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Abstract Semi-infinite problem (SIPs) are widely used in many control systems for
solving complex control problem, such as polymerase chain reaction control system
or other real time control system. In this paper, we present a bundle method for solving
the nonsmooth convex SIPs, with the aim of working on the basis of “improvement
function”, “inexact oracle” and “incomplete knowledge” of the constraints. The pro-
posed algorithm, whenever a new stabilized center is refreshed, requires an evaluation
within some accuracy for the value of constraints. Beyond that, by using the incre-
mental technique, it does not require all information about the constraints, but only
one component function value and one subgradient needed to be estimated to update
the bundle information and generate the search direction. Thus the computational cost
is significantly reduced. Global convergence of this method is established based on
some mild assumptions. Numerical experiments show that the algorithm is efficient
for solving nonsmooth convex SIPs.
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1 Introduction

Semi-infinite problem (SIPs) can be used in polymerase chain reaction (PCR) control
system for finding optimized complex control strategy. In this paper, we proposed an
incremental bundlemethod for general nosmooth convexSIPs.One of basicmotivation
is to solve a large class of distributionally robust optimization problems, which can
be rewritten as nonsmooth convex SIPs by an uncountable infinite dimensional set
of probability distributions. In fact, the robust stochastic optimization for minimizing
an expectation function is an important variety of decision problems with uncertainty
data. An abstract form for such stochastic optimization problems is

min
x∈X EW [ f (x, ξ)],

where the expectation is taken concerningW which is supposed to be obtained. Unfor-
tunately, in practical applications, such a distribution is not known precisely and has
to be estimated from data. Just as in [4,32], after defining a set D of possible proba-
bility distributions for the uncertain parameters is known; the objective function can
be rewritten corresponding to the “worst” case expected cost over the choice of a
distribution in D. Therefore, the general distributionally robust optimization problem
can be reformulated as follows:

min
x∈X max

W∈D
EW [F(x)],

where F is a disutility function or random cost we attempt to minimize in expectation.
An equivalent expression is

min
x∈X max

W∈D

∫
ξ∈�

f (x, ξ)W (dξ),

where the support set� is closed and bounded, and f (x, ξ) is a convexweight function
in x that depends on parameter ξ . If the set X is a bounded set, the optimal objective
function value can be lied in an interval [α0, α1]. Thus, the problem can be written as
a nonsmooth convex SIP:

min α

s.t
∫
�

f (x, ξ)W (dξ) − α ≤ 0, W ∈ D
α ∈ [α0, α1], x ∈ X.

(1.1)

In this paper, we consider the following general nonsmooth convex SIP:

min
x

f (x)

s.t. c(x, y) ≤ 0, ∀ y ∈ Y,

x ∈ X,

(1.2)

where the functions f : X → R, c: X × Y → R satisfy the following conditions:
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• X is a subset of Rn and Y is a nonempty compact subset of Rm .
• The objective function f is a convex function, in general nondifferentiable.
• c(·, y) is convex, in general nondifferentiable for all y ∈ Y , c(x, ·) is upper semi-
continuous on Y for all x ∈ X .

More broadly, such SIPs apply to optimal control, and diverse fields of engineer-
ing such as multiobjective optimization, resource allocation in decentralized systems,
control systems design, and filter design in signal processing, decision making under
competition, see the early literature [10,13,14,30,39,54,60].

Themain difficulty for solving SIPs lies in that there are infinitelymany constraints.
The principal effort of existing methods is to reduce the infinite set Y to a finite one.
The main proposed methods can be roughly divided into the following several types.
Based on theKKT systems of SIPs, some semismoothNewtonmethods and smoothing
Newton methods were presented in [17,27,29,36,41,42,56]. In every iteration only a
system of linear equations needs to be solved, but they may not ensure the feasibility
of the original, or the accumulation point is not necessarily an stationary point of the
SIPs. The discretization methods, which based on the ideas of choosing a finite grid of
Y , solve finite mathematical programs with Y replaced by the finite grid and updates
the grid (see, e.g. [51,53,59]). The discretization methods are apt to implement, but
the cost of per iteration increases rapidly as the cardinality of the finite grid of Y
grows. The third common approach is the reduction-based method, which is to reduce
the problem locally to a finite-dimensional nonlinear programming problem (see, e.g.
[2,3,52,58]). Unfortunately, the reduction-based method needs some highly strong
assumptions including the conditions leading to the infiniteness of the set of active
constraints. Another important method is the so-called exchange method (see, e.g.
[6,16,26,30,55,57,60]). The new exchange method proposed in [60], does not require
to solve a maximum problem over the index set at each iteration.

All methods above just apply to the smooth SIPs, where f (·) and c(·, ·) all are
smooth. Themethods for solving nonsmoothSIPs are rare, and just only some excellent
theoretical research. If the set Y is finite, necessary conditions of Karush–Kuhn–
Tucker (KKT) condition for optimality can be established under various constraint
qualifications. For example, Abadie, Zangwill, Guignard andMangasarian–Fromovitz
constraint qualification, are denoted by ACQ, ZCQ, GCQ and MFCQ. Puente et al. in
[40], introduced the locally Farkas-Minkowski (LFM) property for linear SIPs, and its
role as a constraint qualificationwas emphasized inmany later papers. By usingClarke
subdifferential, [19–21,38] presented a nonsmooth analogue of the ACQ, ZCQ, GCQ
and LFM property for locally Lipschitz SIPs. [28] introduced some new notions of
constraint qualifications about the epigraphs of the conjugates of these functions for
convex nonsmooth SIPs. [61] provided Lagrange multiplier rules for nonsmooth SIPs.
[33] gave the subdifferential studies and applications of the supremum of uniformly
Lipschitzian functions over arbitrary index sets with no topology. Furthermore, nec-
essary and sufficient optimality conditions of KKT type for these problems are further
researched in recent years.

In this paper, we proposed a bundle method for solving the nonsmooth convex SIP
(1.2). By defining the following “max” function as
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h(x) := max
{
c(x, y) : y ∈ Y

}
,

the (1.2) can be equivalently written as the following nonsmooth nonlinear problem:

min
x

f (x)

s.t. h(x) ≤ 0, x ∈ X.
(1.3)

Various versions of the bundle method (see, e.g., [1,12,31,35,37,47–49]) are recog-
nized as one of the most stable and effective method for nonsmooth problems.
However, in most of applications, it may be impossible to calculate h(·) accurately,
but only controllable accuracy can be obtained [5,45]. In fact, it may even be difficult
to find a point x ∈ X satisfying h(x) ≤ 0. Therefore, the bundle methodology cannot
be used to (1.3) immediately.

Before continuing with our discussions, we introduce the improvement function
associates with the problem (1.3):

Hy(x) = max
{
f (x) − f (y), h(x)

}
, ∀ x ∈ Rn, (1.4)

which is one of the most effective tools to handle constraints in this context, and plays
a significant role in this paper. The constrained optimization problem can be rewritten
as an unconstrained one. In fact, the point x∗ is a solution of (1.3) if and only if x∗
solves the unconstrained problem of minimizing Hx∗(x) (see, e.g. [23,46]). As the
iteration progresses, the main motivations for our method include the improvement
function, incomplete knowledge of the “max” function h(·) and the inexact oracle at
some points. Based on these ideas, we introduce the improvement function to deal
with the constraints, and propose an infeasible bundle method in this paper. Moreover,
we introduce the so-called “incremental” conception, which stems from [22] and
previously been applied for various problems (see, e.g. [5,8,9,24,34]). Nowwe expand
the idea of “incremental” conception to the nonsmooth convex SIPs. At each iteration,
we only need to compute one component function value c(x, y) and one respectively
subgradient to update the bundles. Whenever a new stabilized center x̂ is updated,
we also need to evaluate max

y∈Y c(x̂, y) within a given fixed accuracy. Fortunately, the

process can be properly tackled by some excellent method (see, e.g. [7,11,25]).
This paper is organized as follows. In Sect. 2, we study the improvement function

and introduce the corresponding bundle information. In Sect. 3, we propose a bundle
method for solving problems (1.2). In Sect. 4, we establish the convergence property of
our bundle method. In Sect. 5, we give some numerical results to see the performance
of our bundle method.

2 Preliminaries

2.1 Concepts

Now we recall concepts and results of variational analysis that will be used in this
paper. We shall make use of ∂ f (x̄) and ∂xc(x̄, y) to denote the subdifferential of f (·)
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and c(·, y) at the point x̄ as [44, Proposition 8.12], i.e.,

∂ f (x̄) :=
{
v | f (x) ≥ f (x̄) + 〈v, x − x̄〉

}
,

∂xc(x̄, y) :=
{
v | c(x, y) ≥ c(x̄, y) + 〈v, x − x̄〉

}
.

