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Abstract We present a clustering-based preconditioning strategy for KKT systems
arising in stochastic programming within an interior-point framework. The key idea is
to perform adaptive clustering of scenarios (inside-the-solver) based on their influence
on the problem at hand. This approach thus contrasts with existing (outside-the-solver)
approaches that cluster scenarios based on problem data alone. We derive spectral and
error properties for the preconditioner and demonstrate that scenario compression rates
of up to 94% can be obtained, leading to dramatic computational savings. In addition,
we demonstrate that the proposed preconditioner can avoid scalability issues of Schur
decomposition in problems with large first-stage dimensionality.
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1 Preliminaries

We consider two-stage stochastic programs of the form

min

(
1

2
xT0 Q0x0 + dT0 x0

)
+
∑
s∈S

ps

(
1

2
xTs Qsxs + dTs xs

)
(1a)

s.t. W0x0 = b0, (y0) (1b)

Tsx0 + Wsxs = bs, (ys), s ∈ S (1c)

x0 ≥ 0, (ν0) (1d)

xs ≥ 0, (νs), s ∈ S. (1e)

Here, S := {1 . . . S} is the scenario set and S is the number of scenarios. The problem
variables are x0, ν0 ∈ �n0 , xs, νs ∈ �ns , y0 ∈ �m0 , and ys ∈ �ms . The total number
of variables is n := n0 +∑

s∈S ns , of equality constraints is m := m0 +∑
s∈S ms ,

and of inequalities is n. We refer to (x0, y0, ν0) as the first-stage variables and to
(xs, ys, νs), s ∈ S as the second-stage variables. We refer to Eq. (1a) as the cost
function. Thedatadefining problem (1) is given by the cost coefficientsd0, Q0, Qs, ds ;
the right-hand side coefficients b0, bs ; the matrix coefficients Ts,Ws ; and the scenario
probabilities as ps ∈ �+. We refer to ps, Qs, ds, bs, Ts,Ws as the scenario data.

As is typical in stochastic programming, the number of scenarios can be large and
limits the scope of existing off-the-shelf solvers. In this work, we present strategies
that cluster scenarios at the linear algebra level to mitigate complexity. We begin by
presenting some basic notation. We scale the cost coefficient matrices and vectors as
Qs ← ps Qs and ds ← ps ds . Consequently, the Lagrange function of (1) can be
expressed as:

L(x, y, ν) = 1

2
xT0 Q0x0 + dT0 x0 + yT0 (W0x0 − b0) − νT0 x0

+
∑
s∈S

(
1

2
xTs Qsxs + dTs xs + yTs (Tsx0 + Wsxs − bs) − νTs xs

)
. (2)

Here, x := [xT0 , xT1 , . . . , xTS ], yT := [yT0 , yT1 , . . . , yTS ], and νT := [νT0 , νT1 , . . . , νTS ].
In a primal-dual interior-point (IP) setting we seek to solve nonlinear systems of
equations of the form

∇x0L = 0 = Q0x0 + d0 + WT
0 y0 − ν0 +

∑
s∈S

T T
s ys (3a)

∇xsL = 0 = Qsxs + ds + WT
s ys − νs, s ∈ S (3b)

∇y0L = 0 = W0x0 − b0 (3c)

∇ysL = 0 = Tsx0 + Wsxs − bs, s ∈ S (3d)

0 = X0V0en0 − μen0 (3e)

0 = XsVseS − μens , s ∈ S, (3f)
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Clustering-based preconditioning for stochastic programs 381

with the implicit condition x0, ν0, xs, νs ≥ 0. Here, μ ≥ 0 is the barrier parameter
and en0 ∈ �n0 , ens ∈ �ns are vectors of ones. We define the diagonal matrices
X0 := diag(x0), Xs := diag(xs), V0 := diag(ν0), and Vs := diag(νs). We also define
α0 := X0V0e − μen0 and αs := XsVse − μens , s ∈ S. The search step is obtained
by solving the linear system

Q0�x0 + WT
0 �y0 +

∑
s∈S

T T
s �ys − �ν0 = −∇x0L (4a)

Qs�xs + WT
s �ys − �νs = −∇xsL, s ∈ S (4b)

W0�x0 = −∇y0L (4c)

Ts�x0 + Ws�xs = −∇ysL, s ∈ S (4d)

X0�ν0 + V0�x0 = −α0 (4e)

Xs�νs + Vs�xs = −αs, s ∈ S. (4f)

After eliminating the step for the bound multipliers from the linear system we obtain

H0�x0 + WT
0 �y0 +

∑
s∈S

T T
s �ys = rx0 (5a)

Hs�xs + WT
s �ys = rxs , s ∈ S (5b)

W0�x0 = ry0 (5c)

Ts�x0 + Ws�xs = rys , s ∈ S, (5d)

where

H0 := Q0 + X−1
0 V0 (6a)

Hs := Qs + X−1
s Vs, s ∈ S. (6b)

We also have that rx0 := −(∇x0L + X−1
0 α0), rxs := −(∇xsLs + X−1

s αs), ry0 :=
−∇y0L, and rys := −∇ysL. The step for the bound multipliers can be recovered from

�ν0 = −X−1
0 V0�x0 − X−1

0 α0 (7a)

�νs = −X−1
s Vs�xs − X−1

s αs, s ∈ S. (7b)

System (5) has the arrowhead form

⎡
⎢⎢⎢⎢⎢⎣

K1 B1
K2 B2

. . .
...

KS BS

BT
1 BT

2 . . . BT
S K0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�w1
�w2

...

�wS

�w0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

r1
r2
...

rS
r0

⎤
⎥⎥⎥⎥⎥⎦

, (8)
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where �wT
0 := [�xT0 ,�yT0 ], �wT

s := [�xTs ,�yTs ], rT0 := [−rTx0 ,−rTy0 ], rTs :=
[−rTxs ,−rTys ], and

K0 :=
[
H0 WT

0
W0 0

]
, Ks :=

[
Hs WT

s
Ws 0

]
, Bs :=

[
0 0
Ts 0

]
. (9)

We refer to the linear system (8) as the KKT system and to its coefficient matrix as
theKKT matrix. We assume that each scenario block matrix Ks, s ∈ S is nonsingular.

We use the following notation to define a block-diagonal matrix M composed of
blocks M1, M2, M3, . . . :

M = blkdiag{M1, M2, M3, . . .}. (10)

In addition, we use the following notation to define a matrix B that stacks (row-wise)
the blocks B1, B2, B3 . . . :

B = rowstack{B1, B2, B3, . . .}. (11)

We apply the same rowstack notation for vectors. We use the notation v(k) to indicate
the k-th entry of vector v. We use vec(M) to denote the row-column vectorization of
matrix M and we define σmin(M) as the smallest singular value of matrix M . We use
‖ · ‖ to denote the Euclidean norm for vectors and the Frobenius norm for matrices,
and we recall that ‖M‖ = ‖vec(M)‖ for matrix M .

2 Clustering setting

In this section we review work on scenario reduction and highlight differences and
contributions of our work.We then present our clustering-based preconditioner for the
KKT system (8).

