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Abstract We derive an efficient solution method for ill-posed PDE-constrained opti-
mization problems with total variation regularization. This regularization technique
allows discontinuous solutions, which is desirable in many applications. Our approach
is to adapt the split Bregman technique to handle such PDE-constrained optimization
problems. This leads to an iterative scheme where we must solve a linear saddle point
problem in each iteration. We prove that the spectra of the corresponding saddle point
operators are almost contained in three bounded intervals, not containing zero, with
a very limited number of isolated eigenvalues. Krylov subspace methods handle such
operators very well and thus provide an efficient algorithm. In fact, we can guarantee
that the number of iterations needed cannot grow faster than O([ln(α−1)]2) as α → 0,
where α is a small regularization parameter. Moreover, in our numerical experiments
we demonstrate that one can expect iteration numbers of order O(ln(α−1)).

Keywords Total variation regularization · PDE-constrained optimization · Bregman
algorithm · MINRES · KKT systems

1 Introduction

We will use the following notation

– Ω ⊂ R
n is a bounded domain,
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– dh is the observation data,
– ρ > 1 and κ ≥ 0 are parameters,
– A, B and T are linear operators,
– Pn

h represents a n-th order scalar FEM space,
– Vh = H1

h (Ω), i.e. P1
h equipped with the H1-norm, is the control space,

– U and Z are Hilbert spaces,
– Uh = U ∩ Pn

h is the state space,
– Zh = Z ∩ Pn

h is the observation space,

and we note that 1 ≤ dim(Vh), dim(Uh), dim(Zh) < ∞. The objective of this paper
is to propose and analyze an efficient algorithm for solving PDE-constrained opti-
mization problems which can be written in the form

min
(vh ,uh)∈Vh×Uh

{
1

2
ρ‖T uh − dh‖2Zh

+ 1

2
κ‖vh‖2L2(Ω)

+
∫

Ω

|Dvh | dx

}
, (1)

subject to

Auh + Bvh = 0. (2)

Here, (2) is a discretized PDE, and A, B and T will be discussed properly in Section 2.
From the results published in [4], it follows that (1–2) has a unique solution if κ > 0,
or if

K = −T A−1B (3)

is injective.
In order to design a fast method for solving (1–2), we must not only use an efficient

algorithm for handling the nonlinear total variation (TV) term in (1), but also a scheme
suitable for solving the inner systems that arise in each iteration of the outer algorithm.
This will be achieved by combining the approached analyzed in [11], which is suit-
able for linear optimality systems, with a successful method for solving deblurring
problems, namely the split Bregman method [5].

Themain result of this paper shows that the spectrumof the linear systems, arising in
each Bregman iteration, has a nice structure. Therefore, the Minimal Residual (MIN-
RES) method handles these subproblems very well: Theoretically, one can prove that
only O([ln(α−1)]2)MINRES-iterations are required, whereα is a small regularization
parameter1. (In [11] it is also explained why iteration numbers of order O(ln(α−1))

often will occur in practise.)
Frequently, Tikhonov regularization is employed to stabilize PDE-constrained opti-

mization problems. This approach yields a linear-quadratic optimization problem,
which ismathematically appealing, butwill produce smooth solutions. Inmany inverse
problems, the control parameter is some physical property, e.g. a heat source, density
of a medium or an electrical potential. When we try to identify such quantities, it

1 The exact form of the parameter α is presented in the next section.
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might be desirable to make a sharp separation between regions with different qualities
of the physical property. In other words, we want “jumps” in the solution. Thus, one
might argue that the smooth solutions produced with Tikhonov regularization are of
limited value, and that TV-regularization should be employed. The inverse problem of
electrocardiography is a problem of this type, where one seeks to locate the ischemic2

region of the heart. This can be achieved with a PDE-constrained optimization prob-
lem, where the control is the electrical potential of the myocardium, and the data is
given in terms of ECG recordings. The ischemic area can be determined from the
fact that the electrical potential is (approximately) piecewise constant, with different
values in the ischemic and healthy regions. From an imaging point of view, it would
be beneficial to properly separate these areas [12,18].

Note that we limit our study to discretized problems posed in terms of finite dimen-
sional spaces. This simplifies the discussion of the TV-regularization and enables the
use of the results published in [11].

This paper is organized as follows:

– In Sect. 2 we show how the PDE-constrained optimization problem (1–2) can be
modified in such a way that we can apply the split Bregman algorithm.

– In Sect. 3 we prove that the KKT systems that arise in each iteration of the split
Bregman algorithm have a spectrum almost contained in three bounded intervals,
with a very limited number of isolated eigenvalues. Hence, Krylov subspace algo-
rithms will handle these systems very well.

– Sect. 4 presents an alternative version of the split Bregman algorithm.
– In Sect. 5 we illuminate the theoretical results with some numerical experiments.
– Finally, the conclusions are presented in Sect. 6.

2 Split Bregman algorithm for PDE-constrained optimization problems

The split Bregmanmethod has its roots in the Bregman iteration, which is an algorithm
for computing extrema of convex functionals [2]. Later, it was used in [13] as a new
regularization procedure for inverse problems, and in [5] the authors used this approach
to find an effective solution method for L1-regularization problems. In particular, they
demonstrated why this method works well for total variation problems. Motivated by
these papers, we write (1–2) in the form

min
vh ,ph∈Vh×P0

h

{
1

2
ρ‖Kvh − dh‖2Zh

+ 1

2
κ‖vh‖2

L2
h(Ω)

+
∫

Ω

|ph |
}
, (4)

subject to

∇vh = ph, (5)

where P0
h is a vector space of piecewise constant functions and K is defined in (3).

2 Ischemia is a precursor of heart infarction.
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We will not go into details on how the split Bregman algorithm is derived, instead
we refer to [5] and [3]. In this method, see Algorithm 1, we note that the parameter λ

is fixed. Instead, it is the “data” that varies with the introduction of bk , where bk can be
interpreted as the Lagrangemultiplier estimate associated with (5). The authors of [20]
and [19] explain why the split Bregman scheme can be considered as an augmented
Lagrangian method [6,15].

