instances, both
strategies required an additional Cholesky factorization with a slight increase in μk to
ensure the numerically safe positive definiteness of J Tk Jk + μk I .

The results corresponding to the solved problems are depicted in the performance
profiles of Fig. 1 for the number of iterations, the number of function evaluations and
the required CPU time. The logarithmic scale was used in the horizontal axis for better
visualization of the results. In terms of efficiency, our strategies slightly outperformed
theFP andLMwith regard to the number of iterations and function evaluations. Indeed,
52.8% of the problems were solved with the fewest number of iterations for both CH
and QR, 35.8% for FP and 49.1% for LM. Moreover, 49.1% of the problems were
solved with the fewest number of function evaluations for both CH and QR, and 43.4%
for FP and LM. Now, concerning the CPU time, the shortest time was never reached by
QR, whereas strategies CH, FP and LM solved respectively 35.8, 41.5 and 22.6% of the
problems in the shortest time. Furthermore, CH and FP solved 70% of the problems
using no more than twice the best CPU time. Strategies CH and QR are the most robust,
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Fig. 1 Performance profiles for the number of iterations, the number of function evaluations and the
required CPU time

solving 51 of the 53 problems. Problems EIGENB and YATP2SQ were considered
not solved by CH, and 10FOLDTR and YATP2SQwere not solved by strategy QR. On
the other hand, LM did not solve three problems (10FOLDTR, CYCLIC3, YATP2SQ),
while FP did not solve four problems (10FOLDTR, ARWHDNE, CYCLIC3, EIGENB),
showing that our approach is competitive.

Aiming at illustrating the rate of convergence of the proposed algebraic rules, Fig. 2
shows the logarithm (base 10) of the squared residual value against the iterations for
two typical problems.

7 Final remarks

We have proposed and analyzed a class of Levenberg–Marquardt methods in which
algebraic rules for computing the regularization parameter were devised. Under the
Lipschitz continuity of the Jacobian of the residual functions, the algebraic rules were
proposed to allow the full LM-step to be accepted by the Armijo sufficient decrease
condition. In terms of global convergence, all the accumulation points of the sequence
generated by the algorithm are stationary. As for the local convergence for the zero-
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Fig. 2 The residual value ‖F(xk )‖2 against the iterations, for the problems EIGENC (left) and
POWELLBS (right)

residual problem, we have proved a q-quadratic rate under an error-bound condition.
This condition is less restrictive than assuming nonsingularity at the solution. A set
of numerical experiments was prepared to illustrate the practical performance of the
proposed algorithm. Our approach has shown both efficiency and robustness for the 53
feasibility instances from the CUTEst. It has performed slightly better than both the
algorithm proposed by Fan and Pan in [5] and the routine lsqnonlin of Matlab.
Obtaining inexact solutions for the linear systems with adequately matching stopping
criteria, as well as considering nonzero-residual problems in the local convergence
analysis are topics for future investigations.
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8 Appendix

The complete computational results are presented next. The outcomes of the four
solvers CH, QR, FP and LM, respectively, are displayed row by row for each problem.

Table 1 Numerical results

Problem n m #Iter #Fun f ∗ CPU Exit

10FOLDTR 100 100 14 15 2.6403e+17 3.1343e−02 1

13 14 3.4234e+17 4.7807e−02 1†

6 7 1.4272e+25 1.4219e−02 3†

12 13 2.3485e+18 2.2098e−02 1†
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Table 1 continued