2.1 Related work and contributions

Scenario clustering (also referred to as aggregation) is a strategy commonly used in
stochastic programming to reduce computational complexity. We can classify these
strategies as outside-the-solver and inside-the-solver strategies. Outside-the-solver
strategies perform clustering on the scenario data (right-hand sides, matrices, and
gradients) prior to the solution of the problem [5,8,13,16]. This approach can pro-
vide lower bounds and error bounds for linear programs (LPs) and this feature can be
exploited in branch-and-bound procedures [1,5,22,28].

Outside-the-solver clustering approaches give rise to several inefficiencies. First,
several optimization problems might need to be solved in order to refine the solution.
Second, these approaches focus on the problem data and thus do not capture the effect
of the data on the particular problem at hand. Consider, for instance, the situation
in which the same scenario data (e.g., weather scenarios) is used for two different
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problem classes (e.g., farm planning and power grid planning). Moreover, clustering
scenarios based on data alone is inefficient because scenarios that are close in terms of
data might have very different impact on the cost function (e.g., if they are close to the
constraint boundary). Conversely, two scenarios that are distant in terms of data might
have similar contributions to the cost function. We also highlight that many scenario
generation procedures require knowledge of the underlying probability distributions
[10,13]which are often not available in closed form (e.g.,weather forecasting) [18,26].

In this work, we seek to overcome these inefficiencies by performing clustering
adaptively inside-the-solver. In an interior-point setting this can be done by creating
a preconditioner for the KKT system (8) by clustering the scenario blocks. A key
advantage of this approach is that a single optimization problem is solved and the
clusters are refined only if the preconditioner is not sufficiently accurate. In addition,
this approach provides a mechanism to capture the influence of the data on the partic-
ular problem at hand. Another advantage is that it can enable sparse preconditioning
of Schur complement systems. This is beneficial in situations where the number of
first-stage variables is large and thus Schur complement decomposition is expensive.
Moreover, our approach does not require any knowledge of the underlying probability
distributions generating the scenario data. Consequently, it can be applied to problems
in which simulators are used to generate scenarios (e.g., weather forecasting), and
it can be applied to problem classes that exhibit similar structures such as support
vector machines [11,14] and scenario-based robust optimization [4]. Our proposed
clustering approach can also be used in combination with outside-the-solver scenario
aggregation procedures, if desired.

Related work on inside-the-solver scenario reduction strategies includes stochastic
Newton methods [3]. These approaches sample scenarios to create a smaller represen-
tation of the KKT system. Existing approaches, however, cannot handle constraints.
Scenario and constraint reduction approaches for IP solvers have been presented in
[6,7,20,24]. In [24], scenarios that have little influence on the step computation are
eliminated from the optimality system. This influence is measured in terms of themag-
nitude of the constraint multipliers or in terms of the products X−1

s Vs . In that work, it
was found that a large proportion of scenarios or constraints can be eliminated without
compromising convergence. The elimination potential can be limited in early itera-
tions, however, because it is not clear which scenarios have strong or weak influence
on the solution. In addition, this approach eliminates the scenarios from the prob-
lem formulation, and thus special safeguards are needed to guarantee convergence.
Our proposed clustering approach does not eliminate the scenarios from the problem
formulation; instead, the scenario space is compressed to construct preconditioners.

In [20] preconditioners for Schur systems are constructed by sampling the full sce-
nario set. A shortcoming of this approach is that scenario outliers with strong influence
might not be captured in the preconditioner. This behavior is handled more efficiently
in the preconditioner proposed in [6] in which scenarios having strong influence on the
Schur complement are retained and those that have weak influence are eliminated. A
limitation of the Schur preconditioners proposed in [6,20] is that they require a dense
preconditioner for the Schur complement, which hinders scalability in problems with
many first-stage variables. Our preconditioning approach enables sparse precondition-
ing and thus avoids forming and factorizing dense Schur complements. In addition,
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compared with approaches in [6,20,24], our approach clusters scenarios instead of
eliminating them (either by sampling or by measuring strong/weak influence). This
enables us to handle scenario redundancies and outliers. In [7], scenarios are clustered
to solve a reduced problem and the solution of this problem is used to warm-start
the problem defined for the full scenario set. The approach can reduce the number of
iterations of the full scenario problem; but the work per iteration is not reduced, as in
our approach.

2.2 Clustering-based preconditioner

To derive our clustering-based preconditioner, we partition the full scenario set S into
C clusters, where C ≤ S. We define the cluster set C := {1, . . . ,C} and a partition of
the scenario set {S1,S2, . . . ,SC } with ωi := |Si |, i ∈ C. That is,

⋃
i∈C

Si = S (12a)

Si
⋂

S j = ∅, i, j ∈ C, j 
= i. (12b)

For each cluster i ∈ C, we pick an index ci ∈ Si to represent the cluster andweuse these
indexes to define the compressed set R := {c1, c2, . . . , cC }. We note that |R| = C
and that ωi are cluster weights. We define the binary indicator κs,i , s ∈ S, i ∈ C,
satisfying

κs,i =
{

1 if s ∈ Si
0 otherwise.

(13)

Using this notation we have that for arbitrary vectors vci , vs, i ∈ C, the following
identities hold:

∑
i∈C

∑
s∈Si

‖vci − vs‖ =
∑
s∈S

∑
i∈C

κs,i‖vci − vs‖ (14a)

∑
i∈C

∑
s∈Si

vs =
∑
s∈S

vs (14b)

∑
i∈C

∑
s∈Si

vci =
∑
i∈C

ωivci . (14c)

At this point, we have yet to define appropriate procedures for obtaining the cluster
information R,Si , ωi and κs,i . These will be discussed in Sect. 3.

Consider now the compact representation of the KKT system (8),

[
KS BS
BT
S K0

]
︸ ︷︷ ︸

:=K

[
qS
q0

]
︸ ︷︷ ︸

:=q

=
[
tS
t0

]
︸ ︷︷ ︸

:=t

, (15)
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where

KS := blkdiag {K1, . . . , KS} (16a)

BS := rowstack {B1, . . . , BS} (16b)

qS := rowstack {q1, . . . , qS} (16c)

tS := rowstack {t1, . . . , tS} . (16d)

Here, (t0, tS) are arbitrary right-hand side vectors and (q0, qS) are solution vectors.1

If the solution vector (q0, qS) does not exactly solve (15), it will induce a residual
vector that we define as εTr := [εTr0 , εTrS ] with

εr0 := K0q0 + BT
S qS − t0 (17a)

εrS := KSqS + BSq0 − tS . (17b)

The Schur system of (15) is given by

(K0 − BT
S K−1

S BS)︸ ︷︷ ︸
:=Z

q0 = t0 − BT
S K−1

S tS︸ ︷︷ ︸
:=tZ

. (18)

Because KS is block-diagonal, we have that

Z = K0 −
∑
i∈C

∑
s∈Si

BT
s K−1

s Bs (19a)

tZ = t0 −
∑
i∈C

∑
s∈Si

BT
s K−1

s ts . (19b)

We now define the following:

Kω
R := blkdiag

{
ω1Kc1, ω2Kc2 , . . . , ωC KcC

}
(20a)