Algorithm 1 The split Bregman algorithm for total variation regularization

1: Choose v0h = 0, p0h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: vk+1

h = argminvh∈Vh
1
2ρ‖Kvh − dh‖2Zh

+ 1
2 κ‖vh‖2

L2
h (Ω)

+ 1
2λ‖∇vh − pk

h + bk
h‖2

L2
h (Ω)

,

4: pk+1
h = argminph∈P0h

∫
Ω |ph | + λ

2 ‖∇vk+1
h − ph + bk

h‖2
L2

h (Ω)
,

5: bk+1
h = bk

h + ∇vk+1
h − pk+1

h .

6: end for

At this point, we would like to present one important theorem from [3]:

Theorem 1 Assume that there exists at least one solution v∗
h of (4–5). Then the split

Bregman algorithm satisfies

lim
k→∞

1

2
ρ‖Kvk

h − dh‖2Zh
+ 1

2
κ‖vk

h‖2
L2

h(Ω)
+
∫

Ω

|∇vk
h | dx

= 1

2
ρ‖Kv∗

h − dh‖2Zh
+ 1

2
κ‖v∗

h‖2
L2

h(Ω)
+
∫

Ω

|∇v∗
h | dx .

If the solution v∗
h is unique, we also have

lim
k→∞ ‖vk

h − v∗
h‖L2

h(Ω) = 0.

Recall that our main objective is to derive an efficient solution method for
(1–2), i.e. for rather general PDE-constrained optimization problems subject to TV-
regularization. We will restrict our analysis to problems that satisfy the assumptions

A1 : A : Uh → U ′
h is bounded and linear.

A2 : A−1 exists and is bounded.
A3 : B : Vh → U ′

h is bounded and linear.
A4 : T : Uh → Zh is bounded and linear.

Here, bounded should be interpreted as having operator norm which is bounded inde-
pendently of the mesh parameter h. Due to assumption A2, we can write (2) in the
form

uh = −A−1Bvh, (6)

and the operator K , see (3), is well-defined.
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We want to apply the split Bregman algorithm to (4–5). Unfortunately, the explicit
computation of the operator K is difficult in practical applications; if (2) is a PDE, then
the inverse of A is typically too expensive to compute explicitly. This issue has been
handled, in the case of Tikhonov regularization, by solving the associatedKKT system.
The purpose of this paper is to adapt the KKT approach to the framework of the split
Bregman algorithm.Aswewill see below, this yields an efficient and practical solution
method for PDE-constrained optimization problems subject to TV-regularization.

We proceed by applying Algorithm 1 to the minimization problem (4–5). Step 5 in
Algorithm 1 is straightforward. Furthermore, Step 4 is, since3 ∇vk+1

h , pk
h, bk

h ∈ P0
h ,

very cheap to solve by the shrinkage operator

pk+1
h,xi

(x) = shrink

(
∇xi v

k+1
h (x) + bk

h,xi
(x),

1

λ

)
, (7)

where

shrink(a, b) = a

|a| ∗ max(a − b, 0),

see [5]. Hence, the challenge is to find the minimizer of Step 3. That is, we must solve
the minimization problem

min
vh∈Vh

{
1

2
ρ‖Kvh − dh‖2Zh

+ 1

2
κ‖vh‖2

L2
h(Ω)

+ 1

2
λ‖∇vh − pk

h + bk
h‖2

L2
h(Ω)

}
,

where dh, pk
h and bk

h are given quantities. By combining this minimization problem
with Eqs. (6) and (3), we get the equivalent constrained minimization problem:

min
vh ,uh∈Vh×Uh

{
1

2
ρ‖T uh − dh‖2Zh

+ 1

2
κ‖vh‖2

L2
h(Ω)

+ 1

2
λ‖∇vh − pk

h + bk
h‖2

L2
h(Ω)

}

(8)

subject to

Auh + Bvh = 0. (9)

For the sake of simplicity, wewant our optimality system to be as similar as possible
to the optimality system analyzed in [11]. Thus, we need to scale the cost-functional
in (8) such that we get

min
vh ,uh∈Vh×Uh

{
1

2
‖T uh − dh‖2Zh

+ 1

2
γ ‖vh‖2

L2
h(Ω)

+ 1

2
α‖∇vh − pk

h + bk
h‖2

L2
h(Ω)

}

(10)

3 For higher order discretizations, the problem in Step 4 becomes more difficult to solve.
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704 O. L. Elvetun, B. F. Nielsen

subject to (9), where

α = λ

ρ
and γ = κ

ρ
. (11)

Next, we can introduce the Lagrangian associated with (9–10):

L(vh, uh, wh) = 1

2
‖T uh − dh‖2Zh

+ 1

2
γ ‖vh‖2

L2
h(Ω)

+1

2
α‖∇vh − pk

h + bk
h‖2

L2
h(Ω)

+ 〈Auh + Bvh, wh〉.

The first-order optimality conditions can be found by computing the derivatives of the
Lagrangian with respect to vh , uh and wh . These conditions can be expressed by the
KKT system

⎡
⎣−αΔ + γ E 0 B ′

0 T ′T A′
B A 0

⎤
⎦

︸ ︷︷ ︸
Âα

⎡
⎣vh

uh

wh

⎤
⎦ =

⎡
⎣−α∇ · pk

h + α∇ · bk
h

T ′dh

0

⎤
⎦ , (12)

where ”′” is used to denote dual operators, and E : Vh → V ′
h is defined by

〈Evh, φh〉 = (vh, φh)L2
h(Ω), φh ∈ Vh .

We have thus derived a new system of equations to be solved in Step 3 in Algo-
rithm 1, which does not require the explicit inverse of A. Also note the form of the
operator −Δ : Vh → V ′

h in the top left corner of the KKT system (12). In an infinite
dimensional setting, this operator must be replaced with the more involved operator
D′D : BV (Ω) → BV (Ω)′, see [4] for a thorough discussion of this operator.4 The
operator D′D is much more challenging to analyze, but it coincides with the operator
−Δ in a finite dimensional setting, which follows from the fact that Dv = ∇v for all
elements in W 1,1(Ω), see [1]. This concludes the discussion of Step 3 in Algorithm 1.

We might now formulate the full algorithm for solving the PDE-constrained opti-
mization problem (1–2), see Algorithm 2.

