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Abstract Given a simple graph and a constant γ ∈ (0, 1], a γ -quasi-clique is defined
as a subset of vertices that induces a subgraph with an edge density of at least γ . This
well-known clique relaxation model arises in a variety of application domains. The
maximum γ -quasi-clique problem is to find a γ -quasi-clique of maximum cardinality
in the graph and is known to be N P-hard. This paper proposes new mixed integer
programming (MIP) formulations for solving the maximum γ -quasi-clique problem.
The corresponding linear programming (LP) relaxations are analyzed and shown to
be tighter than the LP relaxations of the MIP models available in the literature on
sparse graphs. The developed methodology is naturally generalized for solving the
maximum f (·)-dense subgraph problem, which, for a given function f (·), seeks for
the largest k such that there is a subgraph induced by k vertices with at least f (k)
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edges. The performance of the proposed exact approaches is illustrated on real-life
network instances with up to 10,000 vertices.

Keywords Quasi-clique · s-Defective clique · Average s-plex · Dense subgraph ·
Clique relaxation · Mixed integer programming

1 Introduction

Let G = (V, E) be a simple graph with the sets of vertices (nodes) and edges denoted
by V and E , respectively. Graph G is complete if it has all possible edges, i.e., (i, j) ∈
E for any i, j ∈ V (i �= j). For any subset S ⊆ V , G[S] = (S, (S × S) ∩ E) denotes
the subgraph induced by S in G. A clique C is a subset of V such that G[C] is a
complete graph [30]. The maximum clique problem is to find a clique of maximum
cardinality in G [12,35]. This problem is known to be N P-hard [20]. The size of the
maximum clique in G is denoted by ω(G) and is referred to as the clique number of
G.

The concept of a clique is used in a number of application areas due to its elegance
and inherent ability to logically represent cohesive subgroups (also, referred to as
clusters), of “tightly knit” elements (i.e., nodes) of complex systems modeled as a
graph [12,14]. Indeed, cliques have a number of ideal cohesiveness properties [37].
For example, each vertex is connected to all other vertices in a clique, the distance
between any pair of vertices in a clique is one, a clique has maximum possible edge
density, etc. However, in many real-life applications, using cliques for discovering
large cohesive clusters is impractical due to the fact that the definition of a clique
is rather idealistic and, thus, can be too limiting. Consequently, a number of clique
relaxation definitions has appeared in the literature in recent years, see, e.g., [6,7], a
unifying taxonomic framework in [37], and references therein.

In particular, one of the most popular and widely applied clique relaxation models
is the γ -quasi-clique, an edge-based clique relaxation defined as a subset S ⊆ V such
that the subgraph G[S] induced by S in G has the edge density of at least γ , that is,
ρ(G[S]) = |(S × S) ∩ E |/(|S|

2

) ≥ γ , where γ ∈ (0, 1] is a fixed constant parameter
[2]. The problem of finding a maximum γ -quasi-clique is known to be N P-hard for
any fixed γ ∈ (0, 1], see [36]. The cardinality of a maximum γ -quasi-clique in G is
denoted by ωγ (G). Clearly, γ = 1 corresponds to the clique and ω1(G) = ω(G).

The popularity of the γ -quasi-clique can be attributed to the fact that the underlying
concept is rather intuitive and relatively simple. Moreover, missing edges (i.e., links
in the networked system under consideration) in dense clusters can often be justified
by measurement errors in real-life data sets. For example, as discussed in [50], in
some biological experiments there is “a higher absolute degree of confidence when an
interaction is observed, but a much lower degree when no interaction is detected.”

The concept of the γ -quasi-clique is further generalized using the notion of the
f (k)-dense-subgraph, defined as a k-vertex subset S ⊆ V such that subgraph G[S]
induced by S in G contains at least f (k) edges, where f : Z+ → R+ is some
fixed function. Observe that if f (k) = γ k(k − 1)/2 then the f (k)-dense-subgraph is
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equivalent to the γ -quasi-clique. It is known that the problem of checking whether the
graph contains a k-vertex f (k)-dense-subgraphs is N P-complete if

– f (k) = Θ(k1+ε), where ε ∈ (0, 1) [4];
– f (k) = k + Ω(kε), where ε ∈ (0, 1) [24].

Moreover, the second result is “sharp” in the sense that the problem becomes polyno-
mially solvable for f (k) = k + c for any constant c [24].

The concept of f (k)-dense-subgraphs encompasses other edge-based clique relax-
ation models from the literature. For instance, if one sets f (k) = k(k − 1)/2− s, then
the resulting subset of vertices is known as an s-defective clique, formally defined as a
subset S ⊆ V such that the induced subgraph G[S] has at most s missing edges. Fur-
thermore, f (k) = k(k − s)/2 corresponds to an average s-plex, which is a statistical
clique relaxation defined as a subset S ⊆ V such that the average degree of vertices in
G[S] is at least |S| − s. We refer the reader to [21,37] for a more detailed discussion
of these clique relaxation models.

The problem of finding large dense subgraphs naturally arises in a number of appli-
cation areas, including biology [5,9,13,23,25,31,38,42], social networks analysis
[16,17,39,46,47], telecommunication [1,2] and finance [10,11,26,39,41]. Never-
theless, the literature on exact computational methods for this class of problems is
extremely sparse, and most of the focus has been on the development and application
of heuristic methods, see, e.g., [1,2]. In particular, to the best of our knowledge, there
are no exact approaches for finding maximum f (·)-dense subgraphs for a general
function f (·). With respect to the maximum γ -quasi-clique problem, there are only
two related papers dealing with exact methods. Namely,

(i) two mixed integer programming (MIP) models are proposed in [36] (we review
them in Sect. 2.1), and

(ii) the work in [34] describes a combinatorial branch-and-bound (B&B) algorithm
and compares its performance against an exact MIP solver with the models from
[36] (we provide some additional discussion on the efficiency of the method in
Sect. 4).