Approximate subgradients in the Convex Analysis refer to the ε-subdifferential is
defined as

∂ε f (x̄) :=
{
v | f (x) ≥ f (x̄) + 〈v, x − x̄〉 − ε

}
,

whose central property is that 0 ∈ ∂ε f (x̄) implies ε-minimality of x̄ for problem
min f (x), i.e., f (x̄) ≤ f (x) + ε. The directional derivative, defined as [44] with
respect to x in the direction d ∈ Rn , has an alternative representation

f ′(x, d) := max
g∈∂ f (x)

gTd and c′
y(x, d) := max

g∈∂x c(x,y)
gTd for y ∈ Y.

According to [15, Theorem 4.4.2] and [19, Remark 3.6], it is known that Y is a
nonempty compact subset, c(·, y) is convex on X for any y ∈ Y , and c(x, ·) is upper
semicontinuous onY for each x ∈ X , then the subdifferential of h(·) can be represented
as:

∂h(x) = conv
{ ⋃

∂xc(x, y) : y ∈ A(x)
}
,

where the active index-set A(x) := {y ∈ Y : h(x) = c(x, y)}. The convexity of each
c(·, y), for any y ∈ Y actually implies that h(·) is jointly upper semi-continuous on
X × Y . By the Carathéodory’s Theorem [43, Theorem 17.1], a point x of Rn lies in
the convex hull of a set P , there is a subset P ′ of P consisting of n+1 or fewer points
such that x lies in the convex hull of P ′. Hence, for every g ∈ ∂h(x), there exist the
corresponding μ

g
i and ygi ∈ A(x), i = 1, . . . , n + 1 such that

g =
n+1∑
i=1

μ
g
i gy

g
i
, where μ

g
i ≥ 0,

n+1∑
i=1

μ
g
i = 1, g

y
g
i

∈ ∂xc
(
x, ygi

)
, ygi ∈ A(x).

(2.1)

Along iterations, the method keeps an stabilized center, denoted by x̂ k , at the kth
iteration. Then the kth improvement function is given as follows

Hx̂k (x) = max
{
f (x) − f (x̂ k), h(x)

}
. (2.2)

We introduce the following extended MFCQ (see [18,50]) for this nonsmooth con-
vex SIP.
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Assumption 1 (EMFCQ) The extended MFCQ holds at the optimum point x∗. That
is, there exists some feasible direction d ofF := {x ∈ X : c(x, y) ≤ 0, for all y ∈ Y }
at x∗, satisfies

c′
y(x

∗, d) < 0, for all y ∈ Yact (x
∗), (2.3)

where Yact (x∗) = {y ∈ Y | c(x∗, y) = 0}.
We now give the following necessary conditions for optimality.

Lemma 2.1 Suppose that Assumption 1 is satisfied. Then the following statements
hold:

(i) If x∗ is a solution to the problem (1.2), then

min{Hx∗(z) : z ∈ X} = Hx∗(x∗) = 0. (2.4)

(ii) If the relation (2.4) holds, then 0 ∈ ∂Hx∗(x∗) + NX (x∗), and the following
conditions hold:

0 ∈ ∂ f (x∗) + μ∂h(x∗) + NX (x∗),
μ ≥ 0, μh(x∗) = 0, h(x∗) ≤ 0,

(2.5)

where NX (x∗) denotes the normal cone of X at x∗.
(iii) If the relations (2.5) holds, then there exist multipliers λ∗

i and y∗
i ∈ Yact (x∗),

i = 1, . . . , n + 1, satisfying

0 ∈ ∂ f (x∗) +
n+1∑
i=1

λ∗
i ∂x c(x

∗, y∗
i ) + NX (x∗),

λ∗
i ≥ 0, λ∗

i c(x
∗, y∗

i ) = 0, i = 1, . . . , n + 1.
(2.6)

Proof Suppose x∗ is a solution to the problem (1.2), i.e.,

f (z) ≥ f (x∗), for all z ∈ F ,

which implies that

Hx∗(z) = max
z∈Rn

{ f (z) − f (x∗), h(z)}
≥ max

z∈F
{ f (z) − f (x∗), h(z)}

≥ 0 = Hx∗(x∗),

where the first inequality has used thatF ⊆ Rn , and the last equality is from h(x∗) ≤ 0.
From here, the first item (i) follows.

From [23, Lemma 2.15], we obtain that 0 ∈ ∂Hx∗(x∗) + NX (x∗), and x∗ is a FJ
point of the problem (1.3). Then there exist some ν0 , ν ≥ 0, such that

0 ∈ ν0∂ f (x
∗) + ν∂h(x∗) + NX (x∗),

ν0 + ν = 1, νh(x∗) = 0, h(x∗) ≤ 0.
(2.7)
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Suppose that the EMFCQ holds, and ν0 is zero in (2.7), we can obtain that ν = 1.
Thus there exists a subgradient ĝ ∈ ∂h(x∗) such that −ĝ ∈ NX (x∗). Furthermore, by
using the complementary condition νh(x∗) = 0, we conclude that h(x∗) = 0. Then
the definitions of A(x∗) and Yact (x∗) yield A(x∗) = Yact (x∗).

Suppose d is a feasible direction of F , from −ĝ ∈ NX (x∗) we have 〈ĝ, d〉 ≥ 0.
By noting the relation (2.1) (Carathéodory’s Theorem), there exist ŷi ∈ A(x∗) and
μ̂i ≥ 0, i = 1, . . . , n + 1 such that

ĝ =
n+1∑
i=1

μ̂i gŷi
, where gŷi

∈ ∂x c(x
∗, ŷi ), for all i = 1, . . . , n + 1.

Besides, from the definition of the directional derivative, we can obtain

〈gŷi
, d〉 ≤ max

g∈∂x c(x,ŷi )
gTd = c′

ŷi
(x∗, d) < 0, where ŷi ∈ A(x∗).

The second inequality the last inequality is from (2.3) and A(x∗) = Yact (x∗). Thus,
it holds that

0 ≤ 〈ĝ, d〉 =
n+1∑
i=1

μ̂i 〈gŷi
, d〉

≤
n+1∑
i=1

μ̂i c′
ŷi
(x∗, d) < 0.

Then that is an apparent contradiction. Thus ν0 is strictly positive, and conditions (2.5)
hold by setting μ = ν

ν0
. From here, the result item (ii) follows readily.

From the relations (2.5), then there exist a subgradient g∗ ∈ ∂h(x∗) such that

− μg∗ ∈ ∂ f (x∗) + NX (x∗). (2.8)

By combining with (2.1), there are μ∗
i ≥ 0, y∗

i ∈ A(x∗) (for all i = 1, . . . , n + 1)
such that

g∗ =
n+1∑
i=1

μ∗
i gy∗i

,

where g
y∗i

∈ ∂x c(x, y∗
i ) for all i = 1, . . . , n + 1. Now we can show that if i1 �=

i2, then y∗
i1

�= y∗
i2
, i.e., the different g

y∗i
contains in different ∂x c(x, y∗

i ). Let I :=
{ j1, . . . , jn−1} = {1, 2, . . . , n+1}/{i1, i2}. By contradiction, we suppose i1 �= i2 and
y∗
i1

= y∗
i2
, then

g∗ = ∑
i∈I

μ∗
i gy∗i

+ μ∗
i1
g
y∗i1

+ μ∗
i2
g
y∗i2

= ∑
i∈I

μ∗
i gy∗i

+
(
μ∗
i1

+ μ∗
i2

) (
μ∗
i1

μ∗
i1

+μ∗
i2
g
y∗i1

+ μ∗
i2

μ∗
i1

+μ∗
i2
g
y∗i2

)
.
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Since ∂xc(x, y∗
i1
) is a convex set and g

y∗i1
, g

y∗i2
∂x c(x, y∗

i1
), thus

μ∗
i1

μ∗
i1

+μ∗
i2
gy∗

i1
+

μ∗
i2

μ∗
i1

+μ∗
i2
gy∗

i2
∈ ∂x c(x, y∗

i1
). As a result, by setting λ̂n = μ∗

i1
+ μ∗

i2
, λ̂n+1 = 0 and

λ̂i = μ∗
ji
(for all i = 1, . . . , n − 1), we can obtain that the different g

y∗i
contains in

different ∂x c(x, y∗
i ). Thus it holds that

μg∗ = μ
n+1∑
i=1

λ̂i gy∗i
∈ μ

n+1∑
i=1

λ̂i∂xc(x, y∗
i ),

which combines with (2.8), we can obtain that

0 ∈ ∂ f (x∗) + μ

n+1∑
i=1

λ̂i∂xc(x, y
∗
i ) + NX (x∗).

By setting λ∗
i = μ × λ̂i , the conditions (2.6) hold readily. In fact, (2.5) can be written

as (2.6) equivalently. �
BynotingLemma2.1,we can obtain that (1.3) and itsKKTcondition are equivalent.

