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Abstract We address the problem of preconditioning sequences of regularized KKT
systems, such as those arising in interior point methods for convex quadratic program-
ming. In this case, constraint preconditioners (CPs) are very effective and widely used;
however, when solving large-scale problems, the computational cost for their factor-
ization may be high, and techniques for approximating them appear as a convenient
alternative. Here, given a block L DLT factorization of the CP associated with a KKT
matrix of the sequence, called seed matrix, we present a technique for updating the
factorization and building inexact CPs for subsequent matrices of the sequence. We
have recently proposed an updating procedure that performs a low-rank correction of
the Schur complement of the (1,1) block of the CP for the seed matrix. Now we focus
on KKT sequences with nonzero (2,2) blocks andmake a step further, by enriching the
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low-rank correction of the Schur complement by an additional cheap update. The latter
update takes into account information not included in the former one and expressed as
a diagonal modification of the low-rank correction. Theoretical results and numerical
experiments show that the new strategy can bemore effective than the procedure based
on the low-rank modification alone.

Keywords KKT systems · Constraint preconditioners · Matrix updates · Interior
point methods

Mathematics Subject Classification 65F08 · 65F10 · 90C20

1 Introduction

We consider the problem of preconditioning a sequence of regularized KKT systems
of the following form:

[
Bk AT

A −Θk

] [
�xk

�yk

]
=

[
fk

gk

]
, k = 1, 2, . . . , (1)

where Bk ∈ R
n×n is symmetric positive definite, A ∈ R

m×n is full rank, m ≤ n, and
Θk ∈ R

m×m is diagonal positive semidefinite. We focus on problems where Θk �= 0
and its sparsity pattern does not change throughout the sequence. We further assume
that the above linear systems are large and possibly sparse. Linear systems of this form
arise, e.g. in interior point (IP) methods for convex quadratic programming problems
[25,34]:

Minimize
1

2
xT Qx + cT x,

Subject to A1x − s = b1, A2x = b2, x + v = u, (x, s, v) ≥ 0,
(2)

where A1 ∈ R
m1×n , A2 ∈ R

m2×n , and s and v are slack variables, used to transform
the inequality constraints A1x ≥ b1 and x ≤ u into equality constraints.

In this case we have

Bk = Q + Φk, Φk = X−1
k Wk + V −1

k Tk, Θk =
[

Y −1
k Sk 0
0 0

]
, A =

[
A1
A2

]
,

where Xk , Wk , Sk , Yk , Vk and Tk are suitable diagonal matrices and m = m1 + m2.
More precisely, letting (xk, wk), (sk, yk) and (vk, tk) be the pairs of complementary
variables of problem (2) evaluated at the k-th iteration, we have that Xk , Wk , Sk , Yk ,
Vk and Tk are the diagonal matrices where the diagonal is equal to the correspond-
ing lowercase vector, according to the usual IP notation. A nonzero block Θk arises
whenever the problem has linear inequality constraints, i.e., m1 �= 0, as in this case
Θk admits m1 positive diagonal entries corresponding to the slack variables for the
linear inequality constraints; furthermore, the number and the position of the nonzero
entries of Θk does not change throughout the IP iterations. It is well known that the
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nonzero entries of Φk and Θk usually display a drastic difference of magnitude: some
of them tend to zero while others go to infinity. The nonzero matrix Θk may also arise
when regularized IP methods are applied to quadratic programming problems with
no linear inequality constraints. In this case Θk is diagonal positive definite and its
form depends on the dual regularization adopted (see, e.g. [23,26] and the references
therein).

Typically, the solution of sequence (1) represents the major computational bur-
den of the IP procedure. Therefore, if the linear systems are solved iteratively, the
effectiveness and the efficiency of the preconditioners used affect the overall perfor-
mance of the IP method. Here we address the case where the systems are solved by
an iterative linear solver and constraint preconditioners (CPs) are employed (see, e.g.
[10,11,15,19,20,24,28,31]).

Whenever the computational cost for building a CP for each system of the sequence
is high, a preconditioner updating strategy can offer a tradeoff between cost and effi-
ciency and can enhance the overall procedure for the solution of problem (1). Given a
factorization of the preconditioner for a matrix of the sequence, such a strategy builds
the preconditioners for some successive systems of the sequence by suitably modi-
fying the available factorization to take into account the matrix changes. The aim is
to form a preconditioner that is computationally cheaper than the one computed from
scratch, though preserving efficiency in the solution of the linear systems.

A first proposal for an updating strategy for CP preconditioners has been presented
in [5]. It relies on a low-rank modification of the factorized Schur complement of the
(1,1) block, which has been designed by exploiting results from [1,33]. Clearly, to
keep the computational cost low, only small-rank changes are allowed. In this paper,
in order to partially recover the information discarded by the low-rank correction, we
propose to perform a further update. We note that a part of the discarded information
can be seen as a diagonal positive semidefinite modification of the matrix resulting
from the low-rank modification. Then we compute an approximate Cholesky factor-
ization of the diagonally modified matrix by updating the Cholesky factorization of
the preconditioner resulting from the low-rank correction. This step is accomplished
by using a procedure in the framework given in [4]. Theoretical and numerical results
show that the latter procedure can improve the preconditioner updating strategy in [5].

The paper is organized as follows. In Sect. 2 we provide the basis for describing our
preconditioner updating procedure along with some theoretical results which will be
exploited to analyze it. In Sect. 3 we first recall the updating procedure based on the
low-rank correction of the Schur complement and then we present the new updating
step, aimed at recovering part of the information discarded by the low-rank approach.
In Sect. 4 we show some numerical results illustrating the behavior of the overall
updating approach. We give some conclusions in Sect. 5.

Henceforthwe use the following notations.Wedenote by ‖·‖ thematrix 2-norm. For
any symmetric matrix M , we denote by λ(M) any eigenvalue of M , and by λmin(M)

and λmax(M) the minimum and maximum of these eigenvalues; furthermore, we use
diag(M) to indicate the diagonal matrix with the same diagonal entries as M . Finally,
for any complex number z, we denote by R(z) and I(z) the real and imaginary parts
of z.

