
Comput Optim Appl (2016) 65:1–46
DOI 10.1007/s10589-016-9842-0

A two-level approach to large mixed-integer programs
with application to cogeneration in energy-efficient
buildings

Fu Lin1 · Sven Leyffer1 · Todd Munson1

Received: 11 May 2015 / Published online: 12 April 2016
© Springer Science+Business Media New York (outside the USA) 2016

Abstract We study a two-stage mixed-integer linear program (MILP) with more than
1 million binary variables in the second stage. We develop a two-level approach by
constructing a semi-coarse model that coarsens with respect to variables and a coarse
model that coarsens with respect to both variables and constraints. We coarsen binary
variables by selecting a small number of prespecified on/off profiles. We aggregate
constraints by partitioning them into groups and taking convex combination over each
group. With an appropriate choice of coarsened profiles, the semi-coarse model is
guaranteed to find a feasible solution of the original problem and hence provides an
upper bound on the optimal solution. We show that solving a sequence of coarse
models converges to the same upper bound with proven finite steps. This is achieved
by adding violated constraints to coarse models until all constraints in the semi-coarse
model are satisfied. We demonstrate the effectiveness of our approach in cogeneration
for buildings. The coarsened models allow us to obtain good approximate solutions at
a fraction of the time required by solving the original problem. Extensive numerical
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experiments show that the two-level approach scales to large problems that are beyond
the capacity of state-of-the-art commercial MILP solvers.

Keywords Coarsened models · Distributed generation · Large-scale problems ·
Two-level approach ·Multi-period planning ·Resource and cost allocation ·Two-stage
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1 Problem definition and motivation

We consider a hierarchical two-stage mixed-integer linear program (MILP) with inte-
ger variables in both the first and second stages. We are particularly interested in
applications where the first-stage integer variables model design or purchasing deci-
sions and the second-stage variables model operational decisions over a long time
horizon (e.g., hourly operations over a decadal horizon). The goal is to take operational
constraints into account when making a capital investment decision. Thus, our model
is complicated by the fact that second-stage variables include both binary (on/off)
decisions and continuous variables that model operational settings. Examples include
the design of cogeneration units for commercial buildings subject to operational condi-
tions [28–30,33,34] and transmission network expansion subject to unit commitment
constraints [1,23]. Models of this class can involve hundreds of thousands or evenmil-
lions of binary variables and are beyond the scope of today’s state-of-the-art solvers.

We consider a two-stage MILP with m first-stage variables and three sets of N
second-stage variables. The first-stage variables are y ∈ Z

m+ (non-negative integers of
dimension m). We have three classes of second-stage variables: (1) on/off decisions,
x ∈ {0, 1}N ; (2) operational settings v ∈ R

N that are switched on or off by x , that
is, Lx ≤ v ≤ Ux for finite bounds L ≤ U ; and (3) other second-stage variables
0 ≤ w ∈ R

N . The MILP model is described by

minimize
y,x,v,w

aT y + bT x + cT v + dTw

subject to Ay + Bx + Cv + Dw ≤ f

y ∈ Z
m+

x ∈ {0, 1}N
v ∈ R

N , Lx ≤ v ≤ Ux

w ∈ R
N , w ≥ 0,

(1.1)

where a ∈ R
m , b, c, d ∈ R

N , A ∈ R
M×m , and B,C, D ∈ R

M×N . We assume that
m � N and m � M ; that is, the number of first-stage variables is much smaller than
the number of second-stage binary variables and the number of coupling constraints.

In addition to a large number of binary and continuous variables in the second stage,
the challenges of model (1.1) also arise from coupling constraints. We do not assume
any sparsity structure in matrices B, C , and D. This is in contrast to the arrow-type
sparsity structure that arises, for example, in stochastic programs [6]. Therefore, fixing
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A two-level approach to large mixed-integer programs. . . 3

the first-stage variable y does not decompose (1.1) into scenario-based subproblems.
Moreover, the coupling constraints in (1.1) are not amenable to decompositionmethods
such as Lagrangian relaxation [14,18]. The reason is that the number of coupling
constraints, M , is of the same order as the number of variables, N . Dualizing all
coupling constraints results in a large number of dual variables; hence, Lagrangian
relaxation of (1.1) is unlikely to yield efficient decomposition methods [14].

Problem (1.1) arises in several applications. In particular, our work is motivated
by the cogeneration problem with renewable energy for commercial buildings [28,30,
33,34]. In this case, the first-stage design involves investment decisions for cogen-
eration units such as fuel cells, solar panels, and battery storage. The second-stage
problem aims at optimal on/off hourly operation that takes into account technology
specifics such as the minimum and maximum power generation. Our goal is to include
operational constraints in the design of cogeneration.

One of our objectives is to find the optimal first-stage solution of (1.1). However,
the two-stage MILP with a large number of binary variables at the second stage is
beyond the scope of state-of-the-art commercial MIP solvers. For example, a typical
cogeneration model with a ten-year horizon results in 1.05 million binary variables
(3650 days × 24 h × 12 units). On the other hand, a naive approach that solves (1.1)
with a short horizon at the second stage provides first-stage designs that are suboptimal
for a long horizon problem. The reason is that short horizon problems do not take into
account coupling constraints over a long horizon. Moreover, the problem data of
short-horizon problems are not representative of long-horizon problems, resulting in
suboptimal solutions.

We develop a two-level approach that coarsens the hourly on/off variables to daily
operation profiles. Since the profile representation yields a model with many fewer
variables, we refer to this step as the primal (variable) coarsening. The resulting semi-
coarse model still contains the same number of constraints as in (1.1). We reduce the
number of constraints by partitioning them into groups that are of the same size as
the profiles and summing over each group. This aggregation of constraints results in
a relaxed problem whose solutions may not be feasible for the original MILP model.
We include the violated constraints, re-solve the coarsened MILP model, and repeat
this process until all constraints are satisfied.We refer to the aggregation of constraints
as the dual (constraint) coarsening and the resulting MILP as the coarse model.

1.1 Literature review

The idea of aggregating variables and constraints to build approximate optimization
models is not new. Zipkin studies the effect of variable aggregation and row aggrega-
tion for linear programs in [40,41]. This framework is extended to stochastic linear
programs in [5,7]. For integer programs, a large amount of work focuses on aggregat-
ing constraints into one or more surrogate constraints for which one can show that the
solution of the original problem and that of the surrogate problem are identical. Early
work includes [2,17,19,20]; see also the survey paper [31].

We note that the theory of surrogate constraints focuses mainly on integer programs
with non-negative integer coefficients. The seminal work in [25] results in an exponen-
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tial grow of the coefficients in the surrogate constraints. Many refinements have been
developed, including simultaneous and sequential aggregation schemes, to reduce the
magnitude of coefficients [31]. For mixed-integer programs with real-valued coeffi-
cients, however, we are not aware of aggregation schemes that guarantee equivalence
between the original problem and the surrogate problem. In our two-level approach,
we employ constraint aggregation as a relaxation technique to identify a smaller set
of constraints that are active at the optimal solution. This is achieved by solving a
sequence of MILPs and adding the violated constraints until all constraints in the
original MILP are satisfied. Furthermore, we take advantage of the LP warm-start to
reduce the number of MILP re-solves and the computational time of each MILP.

A large body of literature appeared in the 1990s on bilevel or multilevel mixed-
integer programs; see [10,22,26,37,38] and survey papers [35,36]. One of the main
theoretical emphases is on decentralized decision-making from a game-theoretic point
of view [36]. Optimality conditions for convex bilevel programs have been established
in [35]. A heuristic-based branch-and-bound method is developed in [22,38], and
tabu search method is introduced in [37]. Recent years have seen specific application-
driven algorithms ranging from infrastructure protection planning [32] to vulnerability
analysis of power grids [27].

In this context, the multilevel method is specifically connected to the problem for-
mulation. In contrast, our two-level method concentrates on algorithmic development
for mixed-integer linear programs. In particular, our two-level approach builds opti-
mization models of different resolutions from a fine-level problem to a coarse-level
problem.We develop a systematic procedure that coarsens binary and continuous vari-
ables in addition to the aggregation of constraints. Our approach allows us to solve
large MILPs with more than one million binary and continuous variables and cou-
pling constraints. Extensive numerical experiments have been conducted to verify the
efficiency of the developed algorithm.

Our two-level approach is reminiscent of multigrid methods in linear algebra and
solution of partial differential equations. In [16], a multilevel iterative method for
generic optimization problem is discussed. In [21], a recursive trust-region method
for nonlinear unconstrained problems is developed. In [39], a line search multigrid
approach for nonlinear programs is proposed.

1.2 Our contributions

Our contributions are fourfold. First, we develop a systematic two-level approach for
two-stageMILPs with a large number of binary and continuous variables in the second
stage. The coarsening of binary variables is done by introducing profiles (vectors) with
binary elements. By selecting one profile from a small number of candidate profiles,
we reduce the number of binary variables by orders of magnitude. In addition, we
reduce the number of continuous variables by using a convex combination of profiles
with real elements. We show that the semi-coarse model with coarsening in variables
results in a tightening of the original MILP and therefore provides an upper bound on
the optimal solution.

Second,we propose a simplemethod for constraint aggregation that does not require
any sparsity assumptions on the coefficient matrices. By partitioning constraints into
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A two-level approach to large mixed-integer programs. . . 5

groups and taking a convex combination of constraints in each group, we obtain a
relaxation of the semi-coarse model with many fewer constraints.We solve a sequence
of coarse MILPs by adding any violated constraints until all constraints are satisfied.
We show that the LP-relaxation of the coarse MILPs can be used to warm-start the
MILP re-solves and significantly reduce the computational effort.

Third, we apply our two-level approach to the design of cogeneration in buildings.
The resulting complex MILP model has a large number of coupling constraints over
a long time horizon. We develop a moving-horizon method to generate valid profiles
and show by construction that the generated profiles satisfy coupling constraints in
time, further reducing the number of constraints in the coarsened models.

Fourth, we verify the efficiency of our algorithm using a variety of examples
generated from simulation programs for commercial buildings. While our two-level
approach requires solving a sequence of coarse MILPs, numerical results indicate
that the first iterate provides a good approximate solution of the semi-coarse mod-
els. Through extensive numerical experiments, we demonstrate the scalability of the
two-level approach on a rich set of large problems that are beyond the capacity of
state-of-the-art commercial solvers.