In addition, if the Slater constraint qualification holds, i.e., there exists a point x̄ ∈ X
such that c(x̄, y) < 0 for any y ∈ Y . Then the above three statements in Lemma 2.1
are equivalent.

2.2 Pretreatment for inner subproblem

In this subsection, we consider the inner subproblem, i.e.,

max
y∈Y c(x̂, y). (2.9)

We assume that the function value h(x̂) can only be evaluated within a given fixed
accuracyω. In fact, the assumption for fixed accuracy is realistic in many applications.
The controllable accuracy may contain the following two cases: For each constant
ω > 0, an ω-optimal solution of (2.9) can be found; on the other hand, this may be
possible only for some fixed (maybe unknown) ω < ∞.

If c(x̂, ·) is concave, then (2.9) can be rewritten as a constrained convex minimiza-
tion programming, hence any inexact algorithms for constrained convex problems can
be used; see, e.g., [25]. The method in [25] is just an inexact bundle method for mini-
mizing a convex function over a closed convex set, which asymptotically evaluates the
optimal value for (2.9) with accuracy ω and obtains ω-optimal solutions y(x̂). Even
if c(x̂, ·) is not concave, just upper semicontinuous on Y , there are also some fine
algorithms for estimating the problem (2.9). The method in [7] extended the classical
cutting plane algorithm to tackle the unconstrained nonconvex nonsmooth optimiza-
tions, and whose parameters can be input for obtaining a solution with any given
accuracy. Recently, W. Hare [11] proposed a proximal bundle method with inexact
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oracle for minimizing a nonconvex function over a closed compact set. For a class of
nonconvex nonsmooth functions, an approximate critical point can be obtained, in the
condition of inexact oracles.

Suppose that x̂ is a current stabilized center. Let y(x̂) ∈ Y denote a ω-optimal
solution to the maximum problem (2.9), that is

c(x̂, y(x̂)) ≥ h(x̂) − ω.

The iterative rules in [7,11,25] can generate more andmore accurate solutions to (2.9),
until a ω-optimal solution.

2.3 Bundle information

Bundle method are one of the most effective approaches for solving nonsmooth opti-
mization problems. In this subsection, we introduce some essential elements for our
bundle method. Suppose that J f

l and J cl are the index sets for objective function and
constrained functions at the iteration l respectively. The oracle outputs are collected
along iterations to form the Bundle information.

B f
l :=

{
(x j , f (x j ), g j

f , β j ) : j ∈ J f
l

}
for J f

l ⊂ {1, . . . , l};
Bc
l :=

{
(x j , c(x j , y j ), g j

c j
, ν j ) : j ∈ J cl

}
for J cl ⊂ {1, . . . , l}, (2.10)

where y j is a point in Y , g j
c j

∈ ∂x c(x j , y j ), g j
f ∈ ∂ f (x j ) and

β j := f (x j ) + 〈g j
f , x̂

k − x j 〉, j ∈ J f
l , β̂k := f (x̂ k),

ν j := c(x j , y j ) + 〈g j
c j

, x̂ k − x j 〉, j ∈ J cl , ν̂k := c(x̂ k, y j ).
(2.11)

Having the information from (2.10), the kth improvement function is modelled by a
convex function

Ml(x) = max{ f̌l (x) − f (x̂ k), čl (x)},

where

⎧⎪⎪⎨
⎪⎪⎩

f̌l (x) = max
j∈J f

l

{
f (x j ) + 〈g j

f , x − x j 〉
}
,

čl (x) = max
j∈J cl

{
c(x j , y j ) + 〈g j

c j
, x − x j 〉

}
.

(2.12)

An equivalent expression, better suited for implementation is

f̌l(x̂ k + d) = max
j∈J f

l

{
β j + 〈g j

f , d〉
}
, čl (x̂

k + d) = max
j∈J cl

{
ν j + 〈g j

c j
, d〉

}
, (2.13)
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where d = x − x̂ k . Given a positive proximal parameter μl , each solution dl is
generated by solving the following quadratic program

min
d∈Dk

{
Ml(x̂

k + d) + μl

2
‖d‖2

}
, (2.14)

where Dk := X − x̂ k . With (2.14) as a QP with an extra scalar variable r as follows

min
(d,r)∈Dk×R

r + μl
2 ‖d‖2,

QP(Bl) s.t. β j − f (x̂ k) + 〈g j
f , d〉 ≤ r, j ∈ J f

l ,

ν j + 〈g j
c j , d〉 ≤ r, j ∈ J cl .

(2.15)

Let (dl , rl ) be the optimal solution to QP(Bl), we can obtain that rl = Ml(x̂ k + dl),
and the new iterative point xl+1 := x̂ k + dl . Furthermore, it is characterized by the
following conditions:

dl = − 1
μl

(Gl + αl), rl = ml + 〈Gl , dl〉, (2.16)

where

ml := ∑
j∈J f

l

λlj (β j − f (x̂ k)) + ∑
j∈J cl

γ l
jν j ,

∑
j∈J f

l

λlj + ∑
j∈J cl

γ l
j = 1, λlj ≥ 0, j ∈ J f

l , γ l
j ≥ 0, j ∈ J cl ,

Gl := ∑
j∈J f

l

λlj g
j
f + ∑

j∈J cl

γ l
j g

j
c j ∈ ∂Ml(xl+1), αl ∈ NX (xl+1).

(2.17)

The next lemma discusses the boundedness of the optimal value of the quadratic
program QP(B).

Lemma 2.2 Let wl denote the optimal value of QP(Bl ), i.e.,

wl := rl + μl

2
‖dl‖2.

Then

wl ≤ ml ≤ Hx̂k (x̂
k). (2.18)

Proof By the definitions of rl , d
l in (2.16), for all l, it holds that

rl = ml + 〈Gl , dl〉
= ml − μl‖dl‖2 − 〈αl , xl+1 − x̂ k〉
≤ ml − μl‖dl‖2,
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where the last inequality has used the fact αl ∈ NX (xl+1). Therefore, it is obvious
that

wl ≤ ml − μl

2
‖dl‖2 < ml .

Besides, by noting (2.11) and the convexity of f and c, then

β j − f (x̂ k) = f (x j ) + 〈g j
f , x̂

k − x j 〉 − f (x̂ k) ≤ 0, ∀ j ∈ J f
l ,

and

ν j = c(x j , y j ) + 〈g j
c j

, x̂ k − x j 〉 ≤ c(x̂ k, y j ) ≤ h(x̂ k), ∀ j ∈ J cl .

Hence, we conclude that the inequality ml ≤ Hx̂k (x̂
k) holds. From here the result has

been proved.

The following lemma can be used to establish an approximate optimality condition.

Lemma 2.3 The vector Gl satisfies the following relation

Hx̂k (x) ≥ Hx̂k (x̂
k) + 〈Gl , x − x̂ k〉 − εl , (2.19)

where εl := Hx̂k (x̂
k) − ml ≥ 0. That is Gl ∈ ∂εl

Hx̂k (x̂
k).

Proof By (2.11) and the convexity of f , it follows that for all j ∈ J f
l

f (x) ≥ f (x j ) + 〈g j
f , x − x j 〉

= f (x j ) + 〈g j
f , x̂

k − x j 〉 + 〈g j
f , x − x̂ k〉

= f (x̂ k) + 〈g j
f , x − x̂ k〉 − f (x̂ k) + β j .

Similarly we can obtain that

h(x) ≥ c(x, y j ) ≥ c(x j , y j ) + 〈g j
c j , x − x j 〉

= c(x j , y j ) + 〈g j
c j

, x̂ k − x j 〉 + 〈g j
c j

, x − x̂ k〉
= ν j + 〈g j

c j
, x − x̂ k〉,

for all j ∈ J cl . By combining with above two inequalities, and using the definition of
Hx̂k (·), we have

Hx̂k (x) = max{ f (x) − f (x̂ k), h(x)}
≥ ∑

j∈J f
l

λlj ( f (x) − f (x̂ k)) + ∑
j∈J cl

γ l
j h(x)

≥ 〈Gl , x − x̂ k〉 + ∑
j∈J f

l

λlj (β j − f (x̂ k)) + ∑
j∈J cl

γ l
jν j

≥ Hx̂k (x̂
k) + 〈Gl , x − x̂ k〉 − (Hx̂k (x̂

k) − ml ).

(2.20)
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Furthermore, by noting the fact that β j − f (x̂ k) ≤ 0, ν j ≤ c(x̂ k, y j ) ≤ h(x̂ k), as well
as the definition of ml , we can obtain that

εl = Hx̂k (x̂
k) − ml ≥ 0. (2.21)

From here the thesis can be readily proved.