123



342 S. Bellavia et al.

2 Preliminaries

The updating strategy presented in this paper builds a preconditioner for a generic
matrix of the sequence (1),

Ak =
[

Bk AT

A −Θk

]
,

exploiting information from a preconditioner built for a previous matrix of the
sequence, which is denoted by

Aseed =
[

Bseed AT

A −Θseed

]
. (3)

We assume that a CP Pseed is available for Aseed , having the following form:

Pseed =
[

Hseed AT

A −Θseed

]
, (4)

where Hseed is the following approximation to Bseed :

Hseed = diag(Bseed).

The effectiveness of this preconditioner in the context of IP methods is widely recog-
nized by the optimization community, see, e.g. [6,10,11,21,28].

In order to simplify the notations, henceforth we denote Hseed by H . The appli-
cation of Pseed requires its factorization. We consider the following block L DLT

factorization:

Pseed =
[

In 0
AH−1 Im

] [
H 0
0 −Sseed

] [
In H−1AT

0 Im

]
, (5)

where I j is the identity matrix of dimension j and Sseed is the negative Schur com-
plement of H in Pseed , i.e.,

Sseed = AH−1AT + Θseed . (6)

We also assume that a Cholesky factorization of Sseed has been computed:

Sseed = Lseed Dseed LT
seed , (7)

where Lseed is unit lower triangular.
Now we consider a generic system of the sequence and we drop the iteration index

k from Ak , Bk and Θk in order to simplify the notation. Then, as with the previous
definition of Pseed , the CP for
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A =
[

B AT

A −Θ

]
, (8)

is given by

Pex =
[

G AT

A −Θ

]
=

[
In 0

AG−1 Im

] [
G 0
0 −S

] [
In G−1AT

0 Im

]
, (9)

where

G = diag(B), S = AG−1AT + Θ.

Concerning the eigenvalue distribution of P−1
ex A, there exists an eigenvalue at 1 with

multiplicity 2m − p, with p = rank(Θ), and n − m + p real positive eigenvalues
such that the better G approximates B the more clustered around 1 they are [18]. On
the other hand, computing a Cholesky factorization of S may account for a large part
of the computational cost for solving the KKT system, and hence replacing S with a
computationally cheaper approximation of it, Sinex , may be convenient [5,21,29,31].

The resulting inexact CP has the following form:

Pinex =
[

In 0
AG−1 Im

] [
G 0
0 −Sinex

] [
In G−1AT

0 Im

]
. (10)

Approximations of CPs may be also obtained by replacing the constraint matrix A in
(9) with a sparse approximations of it [9].

In our work we focus onPinex . The spectral analysis ofP−1
inexA has been addressed

in [7,8,32] and further refined in [5]. Here we report some results from [5], which will
be exploited to design and analyse our updating procedure. We note that, although the
convergence of Krylov solvers for systems with coefficient matrix P−1

inexA is not fully
characterized by the spectrum of the matrix, in many practical cases it depends on
the distribution of the eigenvalues. Therefore we are interested in providing bounds
on the eigenvalues of P−1

inexA. The bounds given in the next theorem highlight the
dependence of the spectrum of P−1

inexA on that of S−1
inex S (see [5, Theorem 2.1]).

Theorem 1 Let A and Pinex be the matrices in (8) and (10), and let λ and [xT , yT ]T

be an eigenvalue of P−1
inexA and a corresponding eigenvector. Let

X = G− 1
2 BG− 1

2 (11)

and suppose that 2In − X is positive definite. Let

λ̄ = λmax
(
S−1

inex S
)
max

{
2 − λmin(X), 1

}
, (12)

λ = λmin
(
S−1

inex S
)
min

{
2 − λmax(X), 1

}
. (13)
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Then, P−1
inexA has at most 2m eigenvalues with nonzero imaginary part, counting

conjugates. Furthermore, if λ has nonzero imaginary part, then

1

2

(
λmin(X) + λ

) ≤ R(λ) ≤ 1

2

(
λmax(X) + λ̄

); (14)

otherwise,

min
{
λmin(X), λ

} ≤ λ ≤ max
{
λmax(X), λ̄

}
, for y �= 0, (15)

λmin(X) ≤ λ ≤ λmax(X), for y = 0. (16)

Finally, the imaginary part of λ satisfies

|I(λ)| ≤
√

λmax
(
S−1

inex AG−1AT
)‖In − X‖. (17)

We note that 2In − X can be made positive semidefinite by scaling X in (11) so
that its eigenvalues are not greater than 2. Furthermore, if B is diagonal, then X = In

and all the eigenvalues of P−1
inexA are real. In this case P−1

inexA has at least n unit
eigenvalues, with n associated independent eigenvectors of the form [xT , 0T ]T , and
the remaining eigenvalues lie in the interval [λmin(S−1

inex S), λmax(S−1
inex S)] (see also

[21]).
Finally, from the analysis carried out in [32, Sect. 5] it follows that the number

of unit eigenvalues of P−1
inexA depends also on the number of zero eigenvalues of

S − Sinex . In particular, when S − Sinex has l zero eigenvalues, if S−1/2AAT S−1/2 has
no unit eigenvalues then P−1

inexA has l unit eigenvalues with geometric multiplicity l.

3 The preconditioner updating strategy

Our preconditioner updating strategy is based on building Sinex by a suitable update
of the seed Schur complement Sseed . In [5] we presented an updated preconditioner
of the form (10), where Sinex is a low-rank modification, Slr , of Sseed . Here we make
a step further, improving the approximation of S provided by Slr , in the case where Θ

is a nonzero matrix. Therefore, our approach for building Sinex consists of two steps:
the first computes Slr through the procedure discussed in [5]; the second employs
updating techniques discussed in [3,4] to form an approximate factorization of Slr +�,
where � is a suitable diagonal positive semidefinite matrix containing information
not included in the previous step. The latter factorization provides the matrix Sinex ,
henceforth denoted by Scu because it is the result of the combination of two updates.
The corresponding inexact preconditioner is

Pcu =
[

In 0
AG−1 Im

] [
G 0
0 −Scu

] [
In G−1AT

0 Im

]
. (18)

Next we provide a detailed description of our procedure and analyze the quality of
the resulting preconditioner. First, we describe how to perform the low-rank update of
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Pseed and summarize related theoretical results given in [5]. Second, we present the
subsequent updating step and provide new bounds on the eigenvalues of the precon-
ditioned matrix.