The efficiency of the split Bregman algorithm has been demonstrated earlier, see
e.g. [3,5]. Of the three inner steps of the for-loop in Algorithm 2, the update of bk

h
is obviously cheap, and the update of pk

h is accomplished by the simple shrinkage
operator (7). What remains, however, is to analyze the spectrum of the KKT system
(12), see Step 3 in Algorithm 2: The efficiency of the algorithm is highly dependent
on how fast we can solve these KKT systems with, e.g., Krylov subspace solvers.

4 In fact, it is possible to work with the dual space of BV with respect to the weak-* topology, which leads
to the Laplacian instead of D′ D in a function space as well [7,8].
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Algorithm2The split Bregman algorithm for PDE-constrained optimization problems
with TV-regularization

1: Choose v0h = 0, p0h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: Let (vk+1

h , uk+1
h , wk+1

h ) be the solution of (12).

4: pk+1
h = argminph∈P0h

∫
Ω |ph | + λ

2 ‖∇vk+1
h − ph + bk

h‖2
L2

h (Ω)
,

5: bk+1
h = bk

h + ∇vk+1
h − pk+1

h .

6: end for

3 Spectrum of the KKT system

In its current form, the operator Âα in (12) is a mapping from the product space
Vh × Uh × Uh onto the dual space V ′

h × U ′
h × U ′

h . Since this operator maps to the
dual space, and not to the space itself, it is not possible to use the MINRES method
directly. A remedy exists, however, in the form of Riesz maps. In this case, we must
introduce the two Riesz maps

RVh : Vh → V ′
h,

RUh : Uh → U ′
h .

This enables us to use the MINRES algorithm, since the KKT system (12) can be
written as

⎡
⎢⎣

R−1
Vh

0 0
0 R−1

Uh
0

0 0 R−1
Uh

⎤
⎥⎦

︸ ︷︷ ︸
R−1

⎡
⎣−αΔ + γ E 0 B ′

0 T ′T A′
B A 0

⎤
⎦

︸ ︷︷ ︸
Âα

⎡
⎣vh

uh

wh

⎤
⎦

=
⎡
⎢⎣

R−1
Vh

0 0
0 R−1

Uh
0

0 0 R−1
Uh

⎤
⎥⎦
⎡
⎣−α∇ · pk

h + α∇ · bk
h

T ′dh

0

⎤
⎦ , (13)

where

R−1Âα : Vh × Uh × Uh → Vh × Uh × Uh .

The operator R−1 can be considered to be a preconditioner. See [10,11] for a more
thorough analysis.

We performed an experimental investigation that suggested the use of small values
of α to obtain good convergence results for the outer split Bregman algorithm. That
is, λ/ρ should be small, see (11). According to standard theory for Krylov subspace
methods, the number of iterations needed by the MINRES algorithm is of the same
order as the spectral condition number of the involved operator. In our case, this
corresponds to iterations numbers of order O(α−1), when γ = 0. We will now show
that this estimate is very pessimistic.
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706 O. L. Elvetun, B. F. Nielsen

Since the case γ = 0 is the most challenging, and also the most interesting, we will
for the rest of the analysis assume that this is the case, i.e. γ = 0. Let us first simplify
the notation in (13), and write the operator R−1Âα in the form

R−1Âα = Aα =
⎡
⎣αQ 0 B̃∗

0 T ∗T Ã∗
B̃ Ã 0

⎤
⎦ , (14)

where we have the following definitions:

– Q = −R−1
Vh

Δ : Vh → Vh ,

– B̃ = R−1
Uh

B : Vh → Uh ,

– Ã = R−1
Uh

A : Uh → Uh ,

– T ∗T = R−1
Uh

T ′T : Uh → Uh .

In this new form, the operator Aα in (14) is very similar to the operator analyzed
in [11]. In fact, they analyzed the operator Bα : Vh × Uh × Uh → Vh × Uh × Uh ,
defined as

Bα =
⎡
⎣α I 0 B̃∗

0 T ∗T Ã∗
B̃ Ã 0

⎤
⎦ . (15)

The main result in [11] is that the spectrum of Bα is of the form

sp(Bα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN (α)} ∪ [a, b],

where

N (α) = O(ln(α−1)

and the constants a, b and c > 0 are independent of the parameter α. The analysis in
[11] is roughly performed as follows:

– The negative eigenvalues are shown to be bounded away from zero, regardless of
the size of regularization parameter α ≥ 0. That is, it even holds for α = 0. Hence,
the negative eigenvalues of Aα , defined in (14), are bounded away from zero:
The argument in [11] can be adapted to the present situation in a straightforward
manner.

– For the positive eigenvalues, the Courant-Fischer-Weyl min-max principle is used
to show that the difference between the eigenvalues ofB0 andBα is “small”, where
B0 denotes the operatorBα with zero regularization α = 0. More specifically, they
prove that the difference between the eigenvalues of B0 and Bα , properly sorted,
is less than the size of the regularization parameter 0 < α � 1. It is easy to verify
that a similar property will hold for A0 and Aα . More specifically, the difference
between the eigenvalues of A0 and Aα is less than c̃α, where c̃ = ‖Q‖.
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The split Bregman algorithm applied to PDE-constrained… 707

– Finally, the analysis in [11] requires that

α(vh, vh)Vh + (T ∗T uh, uh)Uh

must be coercive whenever

Ãuh + B̃vh = 0.

It is proven in [11] that this property holds for the operatorBα . For the operatorAα ,
defined in (14), this analysis is more involved, and it will therefore be explored in
detail here. More specifically, we must show, provided that suitable assumptions
hold, that

α(Qvh, vh)Vh + (T ∗T uh, uh)Uh

is coercive for all (vh, uh) satisfying

Ãuh + B̃vh = 0.

To further investigate the coercivity problem associated with (14), we introduce the
notation

Xh = Vh × Uh, ‖xh‖Xh = ‖(vh, uh)‖Xh =
√

‖vh‖2Vh
+ ‖uh‖2Uh

,

Mα =
[
αQ 0
0 T ∗T

]
: Xh → Xh, (16)

N = [
B̃ Ã

] : Xh → Uh . (17)

Since we work with finite dimensional spaces, we employ the control space Vh with
the norm

‖ · ‖2Vh
= ‖ · ‖2

L2
h(Ω)

+ | · |2
H1

h (Ω)
, (18)

i.e. Vh = H1
h (Ω) ⊂ H1(Ω). Note that, for the analysis presented below, we must

assume that the operator B satisfies assumption A3 with the norm (18), i.e. that

B : Vh → U ′
h

is bounded, which along with assumptions A2 and A4 imply that

Kh = K = −T A−1B = −T Ã−1 B̃ : Vh → Zh

is bounded5 (Bounded in the sense that the operator norm is bounded independently
of h). We must also assume that the discrete solutions converge toward the correct
solution as h → 0:

5 Except for the presentation and discussion of Lemma 1, we simply write K instead of Kh .
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708 O. L. Elvetun, B. F. Nielsen

lim
h→0

‖vh − v‖H1(Ω) = 0 ⇒ lim
h→0

‖Khvh − K̂v‖Z = 0, (19)

where K̂ : H1(Ω) → Z denotes the associated mapping between the infinite dimen-
sional spaces.