Outline. The remainder of this paper is organized as follows. In Sect. 2, we describe
the two-level approach for the two-stage MILPs. We show that our approach results
in a tightening of the original problem and provides an upper bound on the optimal
solution. Under the assumption of periodic problemdata and no coupling between time
periods, our two-level approach provides the optimal solution. In Sect. 3, we apply
our approach to a complex MILP model from the cogeneration problem in buildings.
We discuss how the profiles are generated and selected such that the coarsened models
provide feasible solutions to (1.1). In Sect. 4, we demonstrate the effectiveness of our
approach on a diverse set of test problems.We show that the two-level approach allows
us to find good approximate solutions with a fraction of computational time compared
with solving the full model. In Sect. 5, we summarize our contribution and discuss
future extensions.

2 Two-level approach to MILP

In this section, we derive two models that are formulated in terms of the first-stage
variables and n � N second-stage variables. We start by presenting our ideas for
variable coarsening, resulting in a semi-coarse model that has O(n) second-stage
variables and O(N ) second-stage constraints. Next we show how to further coarsen
this model by aggregating constraints, resulting in a coarse model with both O(n)

second-stage variables and constraints.

2.1 Primal coarsening

To coarsen the variables in the model, we introduce a coarsening factor δ ∈ Z+
and group N second-stage variables into n = N/δ equal-sized groups of size δ (the
assumption that the groups are equal-sized is not critical):
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Fig. 1 The first row shows the hourly on/off variables xt ∈ {0, 1} for 48 h. The second row shows the
profile representation with two daily profiles X̄k ∈ {0, 1}24

xi =
⎛
⎜⎝
xδ(i−1)+1

...

xδi

⎞
⎟⎠ for i = 1, . . . , n. (2.1)

We define groups for v and w analogously. These groups correspond to a partition of
the second-stage variables x, v, and w:

x =
⎛
⎜⎝
x1
...

xn

⎞
⎟⎠ , v =

⎛
⎜⎝
v1
...

vn

⎞
⎟⎠ , w =

⎛
⎜⎝
w1
...

wn

⎞
⎟⎠ . (2.2)

Next, we introduce δ-profiles, which are fixed parameter values for a group of vari-
ables:

X̄k ∈ {0, 1}δ for k = 1, . . . , K , (2.3)

where K is a positive integer. We show in Sect. 3 how these profiles are generated and
selected. Figure 1 illustrates that N = 48 hourly on/off variables can be represented
by n = 2 daily profiles with length δ = 24. Now for every X̄k , we collect a set of Ik
operational δ-profiles for V̄ ,

V̄ jk ∈ R
δ, with L X̄k ≤ V̄ jk ≤ U X̄k for j = 1, . . . , Ik, k = 1, . . . , K , (2.4)

and a set of J operational δ-profiles for W̄ ,

0 ≤ W̄ j ∈ R
δ for j = 1, . . . , J, (2.5)

where J is a positive integer.
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A two-level approach to large mixed-integer programs. . . 7

Given these sets of δ-profiles, we perform a change of variables that replaces the
second-stage variables (x, v, w) by a reduced set of variables (x̄, v̄, w̄) for the δ-
profiles, resulting in a coarsening of the second-stage variables. In particular, we set

xi =
K∑

k=1

x̄ik X̄k ,

K∑
k=1

x̄ik ≤ 1 , x̄ik ∈ {0, 1} for i = 1, . . . , n, k = 1, . . . , K .

(2.6)

Thus, we have that x̄ ∈ {0, 1}n×K , and our goal is to create models where nK � N .
Similarly, we write v and w as

vi =
K∑

k=1

Ik∑
j=1

v̄i jk V̄ jk ,

K∑
k=1

Ik∑
j=1

v̄i jk ≤ 1 ,

Ik∑
j=1

v̄i jk = x̄ik , 0 ≤ v̄i jk ≤ 1 ,

for i = 1, . . . , n, (2.7)

and

wi =
J∑

j=1

w̄i j W̄ j ,

J∑
j=1

w̄i j ≤ 1 , 0 ≤ w̄i j ≤ 1 , for i = 1, . . . , n. (2.8)

We note that we do not enforce w̄i j ∈ {0, 1} or v̄i jk ∈ {0, 1}. The reason is that we
wish to allow more freedom for choosing operational profiles in the second stage as
long as they remain feasible. This choice also simplifies the coarsened second-stage
problem and provides a valid approach if we assume that convex combinations of
operational δ-profiles V̄ jk and W̄ j are feasible, which is often the case in practice.

The partition of variables (x, v, w) implies a partition of the problem matrices B,
C , and D of (1.1) as

B = [B1 : · · · : Bn], C = [C1 : · · · : Cn], D = [D1 : · · · : Dn],

where Bi , Ci , and Di ∈ R
M×δ for i = 1, . . . , n. Next, we define δ-profile matrices as

X̄ = [X̄1 : · · · : X̄K ], V̄ = [V̄11 : · · · : V̄1I1 : . . . : V̄K1 : · · · : V̄K IK ],
W̄ = [W̄1 : · · · : W̄J ], (2.9)

where X̄k , V̄ jk , and W̄ j are vectors of length δ. We define aggregated (coarse) matrices
B̄, C̄ , and D̄ as

B̄ = [B1 X̄ : · · · : Bn X̄ ], C̄ = [C1V̄ : · · · : CnV̄ ], D̄ = [D1W̄ : · · · : DnW̄ ],
(2.10)

where B̄ ∈ R
M×nK , C̄ ∈ R

M×nI , and D̄ ∈ R
M×nJ , where I = ∑K

k=1 Ik . Similarly,
we aggregate the coefficient vectors in the objective function to obtain cost vectors b̄,
c̄, and d̄

123



8 F. Lin et al.

b̄ = [bT1 X̄ : · · · : bTn X̄ ]T , c̄ = [cT1 V̄ : · · · : cTn V̄ ]T , d̄ = [dT1 W̄ : · · · : dTn W̄ ]T ,

(2.11)

where b̄ ∈ R
nK , c̄ ∈ R

nI , and d̄ ∈ R
nJ .

We obtain the following aggregated MILP, which we refer to as the semi-coarse
MILP, because it has been coarsened in the primal variables only:

minimize
y,x̄,v̄,w̄

aT y + b̄T x̄ + c̄T v̄ + d̄T w̄

subject to Ay + B̄ x̄ + C̄ v̄ + D̄w̄ ≤ f
K∑

k=1

x̄ik ≤ 1 , x̄ik ∈ {0, 1}
K∑

k=1

Ik∑
j=1

v̄i jk ≤ 1 ,

Ik∑
j=1

v̄i jk = x̄ik , 0 ≤ v̄i jk ≤ 1

J∑
j=1

w̄i j ≤ 1 , 0 ≤ w̄i j ≤ 1.

(2.12)

TheMILP (2.12) has potentially many fewer variables than (1.1) but contains as many
constraints as the original problem. Beforewe showhow to aggregate constraints in the
next section, we finish this section by summarizing some of the properties of (2.12).

Proposition 1 Let (x̄, v̄, w̄) be a feasible point of the semi-coarse model (2.12). Then
it follows that the corresponding fine-scale variables

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K∑
k=1

x̄1k X̄k

...
K∑

k=1

x̄nk X̄k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K ,Ik∑
k, j=1

v̄1 jk V̄ jk

...
K ,Ik∑
k, j=1

v̄njk V̄ jk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

J∑
j=1

w̄1 j W̄ j

...
J∑

j=1

w̄nj W̄ j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.13)

are feasible in the original MILP (1.1).

Proof The binary constraint x ∈ {0, 1}N follows from the representation (2.6) and
the definition of binary vectors X̄k . Similarly, the non-negativity of w is a direct
consequence of non-negative profiles W̄ j and non-negative coefficients w̄i j . To show
that v is feasible, we start with the definition of V̄ jk in (2.4):

L · X̄k ≤ V̄ jk ≤ U · X̄k .

Since v̄i jk ≥ 0, it follows that

L
K∑

k=1

Ik∑
j=1

v̄i jk X̄k ≤
K∑

k=1

Ik∑
j=1

v̄i jk V̄ jk ≤ U
K∑

k=1

Ik∑
j=1

v̄i jk X̄k .
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A two-level approach to large mixed-integer programs. . . 9

Using x̄ik =∑Ik
j=1 v̄i jk , we have

L
K∑

k=1

x̄ik X̄k ≤ vi ≤ U
K∑

k=1

x̄ik X̄k, for i = 1, . . . , n.

From the definition of xi in (2.13), it follows that Lxi ≤ vi ≤ Uxi , for i = 1, . . . , n,
and thus Lx ≤ v ≤ Ux . The proof is complete by noting that

f ≥ Ay + B̄ x̄ + C̄ v̄ + D̄w̄ = Ay + Bx + Cv + Dw,

where the equality follows from the definition of aggregated matrices (2.10) and the
representation of the fine-scale variables (2.13). ��

Next, we show that the semi-coarse model provides an upper bound.

Proposition 2 The semi-coarsemodel (2.12) is a tighteningof the originalMILP (1.1),
and its solution provides an upper bound on (1.1). The two problems are equivalent if
all optimal profiles from the solution of (1.1) are included in (2.12).

Proof Let z�MILP and z�semi be the optimal value of the original MILP (1.1) and the
semi-coarse model (2.12), respectively. Since any feasible point of the semi-coarse
model (2.12) is a feasible point of the original MILP (1.1), it follows that (2.12) is a
tightening of (1.1) and thus

z�MILP ≤ z�semi .

Let (x�, v�, w�) be the optimal solution ofMILP (1.1).We now extract optimal profiles
(X̄�, V̄ �, W̄ �) corresponding to (x�, v�, w�). Then it follows that there exists a solution
of (2.12) such that

x�
i =

K∑
k=1

x̄�
ik X̄

�
k , v�

i =
K∑

k=1

Ik∑
j=1

v̄�
i jk V̄

�
jk, w�

i =
J∑

j=1

w̄�
i j W̄

�
j , for i = 1, . . . , n.