Remark 1 Lemma 2.1 and Lemma 2.3 play a critical role in establishing an approxi-
mate optimality condition. Since Gl ∈ ∂εl

Hx̂k (x̂
k), we can obtain that

Gl + αl ∈ ∂εl
(Hx̂k (x̂

k) + iX (x̂ k)),

where iX (·) stands for the indicator function of the set X . Therefore, if ‖Gl +αl‖ and
εl are small enough, the current stabilized center x̂ k can be accepted as an approximate
optimal solution.

3 A constrained incremental bundle method

Now we are ready to introduce an incremental bundle method for solving the SIP
problem (1.2). Setting the following global parameters for the execution of ourmethod:

• the optimality tolerance ε > 0 and the subgradient approximation measure η > 0;
• the increase parameter σ > 1.

Three positive parameters subject to possible modifications are also needed, that is the
descent parameter δ, the proximity parameter μ and the inner precision parameter ω.
In addition, the initial parameters are set, respectively, as δ := δ0, μ := μ0 > 1 and
ω := ω0 with ω0 < ε. For convergence analysis, the following condition should be
satisfied

η2 >
2μ0δ0

ι − 0.5
, ω0 = η2

4μ0

, ι ∈ (0.5, 1),

which imply that

η2 >
2μ0(δ0 + ω0)

ι
. (3.1)

Algorithm 1

Step 0 (Input and Initialization).

Select an initial starting point x0, a point y0 ∈ Y , ι ∈ (0, 1), the optimality tolerance
ε > 0, the subgradient approximation measure η > 0, and the increase parameter σ >

1. Call oracle to compute f (x0), c(x0, y0), as well as g0f ∈ ∂ f (x0), g0c0
∈ ∂xc(x0, y0).

Initialize the iteration counter k = l = 0, choose the bundle index set L f
0 := {0}, Lc

0 :=
{0}, the first stabilized center x̂0 = x0, the starting prox-parameterμ0 as well as δ0 ,ω0 .

The main iteration
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Step 1 (Model Generation and QP Subproblem)
Having the current stabilized center x̂ k , the bundleBl , the prox-parameterμl . Solve

QP(Bl ) (2.15), or the corresponding dual problemDP(Bl ), and obtain both the optimal
primal and dual solutions (dl , rl ) and λl , γ l . Let xl+1 := x̂ k + dl . Select a point
yl+1 ∈ Y , and call oracle to compute f (xl+1), c(xl+1, yl+1), as well as gl+1

f , gl+1
cl+1

. If

‖Gl + αl‖ > η, (3.2)

then go to Step 3.

Step 2 (Approximate optimality test)

Estimate the c(x̂ k, y(x̂ k)), and let c+(x̂ k, y(x̂ k)) := max{0, c(x̂ k, y(x̂ k))}. If

c+(x̂ k, y(x̂ k)) ≤ ml + ε − ω, (3.3)

where

ml :=
∑
j∈J f

l

λlj (β j − f (x̂ k)) +
∑
j∈J cl

γ l
jν j ,

then an approximate optimal solution has been found, then stops.
Else set μl+1 := σμl , δl+1 := δl /σ , ωl+1 := η2/4μl+1 , and perform a bundle

restoration procedure, that is delete one or more elements from the bundle, while
keeping at least the element referred to the stability center x̂ k , i.e.,

J lf := {1}, J lc := {1}, Bl
f := {x̂ k, f (x̂ k), ĝkf , β̂k}, Bl

c := {x̂ k, c(x̂ k, y(x̂ k)), ĝkck , ν̂k},

where β̂k = f (x̂ k), ĝkf ∈ ∂ f (x̂ k), ν̂k = c(x̂ k, y(x̂ k)), ĝkck ∈ ∂xc(x̂ k, y(x̂ k)). Set
l := l + 1 and return to Step 1.

Step 3. (Noise Attenuation Test)

As soon as

f (xl+1) − f (x̂ k) > ιrl + (1 − ι)ml + δ, (3.4)

update the bundle

B f
l+1 := B f

l

⋃ {
xl+1, f (xl+1), gl+1

f , βl+1

}
, Bc

l+1 := Bc
l . (3.5)

Next update the bundle index set l := l + 1, and return to Step 1.
Otherwise, estimate a point ȳ := y(xl+1) ∈ Y , and launch the oracle to compute

c(xl+1, ȳ), gl+1
cȳ ∈ ∂xc(xl+1, ȳ). If it fulfills another cut property

c
(
xl+1, ȳ

)
> ω + δ, (3.6)

123



446 L.-P. Pang et al.

then we set yl+1 = ȳ, gl+1
cl+1

= gl+1
cȳ

, and νl+1 := c(xl+1, ȳ) + 〈gl+1
cȳ

, x̂ k − xl+1〉, and
update the bundle as follows

Bc
l+1 := Bc

l

⋃ {
xl+1, c(xl+1, yl+1), gl+1

cl+1
, νl+1

}
, B f

l+1 := B f
l . (3.7)

Next update the bundle index set l := l + 1, and return to Step 1. Otherwise, set
x̂ k+1 = xl+1, and exit the main iteration and go to Step 4.

Step 4 (Bundle update)

Update the index k := k + 1 and the bundle with respect to the new stabilized
center, and return to Step 1.

We now add some another comments of Algorithm 1. Step 2 aims to test the
approximate optimality condition introduced in Lemma 2.3. If our algorithm stops
at Step 2, namely, the termination of Algorithm 1, takes place when

‖Gl + αl‖ ≤ η, c+(x̂ k, y(x̂ k)) ≤ ml + ε − ω.

By noting the fact that h(x̂ k) ≤ c(x̂ k, y(x̂ k)) + ω and combining with (2.2), we have

Hx̂k (x̂
k) ≤ c+(x̂ k, y(x̂ k)) + ω

≤ ml + ε.

Using (2.21), it holds that

εl = Hx̂k (x̂
k) − ml ≤ ε.

In short, Algorithm 1 stops if and only if

‖Gl + αl‖ ≤ η and εl ≤ ε,

which implies, by combining with Lemma 2.1 and Lemma 2.3, that the current stabi-
lized center x̂ k satisfies KKT conditions (2.5) and (2.6) approximatively. Otherwise,
the proximal parameter μ will increase, and parameters δ and ω decrease properly.
In the meantime, bundle information will be reset, or rather the elimination of all the
elements but the stabilized center, whose related information will be fixed after the
initial bundle reset. Accordingly, along with the increase of μ, the step length dl will
become less and less, that means the trial points will be closer to the stabilized center.

It is worth noting that in Step 3, the reduction has been achieved, whenever the
decrease property and the condition (3.2) are satisfied. Therefore, whenever Algorithm
1 exits from the main iteration, a new stabilized center has been obtained, and this
correlative information is needed to update before a new execution of themain iteration
is entered.
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4 Convergence results

Now it is well known that each new trial point should provide either a better point of the
current estimate of the minimum of f (·), or at least a better point of the approximation
properties of the model Ml(·). The following Lemmas 4.1, 4.2 will give two simple
properties named the decrease property and the cut property, respectively.

Lemma 4.1 Let δ be any positive scalar and ι ∈ (0, 1). If

f (xl+1) − f (x̂ k) ≤ ιrl + (1 − ι)ml + δ,

c(xl+1, y(xl+1)) ≤ ω + δ
(4.1)

hold, then xl+1 is the serious point, and the following decrease property holds:

f
(
xl+1

)
≤ f (x̂ k) − μl ι‖xl+1 − x̂ k‖2 + 2(ω + δ). (4.2)

Proof If the first relation in (4.1) holds, we can obtain that

f
(
xl+1

) − f (x̂ k) ≤ ιrl + (1 − ι)ml + δ

= ∑
j∈J f

l

λlj (β j − f (x̂ k)) + ∑
j∈J cl

γ l
jν j + ι〈Gl , dl〉 + δ, (4.3)

where the last equality has used the definitions in (2.16) and (2.17). Observe that the
serious point x̂ k satisfies (4.1), we can obtain that

c(x̂ k, y(x̂ k)) ≤ ω + δ.

In view of (2.11), and the convexity of f (·) and c(·, y), it holds that

β j − f (x̂ k) ≤ 0, for all j ∈ J f
l ,

and

ν j ≤ c(x̂ k, y j ) ≤ h(x̂ k) ≤ 2ω + δ, for all j ∈ J cl ,

where the second inequality has used the fact that h(x̂ k) ≤ c(x̂ k, y(x̂ k)) + ω. By
noting

∑
j∈J f

l

λlj + ∑
j∈J cl

γ l
j = 1, and combining with the relation (4.3), we have

f (xl+1) ≤ f (x̂ k) + ι〈Gl , xl+1 − x̂ k〉 + 2ω + 2δ.