We are now ready to formulate the result concerning the coercivity issue for the
operator Aα defined in (14).

Lemma 1 Let Mα and N be defined as in (16) and (17), respectively. Assume that (19)
holds and that K̂ does not annihilate constants, i.e. the constant function k /∈ N (K̂ ).
Then there exists h̄ > 0 such that the operator Mα is coercive on the kernel of N , i.e.
for α ∈ (0, 1):

(Mαxh, xh)Xh ≥ cα‖xh‖2Xh
(20)

for all h ∈ (0, h̄) and for all xh = (vh, uh) ∈ Xh satisfying

Ãuh + B̃vh = 0. (21)

The constant c is independent of h ∈ (0, h̄) and α > 0.

Proof We will first show that, if K̂ does not annihilate constants, then there exist
constants h̄ > 0 and c ∈ (0, 1), which is independent of h ∈ (0, h̄), such that

(Khvh, Khvh)Z ≥ (c − 1)(∇vh,∇vh)L2(Ω)

+ c(vh, vh)L2(Ω), ∀vh ∈ Vh, ∀h ∈ (0, h̄). (22)

Thereafter, we will use this result to prove (20–21).
Assume that there do not exist h̄ > 0 and c ∈ (0, 1) such that (22) holds. We will

show that this implies that the constant function k must belong to the null-space of K̂ .
If (22) is not satisfied, then it follows that there exist a sequence

lim
i→∞ hi = 0

and a sequence of functions

{vhi } ⊂ H1(Ω), vhi ∈ H1
hi

(Ω), ‖vhi ‖2L2(Ω)
= 1,

such that

0 ≤ (Khi vhi , Khi vhi )Z <

(
1

i
− 1

)
|vhi |2H1(Ω)

+ 1

i
(vhi , vhi )L2(Ω)

=
(
1

i
− 1

)
|vhi |2H1(Ω)

+ 1

i
.
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The split Bregman algorithm applied to PDE-constrained… 709

We may choose a sequence with the property ‖vhi ‖2L2(Ω)
= 1 because the operator

Kh is linear. Since (1/ i − 1) → −1 as i → ∞, we can conclude that

|vhi |H1(Ω) → 0 as i → ∞, (23)

‖Khi vhi ‖Z → 0 as i → ∞. (24)

We will now show that {vhi } has a limit in H1(Ω). Let

S =
{

s ∈ H1(Ω) :
∫

Ω

s dx = 0

}
.

It is well known that H1(Ω) = S ⊕R, i.e. every function in H1(Ω) can be (uniquely)
expressed as a sum of a function in S and a constant. Hence,

vhi = shi + ri , where

shi ∈ S,

ri ∈ R is a constant.

From this splitting, we obtain

0 ≤ |shi |H1(Ω) = |shi + ri |H1(Ω) = |vhi |H1(Ω) → 0 as i → ∞, (25)

see (23).
This enables us to use the Poincaré inequality to conclude that

0 ≤ ‖shi ‖L2(Ω) ≤ C |shi |H1(Ω) → 0 as i → ∞,

i.e.

‖shi ‖L2(Ω) → 0 as i → ∞. (26)

Furthermore, recall that ‖vhi ‖2L2(Ω)
= 1 and that

∫
Ω

shi dx = 0. Thus, it follows that

1 = ‖vhi ‖2L2(Ω)

= ‖shi + ri‖2L2(Ω)

= ‖shi ‖2L2(Ω)
+ 2(shi , ri )L2(Ω) + ‖ri‖2L2(Ω)

= ‖shi ‖2L2(Ω)
+ 2ri

∫
Ω

shi dx + ‖ri‖2L2(Ω)

= ‖shi ‖2L2(Ω)
+ |Ω|(ri )

2,

which yields

(ri )
2 = 1

|Ω|
(
1 − ‖shi ‖2L2(Ω)

)
.
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710 O. L. Elvetun, B. F. Nielsen

By using (26) we get

ri = 1√|Ω|
√
1 − ‖shi ‖2L2(Ω)

→ r∗ = 1√|Ω| as i → ∞.

We claim that also the sequence {vhi } converges toward r∗ in H1(Ω):

vhi → r∗ = 1√|Ω| in H1(Ω).

This follows from the fact that shi = vhi − ri and (25–26):

‖vhi − r∗‖H1(Ω) = ‖vhi − ri + ri − r∗‖H1(Ω)

≤ ‖vhi − ri‖H1(Ω) + ‖ri − r∗‖H1(Ω)

= ‖shi ‖H1(Ω) + ‖ri − r∗‖H1(Ω)

= ‖shi ‖H1(Ω) + ‖ri − r∗‖L2(Ω)

i→∞−−−→ 0.

Here, we have used that {ri } is a sequence of constants and that r∗ is a constant, which
implies that ‖ri − r∗‖H1(Ω) = ‖ri − r∗‖L2(Ω) and that

ri → r∗ in R ⇒ ‖ri − r∗‖L2(Ω) → 0,

provided that Ω has finite measure.
Since {vhi } converges toward r∗ in H1(Ω), we may employ assumption (19) to

find that

lim
i→∞ ‖Khi vhi ‖Z = ‖K̂ r∗‖Z .

By combining these observations with (24), we conclude that

r∗ ∈ N (K̂ ).

To summarize, if (22) does not hold, then K̂ annihilates constants. Conversely, if
K̂ does not annihilate constants, (22) must hold.