K 1/ω
R := blkdiag

{
1/ω1Kc1 , 1/ω2Kc2 , . . . , 1/ωC KcC

}
(20b)

BR := rowstack
{
Bc1, Bc2 , . . . , BcC

}
(20c)

tR := rowstack
{
tc1, tc2 , . . . , tcC

}
. (20d)

In other words, Kω
R is a block-diagonal matrix in which each block entry Kci is

weighted by the scalar weight ωi and K 1/ω
R is a block-diagonal matrix in which each

block entry Kci is weighted by 1/ωi . Note that

(K 1/ω
R )−1 = (K−1

R )ω, (21)

1 We make a slight remark regarding notation: KS is a block diagonal matrix while KS in an entry of such
block matrix. A similar observation applies to matrices BS and vectors qS , tS with corresponding entries
BS , qS , tS .
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386 Y. Cao et al.

where

(K−1
R )ω := blkdiag

{
ω1K

−1
c1 , ω2K

−1
c2 , . . . , ωC K

−1
cC

}
. (22)

We now present the clustering-based preconditioner (CP),

[
K 1/ω
R BR
BT
R K0

][ ·
q0

]
=
[

tR
t0 + tC P

]
(23a)

Ksqs = ts − Bsq0, i ∈ C, s ∈ Si , (23b)

where

tC P :=
∑
i∈C

ωi B
T
ci K

−1
ci tci −

∑
i∈C

∑
s∈Si

BT
s K−1

s ts (24)

is a correction term that is used to achieve consistency between CP and the KKT
system. In particular, the Schur system of (23a) is

Z̄q0 = t0 + tC P − BT
R
(
K 1/ω
R
)−1

tR

= t0 + tC P −
∑
i∈C

ωi B
T
ci K

−1
ci tci

= t0 −
∑
i∈C

∑
s∈Si

BT
s K−1

s ts

= tZ , (25)

with

Z̄ := K0 −
∑
i∈C

ωi B
T
ci K

−1
ci Bci

= K0 −
∑
i∈C

∑
s∈Si

BT
ci K

−1
ci Bci . (26)

Consequently, the Schur system of the preconditioner and of the KKT system have the
same right-hand side. This property is key to establish spectral and error properties
for the preconditioner. In particular, note that the solution of CP system (23a)-(23b)
solves the perturbed KKT system,

[
KS BS
BT
S K0 + EZ

]

︸ ︷︷ ︸
:=K̄

[
qS
q0

]
=
[
tS
t0

]
, (27)
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where

EZ :=
∑
i∈C

∑
s∈Si

BT
s K−1

s Bs −
∑
i∈C

∑
s∈Si

BT
ci K

−1
ci Bci , (28)

is the Schur error matrix and satisfies Z + EZ = Z̄ . The mathematical equivalence
between CP system (23a)–(23b) and (27) can be established by constructing the Schur
system of (27) and noticing that it is equivalent to (25). Moreover, the second-stage
steps are the same. Consequently, applying preconditioner CP is equivalent to using
the perturbed matrix K̄ as a preconditioning matrix for the KKT matrix K.

The main idea behind preconditioner CP (we will use CP for short) is to compress
the KKT system (15) into the smaller system (23a) which is cheaper to factorize. We
solve this smaller system to obtain q0, and we recover qS from (23b) by factorizing
the individual blocks Ks . We refer to the coefficient matrix of (23a) as the compressed
matrix.

In the following, we assume that the Schur complements Z and Z̄ are nonsingular.
The nonsingularity of Z together with the assumption that all the blocks Ks are non-
singular implies (from the Schur complement theorem) that matrix Kdefined in (15)
is nonsingular and thus the KKT system has a unique solution. The nonsingularity of
Z̄ together with the assumption that all the blocks Ks are nonsingular implies that the
compressed matrix is nonsingular and thus CP has a unique solution. Note that we
could have also assumed nonsingularity of matrix K directly and this, together with
the nonsingularity of the blocks Ks , would imply nonsingularity of Z (this also from
the Schur complement theorem). The same applies if we assume nonsingularity of the
compressed matrix, which would imply nonsingularity of Z̄ .

Schur decomposition is a popular approach for solving structured KKT systems
on parallel computers but it suffers from poor scalability with the dimension of q0.
The reason is that the Schur complement needs to be formed (this requires as many
backsolves with the factors of Ks as the dimension of q0) and factored (this requires
a factorization of a nearly dense matrix of dimension q0). We elaborate on these
scalability issues in Sect. 4. We thus highlight that the Schur system representations
are used only for analyzing CP.

Our preconditioning setting is summarized as follows. At each IP iteration k, we
compute a step by solving the KKT system (8). We do so by using an iterative linear
algebra solver such as GMRES, QMR, or BICGSTAB. Each minor iteration of the
iterative linear algebra solver is denoted by 	 = 0, 1, 2, . . . ,. We denote the initial
guess of the solution vector of (8) as (�w	

0,�w	
S) with 	 = 0. At each minor iterate

	, the iterative solver will request the application of CP to a given vector (t	0 , t
	
S), and

the solution vectors (q	
0, q

	
S) of (23) are returned to the iterative linear algebra solver.

Perfect preconditioning occurs when we solve (8) instead of (23) with the right-hand
sides (t	0 , t

	
S).
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3 Preconditioner properties

In this section we establish properties for CP and we use these to guide the design of
appropriate clustering strategies. Because the CP system (23) and the perturbed KKT
system (27) are equivalent, we can establish the following result.

Lemma 1 The preconditioned matrix K̄−1K has (n+m−n0−m0) unit eigenvalues,
and the remaining (n0 + m0) eigenvalues are bounded as

|λ(K̄−1K ) − 1| ≤ 1

σmin(Z̄)
‖EZ‖.

Proof The eigenvalues λ and eigenvectors w := (wS , w0) of K̄−1K satisfy
K̄−1Kw = λw, and thus Kw = λK̄w. Consequently,

KSwS + BSw0 = λ(KSwS + BSw0)

BT
SwS + K0w0 = λBT

SwS + λ(K0 + EZ )w0.

From the first relationship we have n+m−n0 −m0 unit eigenvalues. Applying Schur
decomposition to the eigenvalue system, we obtain

Zw0 = λ(Z + EZ )w0

= λZ̄w0.

We can thus express the remaining n0 + m0 eigenvalues of K̄−1K as λ = 1 + εZ to
obtain

|εZ | = ‖EZw0‖
‖Z̄w0‖

≤ 1

σmin(Z̄)
‖EZ‖.