Moreover, the solution (x̄�, v̄�, w̄�) is feasible in (2.12), and the objective value is the
same as the objective value of (x�, v�, w�). Because (2.12) is a tightening of (1.1), there
cannot be a better solution than (x̄�, v̄�, w̄�) that we constructed. Hence, (x̄�, v̄�, w̄�)

is the optimal solution, and both problems (1.1) and (2.12) are equivalent. ��

2.2 Dual coarsening

We next coarsen the constraints by partitioning them into n groups of size δ and
summing over each group. We define the rows of A as AT

i , and we define a set of
aggregated constraints by taking convex combination over the rows of A within each
group
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10 F. Lin et al.

Â :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ∑
i=1

AT
i λi

δ∑
i=1

AT
δ+iλδ+i

...
δ∑

i=1

AT
δ(n−1)+iλδ(n−1)+i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the non-negative weights λ’s satisfy

λδ(k−1)+i ∈ [0, 1],
δ∑

i=1

λδ(k−1)+i = 1, for k = 1, . . . , n.

We aggregate the constraint matrices B̄, C̄ , and D̄ in a similar way:

ˆ̄B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ∑
i=1

B̄T
i λi

δ∑
i=1

B̄T
δ+iλδ+i

...
δ∑

i=1

B̄T
δ(n−1)+iλδ(n−1)+i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ˆ̄C :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ∑
i=1

C̄T
i λi

δ∑
i=1

C̄T
δ+iλδ+i

...

δ∑
i=1

C̄T
δ(n−1)+iλδ(n−1)+i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ˆ̄D :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ∑
i=1

D̄T
i λi

δ∑
i=1

D̄T
δ+iλδ+i

...
δ∑

i=1

D̄T
δ(n−1)+iλδ(n−1)+i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that we use “bar” notation to denote coarsening in variables and “hat” notation
to denote coarsening in constraints. We coarsen the right-hand side f analogously and
obtain the coarse MILP:
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A two-level approach to large mixed-integer programs. . . 11

minimize
y,x̄,v̄,w̄

aT y + b̄T x̄ + c̄T v̄ + d̄T w̄

subject to Ây + ˆ̄Bx̄ + ˆ̄C v̄ + ˆ̄Dw̄ ≤ f̂
K∑

k=1

x̄ik ≤ 1 , x̄ik ∈ {0, 1}
K∑

k=1

Ik∑
j=1

v̄i jk ≤ 1 ,

Ik∑
j=1

v̄i jk = x̄ik , 0 ≤ v̄i jk ≤ 1

J∑
j=1

w̄i j ≤ 1 , 0 ≤ w̄i j ≤ 1.

(2.14)

It follows easily that (2.14) is a relaxation of (2.12), because we have simply aggre-
gated the constraints. We can use this fact to develop a simple algorithm that solves
(2.12) by solving a sequence of tighter relaxations. The main idea is that after solving
a relaxation (2.14) we can check whether all constraints in (2.12) are satisfied and
add any violated constraints to (2.14). It follows easily that this algorithm is finite,
because after finitely many constraints have been added to (2.14), it is equivalent
to (2.12).

In practice, however, solving a sequence of MILPs (2.14) may not be efficient,
because MILPs do not warm-start. Instead, we solve the LP-relaxation of the coarse
model (2.14) and add violated constraints until all constraints in the LP-relaxation of
the semi-coarse model (2.12) are satisfied. We use the identified constraints as the
initial set of constraints for the MILP coarse model iterations. We summarize this
procedure in Algorithm 1.

Proposition 3 When Algorithm 1 terminates, the solution (yk, x̄ k, v̄k, w̄k) of the
coarse model (2.14) with the set of added constraints Ak

MILP is the solution of the
semi-coarse model (2.12).

Proof Since (yk, x̄ k, v̄k, w̄k) minimizes the objective function of the semi-coarse
model (2.12) and satisfies all constraints (2.12), it is the optimal solution of (2.12).

��
We show in Sect. 4 that our approach in Algorithm 1 is advantageous; in particular,

it significantly reduces the number of MILP re-solves, as opposed to the case without
LP-relaxation as warm-start.

In Appendix 1, we show that if the problem data is periodic with period δ and if
there exists no coupling between periods, then our proposed approach converges in a
single iteration. This observation motivates the use of our approach on problems that
are nearly periodic.

3 Application to cogeneration for buildings

In this section, we apply our two-level approach to the cogeneration problem for build-
ings. Our MILP model (7.1) is adapted from models for cogeneration in commercial
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Phase I: LP Warm-start

Set counter l ← 0 and the set of additional constraintsAl
LP ← ∅ ;

Solve the LP-relaxation of the coarse model (2.14) to get solution (ylLP, x̄ lLP, v̄l , w̄l );

while (ylLP, x̄ lLP, v̄l , w̄l ) is not feasible for the LP-relaxation of the semi-coarse MILP (2.12) do
Find the set of constraints ClLP that are violated in the LP-relaxation of (2.12) and add them to

Al+1
LP ← Al

LP ∪ ClLP ;

Solve the LP-relaxation of (2.14) with the set of added constraints Al+1
LP to get

(yl+1
LP , x̄ l+1

LP , v̄l+1, w̄l+1);
Set l ← l + 1 ;

Phase II: MILP Iterates

Set counter k ← 0 andAk
MILP ← Al

LP;

Solve the coarse MILP (2.14) with additional constraintsAk
MILP identified in Phase I to get solution

(yk , x̄k , v̄k , w̄k );

while (yk , x̄k , v̄k , w̄k ) is not feasible for (2.12) do
Find the set of constraints CkMILP that are violated in (2.12) and add them to

Ak+1
MILP ← Ak

MILP ∪ CkMILP;

Solve the coarse MILP (2.14) with the added constraints Ak+1
MILP to get

(yk+1, x̄k+1, v̄k+1, w̄k+1);
Set k ← k + 1 ;

Algorithm 1: Solve the semi-coarseMILP (2.12) via a sequence of coarseMILPs
(2.14) using the LP-relaxation as warm-start.

buildings [28,30]. In particular, we take linearized models for fuel cells and water
tank storage from [28], and we penalize on/off operations using switching cost as
done in [30]. While the two-level framework described in Sect. 2 applies to generic
MILPs (1.1), the MILP model (7.1) for cogeneration entails several complex con-
straints as discussed in Sect. 3.2. As a result, additional work is required to construct
appropriate semi-coarse and coarse models.

We note that our MILP model (7.1) for the cogeneration problem has the following
features that are not included in existing models. First, our model has a large number
of binary variables, on the order of O(106), in the second stage. This is orders of
magnitude larger than the number of binary variables in [28,30,33,34]. This modeling
feature allows considerably more degrees of freedom for on/off operation during the
life time of new technologies. Second, our model contains three sets of coupling
constraints that (i) couple first- and second-stage binary variables, (ii) couple second-
stage variables for different technologies, and (iii) couple second-stage variables over
a long time horizon (e.g., 10–20 years). The number of coupling constraints is on
the same order of variables, namely, O(106). This makes the problem significantly
harder because it does not lend itself to decomposition techniques such as Lagrangian
relaxation.

Inwhat follows,wedescribe themain characteristics of theMILPmodel in Sect. 3.1,
derive the semi-coarse and coarse models in Sects. 3.2 and 3.3, and discuss profile
generation and selection in Sect. 3.4.
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A two-level approach to large mixed-integer programs. . . 13

3.1 MILP model

The cogeneration problem consists of two components: the investment decision and
the operation planning. The investment decision concerns what new technologies to
purchase, while the operation planning concerns how to dispatch units over a long-
term period (e.g., 10–20 years). We formulate a two-stage MILP, where the first-stage
variables model investment decisions and the second-stage variables model equipment
operations. Note that both the first and second stages contain integer variables. In
particular, on/off operations for new technologies in second-stage are made on an
hourly basis.

Following [28,30,33,34], we consider five technologies: batteries, boilers, solid-
oxide fuel cells (SOFCs), combined heat and power (CHP) SOFCs, and water tank
storage. The selection criterion is based on the installation, operation, maintenance,
fuel consumption, and carbon emission costs, while meeting electricity and heating
demands. The detailed MILP model is given in (7.1).

3.2 Semi-coarse model

We begin by introducing the profiles for variables. We denote profiles by upper-case
letters with the bar notation on top: X̄ jk ∈ Po are the on/off profiles for technol-
ogy j , P̄jkl ∈ Pp are the production profiles associated with X̄ jk , Ūk ∈ Pu are the
profiles for power purchased from the utility, Q̄k ∈ Pq are the heat generation pro-
files from boilers, B̄k, B̄IO

k ∈ Pb are the power storage and input/output profiles for
batteries, and S̄k, S̄outk ∈ Ps are the heat storage and output profiles for water tanks,
where Po,Pp,Pu,Pq ,Pb, and Ps are the corresponding set of profiles. We denote
the hth element of a profile by X̄ jk(h) for h ∈ {1, . . . , δ}. Time-dependent parame-

ters DP
t and DQ

t and discount factors Yt are concatenated into profiles D̄P
d , D̄Q

d , and
Ȳd ∈ R

δ .
As described in Sect. 2, the variables in the original MILPmodel are represented by

using profiles in the coarsenedmodels. In particular, binary variables xi j t are coarsened
to profiles X̄ jk , and continuous variables pi j t , ut , bt , st , soutt , and qt are coarsened to
profiles P̄jkl , Ūk, B̄k, S̄k , and S̄outk , Q̄k ≥ 0, respectively. The coefficients for profiles
are denoted by lower-case letterswith a bar on top; for example, x̄i jdk ∈ {0, 1} indicates
whether profile k is selected on day d for unit i of technology j . As modeled in (9.1d),
nomore than one on/off profile can be selected for fixed i, j , and d. This, in conjunction
with binary elements of X̄ jk , results in binary-valued xi j t . Similarly, non-negative
profiles P̄jkl , Ūk, B̄k, S̄k, S̄outk , and Q̄k ≥ 0 and their non-negative coefficients in
(9.1g), (9.1q), and (9.1r) result in non-negative pi j t , ut , bt , st , soutt , and qt .