We are now ready to show that (20–21) does indeed hold. Note that (22) can be
written in the form: There exists c ∈ (0, 1) such that

(∇vh,∇vh)L2(Ω) + (Khvh, Khvh)Z

≥ c[(∇vh,∇vh)L2(Ω) + (vh, vh)L2(Ω)],
∀vh ∈ Vh and ∀h ∈ (0, h̄). (27)

Assume that x = (vh, uh) ∈ Xh satisfies the state equation, i.e.

Ãuh + B̃vh = 0.
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Then,

uh = − Ã−1 B̃vh, (28)

and since Ã−1 B̃ is assumed to be bounded independently of h,

‖uh‖Uh ≤ c̄‖vh‖Vh . (29)

In addition,

T uh = −T Ã−1 B̃vh = Khvh . (30)

Therefore, see (16), for α ∈ (0, 1) and h ∈ (0, h̄),

(Mαxh, xh)Xh = α(∇vh,∇vh)L2
h(Ω) + (T ∗T uh, uh)Uh

≥ α[(∇vh,∇vh)L2
h(Ω) + (T uh, T uh)Zh ]

= α[(∇vh,∇vh)L2
h(Ω) + (Khvh, Khvh)Zh ],

where we have used (30). Next, by invoking (27) and (29) we can conclude that

(Mαxh, xh)Xh ≥ α[(∇vh,∇vh)L2
h(Ω) + (Khvh, Khvh)Zh ],

≥ αc[(∇vh,∇vh)L2
h(Ω) + (vh, vh)L2

h(Ω)],
≥ αc[0.5(∇vh,∇vh)L2

h(Ω) + 0.5(vh, vh)L2
h(Ω) + 0.5c̄−2‖uh‖2Uh

],
≥ αcmin{0.5, 0.5c̄−2}‖(vh, uh)‖2Xh

. (31)

That is, Mα is coercive on the kernel of N , cf. (17). ��
We will now use this lemma to establish the main result of this section. First,

however, we note that:

Remark 1 From A1–A3 it follows that the inf-sup condition holds, i.e.

inf
wh∈Uh

sup
(vh ,uh)∈Vh×Uh

(B̃vh, wh)Uh + ( Ãuh, wh)Uh√
‖vh‖2Vh

+ ‖uh‖2Uh
‖wh‖Uh

≥ c > 0. (32)

Remark 2 Since we consider finite dimensional problems, there always exist positive
constants c̃, C̃ such that

|τi (A0)| ≤ c̃e−C̃i , i = 1, 2, . . . , n, (33)

where τi (A0) denotes the i th eigenvalue of A0 sorted in decreasing order according
to their absolute value. Here,A0 isAα with α = 0, i.e. without regularization. (Aα is
defined in (14)).
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We consider ill-posed PDE-constrained optimization tasks. For such problems,
c̃e−C̃n will typically be extremely small, i.e. much smaller than practical choices of
the size of the regularization parameter.

Let us state the theorem:

Theorem 2 Assume that all assumptions of Lemma 1 hold and that h ∈ (0, h̄). Then
there exist constants a, b, c > 0 such that, for α ∈ (0, 1), the spectrum of Aα , defined
in (14), satisfies

sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN (α)} ∪ [a, b], (34)

where

N (α) ≤
⌈
ln(c̃) − ln(α)

C̃

⌉
= O(ln(α−1)).

Here c̃, C̃ are the constants in (33).

Proof Since we consider finite dimensional problems, the theorem follows from
Lemma 1 and the analysis presented in [11]. ��
Since the spectrumofAα is of the form (34),we can conclude that theMINRESmethod
will handle the KKT systems (13) very well. More precisely, the number of iterations
needed by the MINRES scheme to solve (13) can not grow faster than O([ln(α−1)]2)
as α → 0, see [11]. In fact, in practice, iterations counts of order O(ln(α−1)) will in
many situations occur, which is also explained in [11].

Note that, while the optimality system (1–2) requires that either K = −T A−1B :
Vh → Zh is injective or that γ > 0 to obtain a unique solution, see [4], the inner MIN-
RES algorithm only requires that the constant k does not belong to the null-space of K̂ .

4 Constrained split Bregman algorithm

The split Bregman algorithmwehave analyzed is in [5] referred to as the unconstrained
split Bregman method. For some applications, the related constrained split Bregman
algorithm, also introduced in [5], produces better convergence rates. In order to discuss
the latter method, we observe that the problem (4–5) can be formulated on the related,
constrained form

min
vh∈Vh

{
1

2
κ‖vh‖2L2(Ω)

+
∫

Ω

|ph | dx

}
,

subject to

Kvh = dh on Ωobserve,

Dvh = ph on Ω.
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The split Bregman algorithm applied to PDE-constrained… 713

Here, Ωobserve is the domain on which the observation data dh is defined. The con-
straints are “implicit” in the sense that they are not necessarily satisfied in each step
of the split Bregman algorithm, see [5]. Instead, the scheme generates approximations
which converge toward functions satisfying these constraints, and a natural stopping
criterion is thus

‖Kvk
h − dh‖Zh < TOL.

Details about the constrained split Bregman algorithm associated with this problem
can be found in [3].

It turns out that this constrained approach also can be applied to a PDE-constrained
optimization problem, and an experimental investigation gave us better convergence
results with this latter approach. We will therefore present the constrained split Breg-
man algorithm for discretized PDE-constrained optimization problems of the form

min
vh∈Vh

{
1

2
κ‖vh‖2

L2
h(Ω)

+
∫

Ω

|ph | dx

}
,

subject to

Auh + Bvh = 0,

T uh = dh on Ωobserve,

Dvh = ph on Ω.

Note that the first constraint here is “explicit”, i.e. it must be satisfied in each step of
the algorithm. The latter two constraints are “implicit”.

Recall the KKT system (12) that we derived in connection with Algorithm 2. For
the constrained split Bregman method, we get the very similar optimality system

⎡
⎣−αΔ + γ E 0 B ′

0 T ′T A′
B A 0

⎤
⎦

︸ ︷︷ ︸
Âα

⎡
⎣vh

uh

wh

⎤
⎦ =

⎡
⎣−α∇ · pk

h + α∇ · bk
h

T ′dh − T ′ck
h

0

⎤
⎦ , (35)

where “′” is used to denote dual operators, and E : Vh → V ′
h is defined by

〈Evh, φh〉 = (vh, φh)L2
h(Ω), φh ∈ Vh .