Following (2.16), we can observe that

〈Gl , xl+1 − x̂ k〉 = −μl‖xl+1 − x̂ k‖2 − 〈αl , xl+1 − x̂ k〉 ≤ −μl‖xl+1 − x̂ k‖2, (4.4)
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where the last inequality has used the fact that αl ∈ NX (xl+1). As a result,

f (xl+1) ≤ f (x̂ k) − μl ι‖xl+1 − x̂ k‖2 + 2ω + 2δ.

From here the result has been proved.

Lemma 4.2 Let δ be any positive scalar and ι ∈ (0, 1).

(i) If

f (xl+1) − f (x̂ k) > ιrl + (1 − ι)ml + δ

holds, then (dl , rl ) is not feasible for problem QP(Bl+1) by resetting the bundle,
such as

B f
l+1 := B f

l

⋃{
xl+1, f (xl+1), gl+1

f
, βl+1

}
, Bc

l+1 := Bc
l . (4.5)

(ii) If the point yl+1 ∈ Y satisfying

c
(
xl+1, yl+1

)
> ω + δ,

then (dl , rl ) is not feasible for problem QP(Bl+1) by resetting the bundle, such
as

Bc
l+1 := Bc

l

⋃{
xl+1, c(xl+1, yl+1), gl+1

cl+1
, νl+1

}
, B f

l+1 := B f
l . (4.6)

Proof If the first condition holds, i.e., f (xl+1) − f (x̂ k) > ιrl + (1 − ι)ml + δ. By
using (2.11) and (2.16), we can obtain that

βl+1 − f (x̂ k) + 〈gl+1
f , dl〉

= f (xl+1) − f (x̂ k)
> ιrl + (1 − ι)ml + δ

= rl + μl (1 − ι)‖dl‖2 − (1 − ι)〈αl , x̂ k − xl+1〉 + δ

≥ rl + δ,

where the last inequality follows from αl ∈ NX (xl+1) and ι ∈ (0, 1). Thus (dl , rl ) is
not feasible for problem QP(Bl+1).

Since f and c(·, y) for any y ∈ Y are convex, by noting (2.11), we have

β j − f (x̂ k) + 〈g j
f , 0〉 ≤ 0, for all j ∈ J f

l ,

and

ν j + 〈g j
c j

, 0〉 ≤ c(x̂ k, y j )

≤ h(x̂ k) ≤ c(x̂ k, y(x̂ k)) + ω

≤ 2ω + δ,
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for all j ∈ J cl , where the last inequality has used c(x̂ k, y(x̂ k)) ≤ ω + δ. Thus,
(0, 2ω + δ) is a feasible point of the corresponding quadratic program. Using (2.16)
and noting (dl , rl ) is the solution of the corresponding quadratic program, then the
optimal values wl is smaller than 2ω + δ, i.e.,

rl + 1

2μl

‖Gl + αl‖2 = rl + μl

2
‖dl‖2 ≤ 2ω + δ,

which, taking into account ‖Gl + αl‖ > η and ω = η2/4μl , implies that

rl ≤ 2ω + δ − 1

2μl

‖Gl + αl‖2 = δ. (4.7)

Moreover, if the condition (ii) holds, by using the above inequality, we can obtain

νl+1 + 〈gl+1
cl+1

, dl〉
= c(xl+1, yl+1)

> ω + δ

≥ rl + ω,

where the first inequality follows from (3.6), and the last one has used the (4.7). It
follows that (dl , rl ) is not feasible for QP(Bl+1). Thus the thesis easily follows.

We now give a preliminary result for the global convergence of Algorithm 1.

Lemma 4.3 Suppose that wl and wl+1 are, respectively, the optimal values of QP(Bl )
and QP(Bl+1). Then

wl+1 ≥ wl + μl

2
‖dl+1 − dl‖2. (4.8)

Proof Suppose that (d̄, r̄) is any feasible point for QP(Bl ), then it fulfils the following
inequalities

β j − f (x̂ k) + 〈g j
f , d̄〉 ≤ r̄ , j ∈ J f

l ,

ν j + 〈g j
c j

, d̄〉 ≤ r̄ , j ∈ J cl .

By combining with (2.17), we obtain that

ml + 〈Gl , d̄〉 ≤ r̄ .

Observe that (dl+1, rl+1) is a feasible point for QP(Bl ), then one gets

ml + 〈Gl , dl+1〉 ≤ rl+1 .
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Since (dl , rl ) is the optimal solution of QP(Bl ), it follows from (2.16) that

ml + 〈Gl , dl〉 = rl .

By the above two relations, thus

〈Gl , dl+1 − dl〉 ≤ rl+1 − rl . (4.9)

Observe further that

wl+1 = rl+1 + μl+1
2 ‖dl+1‖2

≥ rl+1 − rl + rl + μl
2 ‖dl+1 − dl + dl‖2

≥ 〈Gl , dl+1 − dl〉 + wl + μl
2 ‖dl+1 − dl‖2 + μl 〈dl+1 − dl , dl〉,

(4.10)

where the last inequality has used (4.9) and the definition of wl . By noting the fact
that dl = − 1

μl
(Gl + αl) and αl ∈ NX (xl+1), it obtains that

μl 〈dl+1 − dl , dl〉
= −〈Gl , dl+1 − dl〉 − 〈αl , xl+2 − xl+1〉
≥ −〈Gl , dl+1 − dl〉,

which implies, together with (4.10), that (4.8) holds.

Lemma 4.4 Suppose that (dl , rl ) is the optimal solution to QP(Bl ). Let j (k) ∈ J f
l

denote an iteration index yielding a serious step: x̂k = x j (k) := x̂ k−1 + d j (k)−1. The
following properties hold:

(1) rl ≤ Hx̂k (x̂
k) ;

(2) rl ≤ Hx̂k (x
l+1) ;

(3) dl ∈ VRl(k)
(0) (a neighbourhood of 0 with radius Rl(k)), where

Rl(k) =

⎧⎪⎨
⎪⎩

2‖g j (k)
f ‖

μl
, if ml ≤ 0;

‖Gl‖+
√

‖Gl‖2+2μl Hx̂k (x̂ k )

μl
, if ml > 0.

(4.11)

Proof (1) Since f is convex, by (2.11) and (2.15), one gets

βl − f (x̂ k) + 〈glf , 0〉
= −( f (x̂ k) − f (xl) − 〈glf , x̂ k − xl〉)
≤ 0.
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On the other hand, by noting the convexity of c(·, yl ), we can obtain that

νl + 〈glcl , 0〉= c(xl , yl) + 〈glcl , x̂ k − xl〉
≤ c(x̂ k, yl).

Recalling the definition of Hx̂k (·), we can obtain that (0, Hx̂k (x̂
k)) is a feasible

point of QP(Bl ). Thus,

rl ≤ rl + μl

2
‖dl‖2 ≤ Hx̂k (x̂

k).

(2) It follows by observing that rl = Ml(x̂ k + dl) ≤ Hx̂k (x̂
k + dl).

(3) Suppose now that ml ≤ 0, it follows from (2.16) that

rl ≤ 〈Gl , dl〉 = −μl‖dl‖2 − 〈αl , xl+1 − x̂ k〉 < 0.

Thus (0, 0) is the feasible point for QP(Bl ).
By noting the relation (2.11), it holds that

β j (k) := f (x j (k)) +
〈
g j (k)
f , x̂ k − x j (k)

〉
= f (x̂ k) = β̂k .

Notice that (0, 0) is the feasible point for QP(Bl ), then the optimal value wl = rl +
μl
2 ‖dl‖2 is smaller than 0. Thus we can obtain that

0 ≥ rl + μl
2 ‖dl‖2

≥ β j (k) − f (x̂ k) + 〈g j (k)
f , dl〉 + μl

2 ‖dl‖2
= 〈g j (k)

f , d〉 + μl
2 ‖dl‖2

≥ μl
2 ‖dl‖2 − ‖g j (k)

f ‖‖dl‖,

where the second inequality has used the fact that rl ≥ β j (k) − f (x̂ k) + 〈g j (k)
f , dl〉.

Thus, we can obtain that

‖dl‖ ≤ 2‖g j (k)
f ‖

μl

.

On the other hand, if ml > 0 holds, then by noting the fact that (0, Hk(x̂ k)) is
feasible point for QP(Bl ), we obtain that the optimal value wl = rl + μl

2 ‖dl‖2 is
smaller than Hk(x̂ k), i.e.,

Hx̂k (x̂
k) ≥ rl + μl

2
‖dl‖2.
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Furthermore, by noting (2.16), we obtain that

0 ≥ μl
2 ‖dl‖2 + 〈Gl , dl〉 + ml − Hx̂k (x̂

k)

≥ μl
2 ‖dl‖2 − ‖Gl‖‖dl‖ − Hx̂k (x̂

k).

Thus

‖dl‖ ≤ ‖Gl‖ + √‖Gl‖2 + 2μl Hx̂k (x̂ k)

μl

,

From here all the items have been proven.