We next turn to constraints that do not couple variables in time, namely, (7.1c),
(7.1e), (7.1f), (7.1h), (7.1k), (7.1l), (7.1o), and (7.1p). The profile representation for
these constraints is straightforward; one simply substitutes the summation of profiles
as shown in (9.1c), (9.1e), (9.1f), (9.1h), (9.1k), (9.1l), (9.1o), and (9.1p), respectively.
Note that all inequalities in (9.1) are elementwise inequalities. We do not include the
production constraint (7.1d) in the semi-coarse model. Instead, we require that the
production profile P̄jkl associated with the on/off profile X̄ jk satisfy
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Rmin
j X̄ jk ≤ P̄jkl ≤ Rmax

j X̄ jk . (3.1)

This approach is justified because (7.1d) follows by construction due to the convex
combination of coefficients for production profiles in (9.1g). By an analogous argu-
ment, soutt ≤ st in (7.1o) is a direct consequence of the following condition imposed
on profiles:

S̄outk ≤ S̄k . (3.2)

We next discuss how to coarsen variables that are coupled over time periods. The
boundary conditions (7.1j) and (7.1n) can be expressed as (9.1j) and (9.1n). The max-
imum power purchased constraint (7.1h) can be rewritten as (9.1h), where 1 denotes
the vector of all ones with length δ. We now turn to switching and storage constraints
(7.1g), (7.1i), and (7.1m), whose profile representation needs additional notation.
Given an on/off profile X̄ jk ∈ {0, 1}δ , we can construct the associated switching
profile

W̄ jk(h) = |X̄ jk(h + 1) − X̄ jk(h)|. (3.3)

Then the switching cost can be included in the objective function in (9.1). To deal
with the battery storage constraint (7.1i) that couples bt and bIOt over the horizon T ,
we require that the pair of profiles (B̄k , B̄IO

k ) satisfy

B̄k(h + 1) = (1 − LP )B̄k(h) + B̄IO
k (h), h = 1, . . . , δ − 1. (3.4)

We assign the same coefficient b̄dk to both sets of profiles B̄k and B̄IO
k throughout (9.1).

It follows that (7.1i) is satisfied except for hours between profiles, namely, t = dδ

for d < |D|. Therefore, we introduce constraint (9.1i) to guarantee that (7.1i) holds
for t = dδ for d < |D|. We will show in Sect. 3.4 how to generate profiles that
satisfy (3.1), (3.2), and (3.4). The heat storage constraint (7.1m) for j = chp can be
expressed as

∑
k∈Ps

s̄dk
{[
Sδ − (1 − LQ)Iδ

]
S̄k + S̄outk

}

+
∑
k∈Ps

s̄(d+1)k Eδ S̄k ≤ (EQ
j /EP

j )
∑
i,k,l

p̄i jdkl P̄jkl , d < |D|,

where Iδ ∈ R
δ×δ is the identity matrix, Eδ1 ∈ R

δ×δ is a matrix with 1 in the (δ, 1)
entry, and Sδ ∈ R

δ×δ is a Toeplitz matrix with only nonzero elements being 1 at the
first upper-subdiagonal.

3.3 Coarse model

We next turn to the coarse model. Note that constraints in the semi-coarse model
(9.1) are elementwise equalities or inequalities involving daily profiles. We aggregate
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A two-level approach to large mixed-integer programs. . . 15

hourly constraints by taking a weighted sum of the elements of daily profiles. Using
the hat notation on the top to denote the elementwise summation of profiles, we
coarsen δ hourly constraints into a single constraint. For example, the hourly demand
constraint (9.1c) is replaced by the daily demand constraint (10.1c). Similarly, the
maximum hourly power demand (9.1h) is aggregated into the maximum daily demand
(10.1h). The symmetric breaking constraint (10.1f) has the interpretation that the
number of times unit i + 1 is turned on is no greater than the number of times unit i is
turned on in day d. The capacity constraints for technologies (10.1e), (10.1k), (10.1o),
and (10.1p) imply that the daily power/heat output is bounded by the daily capacity
of the technology units purchased at the first stage. Since (9.1i), (9.1j), and (9.1n) are
scalar constraints themselves, no aggregation is applied to (10.1i), (10.1j), and (10.1n)
in the coarse model. Also, since the coefficients of profiles are the same for both the
semi-coarse and coarse models, (10.1d), (10.1g), and (10.1q) stay the same as (9.1d),
(9.1g), and (9.1r) in the semi-coarse model.

3.4 Profile generation and selection

Recall that the on/off profiles X̄ jk must have binary elements and the profiles P̄jkl ,
Q̄k , Ūk , B̄k , S̄k , and S̄outk must have non-negative elements. In addition, we impose
constraints (3.1), (3.2), and (3.4) in formulating the semi-coarse model in Sect. 3.2.
In this section, we discuss how to generate valid profiles, and we provide suggestions
for profile selections.

One approach to generating profiles that satisfy the above constraints is as follows.
We solve a number of small instances of the original MILP (7.1), take snapshots of
the second-stage solutions, and extract profiles from these snapshots. For example,
consider a four-day MILP (7.1); that is, the time horizon in the second-stage problem
has only four days. Solving such a four-day model, we have four snapshots of daily
operation and production; in particular, we have four sets of on/off profiles for xi j t ∈
{0, 1} and four sets of profiles pi j t , ut , bt , st , soutt , and q jt ≥ 0. We will show in
Proposition 1 that these are valid profiles for the semi-coarse model (9.1).

The remaining question is how to choose the short-horizon MILPs. Our objective
is to generate a rich set of profiles that are representative of the optimal solutions for
a long-horizon MILP (7.1). In what follows, we develop a moving-horizon approach.
Given a long-horizon MILP, the idea is to solve MILPs over a short window, roll the
window forward, and re-solve the new MILP until the window reaches the end of
the horizon; see Fig. 2 for an illustration. We summarize this approach and provide
additional details in Algorithm 2.

Lemma 1 The moving-horizon method described in Algorithm 2 generates non-
negative profiles {P̄jkl , Q̄k , Ūk , B̄k , S̄k , S̄outk } ∈ R

δ+ and binary profiles {X̄ jk, W̄ jk} ∈
{0, 1}δ . Moreover, the profile pairs {X̄ jk, P̄jkl}, {S̄outk , S̄k}, and {B̄k, B̄IO

k } satisfy (3.1),
(3.2), and (3.4), respectively.

Proof Non-negativity of the profiles {P̄jkl , Q̄k , Ūk , B̄k , S̄k , S̄outk } follows from the
fact that the second-stage solutions {pi j t , qt , ut , bt , st , soutt } of the original MILP
model (7.1) are non-negative. Similarly, X̄ jk ∈ {0, 1}δ follows from xi j t ∈ {0, 1}; and
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Fig. 2 Illustration of the moving horizon method in Algorithm 2

Data: The parameters for MILP (7.1) with a horizon of D days, and a window of w days with
w � D.

Result: Profiles {P̄jkl , Q̄k , Ūk , B̄k , S̄k , S̄
out
k } ∈ R

δ+, B̄IO
k ∈ R

δ , and {X̄ jk , W̄ jk } ∈ {0, 1}δ .
Set k ← 0, W = {1, . . . , δw},R = {1, . . . , δ};
while k + w ≤ D do

Solve MILP (7.1) in the current window t ∈ W;

Take snapshots of solutions {xi j t , pi j t , qt , ut , bt , bIOt , st , soutt } in t ∈ R;

Extract profiles {X̄ jk , P̄jkl , Q̄k , Ūk , B̄k , B̄
IO
k , S̄k , S̄

out
k }, and W̄ jk ∈ {0, 1}δ using (3.3);

Roll the window forward by setting k ← k + 1;
if k + w < D then Set W = {δk + 1, . . . , δ(k + w)},R = {δk + 1, . . . , δ(k + 1)};
if k + w = D then Set W = R = {δk + 1, . . . , δH}.

Algorithm 2:Moving horizon method for profile generation.

W̄ jk , constructed from (3.3), is elementwise binary. Since the production variable pi j t
and the on/off variable xi j t satisfy (7.1d), it follows that {X̄ jk, P̄jkl} satisfies (3.1).
Since the power storage bt and power input/output bIOt satisfy (7.1i) and since the heat
storage st and heat output soutt satisfy (7.1m), we conclude that (3.2) and (3.4) follow
by construction. ��

Algorithm 2 potentially generates a huge number of profiles; hence, solving (9.1)
and (10.1) with all generated profiles may be prohibitive. Instead, we select on/off
profiles X̄ jk that appear most frequently in the generated profile pool. Since the aim
of the two-level approach is to reduce the problem size, it is desired that the number
of on/off profiles k is much smaller than the length of profiles δ (e.g., k ≈ δ/10). For
the production profiles P̄jkl associated with each X̄ jk , we choose production profiles
that have the minimum or maximum total production

∑δ
h=1 P̄jkl(h). These extreme

profiles provide an envelope of other profiles; thus, their convex combination (9.1g)
provides a good range of profiles for selection. Similarly, profiles with the minimum
and maximum sum of absolute values are chosen for the battery storage B̄k , the heat
storage S̄k , the battery input/output B̄IO

k , and the heat output S̄outk . Further, profiles for
the power purchased from the utility Ūk and the heat output from the boiler Q̄k are
uniformly sampled over periods of the entire horizon.
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A two-level approach to large mixed-integer programs. . . 17

Alternatively, we also employ a k-means clustering algorithm in order to cluster
profiles. Given a prespecified k number of clusters, this algorithm assigns profiles
to one of k clusters defined by the centroids [24]. Since demand and pricing data
for buildings tend to differ significantly in winters and summers, we set k = 2 and
choose one profile that has the minimum least-squares distance to the centroids. In
our numerical experiments in Sect. 4, we apply a k-means algorithm to the boiler
output Q̄k , power purchased from the utility Ūk , heat storage output S̄outk , and battery
power output B̄IO

k profiles. The clustering approach achieves better performance in
the objective function than does simple sampling heuristics for profile selection.

4 Numerical results and case studies

In this section, we illustrate the effectiveness of our two-level approach using five
different building examples. We demonstrate that both the semi-coarse and the coarse
models allow us to find good approximate solutions in a fraction of the time compared
with the full MILP model. The two-level approach also scales to large problems that
are beyond the scope of state-of-the-art commercial MILP solvers.