Compared with (12), only the term −T ′ck
h has been added to the second row of the

right hand side of (35). The operator Âα on the left hand side is unchanged, and our
analysis of the MINRES method, presented above, also applies to this KKT system.
The associated algorithm is, of course, similar to Algorithm 2, see Algorithm 3.
We observe that Algorithm 3 only requires one more simple update compared with
Algorithm 2: The update for ck+1

h . This extra computer effort is diminishingly small,
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714 O. L. Elvetun, B. F. Nielsen

Algorithm 3 The constrained split Bregman for PDE-constrained optimization prob-
lems with TV-regularization

1: Choose v0h = 0, p0h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: Let vk+1

h , uk+1
h and wk+1

h be the solution of (35).

4: pk+1
h = argminph∈P0h

∫
Ω |ph | + λ

2 ‖∇vk+1
h − ph + bk

h‖2
L2

h (Ω)
,

5: bk+1
h = bk

h + ∇vk+1
h − pk+1

h ,

6: ck+1
h = ck

h + T uk+1
h − dh .

7: end for

and since we obtain better convergence results, we will present numerical experiments
with the use of Algorithm 3 only.

5 Numerical experiments

5.1 Example 1

Let Ω = (0, 1) × (0, 1). We consider the standard example in PDE-constrained
optimization, but with TV-regularization instead of Tikhonov regularization. That is,

min
(vh ,uh)∈Vh×Uh

{
1

2
ρ‖T uh − dh‖2

L2
h(Ω)

+
∫

Ω

|Dvh |
}

, (36)

subject to

−Δuh + uh = vh in Ω, (37)

∇uh · n = 0 on ∂Ω, (38)

where the control space Vh , the state space Uh and the observation space Zh are

Vh = H1
h (Ω) = H1(Ω) ∩ P1

h , (39)

Uh = H1
h (Ω), (40)

Zh = L2
h(Ω) = L2(Ω) ∩ P1

h , (41)

respectively. Furthermore, the operator T is the embedding T : H1(Ω) ↪→ L2(Ω).
Hence, assumption A4 is satisfied.

Recall that our objective is to solve this system with Algorithm 3. The main chal-
lenge is the efficient solution of the KKT systems (35). To derive this optimality
system, we need the weak formulation of the boundary value problem (37–38).
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5.1.1 Computational details

The weak formulation reads: Find uh ∈ Uh such that

〈Auh, ψh〉 = −〈Bvh, ψh〉 ∀ψh ∈ Uh,

where

A : Uh → U ′
h, uh →

∫
Ω

∇uh · ∇ψh + uhψh dx, ∀ψh ∈ Uh, (42)

B : Vh → U ′
h, vh →

∫
Ω

vhψh dx,∀ψh ∈ Uh . (43)

From standard PDE theory, we find that A and A−1 have operator norms which are
bounded independently of h. The boundedness of

B : Vh → U ′
h,

where one employs the H1-topology (18) on Vh , follows from the inequalities

∫
Ω

vhψh dx ≤ ‖vh‖L2
h(Ω) · ‖ψh‖L2

h(Ω)

≤
√

‖vh‖2
L2

h(Ω)
+ |vh |2

H1
h (Ω)

·
√

‖ψh‖2
L2

h(Ω)
+ |ψh |2

H1
h (Ω)

= ‖vh‖Vh · ‖ψh‖Uh .

We conclude that assumptions A1, A2 and A3 are satisfied.
The KKT system to be solved in Algorithm 3 now takes the form

⎡
⎢⎣

R−1
Vh

0 0
0 R−1

Uh
0

0 0 R−1
Uh

⎤
⎥⎦

︸ ︷︷ ︸
R−1

⎡
⎣−αΔ 0 B ′

0 T ′T A′
B A 0

⎤
⎦

︸ ︷︷ ︸
Âα

⎡
⎣vh

uh

wh

⎤
⎦

=
⎡
⎢⎣

R−1
Vh

0 0
0 R−1

Uh
0

0 0 R−1
Uh

⎤
⎥⎦
⎡
⎣−α∇ · pk

h + α∇ · bk
h

T ′dh − T ′ck
h

0

⎤
⎦ . (44)

Recall that α = λ/ρ, where ρ is the regularization parameter in (36) and λ is the
parameter employed in the Bregman scheme, see the discussion of (8–11).

The discretization of the operator R in (44) is rather straightforward. Recall that
the finite dimensional space Vh was equipped with the norm ‖ · ‖H1

h (Ω). Furthermore,

since U = H1(Ω) in this particular example, it follows that the discretization of both
of the Riesz maps RVh and RUh yields the sum of the mass matrix M and stiffness
matrix S.
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716 O. L. Elvetun, B. F. Nielsen

For the operator Âα in (44), the discretization is more challenging, but a general
recipe can be found in [10]. The end result can be summarized as follows:

– A, defined in (42), yields the matrix M + S, which is the sum of the mass and
stiffness matrices associated with the domain Ω .

– B, defined in (43), yields the mass matrix M .
– −Δ yields the stiffness matrix S.
– T ′T = R−1

Uh
T ∗T yields the mass matrix M .

– The functions vh , uh , wh , pk
h , bk

h , ck
h and dh yields the corresponding vectors v̄, ū,

w̄, p̄k , b̄k , c̄k and d̄, respectively.

Hence, the matrix “version” of (44) is

⎡
⎣(M + S)−1 0 0

0 (M + S)−1 0
0 0 (M + S)−1

⎤
⎦

︸ ︷︷ ︸
R̄−1

⎡
⎣αS 0 M

0 M M + S
M M + S 0

⎤
⎦

︸ ︷︷ ︸
Āα

⎡
⎣ v̄k+1

ūk+1

w̄k+1

⎤
⎦

︸ ︷︷ ︸
q̄k+1

=
⎡
⎣(M + S)−1 0 0

0 (M + S)−1 0
0 0 (M + S)−1

⎤
⎦
⎡
⎣−α∇ · p̄k + α∇ · b̄k

Md̄ − Mc̄k

0

⎤
⎦

︸ ︷︷ ︸
ḡk

. (45)

The preconditioner thus reads

⎡
⎣(M + S)−1 0 0

0 (M + S)−1 0
0 0 (M + S)−1

⎤
⎦ , (46)

and involves the inverse of the matrix M + S. This inverse is computed approximately
by using algebraic multigrid (AMG). We discuss this in some more detail in the
numerical setup.