3.1 First step: building Slr

Let L = {i : Θi i �= 0} and let m1 be its cardinality. We recall that the set L does not
change throughout the sequence. Furthermore, let Θ̃seed and Θ̃ be them1×m1 diagonal
submatrices containing the nonzero diagonal entries ofΘseed andΘ , respectively, and
let Ĩm be the rectangularmatrix consisting of the columns of Im with indices inL. Then,
the Schur complements Sseed and S, corresponding toPseed andPex , respectively, can
be written as follows:

Sseed = ÃH̃−1 ÃT , S = ÃG̃−1 ÃT ,

where

Ã = [
A Ĩm

]
, H̃−1 =

[
H−1 0
0 Θ̃seed

]
, G̃−1 =

[
G−1 0
0 Θ̃

]
. (19)

Trivially,

S = Sseed + Ã
(

G̃−1 − H̃−1
)

ÃT . (20)

The updating procedure described in [5] consists in finding a low-rank correction
of Sseed of the form

Slr = Sseed + ÃK̃ ÃT = Ã
(

H̃−1 + K̃
)

ÃT = Ã J̃−1 ÃT , (21)

where K̃ , and hence J̃ , is a suitable diagonal matrix. The matrix J̃ (or, equivalently,
K̃ ) is chosen with a double goal: tightening the bounds on the eigenvalues provided
by Theorem 1 and limiting the cost for computing the Cholesky factorization of Slr as
a modification of the Cholesky factorization (7). A key role in achieving the first goal
is played by a result in [1], reported next for completeness.

Lemma 2 Let U ∈ R
r×s be full rank and let E, F ∈ R

s×s be symmetric positive
definite. Then

λmin

(
E−1F

)
≤ λ

( (
U EU T

)−1
U FU T ) ≤ λmax

(
E−1F

)
.

For any diagonal positive definite matrix C ∈ R
(n+m1)×(n+m1), let γ (C) be the

vector of dimension n + m1 with entries γi (C) equal to the diagonal entries of CG̃−1

sorted in nondecreasing order, i.e.,

min
1≤i≤n+m1

Cii

G̃ii
= γ1(C) ≤ γ2(C) ≤ · · · ≤ γn+m1(C) = max

1≤i≤n+m1

Cii

G̃ii
. (22)
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346 S. Bellavia et al.

Lemma 2 yields the bounds

γ1( J̃ ) ≤ λ
(
S−1

lr S
) ≤ γn+m1( J̃ ). (23)

We now give some definitions useful to specify J̃ . Let l = (l1, l2, . . . , ln+m1)
T be the

vector of indices such that

γli (H̃) = H̃ii

G̃ii
.

Given two real constants μγ ≥ 1 and νγ ∈ (0, 1], and two nonnegative integers q1
and q2 such that q = q1 + q2 ≤ n + m1, we define Γ̃ as

Γ̃ = Γ̃1 ∪ Γ̃2, (24)

where
Γ̃1 = {

i : n + m1 − q1 + 1 ≤ li ≤ n + m1 and γli (H̃) > μγ

}
,

Γ̃2 = {
i : 1 ≤ li ≤ q2 and γli (H̃) < νγ

}
.

(25)

Then we define the matrix K̃ in (21) by setting

K̃ii =
{

G̃−1
i i − H̃−1

i i if i ∈ Γ̃ ,

0 otherwise.
(26)

As a consequence, the diagonal entries of J̃ take the following form:

J̃i i =
{

G̃ii if i ∈ Γ̃ ,

H̃ii otherwise.
(27)

We also note that J̃−1 can be written as follows:

J̃−1 =
[

J−1 0
0 Θ̃lr

]
, (28)

where J ∈ R
n×n accounts for the changes from H to G, and Θ̃lr ∈ R

m1×m1 for those
from Θ̃seed to Θ̃ .

Suppose that the sets Γ̃1 and Γ̃2 in (25) have cardinality equal to q∗
1 ≤ q1 and

q∗
2 ≤ q2, respectively. Then, from (21), Slr −Sseed is a correction of rank q∗ = q∗

1 +q∗
2

equal to the cardinality of Γ̃ . Once Slr is defined, the low-rank update preconditioner
Plr is simply obtained by setting Sinex = Slr in (10), i.e.,

Plr =
[

In 0
AG−1 Im

] [
G 0
0 −Slr

] [
In G−1AT

0 Im

]
. (29)

By combining Theorem 1 with (23) and (27), we get the following bounds on the
eigenvalues of P−1

lr A, (see [5, Corollary 3.3]).
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Corollary 3 Let A, Plr and X be the matrices in (8), (29) and (11), and let λ be an
eigenvalue of P−1

lr A. Let γ (H̃) and γ ( J̃ ) be defined as in (22), and let q∗
1 and q∗

2 be
the cardinality of the sets Γ̃1 and Γ̃2 in (25), respectively. If 2In − X is positive definite,
then λ satisfies either (14) or (15)–(16) with

λ̄ ≤ γn+m1( J̃ ) max
{
2 − λmin(X), 1

}
, (30)

λ ≥ γ1( J̃ ) min
{
2 − λmax(X), 1

}
, (31)

where

γ1( J̃ ) = min
{
1,min

i /∈Γ̃
γli (H̃)

} = min
{
1, γq∗

2+1(H̃)
}
,

γn+m1( J̃ ) = max
{
1,max

i /∈Γ̃
γli (H̃)

} = max
{
1, γn+m1−q∗

1
(H̃)

}
. (32)

Furthermore,

|I(λ)| ≤
√

γn+m1( J̃ ) ‖In − X‖. (33)

It is clear that the bounds provided by the previous corollary are expected to improve
as the set Γ̃ is enlarged, i.e., q is increased. Likewise, smaller (larger) values of μγ