4.1 Generation of problem instances

WeuseEnergyPlus 8.4 [8,9] to generate yearly electricity and heating demands for five
types of buildings, namely, a secondary school, a supermarket, a hospital, a stand-alone
retail, and a full-service restaurant, located in Chicago, Illinois. Figure 3 shows the
electricity demand of the secondary school and the restaurant in a year and in Novem-
ber. Note that the demand data shows cyclic structure in days, weeks, and months,
which is a desired problem characteristic for our two-level approach as discussed in
Appendix 1. To generate multiyear demands, we take 1-year demand and perturb with
a zero mean unit variance Gaussian noise whose magnitude is 2 % proportional to the
magnitude of demands. We follow the pricing structure in [34]: The electricity price
is $0.12 per kWh and the gas price is $0.049 per kWh. The peak demand charge is
$14.2 per kW for summer months (from June to September) and $11.36 per kW for
winter months (from October to May). For multiyear pricing, we follow the history
data from U.S. Energy Information Administration [12] and increase the electricity
price 3 % annually.

4.2 Numerical experiment setup

Numerical experiments are performed on a workstation with 32 GB memory and two
Intel E5430Xeon 4-core 2.66GHzCPUs.We implement our algorithms inAMPL [15]
to take advantage of AMPL’s compact modeling syntax in profile generation, storage,
andmanagement.We use CPLEX version 12.6.1.0 as theMIP solver in AMPL.We set
a 3-h time limit and 1% relative gap as the stopping criteria for CPLEX. Our AMPL
codes are made publicly available at http://www.mcs.anl.gov/~fulin/codes/DistrGen.
zip.
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Fig. 3 Electricity demand generated by EnergyPlus for a secondary school and a full-service restaurant
located in Chicago. a Electricity demand for a secondary school in Chicago in a year. b Electricity demand
for a secondary school in Chicago in November. The school is closed on Thanksgiving Day. c Electricity
demand for a full-service restaurant in Chicago in a year. d Electricity demand for a full-service restaurant
in Chicago in November

4.3 Solutions of the full model with short second-stage horizons

Table 1 shows the problem size of the fullMILPmodel (7.1) as a function of the number
of days in the second stage. The number of binary variables, continuous variables, and
constraints grows linearly with the number of days in the second-stage problem. The
one-year model has 1.05×105 binary variables, 2.71×105 continuous variables, and
6.11 × 105 constraints.
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Table 1 Problem size of the
MILP model (7.1). The number
of binary variables, continuous
variables, and constraints grows
linearly with the number of days

Days Binary Continuous Constraint

4 1152 2994 6698

7 2016 5226 11,738

14 4032 10,434 23,498

28 8064 20,850 47,018

84 24,192 62,514 1.41 × 105

364 1.05 × 105 2.71 × 105 6.11 × 105

Table 2 Solutions of the MILP model (7.1) for Restaurant using CPLEX

Days Time (s) Nodes LP-iter Bat Boil Chp Pow Stor

4 5.81e+01 1050 1.30e+05 2 1 1 1 1

7 1.28e+02 2307 2.41e+05 2 1 1 1 1

14 3.21e+02 3883 4.92e+05 2 1 1 1 2

28 3.50e+03 35836 2.22e+06 2 1 1 1 1

84a 1.06e+04 13252 3.99e+06 3 1 1 1 1

a The 84-day model reaches the 3-h limit

Table 2 shows the solutions of small problems for Restaurant using CPLEX. The
solution time in seconds, the number of nodes, and the total number of simplex iter-
ations for the branch-and-cut algorithm grow exponentially with the number of days
in the second stage. The first-stage solutions for batteries (Bat), boilers (Boil), CHP-
SOFC (CHP), Power SOFC (Pow), andwater tank storage (Stor) varywith the problem
size. Solving the 84-day example is beyond the capabilities of CPLEX on the desig-
natedworkstation.After reaching the 3-h time limit, the relativeMIPgap for the 84-day
model is still greater than 2.49%. Removing the time limit does not help because then
the branch-and-bound tree generated byCPLEXwill consume all allowable disk space
of 100 GB on the workstation. Our experience indicates that the full MILPmodel (7.1)
probably can not be solved over a ten-year time horizon. Similar observations can be
made for other building examples. Figure 4 shows that for all five buildings, both the
number of simplex iterations and the amount of solution time increase exponentially
with the number of days in the second stage.

We point out that different buildings show different levels of difficulty for theMILP
model (7.1). As we see in Fig. 4, the five buildings differ by orders of magnitude in
solution time and the number of simplex iterations. Similarly, the number of nodes in
the branch-and-bound trees varies significantly over different buildings. For example,
the 28-day model requires 35,836 nodes for Restaurant as opposed to 360 nodes for
School. Additional numerical results are summarized in Table 7 in Appendix 3.

4.4 Solutions of semi-coarse model with long second-stage horizons

Figure 5 compares the problem size for the full model (7.1), the semi-coarse
model (9.1), and the coarse model (10.1) over a 10-year horizon in the second stage.

123



20 F. Lin et al.

4 7 14 28 84
10−1

100

101

102

103

104

Days

T
im

e
(s

ec
)

4 7 14 28 84

104

105

106

107

Days

L
P

It
er

at
io

ns

School SuperMarket Restaurant Retail Hospital

Fig. 4 Exponential increase of the amount of time and the number of simplex iterations with the number
of days in the second stage of the full MILP model (7.1). The number of simplex iterations drops for the
84-day restaurant example because CPLEX reaches the 3-h time limit
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Fig. 5 Problem size for the fullMILPmodel (7.1), the semi-coarsemodel (9.1), and the coarsemodel (10.1)

We see a roughly 8 times reduction in the number of binary variables and 12 times
reduction in the number of continuous variables. The reason is that for each day with
24 h, we pick the three most frequent on/off profiles for binary variables and two
cluster centers from the k-means clustering algorithm for continuous variables. While
increasing the number of profiles improves the quality of the coarsened models (9.1)
and (10.1), the resulting computational effort increases significantly. For 10-year hori-
zon problems, we find that the two-level approach strikes a good balance between
solution quality and computational time with a small number of profiles (typically 2
- 3). Note the large reduction in the number of constraints from the full model to the
semi-coarse model. This is mainly because we have embedded the min/max produc-
tion constraints (7.1d) and the switching constraints (7.1g) in the profile generation;
see Sect. 3.2. In particular, for a 10-year model with 12 fuel cell units, there is a reduc-
tion of 12 × 87600 × 4 ≈ 4.2 × 106 constraints (i.e., a 67% reduction in the number
of constraints.)

Table 3 shows the solution information for the semi-coarse model over a 10-year
horizon. As opposed to the exponential increase for the full model, the solution time,
the number of nodes, and the number of simplex iterations for the semi-coarse model
grow more slowly.
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Table 3 Solution of the semi-coarse model (9.1) for restaurant

Days Time (s) Nodes LP-iter Bat Boil Chp Pow Stor

364 134 487 62,200 0 1 1 1 1

728 404 390 1.16 × 105 0 1 1 1 1

1456 1560 508 1.66 × 105 0 1 1 2 1

2184 9510 3015 1.29 × 105 0 1 3 1 1

2912 8090 727 5.71 × 105 0 1 1 1 1

3640 9950 515 4.6 × 105 0 1 0 0 1
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Fig. 6 Solution time and number of simplex iterations for the semi-coarse model over a 10-year horizon

Figure 6 shows that both the number of simplex iterations and the amount of solution
time aremore scalable for the semi-coarsemodels. For example, the number of simplex
iterations for 10-year semi-coarse models is on the same order as that of the 84-day
full model. The growth of computational effort is considerably slower than that of
the full model shown in Fig. 4. The number of simplex iterations drops for 6-, 8-,
and 10-year problems for SuperMarket and 8- and 10-year problems for Retail and
Restaurant because CPLEX reaches the 3-h time limit. The numerical results for the
semi-coarse model are summarized in Table 8 in Appendix 3.

4.5 Solutions of the coarse model with long second-stage horizons

As shown in Fig. 5, the semi-coarse and coarse models have the same number of
binary and continuous variables, and the semi-coarse model has about twice as many
constraints as the coarse model. Therefore, one expects that both models can be solved
with a similar amount of computational effort in terms of time and simplex iterations.
Since we solve a sequence of coarse models, the total computational effort often
exceeds that of solving the semi-coarse model. Because of the LP warm-start phase
in Algorithm 1, however, we find that the first iterate of the coarse MILPs provides
remarkably good approximate solutions of the semi-coarse model.
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Table 4 Problem size of MILP iterates for a 6-year model of Restaurant. The first iterate accounts for
91.5% of computational time, and the relative gap between the objective value defined in (4.1) is less than
0.72%

Iter Binary Continuous Constraint Objective value

1 78,624 179,171 314,999 7,498,287.39

2 78,624 179,171 315,563 7,552,429.85

3 78,624 179,171 315,654 7,552,430.06

Iter Time (s) Nodes LP-iter Bat Boil Chp Pow Stor

1 6,112.33 7,492 1.06 × 106 0 1 1 1 1

2 283.44 0 1.12 × 105 0 1 1 1 1

3 284.89 0 1.16 × 105 0 1 1 1 1

To illustrate this point, we show in Table 4 the solution history of the MILP phase
in Algorithm 1. The MILP phase converges in three coarse MILP iterates, and the first
iterate requires much more computational effort than other iterates; in particular, it
accounts for 91.5%of total computational time. The relative gap of the objective value

μ = (ObjValsemi − ObjValcoar)/ObjValsemi (4.1)

between the semi-coarse model and the coarse model at the first iterate is less than
0.72%. Numerical results for the first iterate of coarse MILPs are summarized in
Table 9 in Appendix 3.

4.6 Effect of the LP warm-start

Figure 7 shows the number of constraints and the computational time during the LP
warm-start phase.A large number of constraints are added in the first few (3–5) iterates,
resulting inmore computation time at the beginning of the algorithm. As the LPwarm-
start phase progresses, fewer constraints are violated, and each LP-relaxation becomes
easier to solve because of the warm-start. The amount of time in the LP warm-start
phase is a fraction of that with one MILP re-solve in the MILP phase.

We next compare the MILP phase of Algorithm 1 with and without the LP warm-
start. Figure 8 shows the number of MILP re-solves and the computation time for both
cases. With the LP warm-start, Algorithm 1 takes 5 MILP re-solves, as opposed to 15
MILP re-solves without the LP warm-start. Moreover, the MILP re-solves with LP
warm-start is up to 20 times faster than MILPs without the LP warm-start. We note
that the improvement of the LP warm-start phase is observed in all building examples.