5.1.2 Numerical setup

– Wewrote the code using cbc.block, which is a FEniCS-based Python implemented
library for block operators. See [9] for details.

– The PyTrilinos package was used to compute an approximation of the pre-
conditioner (46). We approximated the inverse using AMG with a symmetric
Gauss-Seidel smoother with three smoothing sweeps. All tables containing itera-
tion counts for theMINRESmethod were generated with this approximate inverse
Riesz map. On the other hand, the eigenvalues of the KKT systems [R̄]−1Āα , see
(45), were computed with an exact inverse [R̄k]−1 computed in Octave.

– To discretize the domain, we divided Ω = (0, 1) × (0, 1) into N × N squares,
and each of these squares were divided into two triangles.
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The split Bregman algorithm applied to PDE-constrained… 717

Fig. 1 The eigenvalues of [R̄k ]−1Āα in Example 1. Here, α = 0.0001 and N = 32, i.e. h = 1/32.
([R̄k ]−1 denotes the exact inverse of the preconditioner—not its AMG approximation)

– The MINRES iteration process was stopped as soon as

‖rk
n ‖

‖rk
0‖ =

[( Āαq̄k
n − ḡk, [R̄]−1

[Āαq̄k
n − ḡk

] )
( Āαq̄k

0 − ḡk, [R̄]−1
[Āαq̄k

0 − ḡk
] )
]1/2

< ε. (47)

Here, ε is a small positive parameter.Note that the superindex k is the iteration index
for the “outer” split Bregman method, while the subindex n is the iteration index
for the “inner” MINRES algorithm (at each step of the split Bregman method).

– No noise was added to the input data dh , see (36).

5.1.3 Results

We are now ready to solve the problem (36–38). The synthetic data dh was produced
by setting

vh(x) =
{

−5 if x2 < 0.5,

7 if x2 > 0.5,
(48)

and then we solved the boundary value problem (37–38) with (48) as input. The data
dh was thereafter set equal to the solution uh throughout the entire domain Ω =
(0, 1) × (0, 1).

Theorem 2 states that the KKT system (13–14) arising in each iteration of the split
Bregman iteration has a spectrum of the form (34). In Fig. 1, we see a spectrum of
such a KKT system, and it is clearly of the form (34). Hence, we should expect the
MINRES algorithm to solve the problem efficiently.

Table 1 illuminates the theoretically established convergence behavior of the MIN-
RES algorithm. As previously mentioned, in [11] the authors proved that the number
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718 O. L. Elvetun, B. F. Nielsen

Table 1 The average number of
MINRES iterations required to
solve the KKT systems arising
in the first ten steps of the split
Bregman algorithm in Example
1

The two panels display the
iteration counts for two different
choices of ε, see (47)

N\α 1 .1 .01 .001 .0001

(a) Stopping criterion ε = 10−6

32 22 37 47 59 73

64 31 51 63 81 102

128 26 42 59 75 97

256 39 62 84 108 124

(b) Stopping criterion ε = 10−10

32 32 61 81 98 116

64 43 82 115 143 173

128 40 74 110 142 170

256 54 103 152 182 232

of iterations can not grow faster than O([ln(α−1)]2), and showed why iteration growth
of O(ln(α−1)) often occur in practice. For ε = 10−6, see (47), and N = 256, we get
the following estimate for the iteration growth

40.2 − 21.6 log10(α),

where the coefficients are computed by the least squares method. The growth is very
well modeled by this formula. Similarly, for ε = 10−10 and N = 256, we can model
the growth by the formula

57.6 − 43.5 log10(α).

In Fig. 2, two approximate solutions of the optimization problem (36–38) are dis-
played: After 10 and 70 Bregman iterations. The “true” control/source is defined in
(48).

Remark As mentioned above, the problem (36–38), with Tikhonov regularization
instead of TV-regularization, has been analyzed by many scientists. In fact, for
Tikhonov regularization a number of numerical schemes that are completely robust
with respect to the size of the regularizationparameter havebeendeveloped [14,16,17]:
Even logarithmic growth in iterations counts is avoided. As far as the authors knows,
it is not known whether these techniques can be adapted to the saddle point problem
(44).

5.2 Example 2

We will now explore a more challenging problem. Let the domain Ω still be the unit
square. Furthermore, define

Ω̃ = (1/4, 3/4) × (1/4, 3/4).

123
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Fig. 2 The solution of the problem (36–38). Here, ε = 10−6, α = 10−6 and N = 128 (i.e. h = 1/128).
a Approximative inverse solution generated with 10 split Bregman iterations, i.e. v10h . b Approximative

inverse solution generated with 70 split Bregman iterations, i.e. v70h

The problem we want to study is

min
(vh ,uh)∈Vh×Uh

{
1

2
ρ‖T uh − dh‖2

L2
h(∂Ω)

+
∫

Ω̃

|Dvh |
}

, (49)

subject to

− Δuh + uh =
{

−vh if x ∈ Ω̃,

0 if x ∈ Ω \ Ω̃,
(50)

∇uh · n = 0 on ∂Ω, (51)

where the control space Vh , the state space Uh and the observation space Zh are

Vh = H1
h (Ω̃), (52)

Uh = H1
h (Ω) = H1(Ω) ∩ P1

h , (53)

Zh = L2
h(∂Ω) = L2(∂Ω) ∩ T (P1

h ), (54)

respectively. Furthermore, the operator T : H1(Ω) → L2(∂Ω) is the trace operator.
Hence, assumption A4 is satisfied.

We observe two differences between examples 1 and 2. First, the control domain Ω̃

is now a subdomain of the entire domain Ω , bounded strictly away from the boundary
∂Ω . Secondly, the observation domain is reduced from the entire domain Ω to the
boundary ∂Ω .

In this model problem, Vh does not coincide with the control space defined in bullet
point 1 in Sect. 1. Nevertheless, the proof of Lemma 1 can be adapted to the present
situation in a straightforward manner, and Theorem 2 therefore also holds for this
example.
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Since the discretization of (49–51) is very similar to the discretization of (36–38),
we do not enter into all the details. Instead, we only focus on the differences.