One can argue that relative scarcity of exactmethods can be attributed to the fact that
γ -quasi-cliques are not hereditary (i.e., a subset of a γ -quasi-clique is not necessarily a
γ -quasi-clique), which “introduces interesting challenges in the development of exact
algorithms” [34] and preprocessing techniques. In contrast, there exist very effective
exact solvers for finding maximum cliques, e.g., [33], and maximum subgraphs that
satisfy a given hereditary property [44], which heavily exploit the hereditary property
in their algorithmic design. Additionally, one should mention about a considerable
body of work on bounds for the clique number ω(G), in particular those that are
computable in polynomial time; see a detailed discussion in [12]. Such bounds can be
exploited within exact and heuristic solution approaches. A notable example includes
the celebrated Lovász number ϑ(Ḡ) [29], which is computable in polynomial time,
e.g., by using semidefinite programming methods [28].

In view of the discussion above, the contributions of this paper are as follows:

(i) We propose four new MIP models for solving the maximum γ -quasi-clique prob-
lem (Sect. 2.2).Weprovide theoretical analysis of the quality of their LP relaxations
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and demonstrate that the proposed models result in much stronger LP relaxations
than previous MIPs from [36] for sufficiently sparse graphs (Sect. 2.3). Addition-
ally, we describe two easily implementable iterative methods that solve a sequence
of feasibility MIPs, obtained by fixing the values for some of the variables in the
proposed MIP models (Sect. 2.4).

(ii) We demonstrate that our MIP models can be generalized (in a rather simple man-
ner, see Sect. 3) to find maximum f (·)-dense subgraphs for any nonnegative
function f (·), including the two notable examples discussed above, namely, the
s-defective clique and the average s-plex. Furthermore, our theoretical results
regarding the quality of their LP relaxations established for γ -quasi-cliques can
also be extended (admittedly, under some mild conditions).

(iii) Finally, our computational experiments (see Sect. 4) using real-life test instances
(including social, biological and communication networks) demonstrate that the
proposed solution methods for finding a maximum γ -quasi-clique outperform
previous approaches (specifically, MIPs from [36]) for sufficiently sparse graphs,
which provides an experimental illustration of our theoretical results. We should
emphasize here that the vast majority of real-life graphs, including those used in
this paper, are rather sparse.

2 MIP models

2.1 Known formulations from [36]

For each vertex i ∈ V , we define a binary variable xi such that xi = 1 iff i ∈ S, where
S ⊆ V . Clearly, S is a γ -quasi-clique if the following condition holds:

∑

(i, j)∈E
xi x j ≥ γ

∑

i, j∈V, i< j

xi x j , (1)

where the left- and right-hand sides of constraint (1) represent the number of edges in
G[S] and the γ -fraction of the maximum possible number of edges in G[S], respec-
tively.

Observe that constraint (1) is nonlinear. However, it can be linearized (see, e.g.,
discussion and references in [3]), which results in two linear MIP models proposed
in [36]. Specifically, the first formulation is based on introducing a new variable
yi j = xi x j for each i and j ∈ V , i < j , and is given by:

Model 1 (F1)

ωγ (G) = max
x,y

∑

i∈V
xi (2a)

s.t.
∑

(i, j)∈E
yi j ≥ γ

∑

i, j∈V, i< j

yi j , (2b)

yi j ≤ xi , yi j ≤ x j , yi j ≥ xi + x j − 1, ∀i, j ∈ V, i < j, (2c)

xi ∈ {0, 1}, yi j ≥ 0, ∀i, j ∈ V, i < j, (2d)
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where constraints (2c) ensure that the linearization of the nonlinear term yi j = xi x j is
valid. Model F1 requires a number |V | of binary andΘ(|V |2) of continuous variables.

The second MIP is based on introducing a new variable of the form

ui = xi
(
γ xi +

∑

j∈V
(1(i, j)∈E − γ )x j

)
(3)

for each i ∈ V , and is given by:

Model 2 (F2)

ωγ (G) = max
u,x

∑

i∈V
xi (4a)

s.t.
∑

i∈V
ui ≥ 0, (4b)

ui ≤ Mxi , ∀i ∈ V, (4c)

ui ≥ −Mxi , ∀i ∈ V, (4d)

ui ≥ γ xi +
∑

j∈V
(1(i, j)∈E − γ )x j − M(1 − xi ), ∀i ∈ V, (4e)

ui ≤ γ xi +
∑

j∈V
(1(i, j)∈E − γ )x j + M(1 − xi ), ∀i ∈ V, (4f)

xi ∈ {0, 1}, ∀i ∈ V, (4g)

where M is a sufficiently large constant, e.g., M ≥ |V |, symbol 1 denotes the standard
indicator function (i.e., in (4e) and (4f) it returns 1 iff (i, j) ∈ E), and constraints (4c)–
(4f) ensure that the linearization of the nonlinear term (3) is valid. Model F2 requires
|V | binary and |V | continuous variables. Note that model F2 requires less variables
than F1. However, the results of computational experiments reported in [36] indicate
that, in general, neither of the models is dominated by the other one (both with respect
to the quality of their LP relaxation bounds and the performance of commercial MIP
solvers when solving the problem exactly).

2.2 New formulations

2.2.1 Quasi-clique size decomposition

Let ωu and ω	 be some upper and lower bounds on the size of a maximum γ -quasi-
clique in G, respectively. The lower bound can be set to 1 if there is no information
available about the sizes of γ -quasi-cliques in G. On the other hand, the value of ω	

can be increased using the size of some heuristically identified quasi-clique, e.g., it
can be set to be the size of any known (possibly, maximum) clique in G. The upper
bound ωu can be simply set to |V |, or we can use the result from [36] given by:
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ωu =
⌊
1

2
+ 1

2

√

1 + 8
|E |
γ

⌋

. (5)

It is easy to verify that if ωu ≥ |V | in (5), then |E | ≥ γ
|V |(|V |−1)

2 , i.e., graph G is a
γ -quasi-clique.We should also note that in case of very large graphs, in order to derive
some non-trivial lower and upper bounds, one can exploit asymptotic results regarding
the size of the maximum γ -quasi-clique available for some classes of graphs, see, e.g.,
recent work in [46].