4.7 Solution quality of the semi-coarse model

The solution quality of the semi-coarse model is determined by the number of pro-
files for binary and continuous variables in the primal coarsening step (2.13). As
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Fig. 7 Number of constraints (left panel) and the solution time (right panel) in the LP warm-start phase
for the one-year retail example
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Fig. 8 Effect of LP warm-start for the one-year retail example. Algorithm 1 with LP warm-start phase
(open circle) converges with fewer MILP iterations than without LP warm-start (filled circle). While more
constraints are added to MILPs with LP warm-start (left panel), each MILP iterate is up to 20 times faster
than MILPs without LP warm-start (right panel)

discussed in Sect. 2.1, a larger number of profiles imply a less tightening semi-coarse
model. Table 5 shows the problem size and the objective value of the semi-coarse
model for School with the 84-day horizon. As the number of on/off profiles, K ,
grows, the objective value decreases monotonically. Here, the number of profiles for
the continuous variables is set to be four for each on/off profile; that is, Ik = 4
for k = 1, . . . , K in (2.4), and J = 4K in (2.5). When K = 20, the relative dif-
ference between the objective value of the semi-coarse model and the full model is
(ObjValsemi − ObjValfull)/ObjValfull = 18%. Table 10 in Appendix 3 shows a more
detailed comparison for five buildings between the full model and the semi-coarse
model with K = 5 for 28, 56, and 84 days.1

We next examine the correlation between the solution quality of the semi-coarse
model and the periodicity of the demand data. We perform the discrete Fourier trans-

1 For the full model, the longest horizon that can be solved is 84 days.
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Table 5 Solution quality and problem size of the semi-coarse model versus the number of on/off profiles
K for School with 84-day horizon

K Binary Continuous Constraints ObjVal Ratio

3 3024 9258 42,758 3.85 × 107 1.77

5 5040 15,978 44,774 3.71 × 107 1.71

10 8820 30,258 48,554 3.57 × 107 1.64

15 11,760 42,858 51,494 3.48 × 107 1.6

20 12,936 51,930 52,670 2.57 × 107 1.18

Full 24,192 62,514 1.41 × 105 2.18 × 107 1

The ratio between the objective value of the semi-coarse model and the full model is shown in the last
column. The last row shows the result for the full model

form of the yearly electricity demand, dω+1 = ∑N−1
t=0 e

−2π jtω
N Dt+1, where j := √−1

and ω = 0, . . . , N − 1 with N = 24 × 364 = 8736. Since the semi-coarse model
employs daily profiles with δ = 24, we are interested in those frequencies that corre-
spond to periods with integer multiples of δ in time. Let Ω := {ω ∈ {0, . . . , N − 1} |
mod (ω̄, ω) = 0}, where ω̄ = 364 is the frequency corresponding to daily profiles
with δ = 24, or specifically Ω = {0, 1, 2, . . . , 182, 364}. We compute the spectral
density at desired frequencies Ω divided by the total spectral density:

φ :=
( ∑

ω∈Ω

|dω|2
)(

N−1∑
ω=0

|dω|2
)−1

. (4.2)

Thus, a higher density ratio φ implies a higher degree of data periodicity with respect
to daily profiles.

Table 6 shows the spectral density ratio of buildings in a descending order. The
Hospital has the highest density ratio, 0.99011, trailed by SuperMarket, Restaurant,
School, and Retail with the lowest ratio, 0.96787. Table 6 also shows the objective
value ratio between the full model and the semi-coarse model for 364 days. Here,
we solve the full model with fixed first-stage solutions obtained from the semi-coarse
model. The ranking of the density ratio correlates well with the solution quality of
the semi-coarse model; in particular, a higher density ratio corresponds to a larger
objective value ratio between the full model and the semi-coarse model. While we
do not take into account coupling between time periods, numerical results in Table 6
suggest that periodic demand datawith periods being integermultiple of δ are a desired
problem characteristic for our two-level approach.

4.8 First-stage solutions

Since the first-stage solutions are of primary importance, we next compare them from
the full MILP, the semi-coarse, and the coarse models. In Table 7, we see that the
investment decisions at the first stage vary significantly with respect to the horizon
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Table 6 Correlation between
spectral density ratio φ in (4.2)
of yearly demands and the
solution quality of semi-coarse
models

Building Density ratio ObjValfull/ObjValsemi

Hospital 0.99011 0.90334

SuperMarket 0.98985 0.88315

Restaurant 0.97579 0.65701

School 0.97108 0.63695

Retail 0.96787 0.56018
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Fig. 9 Relative difference between the objective value of the full model with and without fixing the first-
stage solutions from the semi-coarse model

length of the second-stage problem. (For the School example, the number of boilers
jumps from 1 unit in the 4-daymodel to 8 units in the 28-daymodel, and the number of
batteries drops from 4 units in the 28-daymodel to 1 unit in the 4-daymodel.) Thus, the
first-stage solutions from a short-horizon problem are suboptimal for a long-horizon
problem. This implies that one must solve long-horizon MILPs (7.1) as done for the
semi-coarse and coarse models. In Table 8, the first-stage solutions are less sensitive
to the horizon length at the second stage. Similarly, the first-stage solutions at the first
iterate of the coarse MILPs are less sensitive to the horizon length; see Table 9.

To evaluate the solution quality, we re-solve the full model by fixing the first-stage
solutions from the semi-coarse model. Figure 9 shows the relative difference of the
objective value (i.e., the total cost fromboth thefirst and second stages) between the full
model with and without fixing the first-stage solutions for five buildings with 28, 56,
and 84 days in the second stage.2 Note that the quality of first-stage solutions from the
semi-coarse model varies with the building type. For SuperMarket and Restaurant, the
relative difference of the objective value, ν = (ObjValFix−ObjValNoFix)/ObjValNoFix,
is ν ≤ 3.8%, while ν ≤ 2.7% for Retail and ν ≤ 1% for School and Hospital.
In other words, the first-stage solutions from the semi-coarse model is within 1%
suboptimal for School and Hospital and is within 3.8% suboptimal for SuperMarket
and Restaurant.

The difference of the solution quality between buildings can be understood by
examining the number of cogeneration units and other numerical results summarized

2 The longest horizon that the full model can be solved for without fixing the first-stage solution is 84 days.
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in Table 11. Note that the number of cogeneration units for Restaurant is much smaller
than that for School; in particular, 3 battery units, 1 boiler unit, 1 CHP-SOFC unit, 1
Power-SOFC unit, and 1 storage unit for Restaurant, as opposed to 3 battery units, 8
boiler units, 5 CHP-SOFC units, 7 Power-SOFC units, and 8 storage units for School.
The reason is that the electricity and heating demands of Restaurant, on average,
are 13% of those of School; see Fig. 3. Therefore, a small deviation in the first-
stage solution for Restaurant has a bigger impact, and hence a larger ν, than for
School.

5 Conclusions

We study two-stage MILPs with more than 1 million binary variables in the second-
stage problem. We develop a two-level approach by constructing semi-coarse models
(coarsened with respect to variables) and coarse models (coarsened in both variables
and constraints). We show that the semi-coarse model is guaranteed to provide a
feasible solution of the original MILP and hence results in an upper bound on the
optimal solution. We solve a sequence of coarse MILPs with aggregated constraints
that converges to the same upper bound with a finite number of steps. Furthermore, we
take advantage of the LP warm-start to reduce the number of MILP re-solves. Under
the assumption of periodic problem data with no coupling between time periods, we
show that the semi-coarse model provides the optimal solution to the original fine
model. Under the additional assumption of a full-rank non-negative weight matrix in
the constraint aggregation, we show that the solution of the coarse model is feasible
to the semi-coarse model.

We apply our approach to the cogeneration problem for commercial buildings.
We demonstrate the effectiveness of the two-level approach using building examples
with simulation data. In particular, the two-level approach allows us to obtain good
approximate solutions at a fraction of the time required for solving the originalMILPs.
Furthermore, we show that the two-level approach scales to large problems that are
beyond the capacity of state-of-the-art commercial solvers.

A number of extensions are of interest in our future work. First, how should one add
new profiles in the coarsened models? Currently, we select a number of prespecified
profiles and fix them throughout the MILP re-solves. Since the solution quality of the
coarsened models is determined by the number of profiles, it is of interest to add new
profiles dynamically that are most promising in reducing the objective value. It seems
that the reduced cost associated with profiles can be obtained by solving appropriate
pricing problems like those in the column generation approach [4]. Further, it is also of
interest to consider dynamic aggregations of constraints as new profiles are included.
For set-partitioning constraints, a similar approach has been developed in the column
generation framework [11]. We plan to explore this line of research.

Second, how can one obtain lower bounds on the optimal solution in the two-level
framework? Since the coarse model is a relaxation of the semi-coarse model, which
itself is a tightening of the fullmodel, the coarsemodel is not a relaxation of the original
MILP. While relaxing binary variables in the original MILP results in a lower bound,
our numerical results indicate a sizable gap between this lower bound and the optimal
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solution. It is an open problem how to generate lower bounds using appropriate coarse
MILPs.

Furthermore, advanced multilevel approaches for PDEs typically require several
sweeps of fine/coarse levels in order to achieve accurate solutions [13]. It may be ben-
eficial to iterate between solving coarse models to optimality and solving “partially”
the fine model until a prespecified accuracy for the solution is achieved. We intend to
extend our two-level framework in this direction.
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number DE-AC02-06CH11357. We thank the reviewers for their helpful comments. Fu Lin thanks Dr.
Ralph Muehleisen for useful discussions on EnergyPlus.

Appendix 1: Periodic solutions

In this appendix, we show that the semi-coarse model is equivalent to the fine model
under the idealistic assumption that the problem data is periodic and there is no cou-
pling between time periods. Moreover, we show that the coarse model is equivalent to
the semi-coarse model if the non-negative weights in the convex combination of con-
straints form a full rank matrix. This equivalence motivates the use of our algorithm
on problems that have “nearly” periodic data.

Let us consider periodic coefficients in the objective function and constraints; that
is, we can divide the second-stage data into n = N/δ identical parts,

b =
⎛
⎜⎝
b
...

b

⎞
⎟⎠ , c =

⎛
⎜⎝
c
...

c

⎞
⎟⎠ , d =

⎛
⎜⎝
d
...

d

⎞
⎟⎠ , f =

⎛
⎜⎝
f
...

f

⎞
⎟⎠ , A =

⎛
⎜⎝
A
...