To prove global convergence of Algorithm 1, it is necessary to obtain the finite
termination of the “main iteration”. The finiteness of the “main iteration” corresponds
to prove that one of the following cases can occur:

• either there are finitely many passages through Step 2, or
• the “main iteration” passes finitely many times through Step 3.

In what follows, we suppose that f (·) and c(·, y) for any y ∈ Y are boundedness
from below on subset X , which is a standing assumption in nonsmooth optimization.
Moreover, let L denote the Lipschitz constant of f (·) and c(·, y) for any y ∈ Y on
subset X , then we can obtain that ‖glf ‖ ≤ L , ‖glcy‖ ≤ L for all y ∈ Y , and then

‖Gl‖ ≤ L .
In the following two lemmas, we can obtain that the “main iteration” is well defined.

Lemma 4.5 There are finitely many passages through Step 2. That is only finite loops
between Step 1 and Step 2 are executed.

Proof For a contradiction, we assume there are infinitely many passages through Step
2. For convenience, let x̂ k and t denote, respectively, the current fixed stabilized center
and the index of the t th passage through Step 2. Furthermore, let (d̃ t , r̃t ), (λ̃t , γ̃ t ), R̃t ,
μ̃t and ω̃t denote, respectively, the primal solution of the current quadratic program,
the matching multipliers, the upper bound of d̃ t , the prox-parameter and the inner
precision parameter.

Infinitely many passages through Step 2 imply the following conditions:

‖G̃t + α̃t‖ ≤ η,

and

c+(x̂ k, y(x̂ k)) > m̃t + ε − ω̃t (4.12)

are simultaneously satisfied infinitely many times. Observe that the bundle will be
always restored, which ensures the elements

Bl
f := {x̂ k, f (x̂ k), ĝkf , β̂k}, where β̂k = f (x̂ k),

Bl
c := {x̂ k, c(x̂ k, y(x̂ k)), ĝkck , ν̂k}, where ν̂k = c(x̂ k, y(x̂ k))

123



Constrained incremental bundle method with partial inexact oracle... 453

are always preserved in the bundle. By noting (4.11) in Lemma 4.4, we get that

‖d̃ t‖ ≤ R̃t ≤ max

{
2L

μ̃t

,
2L + √

2μ̃t Hx̂k (x̂ k)

μ̃t

}
.

By noting μ̃t → ∞, we can obtain that ‖d̃ t‖ tends to 0 as t → ∞. Since (d̃ t , r̃t ) is
the solution of QP(B), then it is of course a feasible point of the problem, namely,

r̃t ≥ β̂k − f (x̂ k) + 〈ĝkf , d̃ t 〉 ≥ −L‖d̃ t‖,

and

r̃t ≥ ν̂k + 〈ĝkck , d̃ t 〉 ≥ c(x̂ k, y(x̂ k)) − L‖d̃ t‖,

which imply that

r̃t ≥ c+(x̂ k, y(x̂ k)) − L‖d̃ t‖.

Besides, since f and c(·, y) for any y ∈ Y are convex, by noting (2.11), we have

β j − f (x̂ k) + 〈g j
f , 0〉 ≤ 0, for all j ∈ J̃ f

t ,

and

ν j + 〈g j
c j , 0〉 ≤ c(x̂ k, y j ) ≤ h(x̂ k) ≤ c(x̂ k, y(x̂ k)) + ω̃t , for all j ∈ J̃ ct ,

which imply that (0, c+(x̂ k, y(x̂ k))+ω̃t ) is the feasible point of thematching quadratic
program. Observe that (d̃ t , r̃t ) is the solution of the matching quadratic program, then
the corresponding optimal values w̃t is smaller than c+(x̂ k, y(x̂ k)) + ω̃t , i.e.,

w̃t := r̃t + μ̃t

2
‖d̃ t‖2 ≤ c+(x̂ k, y(x̂ k)) + ω̃t .

Hence we have that

c+(x̂ k, y(x̂ k)) + ω̃t ≥ r̃t ≥ c+(x̂ k, y(x̂ k)) − L‖d̃ t‖.

Now, by noting the fact that lim
t→∞ ω̃t = 0 and lim

t→∞ ‖d̃ t‖ = 0, we have

lim
t→∞ r̃t = c+(x̂ k, y(x̂ k)).

Moreover, by using (2.16), we obtain that m̃t → c+(x̂ k, y(x̂ k)) as t → ∞, which is
a contradiction with (4.12). From here the result has been proved.
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Lemma 4.6 The “main iteration” is impossible to loop infinitely many times between
Step 1 and Step 3.

Proof Suppose first, for a contradiction, there are infinitely many passages through
Step 3. Note the quadratic program QP(B) will be solved infinitely many times, with
the cut property (3.4) or (3.6) holds. For convenience, let x̂ = x̂ k , μ̃ and ω̃ denote,
respectively, the current fixed stabilized center, the current fixed prox-parameter and
the fixed inner precision parameter. Let t , (d̃t , r̃t ) and (λ̃t , γ̃ t ) stand for, respectively,
the index of the t th passage through Step 3, the primal solution and the matching
multipliers of the current quadratic program.

Then the matching optimal values can be denoted as

w̃t := r̃t + μ̃

2
‖d̃ t‖2.

According to Lemma 2.2 and Lemma 4.3, we obtain that {w̃t } is monotonously non-
decreasing and bounded, thus convergent. The latter implies, again by Lemma 4.3,
that

‖d̃ t+1 − d̃ t‖2 → 0 as t → ∞,

which combines with the boundedness of {‖d̃ t‖}, it holds that {d̃ t } is convergent.
As a consequence, by noting that r̃t = μ̃

2 ‖d̃ t‖2 − w̃t , then the sequence {r̃t } is also
convergent.

Infinitely many passages through Step 3 imply the following conditions hold infi-
nitely many times

‖G̃t + α̃t‖ > η,

and either

f (x̃ t+1) − f (x̂) > ιr̃t + (1 − ι)m̃t + δ, (4.13)

or

c(x̃ t+1, y(x̃ t+1)) > ω̃ + δ. (4.14)

If the inequality (4.13) holds infinitely many times. Observe that (d̃ t+1, r̃t+1) is the
solution of QP(Bt+1), thus it is of course the feasible point of the current quadratic
program, namely,

r̃t+1 ≥ β̃t+1 − f (x̂) + 〈g̃t+1
f , d̃ t+1〉

= f
(
x̃ t+1

) − f
(
x̂
) + 〈g̃t+1

f , d̃ t+1 − d̃ t 〉
> ιr̃t + (1 − ι)m̃t + δ + 〈g̃t+1

f , d̃ t+1 − d̃ t 〉,
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where the last inequality follows from (4.13). Thus, we can obtains that

δ + 〈g̃t+1
f , d̃ t+1 − d̃ t 〉

≤ (r̃t+1 − r̃t ) + (1 − ι)(r̃t − m̃t )

= (r̃t+1 − r̃t ) + (1 − ι)〈G̃t , d̃ t 〉
≤ r̃t+1 − r̃t ,

(4.15)

where the last inequality has used the relation (4.4), and the equality follows from
(2.16). Passing to the limit and noting the boundedness of g̃t+1

f , it holds that δ ≤ 0,
which is a contradiction.

On the other hand, if (4.14) holds infinitely many times, by noting (d̃ t+1, r̃t+1) is
the solution of the matching quadratic program, we can obtain that

r̃t+1 ≥ ν̃t+1 + 〈g̃t+1
ct+1

, d̃ t+1〉
= c(x̃ t+1, y(x̃ t+1)) + 〈g̃t+1

ct+1
, d̃ t+1 − d̃ t 〉

≥ ω̃ + δ − L‖d̃ t+1 − d̃ t‖
≥ ω̃ + r̃t − L‖d̃ t+1 − d̃ t‖,

where the last inequality has used the fact δ ≥ r̃t in (4.7). Thus it holds that

r̃t+1 − r̃t ≥ ω̃ − L‖d̃ t+1 − d̃ t‖.
Passing to the limit as t → ∞, we obtain that ω̃ ≤ 0, which is a contradiction. �

Lastly, we can prove global convergence of Algorithm 1.

Theorem 4.1 Consider solving the nonsmooth convex SIPs (1.2) with Algorithm 1.
For any ε > 0 and η > 0, Algorithm 1 stops after finitely many executions of the “main
iteration” at an approximate optimum point x̃ , satisfying the following approximate
optimality condition:

‖G̃ + α̃‖ ≤ η and ε̃ := Hx̃ (x̃) − m̃ ≤ ε,

where m̃ has been defined in (2.17).

Proof For a contradiction, we assume there are an infinite number of “main iteration”
executions, which mean that the stabilized center is updated infinitely. Let k, (d̂k, r̂k )
and (λ̂k, γ̂ k) denote the index of the kth “main iteration”, the primal solution of the
current QP and the matching multipliers, and Ĵ f

k , Ĵ ck stand for the matching index
sets.