Next, we redefine yi j for each (i, j) ∈ E to be a binary variable such that yi j = 1
iff (i, j) ∈ E ∩ (S × S), i.e., an edge (i, j) is in a subgraph G[S]. Also, define zk ,
k = 1, . . . , |V |, to be a set of binary variables that determine the size of S, namely,
zk = 1 iff |S| = k. Using this notation, we propose the following formulation for
finding a maximum γ -quasi-clique based on the classical value-disjunction idea (see,
e.g., [32]), which is applied to the size of a maximum γ -quasi-clique:

Model 3 (F3)

ωγ (G) = max
x,y,z

∑

i∈V
xi (6a)

s.t.
∑

(i, j)∈E
yi j ≥ γ

ωu∑

k=ω	

k(k − 1)

2
zk, (6b)

yi j ≤ xi , yi j ≤ x j , ∀(i, j) ∈ E, (6c)

∑

i∈V
xi =

ωu∑

k=ω	

kzk,
ωu∑

k=ω	

zk = 1, (6d)

xi ∈ {0, 1}, yi j ≥ 0, ∀i, j ∈ V, i < j, (6e)

zk ≥ 0, ∀k ∈ {ω	, . . . , ωu}, (6f)

where constraints (6c) ensure that yi j can be set to 1 only if both vertices i and j
are in S, i.e., xi = x j = 1. Constraint (6b) represents the edge density requirements
for the induced subgraph G[S], while constraints (6d) enforce the proper value in the
right hand-side of (6b). Clearly, variables yi j can be relaxed to be continuous due to
the structure of (6b) and (6c) and the fact that (6a) involves maximization of a linear
function of xi , i ∈ V , with positive coefficients. Note that the binary restrictions for
zk’s are replaced by nonnegativity in constraint (6f). The following proposition shows
that this relaxation is valid.

Proposition 1 There exists an optimal solution (x∗, y∗, z∗) of MIP F3 such that z∗ is
a binary vector.

Proof Consider F3 without integrality restrictions for zk , k ∈ {ω	, . . . , ωu}. Suppose
its optimal solution is given by (x∗, y∗, z̄), where z̄ is not a 0–1 vector. Define z∗ =
(z∗

ω	, . . . , z
∗
ωu ) as follows:
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z∗k =

⎧
⎪⎨

⎪⎩

1, if
∑

i∈V
x∗
i = k,

0, if
∑

i∈V
x∗
i �= k.

(7)

Clearly, (x∗, y∗, z∗) satisfies constraints (6c) and (6d). In particular,

ωu∑

k=ω	

kz∗k =
ωu∑

k=ω	

kz̄k =
∑

i∈V
x∗
i and

ωu∑

k=ω	

z∗k = 1 (8)

by our construction. Then

∑

(i, j)∈E
y∗
i j ≥ γ

2

ωu∑

k=ω	

k(k − 1)z̄k ≥ γ

2

⎛

⎝
ωu∑

k=ω	

kz̄k

⎞

⎠

⎛

⎝
ωu∑

k=ω	

kz̄k − 1

⎞

⎠

= γ

2

⎛

⎝
ωu∑

k=ω	

kz∗k

⎞

⎠

⎛

⎝
ωu∑

k=ω	

kz∗k − 1

⎞

⎠ = γ

2

ωu∑

k=ω	

k(k − 1)z∗k ,

where the first inequality holds by the definition of (x∗, y∗, z̄), the second inequality
holds by Jensen’s inequality (see, e.g., [22], and note that function f (k) = k(k − 1)
is convex) and the last two equalities follow from (8) and the fact that z∗ is a binary
vector by construction. Therefore, (x∗, y∗, z∗) satisfies (6b) and is an optimal solution
of F3. ��

To derive the next MIP model, we use an idea similar to the one behind F2. Note
that yi j = xi x j for all (i, j) ∈ E . Thus, the left-hand side of constraint (6b) can be
rewritten as

∑

(i, j)∈E
yi j = 1

2

∑

i∈V

∑

j : (i, j)∈E
xi x j = 1

2

∑

i∈V
xi

∑

j : (i, j)∈E
x j .

Defining a new set of variables vi , i ∈ V , such that

vi = xi
∑

j : (i, j)∈E
x j , (9)

we obtain:

Model 4 (F4)

ωγ (G) = max
x,v,z

∑

i∈V
xi (10a)

s.t.
∑

i∈V
vi ≥ γ

ωu∑

k=ω	

k(k − 1)zk, (10b)
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vi ≤ μi xi , vi ≤
∑

j : (i, j)∈E
x j , ∀i ∈ V, (10c)

∑

i∈V
xi =

ωu∑

k=ω	

kzk,
ωu∑

k=ω	

zk = 1, (10d)

xi ∈ {0, 1}, vi ≥ 0, ∀i ∈ V, (10e)

zk ≥ 0, ∀k ∈ {ω	, . . . , ωu}, (10f)

whereμi is a sufficiently large constant parameter. In particular, we letμi = degG(i),
where degG(i) denotes the degree of vertex i , which is its number of neighbors in
G. Constraints (10c) ensure that the linearization of (9) is valid and vi can be set to∑

j : (i, j)∈E x j only if i ∈ S, i.e., xi = 1. Just like in formulation F3, the integrality
restrictions for variables zk are relaxed in (10f). We can show that there is always an
optimal solutionwith zk ∈ {0, 1} for all k similarly to how it was done in Proposition 1.

Note that one could easily generalize both models F3 and F4 to consider positive
vertex weights in their objectives. In terms of the number of variables, F3 needs |V |
binary and O(|V | + |E |) continuous variables, while F4 requires |V | binary and
O(|V |) continuous variables.