(νγ ) may generally improve these bounds. However, the choice of the previous values
must take into account the cost for computing the Cholesky factorization of Slr by
updating the factorization available for Sseed . From (7), (21) and (26) it follows that

Slr = Lseed Dseed LT
seed + ĀK̄ ĀT ,

where Ā ∈ R
m×q∗

consists of the columns of Ã with indices in Γ̃ , and K̄ ∈ R
q∗×q∗

is the diagonal matrix having on the diagonal the nonzero entries of K̃ corresponding
to those indices. Therefore, the Cholesky factorization

Slr = Llr Dlr LT
lr , (34)

is a rank-q∗ modification of the factorization (7) and can be computed, e.g. through the
update and downdate procedures in [17]. Note that an update is required if H̃ii > G̃ii

and a downdate is required if H̃ii < G̃ii .
The computational cost for building Slr depends on the value of q, and for practical

purposes the updating strategy is more convenient than computing the exact precon-
ditioner as long as q is kept fairly small (see [5]). Similarly, values of μγ and νγ not
too close to 1 are used in practice; thus, indices that do not bring significant improve-
ment in the eigenvalue bounds while increasing the cost for the updating strategy (see
again [5]) are excluded from Γ̃ . Since a large number of entries in G̃ − H̃ must be
discarded, we now propose a second step of our updating approach for recovering part
of the discarded information.
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3.2 Second step: updating Slr to get Scu

In order to recover information not included in Slr , we observe that part of this infor-
mation can be regarded as a positive semidefinite diagonal modification, �, of Slr .
Therefore, we can compute a low-cost approximate L DLT factorization of the matrix
Slr +� by exploiting the procedures in [3,4,30] to update the factorization (34) of Slr .
Furthermore, by expressing Slr + � as Ã J̃−1

� ÃT , with J̃� diagonal positive definite,
we can exploit Lemma 2 to derive new eigenvalue bounds.

We consider the diagonal matrix �̃ ∈ R
m1×m1 defined by

�̃i i =
{

Θ̃i i − (Θ̃seed)i i if i + n /∈ Γ̃ and Θ̃i i − (Θ̃seed)i i > 0,
0 otherwise,

(35)

whose nonzero entries correspond to the ratios Θ̃i i/(Θ̃seed)i i that are greater than 1
and have been discarded in the construction of Slr . Then, recalling the definition of
Ĩm in Sect. 3.1, we set � ∈ R

m×m as follows:

� = Ĩm �̃ Ĩ T
m , (36)

and define the matrix
S� = Slr + �. (37)

Using S� instead of Slr generally improves the quality of the preconditioner Pcu , as
shown next. Let

Γ̃� = Γ̃ ∪
{

j : j = i + n, with 1 ≤ i ≤ m1 and γl j (H̃) = Θ̃i i

(Θ̃seed)i i
> 1

}
,

and let Θ̃� ∈ R
m1×m1 the diagonal matrix defined by

(Θ̃�)i i =
{

Θ̃i i if i + n ∈ Γ̃�,

(Θ̃seed)i i otherwise.

Then we have

S� = Ã J̃−1
� ÃT , J̃−1

� =
[

J−1

Θ̃�

]
,

where Ã and J are the matrices in (19) and (28), respectively. By reasoning as in Sect.
3.1, we get the following bounds on the eigenvalues of S−1

� S:

γ̂1 ≤ λ
(

S−1
� S

)
≤ γ̂n+m1, (38)

where
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γ̂1 = γ1( J̃ ) = min
{
1, γq∗

2+1(H̃)
}
, (39)

γ̂n+m1 = max

{
1,max

i /∈Γ̃�

γli (H̃)

}
. (40)

Trivially, γ̂n+m1 ≤ γn+m1( J̃ ), with γn+m1( J̃ ) given in (32), and the benefit of using
S� depends on the size of γ̂n+m1 with respect to γn+m1( J̃ ).

On the other hand, using S� in place of Slr requires its factorization. In order to
limit the computational cost of the preconditioner, we can compute an approximation
to the Cholesky factorization of S�,

Scu = Lcu Dcu LT
cu 	 S�, (41)

by using the updating procedures mentioned at the beginning of this section. The
procedure considered here updates the matrices Llr and Dlr in (34) as follows (see
[4] for details). Let W be the diagonal matrix with diagonal entries defined by

Wii = (Dlr )i i

(Dlr )i i + �i i
, i = 1, . . . , m;

we define the matrices Lcu and Dcu as

Dcu = Dlr + �,

(Lcu) j j = 1, j = 1, . . . , m,

Lcu( j + 1 : m, j) = W j j Llr ( j + 1 : m, j), j = 1, . . . , m − 1,
(42)

where, using theMatlab notation, Llr ( j +1 : n, j) denotes the strictly lower triangular
part of the j-th column of Llr . Note that the sparsity pattern of the factors of Slr

is preserved; furthermore, the cost of forming Scu is low, since the cost of Dcu is
negligible, and the computation of Lcu consists in scaling only the nonzero entries of
the columns of Llr corresponding to the nonzero entries of �. Obviously, if � is the
zero matrix, the update is not performed and Scu = Slr , i.e., Pcu = Plr . This limit
case occurs if Θ̃i i ≤ (Θ̃seed)i i for i = 1, . . . , m1, or if all the indices i + n associated
with the ratios Θ̃i i/(Θ̃seed)i i that are greater than 1 belong to Γ̃ .

We refer to [3,4] for theoretical results and computational experiences motivating
the previous updating approach. Here we report only some results concerning the
eigenvalues of S−1

cu S (see [4, Theorems 2.2 and 2.4]), which are useful in the spectral
analysis of P−1

cu A.

Theorem 4 Let S� and Scu be the matrices in (37) and (41). For all ε > 0 there exists
η > 0 such that if ‖�‖ < η, then

∣∣∣λ(S−1
cu S�) − 1

∣∣∣ < ε

for all the eigenvalues of S−1
cu S�. Furthermore, if S� − Scu has rank m − l, then l

eigenvalues of S−1
cu S� are equal to 1.
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Theorem 5 Let S� and Scu be the matrices in (37) and (41). For all ε > 0 there exists
η > 0 such that if �i i > η for r diagonal entries of �, then

∣∣∣λ(S−1
cu S�) − 1

∣∣∣ < ε

for r eigenvalues of S−1
cu S�.