The proof is complete. ��
The above lemma is a direct consequence of Theorem 3.1 in [9]. From the definition

of EZ we note that the following bound holds:

|λ(K̄−1K ) − 1| ≤ 1

σmin(Z̄)

∑
i∈C

∑
s∈Si

∥∥∥BT
s K−1

s Bs − BT
ci K

−1
ci Bci

∥∥∥ . (29)

Lemma 1 states that we can improve the spectrum of K̄−1K by choosing clusters that
minimize ‖EZ‖. This approach, however, would require expensive matrix operations.
An interesting and tractable exception occurs when Qs = Q, Ws = W , and Ts =
T, i ∈ C, s ∈ Si . This case is quite common in applications and arises when the
scenario data is only defined by the right-hand sides bs and the cost coefficients ds of
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(1). We refer to this case as the special data case. In this case we have that EZ reduces
to

EZ =
∑
i∈C

∑
s∈Si

BT
(
K−1
s − K−1

ci

)
B. (30)

We also have that Ks and Kci differ only in the diagonal matrices X−1
s Vs and X−1

ci Vci .
We thus have,

Ks − Kci =
[ (

X−1
s Vs − X−1

ci Vci
)

0
0 0

]
. (31)

If we define the vectors,

γs = vec
(
X−1
s Vs

)
, i ∈ C, s ∈ Si (32a)

γci = vec
(
X−1
ci Vci

)
, i ∈ C, (32b)

we can establish the following result.

Theorem 1 Assume that Qs = Q, Ws = W, and Ts = T, i ∈ C, s ∈ Si holds. Let
vectors γs, γci be defined as in (32). The preconditioned matrix K̄

−1K has (n +m −
n0 −m0) unit eigenvalues, and there exists a constant cK > 0 such that the remaining
(n0 + m0) eigenvalues are bounded as

|λ(K̄−1K ) − 1| ≤ cK
σmin(Z̄)

∑
s∈S

∑
i∈C

κs,i‖γci − γs‖.

Proof From Lemma 1 we have that n0 + m0 eigenvalues λ of K̄−1K are bounded as
|λ − 1| ≤ 1

σmin(Z̄)
‖EZ‖. We define the error matrix,

Es := Ks − Kci , i ∈ C, s ∈ Si

and use (30) and (31) to obtain the bound,

‖EZ‖ ≤
∑
i∈C

∑
s∈Si

‖BT B‖‖K−1
s − K−1

ci ‖

=
∑
i∈C

∑
s∈Si

‖BT B‖‖(Kci + Es)
−1 − K−1

ci ‖.

We have that

(Kci + Es)
−1 − K−1

ci = −(Kci + Es)
−1EsK

−1
ci

= −K−1
s Es K

−1
ci .
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390 Y. Cao et al.

This can be verified by multiplying both sides by Kci + Es . We thus have

‖EZ‖ ≤
∑
i∈C

∑
s∈Si

‖BT B‖‖(Kci + Es)
−1 − K−1

ci ‖

≤
∑
i∈C

∑
s∈Si

‖BT B‖‖K−1
s ‖‖K−1

ci ‖‖Es‖

≤ cK
∑
i∈C

∑
s∈Si

‖vec(X−1
ci Vci ) − vec(X−1

s Vs)‖,

with cK := maxi∈C maxs∈Si ‖BT B‖‖K−1
s ‖‖K−1

ci ‖. The existence of cK follows from
the nonsingularity of Ks and Kci . The proof is complete. ��

We now develop a bound of the preconditioning error for the general data case in
which the scenario data is also defined by coefficientmatrices.Notably, this bound does
not require the minimization of the error ‖EZ‖. The idea is to bound the error induced
by CP relative to the exact solution of the KKT system (15) (perfect preconditioner).
This approach is used to characterize inexact preconditioners such as multigrid and
nested preconditioned conjugate gradient [23].We express the solution of CP obtained
from (23) as qT = [qTS , qT0 ] and that of the KKT system (15) as q∗T = [q∗

S
T , q∗

0
T ].

We define the error between q and q∗ as ε := q − q∗ and we seek to bound ε. If we
decompose the error as εT = [εTS , εT0 ], we have that ε0 = q0 −q∗

0 and εS = qS −q∗
S .

We recall that the Schur systems of (15) and of (23) and their respective solutions
satisfy

Zq∗
0 = tZ (33a)

Z̄q0 = tZ . (33b)

If we define the vectors,

γs =
(
BT
s K−1

s Bs

)
tZ , i ∈ C, s ∈ Si (34a)

γci =
(
BT
ci K

−1
ci Bci

)
tZ , i ∈ C. (34b)

we can establish the following bound on the error ε = q − q∗.

Lemma 2 Assume that there exists cT > 0 such that ‖(Z − Z̄)Z−1tZ‖ ≤
cT ‖(Z − Z̄)tZ‖ holds; then there exists cZK > 0 such that the preconditioner error ε

is bounded as

‖ε‖ ≤ cZK ‖(Z − Z̄)tZ‖.

Proof From ε0 = q0 − q∗
0 we have Z̄ε0 = Z̄q0 − Z̄q∗

0 . From (33) we have Z̄q0 =
Zq∗

0 = tZ and thus Z̄ε0 = Zq∗
0 − Z̄q∗

0 . We thus have,
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Z̄ε0 = Zq∗
0 − Z̄q∗

0

= tZ − Z̄q∗
0

= tZ − Z̄ Z−1tZ

= tZ − (Z + (Z̄ − Z))Z−1tZ

= (Z − Z̄)Z−1tZ .

We recall that

q∗
S = K−1

S (tS − BSq∗
0 )

qS = K−1
S (tS − BSq0)

and thus

εS = K−1
S BS(q∗

0 − q0)

= −K−1
S BSε0.

We thus have

‖ε0‖ ≤ cZ‖(Z − Z̄)tZ‖
‖εS‖ ≤ cKS‖ε0‖,

with cZ := ‖Z̄−1‖cT and cKS := ‖K−1
S BS‖. The existence of cZ follows from the

assumption that Z̄ is nonsingular. The existence of cKS follows from the assumption
that the blocks Ks are nonsingular and thus KS is nonsingular. The result follows from
‖ε‖ ≤ ‖ε0‖ + ‖εS‖ and by defining cZK := cZ (1 + cKS ). ��

The assumption that there exists cT>0 such that ‖(Z−Z̄)Z−1tZ‖ ≤ cT ‖(Z−Z̄)tZ‖
holds is trivially satisfied when Z−1 and Z̄ commute (i.e., Z̄ Z−1 is a symmetric
matrix). In this case we have that cT = ‖Z−1‖. The matrices also commute in the
limit Z̄ → Z because Z̄ Z−1 = Z Z−1 + (Z̄ − Z)Z−1 and thus Z̄ Z−1 → I . When Z
and Z̄ do not commute we require that ‖(Z − Z̄)Z−1tZ‖ decreases when ‖(Z − Z̄)tZ‖
does. We validate this condition empirically in Sect. 4.

Theorem 2 Let vectors γs, γci be defined as in (34). The preconditioner error ε is
bounded as

‖ε‖ ≤ cZK
∑
s∈S

∑
i∈C

ks,i‖γci − γs‖,

with cZK defined in Lemma 2.

Proof From (34) and (28) we have that

Z̄ tZ − ZtZ = EZ tZ

=
∑
i∈C

∑
s∈Si

BT
s K−1

s BstZ −
∑
i∈C

∑
s∈Si

BT
ci K

−1
ci Bci tZ
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=
∑
i∈C

∑
s∈Si

(BT
s K−1

s BstZ − BT
ci K

−1
ci Bci tZ )

=
∑
i∈C

∑
s∈Si

(γs − γci ).