Problem n m #Iter #Fun f ∗ CPU Exit

ARGAUSS 3 15 2 3 1.1279e−08 7.0329e−04 3

2 3 1.1279e−08 8.0829e−04 3

2 3 1.1279e−08 6.6125e−04 3

3 4 1.1279e−08 2.9815e−03 3

ARGLALE 200 400 2 3 2.0000e+02 1.9904e−01 1

2 3 2.0000e+02 2.0100e−01 1

3 4 2.0000e+02 2.9091e−01 3

3 4 2.0000e+02 2.8607e−01 3

ARGLBLE 200 400 1 2 9.9625e+01 1.2199e−01 1

1 2 9.9625e+01 1.2382e−01 1

2 3 9.9625e+01 1.9875e−01 1

1 2 9.9625e+01 1.3872e−01 1

ARGTRIG 200 200 4 5 2.1345e−20 1.5488e−01 1

4 5 2.1346e−20 1.1674e−01 1

4 5 2.3426e−26 1.5821e−01 1

3 4 2.9360e−18 7.2793e−02 1

ARWHDNE 100 198 20 32 2.7662e+01 7.4501e−03 3

20 32 2.7662e+01 3.4314e−02 3

11 12 2.7709e+01 3.8385e−03 3†

11 22 2.7662e+01 9.9535e−03 3

BOOTH 2 2 2 3 0.0000e+00 6.5857e−04 1

2 3 0.0000e+00 7.4643e−04 1

2 3 1.9824e−21 6.1887e−04 1

3 4 1.9564e−18 2.8978e−03 1

BROWNALE 200 200 3 4 1.9879e−09 9.6117e−02 1

3 4 1.9879e−09 8.8616e−02 1

3 4 3.9149e−17 1.1809e−01 1

3 4 2.2300e−09 7.0575e−02 1

BROYDN3D 1000 1000 5 6 1.2079e−29 1.1405e−01 1

5 6 1.3657e−29 1.1462e+00 1

5 6 1.1241e−29 8.9167e−02 1

5 6 1.9529e−28 1.0356e−02 1

BROYDNBD 500 500 7 8 9.2340e−20 4.0205e−02 1

7 8 9.2340e−20 2.5363e−01 1

6 7 9.7128e−22 2.8365e−02 1

6 7 9.7950e−22 1.0694e−02 1

CHANDHEU 500 500 20 21 4.1643e−22 8.4619e+00 1

20 21 4.1652e−22 6.1886e+00 1

19 20 7.8066e−22 8.3485e+00 1

18 19 1.5968e−20 4.5117e+00 1
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Table 1 continued

Problem n m #Iter #Fun f ∗ CPU Exit

CHNRSBNE 50 98 45 64 6.6325e−25 8.7170e−03 1

45 64 6.6325e−25 3.8636e−02 1

55 56 2.7752e−22 8.7747e−03 1

46 70 4.8262e−25 2.1671e−02 1

CLUSTER 2 2 9 10 7.2338e−19 1.3299e−03 1

9 10 7.2338e−19 1.6533e−03 1

9 10 9.5248e−23 1.1657e−03 1

9 10 1.4396e−22 3.9510e−03 1

COOLHANS 9 9 35 38 2.4541e−22 4.4511e−03 1

35 38 2.4701e−22 6.2834e−03 1

22 23 5.3026e−24 2.6813e−03 1

44 62 1.6044e−24 1.4946e−02 1

CUBENE 2 2 19 25 2.4339e−25 2.4196e−03 1

19 25 2.4339e−25 3.1379e−03 1

16 17 9.4250e−27 1.7311e−03 1

7 10 1.3981e−21 3.9445e−03 1

CYCLIC3 1002 1002 61 85 4.7699e+04 1.3981e+00 1

61 85 4.7699e+04 1.3381e+01 1

14 15 1.5918e+06 3.3463e−01 1†

12 13 2.0870e+08 2.3353e−02 1†

EIGENAU 110 110 3 4 3.6011e−20 3.4029e−03 1

3 4 3.6011e−20 1.1392e−02 1

4 5 0.0000e+00 4.0535e−03 1

5 6 1.7060e−23 1.0722e−02 1

EIGENB 110 110 24 31 6.6876e−02 2.2791e−02 3†

77 119 2.4501e−25 2.8192e−01 1

18 19 1.5813e+00 2.1614e−02 4†

114 172 3.2208e−21 2.6145e−01 1

EIGENC 462 462 29 41 1.6159e−20 4.4347e−01 1

29 41 1.6158e−20 1.7681e+00 1

62 63 1.9206e−29 1.1141e+00 1

42 62 2.5177e−22 1.1227e+00 1

GOTTFR 2 2 14 18 2.7570e−24 1.8471e−03 1

14 18 2.7562e−24 2.4013e−03 1

42 43 7.2171e−26 3.9125e−03 1

9 13 8.5139e−21 4.6638e−03 1

GROWTH 3 12 74 105 1.0040e+00 9.1603e−03 3

74 105 1.0040e+00 1.3144e−02 3

96 97 1.0040e+00 8.8942e−03 3

93 139 1.0040e+00 2.9116e−02 1
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Table 1 continued