The weak formulation of the state Eqs. (50–51) reads: Find u ∈ Uh such that

〈Auh, ψh〉 = −〈Bvh, ψh〉 ∀ψh ∈ Uh,

where the operator A is still defined as in (42). The operator B, however, is no longer
as in (43), but is here defined by

B : Vh → U ′
h, vh →

∫
Ω̃

vhψh dx,∀ψh ∈ Uh, (55)

where we can employ the norm

‖ · ‖2Vh
= ‖ · ‖2

L2
h(Ω̃)

+ | · |2
H1

h (Ω̃)

on the control space Vh . From standard PDE theory, we can guarantee that A and A−1

are bounded, and the boundedness of B is verified in a manner very similar to the
argument presented in connection with Example 1:

∫
Ω̃

vhψh dx ≤ ‖vh‖Vh · ‖ψh‖H1
h (Ω̃)

≤ ‖vh‖Vh · ‖ψh‖Uh

because Ω̃ is a subdomain of Ω . We conclude that assumptions A1, A2 and A3 are
satisfied.

The new control domain Ω̃ and the redefined operators B and T lead to some
changes in the discretization of the optimality system (35), which must be solved
repeatedly in Algorithm 3. These can be summarized as follows:

– B, defined in (55), yields the mass matrix M̃ associated with the subdomain Ω̃ .
– −Δ yields the stiffness matrix S̃ associated with the subdomain Ω̃ .
– T ′T = R−1

Uh
T ∗T yields the “boundary” mass matrix M∂ .

– The Riesz map RVh now yields the sum of the mass matrix M̃ and stiffness matrix
S̃.

All other operators are discretized in the same fashion as in Example 1. Hence, the
matrix “version” of the optimality system in Algorithm 3, associated with (49–51),
takes the form

⎡
⎣(M̃ + S̃)−1 0 0

0 (M + S)−1 0
0 0 (M + S)−1

⎤
⎦

︸ ︷︷ ︸
R̄−1

⎡
⎣α S̃ 0 M̃

0 M∂ M + S
M̃ M + S 0

⎤
⎦

︸ ︷︷ ︸
Āα

⎡
⎣ v̄k+1

ūk+1

w̄k+1

⎤
⎦

︸ ︷︷ ︸
q̄k+1
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=
⎡
⎣(M̃ + S̃)−1 0 0

0 (M + S)−1 0
0 0 (M + S)−1

⎤
⎦
⎡
⎣−α∇ · p̄k + α∇ · b̄k

M∂ d̄ − M∂ c̄k

0

⎤
⎦

︸ ︷︷ ︸
ḡk

. (56)

The preconditioner thus reads

⎡
⎣(M̃ + S̃)−1 0 0

0 (M + S)−1 0
0 0 (M + S)−1

⎤
⎦ . (57)

5.2.1 Results

The synthetic data dh was produced in the samemanner as in Example 1.We computed
the synthetic data from the function vh ∈ Vh , where

vh(x) =
{
5 if x1 < 0.5,

−5 if x1 > 0.5.
(58)

Note that the forward operator K = −T A−1B does not guarantee a unique solution
of (49–51), since the trace operator is not injective, see [4]. Nevertheless, the forward
operator K does not annihilate constants, and from Theorem 2 it then follows that
the MINRES algorithm should handle the KKT systems, arising in each Bregman
iteration, very well.

Figure 3 shows the spectrum of [R̄k]−1Āα for this example. This eigenvalue dis-
tribution is clearly on the form (34). Hence, in accordance with Theorem 2, we obtain

Fig. 3 The eigenvalues of [R̄k ]−1Āα in Example 2. Here, α = 0.0001 and N = 32. ([R̄k ]−1 denotes the
exact inverse of the preconditioner - not its AMG approximation)
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Table 2 The average number of
MINRES iterations required to
solve the KKT systems arising
in the first ten steps of the split
Bregman algorithm in
Example 2

The two panels display the
iteration counts for two different
choices of ε, see (47)

N\α 1 .1 .01 .001 .0001

(a) Stopping criterion ε = 10−6

32 29 44 49 55 63

64 34 48 58 67 82

128 36 52 59 69 84

256 41 60 71 84 110

(b) Stopping criterion ε = 10−10

32 41 65 82 100 109

64 47 76 104 126 154

128 50 84 112 144 169

256 57 95 131 163 201

Fig. 4 The solution of the problem (49–51). Here, ε = 10−6, α = 10−6 and N = 128 (i.e. h = 1/128).
a Approximative inverse solution generated with 10 split Bregman iterations, i.e. v10h . b Approximative

inverse solution generated with 70 split Bregman iterations, i.e. v70h

such a spectrum even though K = −T A−1B is not injective (and κ = 0 in these
computations).

Table 2 displays the iteration counts for Example 2. We see that the growth in the
iteration numbers, as α decreases, is handled well by the MINRES algorithm. For
example, for the case of N = 256 and ε = 10−6, the growth can be modeled by the
formula

40.8 − 16.2 log10(α).

Similarly, for N = 256 and ε = 10−10, the least squares method gives us the formula

58.2 − 35.6 log10(α),
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as the best logarithmic fit of iteration growth.
The approximate solutions, seen in Fig. 4, are close to the “input solution” (58).

We thus get good approximations even though we can not guarantee a unique solution
(κ = 0, see [4]).

6 Conclusions

Wehave studied PDE-constrained optimization problems subject to TV-regularization.
The main purpose of this text was to adapt the split Bregman algorithm, frequently
used in imaging analysis, to this kind of problems.

In each iteration of the split Bregman scheme, a large KKT system

Aαq = g (59)

must be solved. Here, 0 < α � 1 is a regularization parameter, and the spectral
condition number of Aα tends to ∞ as α → 0. We investigated the performance of
the MINRES algorithm applied to these indefinite systems. In particular, we analyzed
the spectrum ofAα , and ourmain result shows that this spectrum is almost contained in
three bounded intervals,with a small number of isolated eigenvalues.More specifically,
we found that

sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN (α)} ∪ [a, b], (60)

where N (α) = O(ln(α−1)). Krylov subspace solvers therefore handle (59) very well:
The number of iterations required by the MINRES method can not grow faster than
O([ln(α−1)]2) as α → 0, and in practice one will often encounter growth rates of
order O(ln(α−1)).

Our theoretical findings were illuminated by numerical experiments. In both exam-
ples we observed approximately logarithmic growth in iteration numbers as α → 0.
This is in accordance with our theoretical results.
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