A

⎞
⎟⎠ , (6.1)

where b, c,d ∈ R
δ , f ∈ R

γ , and A ∈ R
γ×m . Similarly, we assume (without loss of

generality) that the first-stage decisions impact all n time periods identically. We also
assume that the second-stage matrices B, C , and D are block diagonal:

B =
⎡
⎢⎣
B

. . .

B

⎤
⎥⎦ , C =

⎡
⎢⎣
C

. . .

C

⎤
⎥⎦ , D =

⎡
⎢⎣
D

. . .

D

⎤
⎥⎦ , (6.2)

where B,C,D ∈ R
γ×δ with N = nδ and M = nγ .

Lemma 2 Under the periodic data assumption (6.1)–(6.2), there exists an optimal
solution to (1.1) that satisfies

x� = x�
i , v� = v�

i , w� = w�
i , for i = 1, . . . , n. (6.3)

Proof Suppose that (x�, v�, w�) is an optimal solution that does not satisfy (6.3).
That is, there exist (x�

q , v
�
q ,w

�
q) = (x�

p, v
�
p,w

�
p) such that bT x�

q + cT v�
q + dTw�

q ≤
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bT x�
p + cT v�

p + dTw�
p and Ay + Bxi + Cvi + Dwi ≤ f for i = p, q. Then one

can construct another solution by replacing the set of variables (x�
p, v

�
p,w

�
p) with

(x�
q , v

�
q ,w

�
q), and repeat this process until the periodic solution (6.3) is obtained. ��

From Lemma 2, it follows that the periodic version of (1.1) can be equivalently
written as

minimize
v,w,x,y

aT y + n(bT x + cT v + dTw)

subject to Ay + Bx + Cv + Dw ≤ f

y ∈ Z
m+, x ∈ {0, 1}δ

v ∈ R
δ, Lx ≤ v ≤ Ux

w ∈ R
δ, w ≥ 0.

(6.4)

In other words, it suffices to solve the periodic version of (1.1) with the single period
problem (6.4) under condition (6.1)–(6.2), that is, if the data is periodic and if there is
no coupling between time periods.

In our algorithm, we obtain the δ-profiles in (2.9) for X̄ , V̄ , W̄ by solving the
following short-horizon problem:

minimize
vi ,wi ,xi ,y

aT y + n

h

( ∑
i∈D

(bT xi + cT vi + dTwi )

)

subject to Ay + Bxi + Cvi + Dwi ≤ f, i ∈ D
y ∈ Z

m+, xi ∈ {0, 1}δ, i ∈ D
vi ∈ R

δ, Lxi ≤ vi ≤ Uxi , i ∈ D
wi ∈ R

δ, wi ≥ 0, i ∈ D,

(6.5)

where D is a small set of periods and h is the number of periods in D. (A more
detailed description of the moving-horizon approach is provided in Sect. 3.4.) Similar
to Lemma 2, we can show that the solution of (6.5) is equivalent to (6.4), independent
of the choice of D.

We do not assume uniqueness of the periodic solution. However, since (6.4)
and (6.5) are equivalent, we can assume that any solver returns the same solution
no matter how we choose D. Hence, we will assume without loss of generality that a
single periodic profile, (X̄ , V̄ , W̄ ), is used for the semi-coarse model. By construction,
we have

X̄ ∈ {0, 1}δ, L X̄ ≤ V̄ ≤ U X̄ , W̄ ≥ 0, and Ay + BX̄ + CV̄ + DW̄ ≤ f .

(6.6)
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Substituting xi = xi X̄ , vi = vi V̄ , and wi = wi W̄ into the periodic version of (1.1)
yields the semi-coarse model

minimize
v,w,x,y

aT y +
n∑

i=1

(
xibT X̄ + vicT V̄ + widT W̄

)

subject to Ay + (xiBX̄ + viCV̄ + wiDW̄
) ≤ f, i = 1, . . . , n

y ∈ Z
m+, xi ∈ {0, 1}, vi = xi , wi ∈ [0, 1], i = 1, . . . , n.

(6.7)

Proposition 4 The solution of the semi-coarse model (6.7) is the optimal solution
of (6.4) under the periodic data assumption (6.1)–(6.2).

Proof Since (X̄ , V̄ , W̄ ) is an optimal profile, that is, the periodic solution of the short-
horizon problem (6.5), then setting xi = vi = wi = 1 in (6.7) in conjunctionwith (6.6)
reduces the semi-coarse model to the short-horizon problem (6.5) with the optimal
profile (X̄ , V̄ , W̄ ), which is equivalent to (6.4).

We next consider a convex combination of (row) constraints

Ay + xiBX̄ + viCV̄ + wiDW̄ ≤ f, i = 1, . . . , n (6.8)

to define the coarse model constraints

λT
i Ay + xiλ

T
i BX̄ + viλ

T
i CV̄ + wiλ

T
i DW̄ ≤ λT

i f, i = 1, . . . , n (6.9)

where the non-negative weights λi ∈ R
δ sum up to 1 for i = 1, . . . , n. We can easily

show that if λi in (6.9) is such that Λ = [λ1 · · · λn] ∈ R
δ×n+ is a full row-rank matrix,

then the set of aggregated constraints (6.9) is equivalent to (6.8). This observation
leads to the following result.

Proposition 5 Let the non-negative weights λ’s be such that [λ1, . . . , λn] has full row
rank. Then the solution of the coarse model is feasible (hence optimal) to the solution
of the semi-coarse model (6.7):

minimize
v,w,x,y

aT y +
n∑

i=1

(
xibT X̄ + vicT V̄ + widT W̄

)

subject to Ay + xiλ
T
i BX̄ + viλ

T
i CV̄ + wiλ

T
i DW̄ ≤ λT

i f, i = 1, . . . , n

y ∈ Z
m+, xi ∈ {0, 1}, vi = xi , wi ∈ [0, 1], i = 1, . . . , n.

(6.10)

Thus, we have shown that if the data is periodic as in (6.1)–(6.2), then the full,
semi-coarse, and coarse models are equivalent. Hence, our approach converges in one
iteration. Our argument has assumed that there is no coupling between successive
periods, resulting in a block-diagonal structure of B, C , and D. In the application of
the cogeneration problem in Sect. 3, there exists coupling in time, for example, in the
form of storage in the water tanks. In practice, the commercial buildings we consider
indeed have periodic diurnal patterns, and hence coupling between successive days is
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relatively weak. We believe that our approach can be useful in cases where interdaily
coupling is small.

Appendix 2: Full model for the cogeneration problem

For the sake of completeness, we describe here our cogeneration model.

Index sets. We use calligraphic upper-case letters for all sets. The set of tech-
nologies: batteries, boilers, CHP-SOFC, power SOFC, and water tank storage is
denoted by J . We use batt, boil, pow, chp, and stor for shortcuts. The subset
Jg = {power SOFC, CHP-SOFC} denotes SOFCgeneration technologies that require
on/off operations at the second stage. Each technology j ∈ Jg has a number of iden-
tical units, and the index set is denoted by U j . T is the index set of time, M is the
index set of months, and Tm ⊂ T is the index set of time for each month m ∈ M.

Variables. We use lower-case letters to denote variables. The first-stage variables in
our model are the number of units of technology j ∈ J , which we denote by y j ∈ Z+.
All other variables model operation of the installed units, and they are our second-
stage variables. We use the subscript t to indicate the time period: bt and bIOt are the
power storage and input/output for batteries, respectively; st , and soutt are the heat
storage and output for water tanks, respectively; p jt and q jt ≥ 0 are the power and
heat output of technology j , respectively; ut ≥ 0 is the power purchased from the
utility and umax

m ≥ 0 is the maximum power purchased in month m; xi j t ∈ {0, 1}
indicates whether unit i of technology j operates in time period t ; and wi j t ∈ [0, 1]
is an auxiliary variable to indicate whether unit i of technology j switches from t to
t + 1. Note that we do not impose a binary constraint on wi j t because it takes a binary
value at the solution due to the switching constraint (7.1g) and the binary constraint
xi j t ∈ {0, 1}. We use the convention t ∈ T , j ∈ J , i ∈ U j , m ∈ M unless explicitly
mentioned.

Parameters. We use upper-case letters to denote parameters and constants: C j is the
capital and installation cost of technology j ; H is the number of hours in the lifetime
of technology (e.g., H = 87600 for a ten-year model); T is the number of hours in
the problem horizon; Y is the hourly discount factor with 3% annual interest rate (i.e.,
Y = 1 − 0.03/8760); I is the hourly increase factor with 10% annual increase rate
(i.e., I 8760 = 1.1); Mj is the operation and maintenance cost of technology j ; Pt and
Gt are the price for electricity and natural gas, respectively; Pmax

m is the peak demand
price for power from the utility in month m; Wj is the cost of switching a unit of
technology j on or off; Scj is the thermal capacity per unit for technology j ; Bc is the

power capacity per unit for batteries; DP
t and DQ

t are the power and heat demand in
period t , respectively; Rmin

j and Rmax
j are the minimum and maximum power output

when a unit of technology j is turned on, respectively; EP
j and EQ

j are the power
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and thermal efficiency of technology j , respectively; and LP and LQ are the average
power loss in battery and heat loss in water tank storage, respectively.

Cost function.Wenow formulate the completeMILPmodel for the cogeneration prob-
lem in (7.1). The objective function consists of two parts: the capital and installation
cost in the first stage and the operation cost in the second stage. The operation cost
includes the peak power usage, operation and maintenance, switching units, gas, and
purchased power costs. We discount the second-stage costs with an hourly discount
factor based on a 3% annual interest rate; hence Y = 1 − 0.03/8760. Therefore, the
cost incurred in hour t is multiplied by the discount factor Y t .3 The peak demand
charge at the end of month m is discounted with Y tm .We take into account a 10%
annually increase of the maintenance and switching costs over time. This is done by
multiplying I t to cost terms in (7.1a) where I = 1 + 1.088 × 10−5. To compare
cost over different time horizons T , we compute the average hourly cost and multiply
the result with the lifetime of technologies, H , resulting in the factor H/T in the
second-stage cost in (7.1).