2.2.2 Logarithmic reduction

Observe thatMIPsF3 and F4 includeωu variables zi , i ∈ {1, . . . , ωu} in theworst case
(if a nontrivial lower bound is not known, i.e., ω	 is set to 1). However, this number
can be reduced to 
log2 ωu + 1� + 
log2 ωu + 1�2 by using the standard logarithmic
reformulation technique [27,32]. Specifically, let tk , k ∈ {0, . . . , 
log2 ωu�}, be binary
variables such that

∑

i∈V
xi =


log2 ωu�∑

k=0

2k tk, (11)

which implies that

(
∑

i∈V
xi

)2

=
⎛

⎝

log2 ωu�∑

k=0

2k tk

⎞

⎠

2

=

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	tk t	

=

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	,

where sk	 = tk t	 for k, 	 ∈ {0, . . . , 
log2 ωu�}. Then the right-hand side of constraint
(6b) can be rewritten as
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γ

∑

i∈V
xi

(
∑

i∈V
xi − 1

)

2
= γ

2

⎛

⎝
(

∑

i∈V
xi

)2

−
∑

i∈V
xi

⎞

⎠

= γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	 −

log2 ωu�∑

k=0

2k tk

⎞

⎠ . (12)

Using (11) and (12), model F3 can be modified as follows:

Model 5 (F3log)

ωγ (G) = max
s,t,x,y

∑

i∈V
xi (13a)

s.t.
∑

(i, j)∈E
yi j ≥ γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	 −

log2 ωu�∑

k=0

2k tk

⎞

⎠ , (13b)

yi j ≤ xi , yi j ≤ x j , ∀(i, j) ∈ E, (13c)

∑

i∈V
xi =


log2 ωu�∑

k=0

2k tk, (13d)

sk	 ≤ tk, sk	 ≤ t	, sk	 ≥ tk + t	 − 1, ∀k, 	 ∈ {0, . . . , 
log2 ωu�}, (13e)

sk	, tk, xi ∈ {0, 1}, ∀k, 	 ∈ {0, . . . , 
log2 ωu�}, i ∈ V, (13f)

yi j ≥ 0, i, j ∈ V, i < j, (13g)

where constraints (13e) ensure that the linearization of the nonlinear term sk	 = tk t	 is
valid. In fact, due to the structure of (13e) variables sk	 can be relaxed to be nonnegative
continuous.

Finally, we note that, using equalities (11) and (12), formulation F4 can bemodified
in a similar manner. The resulting formulation is omitted for brevity. However, in the
remainder in the paper we refer to the corresponding MIP model as F4log.

2.3 LP relaxation bounds

Performance of standard MIP solvers based on the branch-and-bound framework is
heavily dependent on the quality of the LP relaxations in the considered MIP models.
Next, we provide theoretical analysis of such relaxations in the context of the MIP
formulations described in Sects. 2.1 and 2.2.

Formally, let ω1
LP (γ ), ω2

LP (γ ), ω3
LP (γ ), ω4

LP (γ ), ω3	og
LP (γ ), ω4	og

LP (γ ) be the opti-
mal objective function values of the LP relaxations of F1, F2, F3, F4, F3log and
F4log, respectively.

Theorem 1 The following inequalities hold:

(i) ωα
LP (γ ) ≥ |V |/2, α ∈ {1, 2}; (14)
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(ii) ωα
LP (γ ) ≤ 1

2
+ 1

2

√

1 + 8
|E |
γ

, α ∈ {3, 4}; (15)

(iii) ωα
LP (γ ) ≤ 1

2
+ 1

2

√

1 + 16(ωu)2 + 8
|E |
γ

, α ∈ {3	og, 4	og}; (16)

(iv) ω3
LP (γ ) ≤ ω

3	og
LP (γ ) and ω4

LP (γ ) ≤ ω
4	og
LP (γ ); (17)

(v) ω3
LP (γ ) ≤ ω4

LP (γ ) and ω
3	og
LP (γ ) ≤ ω

4	og
LP (γ ); (18)

(vi) ωα
LP (γ ) ≥ 2|E |

γ |V | + 1, α ∈ {3, 4}. (19)

Proof (i) Let xi = 1
2 for all i ∈ V , yi j = 0 for all i, j ∈ V, i < j , and ui = 0 for

all i ∈ V . Then one can verify that (x, y) and (x,u) are feasible solutions of the LP
relaxations of F1 and F2, respectively. Clearly, inequality (14) holds by construction.

(ii) Consider α = 3. Denote by (x, y, z) an optimal solution of the LP relaxation
of F3. Then

|E | ≥
∑

(i, j)∈E
yi j ≥ γ

ωu∑

k=ω	

k(k − 1)

2
zk ≥ γ

ω3
LP (γ )(ω3

LP (γ ) − 1)

2
, (20)

where the last relation holds by Jensen’s inequality taking into account thatω3
LP (γ ) =

∑
i∈V xi = ∑ωu

k=ω	 kzk . Then the upper bound (15) follows by solving the quadratic
inequality with respect to ω3

LP (γ ) obtained by considering the left- and right-hand
sides of (20). For α = 4, the result follows from a similar observation that any feasible
solution (x, v, z) of the LP relaxation of F4 has to satisfy:

2|E | ≥
∑

i∈V
vi ≥ γ

ωu∑

k=ω	

k(k − 1)zk ≥ γω4
LP (γ )(ω4

LP (γ ) − 1), (21)

where the first inequality is due to constraints (10c) and our choice of μi for all i ∈ V
in F4.