Problem n m #Iter #Fun f ∗ CPU Exit

HATFLDF 3 3 30 42 5.3994e−29 3.5911e−03 1

30 42 5.4516e−29 5.0013e−03 1

56 57 4.8148e−35 5.1130e−03 1

23 32 4.7766e−30 8.0228e−03 1

HATFLDG 25 25 11 17 3.4180e−29 2.2786e−03 1

11 17 3.3967e−29 3.4887e−03 1

11 12 1.7482e−19 1.7687e−03 1

9 12 2.7245e−20 5.1259e−03 1

HEART6 6 6 140 205 4.6561e−27 1.8327e−02 1

140 205 3.7832e−27 2.3911e−02 1

140 141 3.7101e−27 1.4222e−02 1

298 446 4.7970e−26 8.8176e−02 1

HEART8 8 8 35 50 7.7007e−22 4.9433e−03 1

35 50 7.7024e−22 6.7484e−03 1

57 58 1.4421e−27 5.9642e−03 1

54 81 2.7297e−26 1.8570e−02 1

HIMMELBA 2 2 2 3 0.0000e+00 6.8286e−04 1

2 3 0.0000e+00 7.4800e−04 1

2 3 1.2534e−19 6.6137e−04 1

3 4 8.8033e−18 2.8189e−03 1

HIMMELBC 2 2 5 7 4.6689e−22 1.0046e−03 1

5 7 4.6689e−22 1.1770e−03 1

7 8 0.0000e+00 1.0929e−03 1

6 9 1.2168e−28 3.6983e−03 1

HIMMELBD 2 2 35 50 5.9226e+00 4.1591e−03 3

35 50 5.9226e+00 5.4614e−03 3

21 22 5.9226e+00 2.1696e−03 3

16 28 5.9226e+00 7.0777e−03 3

HIMMELBE 3 3 5 6 3.4426e−29 1.0206e−03 1

5 6 3.4426e−29 1.2193e−03 1

3 4 1.1063e−22 7.3688e−04 1

4 5 1.3989e−22 3.0638e−03 1

HYDCAR20 99 99 659 981 4.4058e−24 3.0219e−01 1

659 981 4.6180e−24 1.5295e+00 1

403 404 1.9660e−24 1.6077e−01 1

620 928 4.8696e−07 4.9402e−01 3

HYDCAR6 29 29 115 166 6.8762e−26 2.2417e−02 1

115 166 1.1268e−25 4.1551e−02 1

101 102 8.6926e−22 1.6523e−02 1

245 364 1.1073e−26 1.1031e−01 1
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Table 1 continued