The next theorem provides bounds on the eigenvalues of P−1
cu A in terms of γ̂1 and

γ̂n+m1 and of the minimum and maximum eigenvalues of S−1
cu S�.

Theorem 6 Let A, Pcu, S�, Scu and X be the matrices in (8), (18), (37), (41) and
(11), and let λ be an eigenvalue of P−1

cu A. Let γ̂1 and γ̂n+m1 be the scalars in (39) and
(40). If 2In − X is positive definite, then λ satisfies either (14) or (15)–(16) with

λ̄ ≤ γ̂n+m1λmax(S−1
cu S�)max

{
2 − λmin(X), 1

}
, (43)

λ ≥ γ̂1λmin(S−1
cu S�)min

{
2 − λmax(X), 1

}
. (44)

Furthermore,

|I(λ)| ≤
√

γ̂n+m1λmax(S−1
cu S�) ‖In − X‖. (45)

Proof The eigenvalue problem S−1
cu Sw = λw is equivalent to

S
− 1

2
� S S

− 1
2

� w̄ = λ S
− 1

2
� Scu S

− 1
2

� w̄,

with w̄ = S
1
2
� w. Hence, for any eigenvalue of S−1

cu S and any corresponding eigenvector
w we have

λ
(
S−1

cu S
) = w̄T S

− 1
2

� S S
− 1

2
� w̄

w̄T S
− 1

2
� Scu S

− 1
2

� w̄

.

Then, by exploiting (38) we get

λ
(
S−1

cu S
) ≤ λmax

(
S−1
� S

)
λmin

(
S−1
� Scu

) ≤ γ̂n+m1 λmax
(
S−1

cu S�

)

and

λ
(
S−1

cu S
) ≥ λmin

(
S−1
� S

)
λmax

(
S−1
� Scu

) ≥ γ̂1λmin
(
S−1

cu S�

)
.

Inequalities (43) and (44) follow by recalling (12) and (13).
It remains to prove (45). The eigenvalue problem S−1

cu A G−1AT w = λ w is equiv-
alent to
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S
− 1

2
� A G−1AT S

− 1
2

� w̄ = λS
− 1

2
� Scu S

− 1
2

� w̄.

Furthermore, since Θ is positive definite, for any vector v ∈ R
m

vT S
− 1

2
� A G−1AT S

− 1
2

� v ≤ vT S
− 1

2
�

(
A G−1AT + Θ

)
S

− 1
2

� v,

and by matrix similarity

λmax
(
S−1
� A G−1AT ) ≤ λmax

(
S−1
� S

)
.

By reasoning as in the first part of the proof and exploiting the previous inequality we
get

λ
(
S−1

cu AG−1AT ) ≤ λmax
(
S−1
� S

)
λmin

(
S−1
� Scu

)
= γ̂n+m1 λmax

(
S−1

cu S�

)
,

and (45) follows from (17). 
�
The following result is a straightforward consequence of Theorem 6.

Corollary 7 Let A, Pcu, S�, Scu and X be the matrices in (8), (18), (37), (41) and
(11), and let λ be an eigenvalue of P−1

cu A. Let γ̂1 and γ̂n+m1 be the scalars in (39) and
(40). If 2In − X is positive definite and, for all the eigenvalues of S−1

cu S�,

∣∣∣λ(S−1
cu S�) − 1

∣∣∣ ≤ ε

for some ε > 0, then λ satisfies either (14) or (15)–(16) with

λ̄ ≤ (1 + ε)γ̂n+m1 max
{
2 − λmin(X), 1

}
,

λ ≥ (1 − ε)γ̂1 min
{
2 − λmax(X), 1

}
.

Furthermore,

|I(λ)| ≤
√

(1 + ε)γ̂n+m1 ‖In − X‖.

The previous results show that the bounds (30) and (33) can be effectively improved
if λmax(S−1

cu S�) is not too far from 1. Furthermore, λmin(S−1
cu S�) must not be too far

from 1, in order to avoid a significant deterioration of the bound (31). By Theorems 4
and 5, this happens when the entries of � are either all sufficiently small or all suffi-
ciently large. In general, we cannot expect that all the eigenvalues of S−1

cu S� are close
to 1; nevertheless, the ability of Scu of clustering around 1 some eigenvalues of S�

when � has large entries, provides a way to tighten the bounds on the spectrum of
P−1

cu A, as confirmed by numerical experiments.
We conclude this section by summarizing in Algorithm 1 the main steps of the

overall updating procedure.
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Algorithm 1: updating the constraint preconditioner

Given μγ ≥ 1, νγ ∈ (0, 1] and the nonnegative integers q1 and q2,
1. form H̃ defined in (19) and compute γi (H̃), i = 1, . . . , n + m1, according to (22);
2. set Γ̃ as in (24), q∗ as the cardinality of Γ̃ , and J̃ as in (27);
3. compute the factorization in (34), Slr = Llr Dlr LT

lr , by a rank-q
∗ correction of Sseed in (7);

4. compute the matrix � given in (36);
5. if � �= 0

compute the approximate factorization Lcu Dcu LT
cu of Llr Dlr LT

lr + � (see (42));
else
set Lcu = Llr , Dcu = Dlr ;

6. set

Pcu =
[

In 0
AG−1 Lcu

] [
G 0
0 −Dcu

] [
In G−1AT

0 LT
cu

]
.

4 Numerical results

We provide some illustrative examples of the behavior of the preconditioner Pcu built
with Algorithm 1, compared with the exact CP preconditioner Pex in (9) and the
updated preconditioner Plr in (29).