(iii) Consider α = 3	og. For any optimal solution (s, t, x, y) of the LP relaxation
of F3log we observe that

|E | ≥
∑

(i, j)∈E
yi j ≥γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	 −

log2 ωu�∑

k=0

2k tk

⎞

⎠

=γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	 − ω
3	og
LP (γ )

⎞

⎠ , (22)
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where the last equality follows from (13d). Note that sk	 ≥ tk + t	 − 1 for all k, 	 ∈
{0, . . . , 
log2 ωu�} by (13e), and tk + t	 ≥ tk t	 since tk, t	 ∈ [0, 1]. Hence:


log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	 ≥

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	(tk + t	 − 1)

≥

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	(tk t	) −

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	

≥
⎛

⎝

log2 ωu�∑

k=0

2k tk

⎞

⎠

2

−
⎛

⎝

log2 ωu�∑

k=0

2k

⎞

⎠

2

≥
(
ω
3	og
LP (γ )

)2 − 4(ωu)2, (23)

where we use (13d) and the fact that 2ωu ≥

log2 ωu�∑

k=0
2k . Combining (22) and (23) we

obtain:

|E | + 2γ (ωu)2 ≥ γ
ω
3	og
LP (γ )(ω

3	og
LP (γ ) − 1)

2
,

which is a quadratic inequality with respect to ω
3	og
LP (γ ). It can be easily solved to

derive (16). The case of α = 4	og can be proved similarly.
(iv) We provide the proof only for the first inequality in (17), namely, ω3

LP (γ ) ≤
ω
3	og
LP (γ ). The proof of the second inequality in (17) can be constructed in a similar

manner.
Specifically, to establish the result we show that for any feasible solution of the LP

relaxation of F3 there exists a feasible solution of the LP relaxation of F3log with the
same objective function value. Let (x, y, z) be a feasible solution of the LP relaxation
of F3. Hence, it satisfies (6b)–(6d). Thus, using Jensen’s inequality, we can conclude
that:

∑

(i, j)∈E
yi j ≥ γ

ωu∑

k=ω	

k(k − 1)

2
zk ≥

γ

(
∑

i∈V
xi

(
∑

i∈V
xi − 1

))

2

= γ

2

⎛

⎝
(

∑

i∈V
xi

)2

−
∑

i∈V
xi

⎞

⎠ .

(24)

Observe that g(t) = ∑
log2 ωu�
k=0 2k tk is a continuous function for t ∈ [0, 1]
log2 ωu�+1 ⊂

R

log2 ωu�+1
+ , which takes all possible values in [0, ωu]. Note that∑i∈V xi ≤ ωu . Thus,

there exists t ∈ [0, 1]
log2 ωu�+1 ⊂ R

log2 ωu�+1
+ such that
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g(t) =

log2 ωu�∑

k=0

2k tk =
∑

i∈V
xi ,

and (13d) in F3log holds for x and t. Then, the right-hand side of (24) can be rewritten
as:

γ

2

⎛

⎝
(

∑

i∈V
xi

)2

−
∑

i∈V
xi

⎞

⎠ = γ

2

⎛

⎜
⎝

⎛

⎝

log2 ωu�∑

k=0

2k tk

⎞

⎠

2

−

log2 ωu�∑

k=0

2k tk

⎞

⎟
⎠

= γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	tk t	 −

log2 ωu�∑

k=0

2k tk

⎞

⎠ . (25)

Define s as sk	 = max{0, tk + t	 − 1} for all k, 	 ∈ {0, . . . , 
log2 ωu�}, which implies
that constraints (13e) in F3log hold.Moreover, (1−tk)(1−t	) = 1−tk −t	+tk t	 ≥ 0.
Thus,

sk	 ≤ tk t	, ∀k, 	 ∈ {0, . . . , 
log2 ωu�},

and

γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	tk t	 −

log2 ωu�∑

k=0

2k tk

⎞

⎠

≥ γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	 −

log2 ωu�∑

k=0

2k tk

⎞

⎠ (26)

Combining (24), (25) and (26) we obtain:

∑

(i, j)∈E
yi j ≥ γ

2

⎛

⎝

log2 ωu�∑

k=0


log2 ωu�∑

	=0

2k+	sk	 −

log2 ωu�∑

k=0

2k tk

⎞

⎠ ,

which implies that constraint (13b) is satisfied for s, t and y. Summarizing all the above
observations, we conclude that (s, t, x, y) is a feasible solution of the LP relaxation of
F3log with the same objective function value as the LP relaxation of F3.

(v) We provide the proof only for the first inequality in (18), namely, ω3
LP (γ ) ≤

ω4
LP (γ ). The proof of the second inequality in (18) can be derived similarly. In partic-

ular, to establish the result we show that for any feasible solution of the LP relaxation
of F3 there exists a feasible solution of the LP relaxation of F4with the same objective
function value.

Let (x, y, z) be a feasible solution of the LP relaxation of F3. Without loss of
generality, we assume that yi j = min{xi , x j } for any (i, j) ∈ E . Then for any i ∈ V ,
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we define vi = min{degG(i)xi ,
∑

j : (i, j)∈E
x j }. Clearly, v = (v1, . . . , vn)

T satisfies

constraint (10c). Moreover,

2
∑

(i, j)∈E
yi j = 2

∑

(i, j)∈E
min{xi , x j } =

∑

i∈V

∑

j : (i, j)∈E
min{xi , x j }

≤
∑

i∈V
min{degG(i)xi ,

∑

j : (i, j)∈E
x j } =

∑

i∈V
vi .

Therefore, v satisfies constraint (10b), and (x, v, z) is a feasible solution of the LP
relaxation of F4 with the same objective function value as the LP relaxation of F3.

(vi) Consider α = 3. Let xi = δ for all i ∈ V , and yi j = δ for all (i, j) ∈ E for

some δ ∈
[
0, ωu

|V |
]

⊂ R+. Note that there exists z = (zω	, . . . , zωu )�, such that

δ|V | =
∑

i∈V
xi =

ωu∑

k=ω	

kzk and
ωu∑

k=ω	

zk = 1.

Therefore, constraints (6c) and (6d) hold, and (x, y, z) is a feasible solution of the LP
relaxation of F3 if constraint (6b) is also satisfied, i.e.,

δ|E | =
∑

(i, j)∈E
yi j ≥ γ

ωu∑

k=ω	

k(k − 1)

2
zk ≥ γ

2

⎛

⎝
(

∑

i∈V
xi

)2

−
∑

i∈V
xi

⎞

⎠

= γ

2
δ|V | · (δ|V | − 1) ,

or, equivalently,

δ|V | ≤ 2|E |
γ |V | + 1.