We bound this expression to obtain,

‖Z̄ tZ − ZtZ‖ =
∥∥∥∥∥∥
∑
i∈C

∑
s∈Si

(γs − γci )

∥∥∥∥∥∥
≤
∑
i∈C

∑
s∈Si

‖γci − γs‖

=
∑
s∈S

∑
i∈C

κs,i‖γci − γs‖.

The result follows from Lemma 2. ��

We can see that the properties of CP are related to a metric of the form

DC :=
∑
s∈S

∑
i∈C

κs,i‖γci − γs‖. (35)

This is the distortion metric widely used in clustering analysis [2]. The distortion
metric is (partially) minimized by K-means, K-medoids, and hierarchical clustering
algorithms to determine κs,i and γci . The vectors γs are called features, and γci is the
centroid of cluster i ∈ C (we can also pick the scenario that is closest to the centroid if
the centroid is not an element of the scenario set). The distortion metric is interpreted
as the accumulated distance of the elements of the cluster relative to the centroid. If
the distortion is small, then the scenarios in a cluster are similar. The distortion metric
can be made arbitrarily small by increasing the number of clusters and is zero in the
limit with S = C because each cluster is given by one scenario. Consequently, we see
that Theorems 1 and 2 provide the necessary insights to derive clusters using different
sources of information of the scenarios.

Theorem 1 suggests that, in the special data case with features defined as γs =
vec(X−1

s Vs), the spectrum of K̄−1K can be made arbitrarily close to one if the dis-
tortion metric is made arbitrarily small. This implies that the definition of the features
is consistent. We highlight, however, that the bounds of Theorem 1 assume that the
clustering parameters are given (i.e., the sets C and Ci are fixed). Consequently, the
constants cK , and σmin(Z̄) change when the clusters are changed. Because of this, we
cannot guarantee that reducing the distortion metric will indeed improve the quality
of the preconditioner. The aforementioned constants depend in nontrivial ways on the
clustering parameters and it is thus difficult to obtain bounds for them. In the next
section we demonstrate empirically, however, that the constants cK and σmin(Z̄) are
insensitive to the clustering parameters. Consequently, reducing the distortion metric
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in fact improves the quality of the preconditioner. We leave the theoretical treatment
of this issue as part of future work.

We can obtain useful insights from the special data case. First note that the sce-
narios are clustered at each IP iteration k because the matrices X−1

s Vs change along
the search. The clustering approach is therefore adaptive, unlike outside-the-solver
scenario clustering approaches. In fact, it is not possible to derive spectral and error
properties for preconditioners based on clustering of problemdata alone. Our approach
focuses directly on the contributions X−1

s Vs and thus assumes that the problem data
enters indirectly through the contributions X−1

s Vs , which in turn affect the structural
properties of the KKT matrix. The features γs = vec(X−1

s Vs) have an important
interpretation: these reflect the contribution of each scenario to the logarithmic bar-
rier function. From complementarity we have that ‖Xs‖ � 0 implies ‖Vs‖ ≈ 0 and
‖X−1

s Vs‖ ≈ 0. In this case we say that there is weak activity in the scenario and we
have from (6) that Hs = Qs + X−1

s Vs ≈ Qs . Consequently, the primal-dual term
X−1
s Vs for a scenario with weak activity puts little weight on the barrier function. In

the opposite case in which the scenario has strong activity we have that ‖Vs‖ � 0,
‖Xs‖ ≈ 0, and ‖X−1

s Vs‖ � 0. In this case we thus have that a scenario with strong
activity puts a large weight on the barrier function. This reasoning is used in [12,24] to
eliminate the scenarios with weak activity. In our case we propose to cluster scenarios
with similar activities. Clustering allows us to eliminate redundancies in both active
and inactive scenarios and to capture outliers. In addition, this strategy avoids the need
to specify a threshold to classify weak and strong activity.

Theorem 2 provides a mechanism to obtain clusters for the general data case in
which the scenario data is defined also by the coefficient matrices. The result states that
we can bound the preconditioning error using the Schur complement error EZ = Z̄−Z
projected on the right-hand side vector tZ . Consequently, the error can be bounded
by the distortion metric with features defined in (34). This suggests that the error
can be made arbitrarily small if the distortion is made arbitrarily small. Moreover,
it is not necessary to perform major matrix operations. As in the special data case
of Theorem 1, however, the bounding constant cZ of Theorem 2 depends on the
clustering parameters. Moreover, we need to verify that the term ‖(Z − Z̄)Z−1tZ‖
decreases when ‖(Z− Z̄)tZ‖ does. In the next section we verify these two assumptions
empirically.

The error bound of Theorem 2 requires that clustering tasks and the factorization
of the compressed matrix be performed at each minor iteration 	 of the iterative linear
algebra solver. The reason is that the features (34) change with t	Z . Performing these
tasks at each minor iteration, however, is expensive. Consequently, we perform these
tasks only at the first minor iteration 	 = 0. If the initial guess of the solution vector
of the KKT system is set to zero (�w	

0 = 0 and �w	
S = 0) and if GMRES, QMR,

or BICGSTAB schemes are used, this is equivalent to performing clustering using the
features

γs =
(
BT
s K−1

s Bs

)
rZ , i ∈ C, s ∈ Si (36a)

γci =
(
BT
ci K

−1
ci Bci

)
rZ , i ∈ C, (36b)
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where

rZ = t0Z

= r0 −
∑
i∈C

∑
s∈Si

BT
s K−1

s rs (37)

is the right-hand side of the Schur system of (8).

4 Numerical results

In this sectionwediscuss implementation issues ofCPandpresent numerical results for
benchmark problems in the literature and a large-scale stochasticmarket clearing prob-
lem.We begin by summarizing the procedure for computing the step (�xk,�yk,�νk)

at each IP iteration k.

Step computation scheme

1. Initialization. Given iterate (xk, yk, νk), number of clusters C , tolerance τk , and
maximum number of linear solver iterates mit .

2. Get clustering information.
2.0 Compute features γs, s ∈ S as in (32) or (36).
2.1 Obtain κs,i and γci using a clustering algorithm (e.g., K-means, hierarchical).
2.2 Use κs,i to construct C,R, and ωi .
2.3 Construct and factorize compressed matrix

[
K 1/ω
R BR
BT
R K0

]

and factorize scenario matrices Ks, i ∈ C, s ∈ Si .
3. Get step.
3.1 Call iterative linear solver to solve KKT system (15) with right-hand sides

(r0, rS), set 	 = 0, and initial guess �w	
0 = 0 and �w	

S = 0. At each minor
iterate 	 = 0, 1, . . . , of the iterative linear solver, DO:

3.1.1 Use factorization of compressedmatrix and of KS to solve CP (23a)-(23b)
for right-hand sides (t	0 , t

	
S) and RETURN solution (q	

0, q
	
S).

3.1.2 From (17), get ε	
r using solution vector (�w	

0,�w	
S) and right-hand side

vectors (r0, rS). If ‖ε	
r ‖ ≤ τk , TERMINATE.