We consider five sequences of KKT systems that arise in the solution, by an
IP method, of convex quadratic programming problems with linear inequality con-
straints. These problems have been obtained by modifying the CUTEst [27] problems
CVXQP1, CVXQP3 and MOSARQP1. The modifications have been made because
large or variable-size CUTEst convex quadratic programming problems with inequal-
ity constraints have Schur complements that are very inexpensive to factorize and
thus are useless for our experiments. More precisely, CVXQP1 and CVXQP3, which
have non-banded Schur complements, have been modified by changing their original
equality constraint Ax = b into Ax ≥ b (the modified problems have been identi-
fied by appending “-M” to the original names). Furthermore, in order to increase the
density of their Schur complements, four nonzero entries per row have been added
to the matrix A of CVXQP1-M, and one nonzero entry per row to the matrix A of
CVXQP3-M (the denser problems have been identified by appending “-D” and “-D2”
to their names, respectively, according to the notation used in [5]). Finally, nonzeros
in the positions (i, n), with mod(i, 10) = 1, have been added to the matrix A of
MOSARQP1, obtaining problem MOSARQP1-D (note that the original problem has
a narrow-banded Schur complement). The dimensions n and m of the five problems
and the number nnz(S) of nonzero entries of their Schur complements are reported in
the second column of Table 1.

The sequences ofKKT systems have been obtained by running the Fortran 90 PRQP
code, which implements an infeasible inexact potential reduction IP method [11,13,
15], and extracting the KKTmatrices arising at each IP iteration and the corresponding
right-hand sides. Afterwards these sequences have been solved offline, applying Pex ,
Plr and Pcu . The starting point for the IP procedure in PRQP has been built with the
STP2 strategy described in [16] and the tolerances on the relative duality gap and the
relative infeasibilities have been set to 10−6 and 10−7, respectively. Within PRQP the
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KKT systems have been solved by the SQMR method coupled with the exact CP,
using an adaptive tolerance in the stopping criterion, which relates the accuracy in
the solution of the KKT system to the quality of the current IP iterate, in the spirit of
inexact IP methods [2,12]. Specifically, in PRQP the SQMR iterations were stopped
as soon as the norm of the unpreconditioned residual was below a tolerance of the
form τ = min{max{τ1, 10−8}, 10−2‖r0‖}, where τ1 depends on the duality gap value
at the current IP iteration and r0 is the initial unpreconditioned residual (see [12] for
more details). The values of τ corresponding to all the systems of each sequence were
saved to be used in our experiments.

The numerical experiments have been performed in the Matlab environment,
exploiting C code for the construction ofPlr andPcu . More precisely, the CHOLMOD
package [14] has been called, through itsMEX interface, to compute the sparse L DLT

factorization of Sseed and the low-rank updates and downdates required to build Plr .
The updates (42) needed to form Pcu have been implemented in C as Matlab MEX-
files too. The preconditioners have been built using q1 = q2 = q/2 = 25, in order
to keep low the overhead of the updating/downdating phase; furthermore, μγ = 10
and νγ = 0.1 have been used to select the indices to be put in Γ̃ . These choices agree
with the results of the experiments with Plr discussed in [5]. When less than q1 ratios
γli (H̃) ≥ μγ (or less than q2 ratios γli (H̃) ≤ νγ ) were available, the number of ratios
γli (H̃) ≤ νγ (or γli (H̃) ≥ μγ ) was increased to have a total number of ratios in Γ̃

as close as possible to q. We note that we have not applied any scaling to the matrix
X in (11) to ensure positive definiteness of 2In − X , although this is assumed in our
theory. Nevertheless, the results generally appear to be in agreement with the theory
(see also [5]). The linear systems have been solved using a Matlab implementation of
the SQMR method without look-ahead [22], stopping the iterations when the norm
of the residual had become smaller than the associated tolerance, as in the solution of
the KKT systems within the IP code. A maximum number of 500 iterations has been
considered too.

Following [5], the preconditioners have been “refreshed” as explained next. When,
for a system of the sequence, the time for computing Plr or Pcu and solving the
preconditioned linear system exceeded 90% of the time for building the last exact
preconditioner and solving the corresponding system, the next system of the sequence
was solved using the exact CP in (9). Furthermore, a maximum number of consecutive
updates, kmax, was also considered; here kmax = 4. This strategy aims at avoiding
deterioration of the quality of the updated preconditioner and hence excessive increase
of the number of SQMR iterations, which may make the updating strategy useless.
We note that, by using a refreshing criterion based on the execution time, both the
problem and the computing environment are taken into account to get an efficient
preconditioning strategy.

The tests have been performed on a six-coreXeon processorwith clock frequency of
2.4 GHz, 24 GB of RAM and 12MB of cache memory, running Ubuntu/Linux 12.04.5
(kernel version 3.2.0_83_generic). CHOLMOD and the C code for the updates (42)
have been compiled with gcc 4.6.3, and Matlab R2015a (v. 8.5, 64-bit) has been
employed. The tic and toc Matlab commands have been used to measure the exe-
cution times.
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Table 2 CVXQP1-M: SQMR iterations and execution times obtained with Plr and Pcu

IP# Plr (q = 50) Pcu

nit q∗ Tprec Tsolve Tsum nit q∗/nnz(�) Tprec Tsolve Tsum

11 9 2.701 0.504 3.205 9 2.701 0.504 3.205

12 13 1 0.102 0.685 0.787 10 1/1696 0.176 0.548 0.724

13 19 14 0.339 0.963 1.302 14 14/1841 0.412 0.744 1.156

14 37 50 0.854 1.848 2.702 27 50/1949 0.928 1.366 2.294

15 106 50 0.752 5.154 5.906 46 50/2084 0.827 2.295 3.122

16 16 2.624 0.839 3.463 16 2.624 0.839 3.463

17 22 5 0.116 1.102 1.218 20 5/2495 0.191 1.023 1.214

18 41 50 0.647 2.017 2.664 36 50/2486 0.722 1.813 2.535

19 89 50 0.638 4.375 5.013 57 50/2491 0.713 2.833 3.546

20 20 2.681 1.029 3.710 20 2.681 1.029 3.710

21 37 4 0.201 1.825 2.026 28 4/2537 0.278 1.489 1.767

22 297 50 0.664 14.155 14.819 114 50/2517 0.739 5.512 6.251

23 37 2.629 1.874 4.503 37 2.629 1.874 4.503

24 86 14 0.251 4.048 4.299 47 14/2537 0.328 2.349 2.677

25 37 2.604 1.855 4.459 79 50/2514 0.667 3.756 4.423

26 54 47 0.561 2.619 3.180 37 2.575 1.854 4.429

920 18.364 44.892 63.256 597 19.191 29.828 49.019

The data concerning the application of the exact CP are in bold. The number q∗ of low-rank updates and
the number nnz(�) of elements used for building Pcu are also reported. The data in the last row are the
sums of the corresponding columns