Hence, if one sets δ = 1
|V |

(
2|E |
γ |V | + 1

)
, then (x, y, z) provides a feasible solution of

the LP relaxation of F3 and

ωα
LP (γ ) ≥ δ|V | = 2|E |

γ |V | + 1.

Finally, it is easy to verify that δ ≤ ωu

|V | and
2|E |
γ |V | + 1 ≤ ωu as long as G is not a

γ -quasi-clique. The case of α = 4 can be shown similarly. ��
Remark 1 Note that in proving inequalities (15) and (17)–(19) we do not use any
non-trivial lower or upper bound for the size of the maximum γ -quasi-clique (see (5)
and the related discussion at the beginning of Sect. 2.2.1). Thus, (15)–(19) hold even
if ω	 and ωu are set to 1 and |V |, respectively, in MIPs F3, F4, F3log and F4log.
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Remark 2 The upper bound given by (15) is sharp. Specifically, for any γ ∈ (0, 1]
there exists G such that

ωγ (G) = ωα
LP (γ ) = 1

2
+ 1

2

√

1 + 8
|E |
γ

,

where α ∈ {3, 4}.
More importantly, the LP relaxation bounds established in Theorem 1 allow us to

conclude that it may be preferable to use formulations F3 and F4 instead of F1 and
F2 if G is sufficiently sparse. Formally:

Corollary 1 Let α ∈ {1, 2} and β ∈ {3, 4}. If |E | ≤ γ
|V |2−2|V |

8 , then ωα
LP (γ ) ≥

ω
β
LP (γ ). Moreover:

ωα
LP (γ ) − ω

β
LP (γ ) ≥ 1

2

(

|V | − 1 −
√

1 + 8
|E |
γ

)

.

In particular, note that if |E | = O(|V |), then the difference between ωα
LP (γ ) and

ω
β
LP (γ ) for the aforementioned α and β becomes quite significant, namely, Θ(|V |).

On the other hand, if |E | = Θ(|V |2), then the bounds established in (14) and (19)
imply that both ωα

LP (γ ) and ω
β
LP (γ ) behave as Θ(|V |).

With respect to formulations F3log and F4log and their comparison to F1 and F2,
in addition to sparsity of G, we should also require availability of some non-trivial
upper bound. Specifically:

Corollary 2 Let α ∈ {1, 2} and β ∈ {3	og, 4	og}. If |E | ≤ γ
|V |2−2|V |−16(ωu)2

8 , then

ωα
LP (γ ) ≥ ω

β
LP (γ ). Moreover:

ωα
LP (γ ) − ω

β
LP (γ ) ≥ 1

2

(

|V | − 1 −
√

1 + 16(ωu)2 + 8
|E |
γ

)

.

2.4 Feasibility MIPs and exact iterative algorithms

Next, we focus on feasibility versions of the proposedMIPs. In particular, we describe
two simple and easily implementable exact methods for finding maximum γ -quasi-
cliques that iteratively solve multiple feasibility versions of models F3 and F4.
Formally, we define:

Model 6 (F3(k))

∑

(i, j)∈E
yi j ≥ γ

k(k − 1)

2
, (27a)

yi j ≤ xi , yi j ≤ x j ∀(i, j) ∈ E, (27b)
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∑

i∈V
xi = k, (27c)

xi ∈ {0, 1}, yi j ≥ 0, ∀i, j ∈ V, i < j, (27d)

which is obtained from F3 by fixing zk = 1 in (6b) and (6d). Then by solving mixed
integer feasibility problemF3(k) it can be verifiedwhetherG contains aγ -quasi-clique
of size k. Thus, in order to find the size of a maximum γ -quasi-clique, one can simply
re-solve F3(k) for different values of k starting from k = ω	 + 1. (Recall one of our
initial assumptions in Sect. 2.2.1 that ω	 is obtained by applying a heuristic approach;
thus, a γ -quasi-clique of size ω	 is known.) Clearly, if for some k model F3(k) is
infeasible then G does not contain a γ -quasi-clique of size k′ ≥ k (due to the quasi-
hereditary property of γ -quasi-cliques [37]). Hence, we can apply the linear search
with respect to the value of k by solving F3(k) for k = 1, 2, . . . and stopping when
F3(k) becomes infeasible. The largest value of k for which the problem is feasible is
output as ωγ (G). We refer to this algorithmic approach as AlgF3.

Similar to F3(k), by fixing zk = 1 in (10b) and (10d) we construct a feasibility
version of F4 and denote it by F4(k). Consequently, by replacing F3(k) by F4(k) in
algorithm AlgF3 we obtain another exact iterative algorithm, which we refer to as
AlgF4 in the remainder of the paper. Note that formal descriptions of F4(k) and
AlgF4 are omitted here for brevity.

One should mention that the iterative methods described above are parallelizable.
Naturally, MIPs F3(k) and F4(k) can be solved concurrently for different values of k.

Finally, one could also use the binary search on k instead of the linear search.
However, our computational experiments showed that the linear search performsbetter.
This can be explained by observing that models F3(k) and F4(k) appear to be much
easier to solve when they are feasible (see an additional discussion in Sect. 4). Thus,
applying the linear search rather than binary one allows to avoid solving multiple
infeasible instances of F3(k) and F4(k).