3.1.3 If 	 = mit , increase C , and RETURN to Step 3.1.
3.2 Recover (�xk,�yk) from (�w	

0,�w	
S).

3.3 Recover �νk from (7).

We call our clustering-based IP framework IP-CLUSTER. The framework is writ-
ten in C++ and uses MPI for parallel computations. In this implementation we use
the primal-dual IP algorithm of Mehrotra [19]. We use the matrix templates and
direct linear algebra routines of the BLOCK-TOOLS library [15]. This library is spe-
cialized to block matrices as those arising in this work and greatly facilitated the
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implementation. Within BLOCK-TOOLS, we use its MA57 interface to perform all
direct linear algebra operations.We use the GMRES implementation within the PETSc
library (http://www.mcs.anl.gov/petsc) to perform all iterative linear algebra opera-
tions. We have implemented serial and parallel versions of CP. We highlight that the
parallel version performs the factorizations of (23b) in parallel and exploits the block-
bordered-diagonal structure of the KKTmatrix to performmatrix-vector operations in
parallel aswell.Weuse theK-means andhierarchical clustering implementations of the
C-Clustering library (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.
htm). To implement the market clearing models of Sect. 4.2 we use an interface to
AMPL to create individual instances (.nl files) for each scenario and indicate first-stage
variables and constraints using the suffix capability.

4.1 Benchmark problems

We consider stochastic variants of problems obtained from the CUTEr library and
benchmark problems (SSN, GBD, LANDS, 20TERM) reported in [17]. The deter-
ministic CUTEr QP problems have the form

min
1

2
yT Qy + dT y, s.t. Ay = b, y ≥ 0. (38)

We generate a stochastic version of this problem by defining b as a random vector.
We create scenarios for this vector bs, s ∈ S using the nominal value b as mean and a
standard deviation ±σ = 0.5b. We then formulate the two-stage stochastic program:

min eT y0 +
∑
s∈S

ps

(
1

2
yTs Qys + dT ys

)
(39a)

s.t. Ays = bs, s ∈ S (39b)

ys + y0 ≥ 0, s ∈ S (39c)

y0 ≥ 0. (39d)

Here, we set ps = 1/|S|. We first demonstrate the quality of CP in terms of the
number of GMRES iterations. For all cases, we assume a scenario compression rate
of 75% (only 25% of the scenarios are used in the compressed matrix), and we solve
the problems to a tolerance of 1 × 10−6. We use the notation x% to indicate the
compression rate (i.e., the preconditioner CP uses 100-x% of the scenarios to define
the compressed matrix). A compression rate of 0% indicates that the entire scenario
set is used for the preconditioner (ideal). A compression rate of 100% indicates that
no preconditioner is used. We set the maximum number of GMRES iterations mit to
100.

For this first set of results we cluster the scenarios using a hierarchical clustering
algorithm with the features (34). The results are presented in Table 1. As can be seen,
the performance of CP is satisfactory in all instances, requiring fewer than 20 GMRES
iterations per interior-point iteration (this is labeled as LAit/IPit). We attribute this to
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the particular structure of CP, which enable us to pose the preconditioning systems in
the equivalent form (27) and to derive favorable spectral properties and error bounds.
To support these observations, we have also experimented with a couple of naive
preconditioners. The first naive preconditioner (NPI) has the form:

[
K̄S B̄S
B̄T
S K0

] [
qS
q0

]
=
[
tS
t0

]
, (40)

where

K̄S := blkdiag
{
Kc1, . . . , Kc1 , Kc2 , . . . , Kc2 , . . . , KcC , . . . , KcC

}
(41a)

B̄S := rowstack
{
Bc1, . . . , Bc1 , Bc2 , . . . , Bc2 , . . . , BcC , . . . , BcC

}
. (41b)

We can see that NPI replaces the block matrix elements of the cluster with those of the
scenario representing the cluster. This, in fact, is done implicitly by the compressed
system (23a). Note also that the right-hand side of NPI is consistent with that of the
KKT system. The design of NPI seems reasonable at first sight but it has several
structural deficiencies. We highlight these by noticing that the Schur system of NPI
has the form

Z̄q0 = t0 −
∑
i∈C

∑
s∈Si

BT
ci K

−1
ci ts . (42)

This system has the same Schur matrix as that of the Schur system of CP (25) but does
not have the same right-hand side. Moreover, the second-stage steps obtained from
NPI are

Kci qs = ts − Bci q0, i ∈ C, s ∈ Si . (43)

By comparing (43) with (23b) we can see that the recovery of the second-stage steps in
NPI does not use the second-stage matrices Ks, Bs corresponding to each scenario (as
is done in CP). We also consider an alternative naive preconditioner (NPII) to analyze
the impact of the second-stage step (23b). This preconditioner computes q0 using (40)
as in NPI but computes the second-stage steps using (43) as in CP. Consequently,
NPII and CP only differ in the way q0 is computed. It is not difficult to verify that the
solution of NPII is equivalent to the solution of the system:

[
KS BS
BT
S K0 + EZ

] [
qS
q0

]
=
[

tS
t0 + tC P

]
. (44)

By comparing the equivalent system (27) of CP and the equivalent system (44) of
NPII we can see that NPII introduces the additional perturbation tC P on the right-hand
side.

The structural deficiencies of NPI and NPII prevent us from obtaining the error
bounds of Theorems 1 and 2 and highlight the importance of the structure of CP. In
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Table 2 Performance of preconditioned and unpreconditioned strategies

Problem S n Compress IPit LAit LAit/IPit

HS53 100 1010 100% 19 12861 676

75% (NPI) 19 152 8

75% (CP) 19 113 5

75% (NPII) 20 112 5

Table 1 we compare the performance of the different preconditioners. We can see that
the performance of NPI is not competitive. In particular, CP outperforms NPI in nine
instances out of eleven. Moreover, in all instances except HS53 and QPCBLEND,
it was necessary to refine preconditioner NPI in several iterations (this is done by
increasing the number of clusters). We highlight instances in which this occurs using
a star next to the total number of GMRES iterations. The performance of NPII is
highly competitive with that of CP. In fact, NPII performs slightly better than CP in
several instances. For problem 20TERM, however, it was necessary to increase the
number of clusters for NPII in some iterations. We can thus conclude that CP has in
general better performance and is more robust. Moreover, we can conclude that the
second-stage step (23b) plays a key role.

In Table 2 we compare the performance of CP with that of the unpreconditioned
strategy (compression rate of 100%) and with that of the naive strategies. We only
show results for a single instance to illustrate that the matrices of the benchmark
problems are nontrivial and preconditioning is indeed needed.