We start the description of our numerical results comparing Plr and Pcu . For the
problems from the CVXQP family, we observe that the the number of elements used
for the second step of the update, namely nnz(�) with � defined in (35) and (36),
is zero or negligible (at most twenty) in the first systems of the sequence (first nine
systems for CVXQP1-M-D, and first ten systems for CVXQP1-M, CVXQP3-M and
CVXQP3-M-D2). Since no significant benefit can be obtained from the update strategy
(42) with such a small number of elements, we exclude these first systems from the
following analysis.

The results obtained with Plr and Pcu are shown in Table 1. We report the range
IPits of IP iterations considered for each sequence and, for each preconditioner, the
total number nit of SQMR iterations performed, the number nref of times the precon-
ditioner has been refreshed, the total time Tprec for building the preconditioner, the
total time Tsolve for solving the preconditioned system, and the sum Ttot of the two
times. The times are expressed in seconds. We see that all the runs with Pcu are faster
than those with Plr . The gain, in terms of total execution time, varies between 6 and
23%. Furthermore, for two sequences, the savings obtained in the number of SQMR
iterations reduce the number of preconditioner refreshes with respect to the use ofPlr .

Details on the solution of the sequences of KKT systems by using Plr and Pcu are
shown in Tables 2, 3 and 4 for CVXQP1-M, CVXQP3-M-D2 and MOSARQP1-D,
respectively. The IP iteration number corresponding to each system of a sequence is
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Table 3 CVXQP3-M-D2: SQMR iterations and execution times obtained with Plr and Pcu

IP# Plr (q = 50) Pcu

nit q∗ Tprec Tsolve Tsum nit q∗/nnz(�) Tprec Tsolve Tsum

11 9 9.579 2.586 12.165 9 9.579 2.586 12.165

12 20 6 0.659 5.326 5.985 12 6/2227 1.104 3.340 4.444

13 33 50 2.718 9.070 11.788 19 50/2752 3.181 5.359 8.540

14 15 9.564 4.113 13.677 41 50/3282 3.685 10.988 14.673

15 22 1 0.570 6.003 6.573 17 9.536 4.470 14.006

16 47 50 2.731 12.458 15.189 28 2/4897 0.879 7.514 8.393

17 24 9.442 6.308 15.750 51 5/4970 3.111 14.142 17.253

18 40 7 0.458 10.252 10.710 28 9.550 7.262 16.812

19 68 50 2.779 18.468 21.247 43 3/5152 0.943 11.667 12.610

20 32 9.619 8.177 17.796 58 50/5156 3.617 16.433 20.050

21 46 2 0.538 12.504 13.042 36 9.595 9.719 19.314

22 83 50 3.934 23.209 27.143 56 4/5210 1.199 13.673 14.872

23 41 9.491 11.317 20.808 61 30/5204 3.401 14.722 18.123

24 82 18 1.972 21.750 23.722 43 9.772 11.509 21.281

25 70 9.578 18.606 28.184 81 1/5207 1.020 21.887 22.907

632 73.632 170.147 243.779 583 70.172 155.271 225.443

The data concerning the application of the exact CP are in bold. The number q∗ of low-rank updates and
the number nnz(�) of elements used for building Pcu are also reported. The data in the last row are the
sums of the corresponding columns

indicated by IP#. For each system and for both preconditioners, we report the number
nit of SQMR iterations, the time Tprec for building the preconditioner for that system,
the time Tsolve for solving the preconditioned system, and Tsum = Tprec + Tsolve. For
Plr we also display the size q∗ of the low-rank update performed, i.e., the cardinality
of the set Γ̃ in (24), while forPcu we display both q∗ and the number of elements used
for the second step of the update, i.e., nnz(�). The data corresponding to refreshes
are in bold and the times are expressed in seconds.

We observe that, in general, forming Pcu is inexpensive although nnz(�) is large.
Using Pcu may significantly reduce the number of SQMR iterations, especially in
the last runs before a refresh. In fact, the performance of both Plr and Pcu tends to
deteriorate progressively after a refresh, but the use of the diagonal modification inPcu

may considerably improve the effectiveness of Pcu with respect to Plr . This behavior
is clearly illustrated, e.g. by the data of the 15th, 19th and 22nd system of CVXQP1-M
(Table 2); a similar behavior can be recognized in Tables 3 and 4. Taking into account
this numerical evidence and the fact that forming Pcu is simple and inexpensive, the
second phase of the update appears worthy to be coupled with the low-rank correction
in the update of CP preconditioners for KKT systems.

To provide further insight into the behavior of Pcu , in Table 5 we report the maxi-
mum and minimum eigenvalues of S−1

lr S and S−1
cu S from the 12th to the 25th iteration

of CVXQP1-M. Note that at the 25th iteration Slr is the matrix which Scu is built from,
and not the matrix associated with the preconditioner Plr considered in Table 2 (with
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Table 4 MOSARQP1-D: SQMR iterations and execution times obtained with Plr and Pcu