Constraints. The constraints in theMILPmodel (7.1) can be divided into three groups.
The first group of constraints couples first- and second-stage variables; in particu-
lar, the number of on-units for fuel cells and the capacity of battery, storage, and
boiler are bounded by the number of units purchased in the first stage, as described
in (7.1e), (7.1k), (7.1o), and (7.1p), respectively. The second group of constraints
couples variables across technologies; in particular, technologies are coordinated to
meet the power demand (7.1c) and the heat demand (7.1l). We note that dualizing
these constraints results in decoupled variables for each technology; see, for exam-
ple, [3,14]. However, MILP (7.1) does not lend itself to this Lagrangian relaxation
approach because of coupling constraints in the third group. This group of constraints
couples variables over time periods in the second stage. In particular, the battery and
storage constraints (7.1i) and (7.1m) link variables over the entire horizon. The heat
storage constraint (7.1m) is a combination of two constraints, namely, the storage
equation st+1 = (1− LQ)st − soutt + EQ

chps
in
t and the upper bound on the heat gener-

ated by CHP-SOFC, sint ≤ pchp,t/EP
chp. Eliminating the heat input sint yields (7.1m).

In addition, constraint (7.1h), which models the maximum power purchased from
the utility in each months, links variables over time instances in each month. More-
over, constraint (7.1g), which models on/off switches of the generation units, couples
binary variables xi j t over two immediate time instances. Boundary conditions (7.1j)
and (7.1n) for battery and storage couple variables at both ends of the entire
horizon.

We conclude this subsection by explaining the rest of the constraints in (7.1). The
number of purchased units is upper bounded in (7.1b). Since all units of the same

3 For comparison, the annual discount factor is Y 8760 ≈ 97.044%, which is consistent with the 3% interest
rate; and a ten-year discount factor is Y 87600 ≈ 74.082%.
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technology are identical, we introduce a symmetry breaking constraint (7.1f) that
states that if unit i + 1 is on, then unit i must be on as well. When unit i of tech-
nology j is turned on, the power generated pi j t is bounded by the minimum and
maximum capacity in (7.1d). The non-negativity constraint for variables is given by
(7.1q).

minimize
∑
j∈J

C j y j + H

T

{ ∑
m∈M

Y tm Pmax
m umax

m

/

+
∑
t∈T

Y t

⎡
⎣∑

j∈Jg

(I t · Mj p jt +
∑
i∈U j

I t · Wjwi j t ) + Gtqt + Ptut

⎤
⎦
⎫⎬
⎭

(7.1a)

subject to y j ∈ Z, 0 ≤ y j ≤ |U j | (7.1b)∑
j∈Jg

p jt + ut − bIOt ≥ DP
t (7.1c)

Rmin
j xi j t ≤ pi j t ≤ Rmax

j xi j t , p jt =
∑
i∈U j

pi j t j ∈ Jg (7.1d)

xi j t ∈ {0, 1},
∑
i∈U j

xi j t ≤ y j j ∈ Jg (7.1e)

x(i+1) j t ≤ xi j t j ∈ Jg, i < |U j | (7.1f)

xi j (t+1) − xi j t ≤ wi j t , xi j t − xi j (t+1) ≤ wi j t , 0 ≤ wi j t ≤ 1,

j ∈ Jg, t < |T | (7.1g)

0 ≤ ut ≤ umax
m t ∈ Tm (7.1h)

bt+1 = (1 − LP )bt + bIOt t < |T | (7.1i)

b1 = b|T | (7.1j)

0 ≤ bt ≤ Bcybatt (7.1k)

soutt + qt ≥ DQ
t (7.1l)

st+1 − (1 − LQ)st + soutt ≤ (EQ
chp/E

P
chp)pchp,t t < |T | (7.1m)

s1 = s|T | (7.1n)

soutt ≤ st ≤ Scstor ystor (7.1o)

qt ≤ Scboilyboil (7.1p)

bt , p jt , qt , st , s
out
t , ut ≥ 0 (7.1q)
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Appendix 4: Semi-coarse model for the cogeneration problem

minimize
∑
j∈J

C j y j + H

T

⎧⎨
⎩
∑
m∈M

Y tm Pmax
m umax

m +
∑
d

Ȳ T
d

⎡
⎣∑

j,i,k,l

p̄i jdkl M j P̄jkl

+
∑

d, j,i,k

x̄i jdkW j W̄ jk +
∑

d,k∈Pq

q̄dk Q̄k +
∑

d,k∈Pu

ūdkŪk

⎤
⎦
⎫⎬
⎭ (9.1a)

subject to y j ∈ Z, 0 ≤ y j ≤ |U j | j ∈ J (9.1b)∑
j,i,k,l

p̄i jdkl P̄jkl +
∑
k∈Pu

ūdkŪk −
∑
k∈Pb

b̄dk B̄
IO
k ≥ D̄P

d (9.1c)

x̄i jdk ∈ {0, 1},
∑
k∈Po

x̄i jdk ≤ 1 (9.1d)

∑
i,k

x̄i jdk X̄ jk ≤ y j1 (9.1e)

∑
k∈Po

x̄(i+1) jdk X̄ jk ≤
∑
k∈Po

x̄i jdk X̄ jk i < |U j | (9.1f)

p̄i jdk ∈ [0, 1],
∑
l∈Pp

p̄i jdkl = x̄i jdk,
∑
k∈Po

∑
l∈Pp

p̄i jdkl ≤ 1 (9.1g)

0 ≤
∑
k∈Pu

ūdkŪk ≤ umax
m 1 d ∈ Dm (9.1h)

∑
k∈Pb

b̄(d+1)k B̄k(1) =
∑
k∈Pb

b̄dk
[
(1 − LP )B̄k(δ) + B̄IO

k (δ)
]

d < |D|

(9.1i)∑
k∈Pb

b̄1k B̄k(1) =
∑
k∈Pb

b̄|D|k B̄k(δ) (9.1j)

∑
k∈Pb

b̄dk B̄k ≤ Bcybatt1 (9.1k)

∑
k∈Ps

s̄dk S̄
out
k +

∑
k∈Pq

q̄dk Q̄k ≥ D̄Q
d (9.1l)

∑
k∈Ps

s̄dk
[
Sδ − (1 − LQ)Iδ

]
S̄k +

∑
k∈Ps

s̄(d+1)k Eδ S̄k d < |D|

+
∑
k∈Ps

s̄dk S̄
out
k ≤ (EQ

j /EP
j )
∑
i,k,l

p̄i jdkl P̄jkl j = chp (9.1m)

∑
k∈Ps

s̄1k S̄k(1) =
∑
k∈Ps

s̄|D|k S̄k(δ) (9.1n)

∑
k∈Ps

s̄dk S̄
out
k ≤ Scstor ystor1 (9.1o)
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∑
k∈Pq

q̄dk Q̄k ≤ Scboilyboil1 (9.1p)

ūdk, b̄dk, s̄dk, q̄dk ∈ [0, 1] (9.1q)∑
k∈Pu

ūdk ≤ 1,
∑
k∈Pb

b̄dk ≤ 1,
∑
k∈Ps

s̄dk ≤ 1,
∑
k∈Pq

q̄dk ≤ 1. (9.1r)

Appendix 5: Coarse model for the cogeneration problem

minimize
∑
j∈J

C j y j + H

T

⎧⎨
⎩
∑
m∈M

Y tm Pmax
m umax

m +
∑
d

Ȳ T
d

⎡
⎣∑

j,i,k,l

p̄i jdkl M j P̄jkl

+
∑

d, j,i,k

x̄i jdkW j W̄ jk +
∑

d,k∈Pu

ūdkŪk +
∑

d,k∈Pq

q̄dk Q̄k

⎤
⎦
⎫⎬
⎭ (10.1a)

subject to y j ∈ Z, 0 ≤ y j ≤ |U j | j ∈ J (10.1b)
∑
j,i,k,l

p̄i jdkl
ˆ̄Pjkl +

∑
k∈Pu

ūdk
ˆ̄Uk −

∑
k∈Pb

b̄dk
ˆ̄BIO
k ≥ ˆ̄DP

d (10.1c)

x̄i jdk ∈ {0, 1},
∑
k∈Po

x̄i jdk ≤ 1 (10.1d)

∑
i,k

x̄i jdk
ˆ̄X jk ≤ δ · y j (10.1e)

∑
k∈Po

x̄i jdk
ˆ̄X jk ≥

∑
k∈Po

x̄(i+1) jdk
ˆ̄X jk i < |U j | (10.1f)

p̄i jdk ∈ [0, 1],
∑
l∈Pp

p̄i jdkl = x̄i jdk,
∑
k∈Po

∑
l∈Pp

p̄i jdkl ≤ 1 (10.1g)

0 ≤
∑
k∈Pu

ūdk
ˆ̄Uk ≤ δ · umax

m d ∈ Dm (10.1h)

∑
k∈Pb

b̄(d+1)k B̄k(1) =
∑
k∈Pb

b̄dk
(
(1 − LP )B̄k(δ) + B̄IO

k (δ)
)

d < |D|

(10.1i)∑
k∈Pb

b̄1k B̄k(1) =
∑
k∈Pb

b̄|D|k B̄k(δ) (10.1j)

∑
k∈Pb

b̄dk
ˆ̄Bk ≤ δ · Bcybatt (10.1k)

∑
k∈Ps

s̄dk
ˆ̄Soutk +

∑
k∈Pq

q̄dk
ˆ̄Qk ≥ ˆ̄DQ

d (10.1l)
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∑
k∈Ps

s̄dk(L
Q ˆ̄Sk − S̄k(1)) +

∑
k∈Ps

s̄(d+1)k S̄k(1) d < |D|

+
∑
k∈Ps

s̄dk
ˆ̄Soutk ≤ (EQ

j /EP
j )
∑
i,k,l

p̄i jdkl
ˆ̄Pjkl j = chp (10.1m)

∑
k∈Ps

s̄1k S̄k(1) =
∑
k∈Ps

s̄|D|k S̄k(δ) (10.1n)

∑
k∈Ps

s̄dk
ˆ̄Soutk ≤ δ · Scstor ystor (10.1o)

∑
k∈Pq

q̄dk
ˆ̄Qk ≤ δ · Scboilyboil (10.1p)

ūdk, b̄dk, s̄dk, q̄dk ∈ [0, 1]∑
k∈Pu

ūdk ≤ 1,
∑
k∈Pb

b̄dk ≤ 1,
∑
k∈Ps

s̄dk ≤ 1,
∑
k∈Pq

q̄dk ≤ 1. (10.1q)
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