We note that the instances reported in Tables 1 and 2 are small (n < 100, 000).
In most of these small instances we found that the solution times obtained with full
factorization are shorter than those obtained with CP. This is because the overhead
introduced by the iterative linear solver is not sufficient to overcome the gains obtained
by compressing the linear system. We illustrate this behavior in Table 3 where we
compare the performance of full factorization (0% compression rate) with that of
preconditioner CP for problem 20TERM. We clearly see that the total solution times
(denoted as θtot ) obtained with full factorization are significantly shorter than those
obtained with CP. Most notably, this trend holds for problems with up to 600,000
variables and the times scale linearly with the number of scenarios. These results
illustrate that sparse direct factorization codes such as MA57 can efficiently handle
certain large-scale problems. As we show in Sect. 4.2, this efficiency enables us to
overcome scalability bottlenecks of Schur decomposition. Full factorization, however,
will eventually become expensive as we increase the problem size and, at this point,
the use of CP becomes beneficial. We illustrate this in Table 6 where we compare
the performance of CP with that of full factorization for two large instances. Instance
QSC2015 has 63,717 variables, while instance AUG3DC has 131,682 variables. We
use θ f act to denote the time spent in the factorization of the compressed matrix and of
the blockmatrices, θclus to denote the time spent performing clustering operations, and
θgmres to denote the time spent inGMRES iterations (without considering factorization
operations in the preconditioner).As can be seen, the solution times of full factorization
are dramatically reduced by using CP.
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Table 3 Effect of compression
rates on 20TERM problem

S n Compress (%) IPit LAit/IPit θtot

100 76,463 0 54 – 16

50 57 10 54

75 57 19 79

87 57 17 69

200 152,863 0 69 – 44

50 72 9 137

75 72 14 166

87 72 18 185

400 305,663 0 87 – 108

50 92 20 578

75 92 21 555

87 92 23 570

800 611,263 0 88 – 232

50 97 25 1440

75 97 25 1427

87 97 27 1417

Table 4 Performance of different clustering strategies for benchmark problems (Theorem 1)

Problem Compress (%) cK σmin(Z̄) ‖Z − Z̄‖ DC

LANDS 50 6.8 × 10+2 3.7 × 10−3 3.9 × 10−2 6.5 × 10−2

75 6.8 × 10+2 3.8 × 10−3 1.8 × 10−1 5.8 × 10−1

GBD 50 4.5 × 10+12 6.8 × 10−2 6.6 × 10−3 5.0 × 10−4

75 4.5 × 10+12 6.7 × 10−2 6.1 × 10−2 1.6 × 10−3

FromTable 3we can also see that the performance of CP deteriorates as we increase
the compression rate. This is because the distortion metric increases as we increase the
compression rate and thus the quality of the preconditioner deteriorates, as suggested
by Theorems 1 and 2. We recall, however, that the bounds provided in these theorems
depend on constants that change with the clustering parameters. Consequently, it is
not obvious that reducing the distortion metric will improve the quality of the pre-
conditioner. We designed a numerical experiment to gain more insight into this issue.
In the experiment we compute the constants and metrics of Theorems 1 and 2 for
two additional instances (GBD and LANDS) and for two different compression rates
(50 and 75%). We only report the results at a single iteration because we observed
similar behavior at other iterations. The results are summarized in Tables 4 and 5. As
can be seen in Table 4, the constants cK and σmin(Z̄) of Theorem 1 are insensitive
to the compression rate. The distortion metric DC , on the other hand, changes by an
order of magnitude. We also report the Schur complement error ‖EZ‖ = ‖Z̄ − Z‖
and we see that this error changes by an order of magnitude as well. In Table 5
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Table 5 Performance of different clustering strategies for benchmark problems (Theorem 2)

Problem Compress (%) cZ DC ‖(Z̄ − Z)Z−1tZ ‖ ‖(Z̄ − Z)tZ ‖

LANDS 50 5.7 × 10+2 1.0 × 10+1 2.0 × 10+0 6.1 × 10+2

75 5.8 × 10+2 1.0 × 10+2 2.9 × 10+1 8.5 × 10+3

GBD 50 9.2 × 10+0 1.0 × 10−1 5.6 × 10−3 9.2 × 10−2

75 9.2 × 10+0 3.5 × 10−1 2.0 × 10−2 7.1 × 10−1

Table 6 Performance of different clustering strategies for benchmark problems

Problem Compress (%) Clustering IPit θtot θ f act θclus θgmres LAit LAit/IPit

QSC205 0 110 1331 1321

50 X−1V 110 220 157 5 42 747 6

75 X−1V 110 91 25 6 45 933 8

50 rZ 110 229 161 5 43 747 6

75 rZ 110 89 24 5 43 924 8

AUG3DC 0 11 1427 1423

50 X−1V 11 96 84 0.3 6 26 2

75 X−1V 11 24 13 0.3 6 27 2

50 rZ 11 93 80 0.3 6 26 2

75 rZ 11 25 13 0.3 6 27 2

we can see that the constant cZ of Theorem 2 is insensitive to the compression
rate but the distortion is rather sensitive as well. Moreover, we can see that metrics
‖(Z̄ − Z)Z−1tZ‖, ‖(Z̄ − Z)tZ‖, and DC change significantly with the compression
rate. We highlight that the distortion metric of Theorem 1 is defined using the fea-
tures (32) while the distortion metric of Theorem 2 is defined using the features (34).
From these results we can conclude that the distortion metrics proposed are indeed
appropriate indicators of preconditioning quality and can thus be used to guide the
construction of the preconditioners.

FromTable 3we can also see that the deterioration of performance due to increasing
compression rates becomes less pronounced as we increase the number of scenarios.
The reason is that more redundancy is observed as we increase the number of scenarios
and, consequently, compression potential increases. This behavior has been found in
several instances and indicates that it is possible to deal with problems with a large
number of scenarios.

In Table 6 we compare the performance of different clustering strategies. To this
end, we perform clustering using features (32) (we label this as X−1V ) and using (36)
(we label this as rZ ). As can be seen, the performance of both clustering strategies
is very similar. This demonstrates that the design of the features (32) and (34) is
consistent.
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Fig. 1 Illinois transmission network. Dark dots are supply nodes and blue dots are demand nodes (Color
figure online)

4.2 Stochastic market clearing problem

We demonstrate the computational efficiency of the preconditioner by solving a sto-
chastic market-clearing model for the entire Illinois power grid system [21,25,27].
The system is illustrated in Fig. 1. The stochastic programming formulation is given
by

min
xi ,Xi (s)

∑
i∈G

(
βi xi +

∑
s∈S

ps
[
β+
i (Xi (s) − xi )+ − β−

i (Xi (s) − xi )−
])

s.t. τn( f ) +
∑

i∈G(n)

xi = dn, n ∈ N (45a)

τn(F(s)) − τn( f ) +
∑

i∈G(n)

(Xi (s) − xi ) = 0, n ∈ N , s ∈ S (45b)

f, F(s) ∈ F , s ∈ S (45c)
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Table 7 Performance of Schur decomposition approach

S n IPit θtot θ f actschur θ f ormschur θ f actblock

1 30,472 55 31280 27236 4023 4

(xi , Xi (s)) ∈ Xi (s), i ∈ G, s ∈ S. (45d)

Here,N denotes the set of network nodes and the set of all suppliers is denoted by G.
Subsets G(n) denote the set of suppliers connected to node n ∈ N . The forward (first-
stage) dispatched quantities for players are xi , and the spot (second-stage) quantities
under scenario s are Xi (s). Symbol f denotes the vector of all line flows and τn(·)
are flow injections into node n ∈ N . Similarly, F(s) denotes the vector of line flows
for each scenario s. The demand is assumed to be deterministic and inelastic and is
represented by dn, n ∈ N . The sets F and Xi (s) are polyhedral and define lower
and upper bounds for the flows and dispatch quantities. The objective of the market
clearing problem is to minimize the forward dispatch cost plus the expected recourse
dispatch cost. Here [y]+ = max{y, 0} and [y]− = max{−y, 0}. The coefficients βi
denote the supply price bids, and β+

i and β−
i are price bids for corrections of the

suppliers. A supplier i asks β+
i > βi to sell additional power or asks β−

i < βi to buy
power from the system (e.g., reduces output). The scenarios s ∈ S characterize the
randomness in the model due to unpredictable supply capacities (in this case wind
power).