IP# Plr (q = 50) Pcu

nit q∗ Tprec Tsolve Tsum nit q∗/nnz(�) Tprec Tsolve Tsum

1 1 2.709 0.298 3.007 1 2.709 0.298 3.007

2 3 1 0.428 0.601 1.029 4 1/2068 0.645 0.741 1.386

3 7 2 0.424 1.278 1.702 5 2/2071 0.641 0.978 1.619

4 13 50 0.480 2.228 2.708 8 50/2076 0.680 1.311 1.991

5 2 2.878 0.462 3.340 10 50/2160 0.646 1.709 2.355

6 10 2 0.220 1.720 1.940 3 2.878 0.593 3.471

7 11 50 0.427 1.889 2.316 4 1/12158 0.664 0.724 1.388

8 28 50 1.392 4.570 5.962 6 50/11075 2.820 1.110 3.930

9 4 2.769 0.779 3.548 4 2.769 0.779 3.548

10 8 1 0.427 1.391 1.818 6 1/9866 0.638 1.090 1.728

11 11 2 0.425 1.890 2.315 11 2/9250 0.425 1.890 2.315

12 20 4 0.423 3.297 3.720 11 4/8675 0.655 1.902 2.557

13 4 2.772 0.794 3.566 14 50/8412 2.107 2.386 4.493

14 5 1 0.220 0.934 1.154 4 2.824 0.796 3.620

15 9 2 0.219 1.545 1.764 7 1/10130 0.463 1.252 1.715

16 17 2 0.218 2.819 3.037 11 2/10129 0.437 1.874 2.311

17 43 50 1.971 6.695 8.666 21 50/10104 2.212 3.465 5.677

18 5 2.769 0.954 3.723 5 2.769 0.954 3.723

19 15 1 0.425 2.591 3.016 13 1/10130 0.658 2.234 2.892

20 47 50 2.997 7.759 10.756 31 50/10130 3.293 5.050 8.343

21 6 2.812 1.095 3.907 6 2.812 1.095 3.907

22 21 7 0.589 3.430 4.019 17 7/10130 0.818 2.696 3.514

23 6 2.759 1.108 3.867 6 2.759 1.108 3.867

24 22 10 0.429 3.581 4.010 19 10/10130 0.663 3.078 3.741

318 31.182 53.708 84.890 227 37.985 39.113 77.098

The data concerning the application of the exact CP are in bold. The number q∗ of low-rank updates and
the number nnz(�) of elements used for building Pcu are also reported. The data in the last row are the
sums of the corresponding columns

Plr and Pcu the refresh occurs at different IP iterations). We see that the updating
strategy used to build Scu practically does not change the smallest eigenvalue, while it
reduces the largest one, according to the decrease observed in the number of iterations
(see Table 2).

We conclude this section by comparing the preconditionersPcu andPex . In Table 6
we summarize the total number of SQMR iterations and execution times for Pex ; the
same data for Pcu , available in Table 1, are repeated for the sake of readability. The
reduction of the total time obtained with Pcu over Pex varies between 9 and 25%
although, as expected, the number of SQMR iterations performed is larger than with
Pex . It is noteworthy that Pcu speeds up the solution of the sequences associated with
CVXQP1-M, CVXQP1-M-D and MOSARQP1, where the use of Plr is not beneficial
with respect toPex .We also report briefly on experimentswith inexact CPs obtained by
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Table 5 CVXQP1-M: minimum and maximum eigenvalues of S−1
lr S and S−1

cu S

IP# λmin
(
S−1

lr S
)

λmax
(
S−1

lr S
)

λmin
(
S−1

cu S
)

λmax
(
S−1

cu S
)

12 4.15e−1 2.34e+0 4.16e−1 1.39e+0

13 2.02e−1 6.79e+0 2.03e−1 2.07e+0

14 8.63e−2 8.83e+0 8.67e−2 2.64e+0

15 3.77e−2 2.42e+1 3.81e−2 4.27e+0

17 2.85e−1 4.75e+0 2.85e−1 2.88e+0

18 1.35e−1 9.56e+0 1.35e−1 5.52e+0

19 6.47e−2 2.33e+1 6.47e−2 9.84e+0

21 1.97e−1 8.69e+0 1.97e−1 3.59e+0

22 2.72e−2 4.70e+1 2.72e−2 7.99e+0

24 1.02e−1 9.58e+0 1.02e−1 2.96e+0

25 1.44e−2 6.23e+1 1.44e−2 1.13e+1

Table 6 Comparison of Pex and Pcu : total number of SQMR iterations, refreshes for Pcu and execution
times

Problem n IPits Pex Pcu

m nit Tprec Tsolve Ttot nit nref Tprec Tsolve Ttot

nnz(S)

CVXQP1-M 20,000 11–26 351 42.035 18.274 60.309 597 5 19.191 29.828 49.019

10,000

67,976

CVXQP1 -M-D 20,000 10–28 670 63.616 82.000 145.616 750 6 40.253 91.284 131.537

10,000

240,494

CVXQP3-M 20,000 11–30 520 291.891 113.332 405.223 943 5 108.163 195.831 303.994

15,000

155, 942

CVXQP3-M-D2 20,000 11–25 424 143.798 113.594 257.392 583 5 70.172 155.271 225.443

15,000

224,396

MOSARQP1-D 22,500 1–24 92 66.854 18.119 84.973 227 7 37.985 39.113 77.098

20,000

4,259,250

approximating the exact Schur complement S with an inexact Cholesky factorization
of it. These experiments have been performed to further assess the reliability of our
updating approach. Unmodified and modified incomplete Cholesky factorizations of
S have been computed using the Matlab function ichol and drop tolerances ranging
from 10−1 to 10−5. However, the resulting inexact CPs seem to lack robustness on our
sequences, as SQMR failed in the solution of at least one system of each sequence.
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5 Conclusions

We have presented a procedure for updating CPs for sequences of regularized KKT
systems with the nonzero (2,2) block having a fixed sparsity pattern. This procedure
combines a recently proposed technique for updating a block L DLT factorization of a
given seedCP, relying on a low-rank correction of its Schur complement, with a further
update of the Schur complement. The latter update is performed to introduce into the
preconditioner some information that has been discarded in the low-rank correction.
It is based on a low-cost technique for approximating the Cholesky factorization when
the matrix undergoes a diagonal positive semidefinite modification.

Theoretical results show that the procedure proposed here provides the possibility
of tightening the bounds on the eigenvalues of the preconditioned matrix with respect
to the procedure based on the low-rank correction alone, and that its effectiveness
depends on the accuracy of the approximate Cholesky factorization computed in the
second updating step. Numerical experiments confirm this behavior and show that the
new approach can enhance the low-rank strategy.
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