We observe that the stabilized center x̂ k should be updated only if

‖Ĝk + α̂k‖ > η

holds. Let pk denote number of bundle resets carried out during the kth “main itera-
tion”. It follows from Lemma 4.5 that pk is always is bounded. Moreover, by Lemma
4.1, we can obtain that
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f (x̂ k+1) − f (x̂ k) ≤ −μk ι‖d̂k‖2 + 2(δ + ω)

= − ι
μk

‖Ĝk + α̂k‖2 + 2(δ + ω)

≤ − ιη2

μk
+ 2(δ + ω)

=
(
− ιη2

μ0
+ 2δ0 + 2ω0

)
1

(σ )pk
,

where the first equality has used (2.16) and the last equality is fromStep 2 inAlgorithm
1. Therefore, by summing up the above relation, we can obtain that

f (x̂ k+1) − f
(
x̂0

)
≤ a

k∑
j=0

1

(σ )p j
,

where a := − ιη2

μ0
+ 2δ0 + 2ω0, which is negative follows from (3.1). By noting the

boundness of p j , then 1
(σ )

p j is uniformly bounded away from zero. As a result, passing
to the limit, we can obtain

lim
k→∞ f

(
x̂ k+1

)
− f (x̂0) ≤ a lim

k→∞

k∑
j=0

1

(σ )p j
≤ −∞,

which is a contradiction, since f is bounded from below.
Therefore, Algorithm 1 will eventually stop at Step 2, and output an approximate

point x̃ , which satisfies the following conditions:

‖G̃ + α̃‖ ≤ η, (4.16)

and

Hx̃ (x̃) − ω ≤ c+(x̃, y(x̃)) ≤ m̃ + ε − ω,

implies that Hx̃ (x̃) − m̃ ≤ ε. By Lemmas 2.1 and 2.3, it holds that

G̃ + α̃ ∈ ∂εHx̃ (x̃) + NX (x̃),

which, combining with (4.16), implies that x̃ satisfies the approximate optimality
conditions.

5 Computational results

We complete Algorithm 1 in MATLAB and the numerical experiments were done
by using a PC with 1.80GHz CPU. Quadratic programming solver is QuadProg.m,
which is available in the Optimization Toolbox. In our experiments, we choose the
values for all the parameters as follows:

ε = 10−3, η = 10−3, δ0 = 10−6, ι = 0.56, σ = 10, μ0 = 10.
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Now we try to handle the maximum problem (2.9), i.e.,

max
y∈Y c(x̄, y),

where x̄ is the current iterative point. There are a few excellent methods for solving
both convex and nonconvex optimization, and the solution with any accuracy can be
returned [7,11]. In particular, [11] proposed an inexact nonconvex bundle if the Y is a
compact set and simple enough. If the objective function c(x̃, ·) is concave, then (2.9)
is a constrained concave maximization program. Therefore, any standard algorithms
for minimizing constrained convex problem are suitable for our algorithm.

5.1 Computational results for nosmooth convex semi-infinite problems

In this subsection, we tested 8 nonsmooth convex semi-infinite examples, namely,
Examples 1-8.

Example 1

min f (x) := 1.21 exp(|x1|) + exp(|x2|),
s.t. c(x, y) := y − exp(x1 + x2) ≤ 0,

y ∈ [−10, 1].

Example 2

min f (x) := 1
3 |x1| + 1

2 |x1| + |x2|,
s.t. c(x, y) := (1 − x21 y

2)2 − x1y2 − |x2| + x2 ≤ 0,
y ∈ [−1, 1].

Example 3

min f (x) := |x1 − 2x2 + 5x22 − x32 − 13| + |x1 − 14x2 + x22 + x32 − 29|,
s.t. c(x, y) := |x1| + 2x2y2 + exp(x1 + x2) − exp(y) ≤ 0,

y ∈ [0, 1].

Example 4

min f (x) := |x1 − 2| + |x2|,
s.t. c(x, y) := |x1| cos(y1) − x2 sin(y2) − 4 ≤ 0,

y ∈ [0, 2π ] × [0, 2π ].

Example 5

min f (x) := |x1| + |x2| + |x3|,
s.t. c(x, y) := x1 + x2 exp(x3y) − exp(2x1y) + sin(4y) ≤ 0,

y ∈ [0, 1].
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Example 6

min f (x) := |x1| + |x2| + |x3|,
s.t. c(x, y) := x1 + x2 exp(x3y1) − exp(2y2) + sin(4y1) ≤ 0,

y ∈ [0, 1] × [0, 1].

Example 7

min f (x) := 1
2 (|x1| + |x2| + |x3| + |x4|),

s.t. c(x, y) := sin(y1y2) − x1 − x2y1 − x3y2 − x4y1y2 ≤ 0,
y ∈ [0, 1] × [0, 1].

Example 8

min f (x) := 1
2 (|x1| + |x2| + |x3| + |x4| + |x5| + |x6|),

s.t. c(x, y) := exp
(
y21 + y22

) − x1 − x2y1 − x3y2 − x4y21 − x5y1y2 − x6y22 ≤ 0,
y ∈ [0, 1] × [0, 1].

The numerical results are listed in Tables 1 and 2, and notations are used as follows:

stopηk
:= ‖Ĝk + α̂k‖,

stopεk
:= c+(x̂k, y(x̂k)) − m̂k

(x0, y0) − −the initial point,
f ∗ − −the final objective value,
h∗ − −the final constrained value,
Ni − −the number of null iterations,
k − −the number of serious iterations,
Timemax − −the CPU time for solving (2.9)(sec.),
Time − −the CPU time(sec.).

The test results are summarized in Tables 1 and 2, and show that Algorithm 1
performs well for Examples 1–8. From Table 1, we can note the value of stopηk and
stopεk drop to zero fast in the last three iterations, which means that Algorithm 1 is
convergent quickly. From Table 2, the value of h∗ shows that Algorithm 1 can ensure
the feasibility for all the test examples. Also, we can note the CPU time for estimating
(2.9) (Timemax ) is extremely short, which shows the inexact oracle idea is reasonable.
Above all, the Time shows that our method is efficient for solving nonsmooth SIP
problem (1.2).

5.2 Comparison of Algorithm 1 with classic algorithms

In this subsection, we first test performance on the following five classical convex
SIPs (Examples 9–13). We compare the performance of Algorithm 1 with that of the
central cutting plane algorithm (CCPA) as detailed in [26] and the SIP solver fseminf
in MATLAB toolbox.
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Table 1 The last three iterates generated by Algorithm 1 for Examples 1–8

Example k Stopηk Stopεk Example k Stopη Stopε

1 9 0.0592 0.0353 2 8 0.0742 0.0316

10 0.0037 0.0048 9 0.0037 0.0093

11 4.0137e−4 6.1780e−4 10 3.4673e−4 8.4378e−4

3 8 0.0129 0.0458 4 11 0.0085 0.0467

9 0.0073 0.0104 12 0.0073 0.0062

10 6.1751e−4 6.8305e−4 13 5.6038e−4 3.9324 e−4

5 9 0.1032 0.0739 6 11 0.0347 0.0073

10 0.0367 0.0084 12 0.0071 0.0020

11 8.1764e−4 5.7030e−4 13 7.3020e−4 8.5014e−4

7 10 0.0629 0.0538 8 14 0.0873 0.0130

11 0.0572 0.0143 15 0.0119 0.0036

12 7.7490e−4 7.3080e−4 16 6.9007e−4 7.5431e−4

Table 2 Test results by Algorithm 1 for Examples 1–8

Example x0/y0 k|Ni Stopη∗ |stopε∗ f ∗ h∗ Timemax Time

1 (1,1)/1 11|21 4.01e−4 | 6.10e−4 1.24 0 0.08 1.07

2 (−1,−1)/1 10|19 3.46e−4 | 8.43e−4 2.34 5.34e−7 0.09 1.61

3 (−1,1)/1 10|21 6.17e−4 | 6.83e−4 37.24 0 0.10 1.04

4 (−1,−1)/(1,0) 13|20 5.60e−4 | 3.93 e−4 0 0 0.11 1.62

5 (1,1,1)/1 11|18 8.17e−4 | 5.70e−4 0 0 0.10 1.04

6 (−1,−1,−1)/ (0, 1) 13|17 7.30e−4 | 8.50e−4 0 0 0.13 1.47

7 (1, 2, 1, 2)/(1, 0) 12|20 7.74e−4 |7.30e−4 0.04 3.37e−8 0.12 1.60

8 (−2,−2,−2,−2,
−2,−2)/(1, 1)

16|19 6.90e−4|7.54e−4 1.48 0 0.11 1.47

Example 9 Consider the following convex SIP problem, which satisfies the Slater CQ
and the feasible set is bounded.

min f (x) = (x1 − 2)2 + (x2 − 0.2)2,
s.t. c(x, y) = (5sin(π

√
y)/(1 + y2))x21 − x2 ≤ 0,

x1 ∈ [0, 1], x2 ∈ [0, 1] and Y = [0, 1].