3 Finding maximum f (·)-dense subgraphs
As mentioned in Sect. 1, the maximum γ -quasi-clique problem can be viewed as a
special case of the maximum f (·)-dense subgraph problemwith f (k) = γ k(k−1)/2.
Next, we demonstrate that models F3 and F4 can be extended to handle these more
general settings. Specifically, given some fixed nonnegative function f (·) consider the
following MIP:

Model 7 (GF3( f ))

ω( f ) = max
x,y,z

∑

i∈V
xi (28a)

s.t.
∑

(i, j)∈E
yi j ≥

ωu∑

k=ω	

f (k)zk, (28b)

yi j ≤ xi , yi j ≤ x j , ∀(i, j) ∈ E, (28c)
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∑

i∈V
xi =

ωu∑

k=ω	

kzk,
ωu∑

k=ω	

zk = 1, (28d)

xi ∈ {0, 1}, yi j ≥ 0, ∀i, j ∈ V, i < j, (28e)

zk ∈ {0, 1}, ∀k ∈ {ω	, . . . , ωu}, (28f)

where constraint (28b) is a generalization of (6b) in F3 for an arbitrary nonnegative
function f (·). In this section, we assume that ω	 and ωu correspond to the lower and
upper bounds, respectively, on the size of a maximum f (·)-dense subgraph in G. If
non-trivial bounds, e.g., ones similar to (5) for γ -quasi-cliques, are not available for
the given function f (·), then we set ω	 = 1 and ωu = |V |.

Furthermore, we observe that f (k) = γ k(k − 1)/2 is convex. Therefore, it is not
surprising that Proposition 1 can also be extended to an arbitrary nonnegative convex
function. Thus, in case of convex f (·), binary restrictions in (28f) can be replaced by
nonnegativity ones, i.e., zk ≥ 0 for all k. To the best of our knowledge, in most of the
related work in the literature, function f (·) is convex, see [4,24], including the special
cases considered below.

Naturally, MIP F4 can be generalized in a similar fashion by replacing constraint
(10b) with:

∑

i∈V
vi ≥

ωu∑

k=ω	

f (k)zk,

and we refer to the modified model as GF4( f ).
Next, denote by ω3

LP ( f ) and ω4
LP ( f ) the optimal objective function values of the

LP relaxations of MIPs GF3( f ) and GF4( f ), respectively. Then the following result
is a direct generalization of the statement (ii) in Theorem 1.

Proposition 2 If f (·) is a strictly increasing, nonnegative, convex function, then the
following inequalities hold:

ω3
LP ( f ) ≤ f −1(|E |), (29)

ω4
LP ( f ) ≤ f −1(|E |). (30)

Proof Denote by (x, y, z) an optimal solution of the LP relaxation of GF3( f ). Then
using an approach similar to the one applied in the Proof of Theorem 1, by convexity
of f (·) we conclude that

|E | ≥
∑

(i, j)∈E
yi j ≥

ωu∑

k=ω	

f (k)zk ≥ f

⎛

⎝
ωu∑

k=ω	

kzk

⎞

⎠ = f
(
ω3
LP ( f )

)
, (31)

where (31) is analogous to (20). Note that f (·) is strictly increasing. Thus, its inverse
function exists, and inequality (29) follows from (31). Inequality (30) can be shown
similarly. ��
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It is worth noting that algorithms AlgF3 and AlgF4 can also be extended to han-
dle the general functional case of f (·) using the feasibility versions of GF3( f ) and
GF4( f ), respectively.

Sample special cases: s-defective clique and average s-plex. Recall that for an
s-defective clique, f (k) = k(k − 1)/2 − s, which implies that constraint (28b) in
GF3( f ) reduces to:

∑

(i, j)∈E
yi j ≥

ωu∑

k=ω	

k(k − 1)

2
zk − s. (32)

For an average s-plex we have f (k) = k(k − s)/2, and constraint (28b) is replaced
by:

2
∑

(i, j)∈E
yi j ≥

ωu∑

k=ω	

k(k − 1)zk − (s − 1)
∑

i∈V
xi . (33)

Finally, we note that the term
∑ωu

k=ω	 k(k − 1)zk in the right-hand sides of (32) and
(33) also appears in F3 and F4. Therefore, it is clear that one can derive “logarithmic”
versions of (32) and (33) in a similar fashion as described in Sect. 2.2.2 for models
F3log and F4log.

4 Computational experiments

The focus of the computational study presented in this section is on the following
issues. First, in Tables 1 and 2, we compare the proposed approaches for finding
maximum γ -quasi-cliques (namely, MIP models F3, F4, F3log and F4log as well as
algorithmsAlgF3 and AlgF4) with MIPs F1 and F2 from [36] for small and medium-
sized network instances (both real-life and synthetic). Note that all of these solution
methods can be implemented using off-the-shelf MIP solvers.We do not provide com-
parisons of ourmethods with the approach from [34], which is a tailored combinatorial
B&B algorithm and is not publicly available. However, we should mention that the
computational results reported in [34] indicate that the developed B&B algorithm
does not significantly outperform the MIP solver with F2 for a substantial subset of
the considered test instances. Moreover, for the majority of the large-scale graphs in
[34] the B&B algorithm fails to converge within the time limit (however, it was able
to obtain the optimality gaps that were significantly better than those provided by
the MIP solver with F2). On the other hand, the computational experiments reported
here indicate that for sufficiently sparse graphs MIPs F1 and F2 are dominated by the
proposed MIP models, which is not surprising given the results regarding the quality
of their LP relaxations derived in Sect. 2.3.

Second, in Tables 3 and 4, for several large-scale graph instances with 5000–10,000
vertices (which cannot be tackled by F1 and F2 within a reasonable time limit),
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we study how the performance of the proposed methods depends on values of the
parameter γ .

Third, in Tables 5 and 6 for two graph instances and two distinct values of γ ∈
{0.5, 0.9} we further explore the performance of the proposed methods with respect
to the quality of the available upper and lower bounds on the size of the maximum
γ -quasi-clique. Specifically, in Table 5 we report the computational results (including
the total running time and the number of B&B nodes explored) for the proposed MIPs
F3,F4,F3log and F4logwith respect to the value of the upper boundωu

γ . Additionally,
in Table 6 we report the performance of AlgF3 and AlgF4 for each iteration of the
methods, i.e., we provide the solution times for feasibility MIPs F3(k) and F4(k) for
each value of k.

Finally, in Tables 7 and 8, we illustrate the applicability of our models for finding
f (·)-dense subgraphs. We want to emphasize that one can apply the proposed solution
methodology for any arbitrary type of edge density function f (·) using an off-the-shelf
MIP solver.