The market clearing model has large first-stage dimensionality. The Schur com-
plement has a dimension of 64,199 and has a large dense block. In Table 7 we present
the solution times for this problem using a Schur decomposition strategy for a single
scenario. Here, θtot is the total solution time, θ f actschur is the time spent factorizing
the Schur complement, θ f ormschur is the time spent forming the Schur complement,
and θ f actblock is the time spent factorizing the scenario blocks (in this case just one
block). All times are reported in seconds. The solution time for this problem is 8.7 hr,
with 13% of the time spent forming the Schur complement and 87% spent factorizing
the Schur complement. Note that if more scenarios are added, the time spent forming
and factorizing the Schur complement will dominate (even if the scenarios can be
parallelized). Iterative strategies applied to the Schur complement system can avoid
the time spent forming the Schur complement but not the factorization time because
a preconditioner with a large dense block still needs to be factored [20].

We now assess the serial performance of CP. By comparing Tables 7 and 8 we can
see that the full factorization approach will be as efficient as Schur decomposition for
problems with up to 64 scenarios. In other words, it would be faster to factorize the full
sparse KKT system than forming and factorizing the large Schur complement. The
fast growth in solution time of the full factorization approach is remarkable, however.
We attribute this to the tight connectivity induced by the network constraints which
introduce significant fill-in. CP reduces the solution times of full factorization by a
factor of 2 for the problem with 32 scenarios and by a factor of 11 for the problem
with 64 scenarios. We highlight that CP is highly effective, requiring on average 6–11
GMRES iterations per IP iteration for compression rates of 50% and 12–18 iterations
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Table 8 Serial performance of preconditioner CP against full factorization for stochastic market clearing
problem

S n Compress (%) Cluster. IPit θtot θ f act θclus θgmres LAit LAit/IPit

16 309,187 0 57 473 452

50 X−1V 57 544 119 0.4 325 631 11

50 rZ 57 508 117 0.15 296 519 9

32 606,483 0 65 3480 3414

50 X−1V 65 1477 661 8 606 574 8

75 X−1V 65 1479 145 8 1141 1194 18

50 rZ 65 1347 672 3 459 398 6

75 rZ 65 1131 150 3 769 804 12

64 1,201,075 0 64 28022 27883

50 X−1V 64 5163 3513 29 1292 660 10

75 X−1V 64 2878 656 29 1844 902 14

87 X−1V 64 2499 135 29 1990 1040 16

50 rZ 64 5238 3492 12 1349 666 10

75 rZ 64 3003 659 12 1924 937 14

87 rZ 64 2440 115 12 1944 1147 17

Table 9 Parallel performance of preconditioner CP against full factorization for stochastic market clearing
problem

S n MPI Proc. Compress (%) IPit θtot θ f act θclus θ f actblock θgmres LAit LAit/IPit

64 1,201,075 1 0 64 28022 27883

1 87 64 2440 115 12 288 1944 1147 17

2 87 64 1211 116 12 147 892 1025 16

4 87 64 817 134 12 80 592 919 14

8 87 64 658 152 12 44 398 905 14

1 94 64 3223 49 12 327 2764 1489 23

2 94 64 1558 43 12 151 1306 1471 22

4 94 64 993 49 12 84 801 1420 22

8 94 64 733 54 12 46 570 1409 22

for compression rates of 75%. We also observe that the performance of different
clustering strategies is similar.

For the problem with 64 scenarios we can see that the solution time of CP is not
significantly reduced further as we increase the compression rate from 75 to 87%
(even if the factorization time is dramatically reduced). This is because the time spent
in GMRES to perform backsolves and matrix-vector operations dominates the factor-
ization time. We mitigate this by using the parallel implementation of CP. The results
are presented in Table 9. We can see that the solution time spent in GMRES to per-
form backsolves and matrix-vector operations is dramatically reduced by exploiting
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the block-bordered-diagonal structure of the KKT matrix. This enables us to solve
a market clearing problem with over 1.2 million variables in 10min, as opposed to
9 hours using the full factorization approach. This represents a speed up factor of
42. By comparing the parallel results with those of Table7 we can also see that the
Schur complement approach is not competitive because of the time needed to form
and factorize the Schur complement (this holds even for a single scenario).

From Table 9 we can see that scalability slows down as we increase the number of
processes. This is because the remaining serial components (beyond backsolves and
matrix-vector operations) of CP start dominating. This overhead includes operations
inside the GMRES algorithm itself. We are currently investigating ways to parallelize
these operations.

In Table 9 we also present experiments using a compression rate of 94%. We
performed these experiments to explore the performance limit of CP. We can see that
the performance of CP deteriorates in terms of total solution time because the number
of GMRES iterations (and thus time) increases. Consequently, it does not pay off to
cluster the KKT system further. We highlight, however, that the deterioration of CP
in terms of GMRES iterations is graceful. It is remarkable that, on average, the linear
system can be solved in 22 GMRES iterations when only four scenarios are used
in the compressed matrix. This behavior again indicates that the computation of the
second-stage variables in (23b) plays a key role in the performance of CP.

We emphasize on the efficiency gains obtained from parallelization with respect to
the computation of the second-stage steps (23b). This step requires a factorization of all
the blockmatrices Ks prior to calling the iterative linear solver.When the factorizations
of the blocks are performed serially, the total solution time grows linearly with the
number of scenarios. This can be observed from the block factorization times (denoted
as θ f actblock) reported in Table 9. In particular, the time spent in the factorization of the
block matrices in the serial implementation (one processor) is a significant component
of the total time. This overhead is eliminated using the parallel implementation (with
almost perfect scaling).

5 Conclusions and future work

We have presented a preconditioning strategy for stochastic programs using clustering
techniques.This inside-the-solver clustering strategy canbeused as an alternative to (or
in combinationwith) outside-the-solver scenario aggregation and clustering strategies.
Practical features of performing inside-the-solver clustering is that no information
on probability distributions is required and the effect of the data on the problem
at hand is better captured. We have demonstrated that the preconditioners can be
implemented in sparse form and dramatically reduce computational time compared to
full factorizations of the KKT system.We have also demonstrated that the sparse form
enables the solution of problems with large first-stage dimensionality that cannot be
addressed with Schur decomposition. Scenario compression rates of up to 94% have
been observed in large problem instances. As part of future work, we will investigate
the performance of the preconditioner in a nonlinear programming setting and we will
investigate extensions to multi-stage stochastic programs.
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