The problem is stemmed from Tichatschke and Nebeling [54], and was also tested by
Kortanek and No [26]. Obviously, it satisfies the Slater CQ, and its objective function
is strictly convex

Example 10 This problem is convex SIP problem, and the objective function is strictly
convex.
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min f (x) = x21 + x22 ,
s.t. c(x, y) = cos(y)x1 + sin(y)x2 − (1 + cos(y) + sin(y)) ≤ 0,

Y = [π, 3
2π ],

which is discussed by Goberna and López [10], and Zhang andWu [60]. Although the
feasible set is not bounded, the objective function is level bounded on the feasible set.

Example 11 Consider the following convex SIP problem, and has been tested by
Kortanek and No [26].

min f (x) = x21 + x22 + x32 ,
s.t. c(x, y) = x1 + x2 exp(x3y) + exp(2y) − 2 sin(4y) ≤ 0,

x1 ∈ [−2, 2], x2 ∈ [−2, 2], x3 ∈ [−2, 2], Y = [0, 1],
where the objective function is strictly convex, and the problem satisfies the Slater
CQ.

Example 12 The problem is a convex SIP problem with multidimensional index set,
and has been tested by Kortanek and No [26].

min f (x) = x21 + x22 ,
s.t. c(x, y) = (x21 + x22 − 4)y1 + ((x1 − 2)2 + (x2 − 2)2 − 4)y2 ≤ 0,

x1 ∈ [0, 2], x2 ∈ [0, 2], Y = [0, 1] × [0, 1].
Observe that the problem satisfies the Slater CQ and has strictly convex objective
function, the feasible set is bounded.

Example 13 Consider the following quadratically constrained convex quadratic SIP
problem, which stems from linear-phase FIR digital filter design with weighted peak-
constrained least-square error. The convex SIP problem has been tested by Zhang and
Wu [60].

min f (x) = xTHx − 2cTx,
s.t. c1(x, y) = |ϕ(y)T x − 1| − 0.05 ≤ 0, for y ∈ Y1 = [0, 0.05],
c2(x, y) = |ϕ(y)T x | − 0.01 ≤ 0, for y ∈ Y2 = [0.1, 0.5],

where

ϕ(y) = (2 cos(2πy(n − 1)), 2 cos(2πy(n − 2)), . . . , 2 cos(2πy), 1)T , n = 18.

H =
∫ 0.05

0
ϕ(y)ϕ(y)T dy + 1000

∫ 0.5

0.1
ϕ(y)ϕ(y)T dy, c =

∫ 0.05

0
ϕ(y)dy

Algorithm 1 will obtain the solution of this problem after 21 iterations, where

x∗ = (0.0053, 0.0033, 0.00067,−0.0034,−0.0083,−0.01343,
−0.0211,−0.0223,−0.0219,−0.0149,−0.0007, 0.0199,
0.0447, 0.0737, 0.1002, 0.1232, 0.1382, 0.1436)T .
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Table 3 Comparison of results for Examples 9–13

Example Algori thm x∗ f ∗ CPU (s) Iter

9 Algorithm 1 (0.2928, 0.2929) 3.2212 0.26 8

CCPA (0.2929, 0.2929) 3.2212 1.69 141

fseminf (0.2929, 0.2929) 3.2212 2.09 6

10 Algorithm 1 (0.2052, 0.2000) 0.0821 0.15 4

CCPA (0.2052, 0.2000) 0.0821 7.32 32

fseminf (0.3012, 0.3101) 0.1868 1.98 53

11 Algorithm 1 (−0.2133,−1.3610,−1.8531) 5.3318 0.73 6

CCPA (−0.2133,−1.3615,−1.8535) 5.3346 2.71 27

fseminf (−0.2133,−1.3615,−1.8535) 5.3346 3.17 46

12 Algorithm 1 (0.5858, 0.5858) 0.6863 0.10 4

CCPA (0.5858, 0.5858) 0.6863 0.30 9

fseminf (0.5858, 0.5858) 0.6863 17.01 107

13 Algorithm 1 −0.1618 67.02 21

CCPA – – – –

fseminf – – – –

Comparative computational results are summarized in Table 3.
It is worth noting that our algorithm is much more effective than CCPA and SIP

solver fseminf. Specifically, the SIP solver fseminf cannot obtain the optimal solution
when it is used to solve Example 10. Besides, perhaps because of the dimension of
Example 13 is too large, both of the CCPA and fseminf need toomuch time for solving
Example 13, thus they are obliged to stop running. The solution of Example 13 has
been reported in itself.

Example 14 Consider the following unconstrained SIP [32]:

min
x∈[−1,1]n max

t∈[0,1]

n∑
i=1

(i xi − i/n − sin(2π t + i))2,

which is a classic SIPs.

We compared the performance of Algorithm 1 on Example 14 with the new exchange
method (EXM) in [60] and the SIP solver fseminf in Matlab toolbox. By setting
n = 2, 5, 10, 15, 20, 25, 30, the numerical results are summarized in Table 4.

Table 4 shows, the fseminf is acceptable for lower dimension problems, but it takes
too much time for 10 ≤ n ≤ 20, Besides, we have to give up running fseminf for
n ≥ 25, since it spends too much time to stop, or did not converge. The performance
of the EXM is excellent for Example 14, but it needs much more time than Algorithm
1 for most problems.
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Table 4 Comparison of Algorithm 1, the new EXM and fseminf for Example 14

n Algorithm 1 EXM fseminf

Stopη Stopε k Ni Timemax Time k Time k Time

2 1.4760e−4 6.0483e−4 9 11 0.68 1.01 11 1.13 8 1.07

5 3.4742e−4 5.2431e−4 13 17 2.73 4.24 17 6.47 14 8.47

10 2.4330e−4 4.4192e−4 19 33 3.66 33.49 39 28.26 97 583.32

15 7.8522e−4 7.1243e−4 44 48 4.27 36.39 63 46.17 287 895.45

20 6.2390e−4 7.4094e−4 66 38 4.40 45.46 92 59.52 393 1457.58

25 3.3173e−4 6.0724e−4 95 60 6.09 69.42 132 88.26 − –

30 9.1076e−5 4.2451e−4 123 72 10.93 94.43 174 113.51 − –

5.3 Computational results for moment robust optimization

To test the efficiency of Algorithm 1 for solving the moment robust optimization, we
compute the following robust stochastic constraints optimization problem as [32].

Example 15

min f (x) := (x1 − 2)2 + (x2 − 0.2)2,

s.t. EW

[
5sinπ

√
ξ

1+ξ2
x21 − x2

]
≤ 0, W ∈ D,

x1 ∈ [−1, 1], x2 ∈ [0, 0.2],

where D :=
{
W : EW [ξ i ] = 1

i+1 , i = 0, 1, ...m
}
.

In our numerical experiment, we set the initial point x0 = (1.3, 0.7), the increase
parameter σ = 2.5, the initial parameters μ0 = 4.5, δ0 = 10−6, ι = 0.08, the
optimality tolerance ε = 10−3.

By setting different moment constraints m = 1, 2, 3, 4, 5, 6,∞, Example 15 gives
various classical robust optimization model of the problem. It should be noted that the
solutions for solving Example 15 for increasing values of t correspond to fewer and
fewer conservative solutions. The objective value increases along with the increasing
values of t . Fortunately, the inner subproblem (2.9) can be solved effectively, which
implies the inexact oracle idea is reasonable. All in all, the numerical results show
that Algorithm 1 can solve the robust stochastic constraints optimization problem
effectively.

The numerical results are listed in the following Table 5.
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Table 5 The numerical results gave by Algorithm 1 for Example 15 with different moment constraints

t Stopη Stopε x1 x2 f ∗ k Ni Timemax Time

1 2.1475e−4 7.7081e−4 0.2407 0.2 3.0951 13 20 0.23 1.04

2 6.1034e−4 9.8001e−5 0.2493 0.2 3.0760 17 26 0.37 1.21

3 3.1179e−4 5.0781e−4 0.2672 0.2 3.0026 19 26 0.34 1.27

4 8.1930e−4 7.7314e−4 0.2679 0.2 2.9964 24 29 1.21 2.73

5 7.9013e−5 5.3107e−5 0.2709 0.2 2.9898 22 34 0.85 2.39

6 6.1347e−4 9.3174e−5 0.2713 0.2 2.9884 22 37 1.05 2.77

∞ 7.1743e−4 6.1814e−5 0.2721 0.2 2.9856 31 40 1.17 3.07
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