Problem n m #Iter #Fun f ∗ CPU Exit

HYPCIR 2 2 5 7 2.0954e−31 1.0394e−03 1

5 7 2.0954e−31 1.2023e−03 1

8 9 2.9230e−24 1.1021e−03 1

5 7 5.5524e−21 3.4355e−03 1

KSS 1000 1000 6 7 1.4564e−09 2.0158e+01 1

6 7 1.4564e−09 1.3076e+01 1

6 7 6.7372e−22 2.0541e+01 1

5 6 5.5519e−05 8.3977e+00 1

METHANB8 31 31 15 16 7.6840e−26 2.9310e−03 1

15 16 7.6195e−26 5.5773e−03 1

5 6 1.1096e−26 1.2844e−03 1

8 9 3.1180e−18 4.7629e−03 1

METHANL8 31 31 20 22 4.6850e−22 3.8543e−03 1

20 22 4.7170e−22 7.4031e−03 1

7 8 2.4794e−26 1.5854e−03 1

8 9 1.5002e−17 4.5685e−03 1

MSQRTA 1024 1024 12 14 9.9331e−28 8.1086e−01 1

12 14 9.6502e−28 6.0304e+00 1

14 15 6.4271e−28 1.2130e+00 1

10 14 6.4582e−19 2.1630e+00 1

MSQRTB 1024 1024 11 13 2.4854e−27 9.3771e−01 1

11 13 2.2154e−27 5.4492e+00 1

13 14 4.0239e−24 8.9350e−01 1

10 14 2.2396e−22 1.7536e+00 1

OSCIGRNE 100 100 6 7 1.3793e−10 2.1686e−03 1

6 7 1.3793e−10 9.0243e−03 1

6 7 2.0393e−14 2.1793e−03 1

6 7 2.0393e−14 4.3731e−03 1

OSCIPANE 10 10 1 10 1.0000e+00 9.8714e−04 3

1 10 1.0000e+00 9.6829e−04 3

2 3 1.0000e+00 6.7287e−04 3

1 2 1.0000e+00 2.4082e−03 3

POWELLBS 2 2 36 37 4.4453e−31 3.7107e−03 1

36 37 3.0893e−31 5.1241e−03 1

74 75 4.0926e−28 6.4416e−03 1

142 210 1.2797e−24 4.0419e−02 1

POWELLSQ 2 2 11 15 9.6553e−18 1.6490e−03 1

11 15 9.6553e−18 2.0507e−03 1

24 25 7.7265e−23 2.4055e−03 1

1334 2001 4.9296e−12 3.6657e−01 0
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Table 1 continued

Problem n m #Iter #Fun f ∗ CPU Exit

RECIPE 3 3 12 13 5.9618e−12 1.5240e−03 1

12 13 5.9618e−12 2.0644e−03 1

12 13 2.2208e−12 1.4981e−03 1

12 13 2.2221e−12 4.4696e−03 1

RSNBRNE 2 2 15 19 0.0000e+00 2.0154e−03 1

15 19 0.0000e+00 2.5593e−03 1

45 46 0.0000e+00 4.1940e−03 1

29 43 1.0227e−25 9.8485e−03 1

SINVALNE 2 2 22 31 4.4191e−25 2.8500e−03 1

22 31 4.4191e−25 3.6909e−03 1

47 48 3.7153e−24 4.2986e−03 1

26 39 1.9461e−23 9.0417e−03 1

SPIN 667 665 11 12 5.4650e−18 1.9316e−01 1

11 12 5.4650e−18 1.7885e+00 1

6 7 4.8635e−20 1.1193e−01 1

6 7 2.7334e−20 1.3700e−01 1

SPIN2 102 100 8 9 1.4970e−27 4.6690e−02 1

8 9 2.0428e−27 4.7750e−02 1

5 6 1.9659e−27 3.0468e−02 1

5 6 1.6395e−27 2.5038e−02 1

SPMSQRT 499 829 7 9 1.6458e−16 3.0316e−02 1

7 9 1.6458e−16 4.8699e−01 1

12 13 1.6458e−16 7.2393e−02 1

7 10 1.6458e−16 1.4985e−02 1

YATP1NE 120 120 68 98 4.9111e−25 3.6879e−02 1

68 98 1.8968e−24 2.3689e−01 1

79 80 3.4735e−25 5.1083e−02 1

6 7 2.2654e−22 1.0024e−02 1

YATP1SQ 120 120 68 98 4.9111e−25 4.9754e−02 1

68 98 1.8968e−24 1.7366e−01 1

79 80 3.4735e−25 3.9237e−02 1

6 7 2.2654e−22 7.2845e−03 1

YATP1SS 120 120 68 98 4.9111e−25 3.6677e−02 1

68 98 1.8968e−24 2.3648e−01 1

79 80 3.4735e−25 3.8826e−02 1

6 7 2.2654e−22 1.0072e−02 1

YATP2SQ 10200 10200 4 6 1.9659e+07 3.0017e+01 3†

4 6 1.9659e+07 8.0057e+02 3†

28 29 1.4253e−28 2.2061e+02 1

41 62 1.7803e+08 1.3012e+03 3†
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Table 1 continued

Problem n m #Iter #Fun f ∗ CPU Exit

YFITNE 3 17 21 23 6.6697e−13 3.9234e−03 1

21 23 6.6697e−13 5.5287e−03 1

37 38 6.6697e−13 3.8822e−03 1

42 61 6.6697e−13 1.9941e−02 1

ZANGWIL3 3 3 2 3 2.0917e−32 9.9386e−04 1

2 3 2.1139e−32 1.0361e−03 1

3 4 3.3173e−29 7.0775e−04 1

4 5 3.3594e−25 4.2871e−03 1
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