4.1 Hardware and software

The computational experiments were performed on a Dell laptop equipped with Win-
dows 7 × 64 operating system, an Intel Core i7 940XM processor (CPU 2.13 GHz,
L2 8 MB) and RAM 8 GB. All MIPs were solved using FICO Xpress-Optimizer [49]
with the time limit of 3600 s (1 h). The corresponding CPU times in tables below are
presented in seconds.

4.2 Test instances

In our computational experiments, we use real-life instances obtained from theUniver-
sity of Florida Sparse Matrix Collection [18] and Pajek datasets [8], as well as graph
coloring instances from [43] and biological networks from [7]. More specifically, we
consider:

– Social (book, collaboration, corporate inter-relationships and citation) networks:
– Matrix group from SNAP in [18] (loops in graphs were removed): ca-GRQC
(|V | = 5242, |E | = 14484) and ca-HEPTh (|V | = 9877, |E | = 25973);

– Matrix group Pajek in [18]: SmallW (|V | = 396, |E | = 994), Erdos971
(|V | = 472, |E | = 1314), Geom (|V | = 7343, |E | = 11898) and EVA
(|V | = 8497, |E | = 6726);

– Matrix group Newman in [18]: netscience (|V | = 1589, |E | = 2742);
– Erdos02 (|V | = 6927, |E | = 8472) [8];
– Homer (|V | = 561, |E | = 1629) [43].

– Internet and communication networks:
– Matrix group Pajek in [18]: California (|V | = 9664, |E | = 15969);
– Matrix group SNAP in [18]: AS -735 (|V | = 7716, |E | = 13895);
– Matrix group Arenas in [18]: email (|V | = 1, 133, |E | = 5451) and PGP-
giantcompo (|V | = 10680, |E | = 24316);
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Table 6 The performance of AlgF3 and AlgF4 for each iteration k, i.e., we report the solution times for
feasibility MIPs F3(k) and F4(k) for each value of k

k AlgF3 AlgF4 k AlgF3 AlgF4

Time B&B Time B&B Time B& B Time B&B
Nodes Nodes Nodes Nodes

Harvard500 (|V | = 500, |E | = 2043)

γ = 0.9, ωγ (G) = 23 γ = 0.5, ωγ (G) = 37

3–14 0.54 1 0.32 19.9 3–28 0.43 1 0.15 1

15 0.46 1 0.15 1 29 0.71 1 0.14 1

16 0.46 1 0.15 1 30 0.59 1 0.76 1

17 0.4 1 0.14 1 31 0.43 1 0.34 1

18 0.49 1 0.13 1 32 0.63 1 0.14 1

19 0.45 1 0.15 1 33 1.69 1 1.43 334

20 0.44 1 0.16 1 34 5.06 1 0.46 1

21 0.46 1 0.15 1 35 0.54 1 0.16 1

22 0.33 1 0.11 1 36 1.45 1 0.3 1

23 0.33 1 0.15 1 37 0.62 1 0.35 1

24 3.63 1 0.32 1 38 33.42 4561 9.76 4383

Total 14.01 22 15.51 249 56.35 4596 17.81 4747

ca-GRQC (|V | = 5242, |E | = 14496)

γ = 0.9, ωγ (G) = 49 γ = 0.5, ωγ (G) = 81

3–40 3.49 1 6.18 1 3–72 3.7 1 6.26 1

41 5.5 1 6.87 1 73 2.91 1 6.8 1

42 4.35 1 6.29 1 74 3.94 1 22.52 48

43 4.24 1 6.18 1 75 3.44 1 7.82 1

44 4.35 1 6.07 1 76 3.5 1 7.14 1

45 4.73 1 6.3 1 77 4.05 1 7.07 1

46 2 1 6.7 1 78 5.69 1 7.08 1

47 2.04 1 6.39 1 79 38.23 1 7.44 1

48 3.93 1 7.11 1 80 83.32 428 72.73 2444

49 59.13 21 23.36 69 81 27.81 12 22.12 100

50 86.12 3 8.89 1 82 72.58 49 25.54 153

Total 309.39 70 319.14 116 504.98 566 624.8 2821

When the value k is given by a range (e.g., “3–14” in the first row), then the average running time (in
seconds) and the number of B&B nodes explored per iteration are reported

– Matrix groupMathWorks in [18]: undirected version of Harvard500 (|V | =
500, |E | = 2043);

– Biological networks [7]: C.Elegans (|V | = 453, |E | = 2025), H.Pylori (|V | =
1570, |E | = 1399), and S.Cerevisae (|V | = 2112, |E | = 2203);

– Transportation network from matrix group Pajek in [18]: USAir97 (|V | = 332,
|E | = 2126).
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While the main focus of our experiments is on real-life networks, for illustrative
purposes, we also test our approaches on several randomly generated synthetic graph
instances. In particular, uniform randomgraphs are constructed according to a classical
G(n, M) model [19]. These instances are denoted by u100-1, u100-2 and u100-3.
Finally, power-law random graphs (i.e., the probability that a vertex has degree k is
Θ(k−β) for some constant β) are generated as in [15,36] and denoted by p500-1,
p500-2 and p500-3.

4.3 Results and discussion

Tables 1 and 2: In the first table, we report running times for the considered solution
approaches, while the second one contains the objective function values for the corre-
sponding LP relaxations. As one would expected, due to sparsity of the graphs in our
study, MIP models F3 and F4 have the best LP relaxations, with F3log and F4log lag-
ging not too far behind. The quality of the LP relaxations of F1 and F2 is very poor.
These experimental observations are verified by the theoretical results established in
Theorem 1 and Corollary 1. Therefore, it is not surprising that MIPs F1 and F2 are
dominated by the other approaches with respect to their running times.

Models F3 and F4 show consistently good performance for all test instances in
Table 1. We should note that, while F3 has better LP relaxations than F4, the latter
model requires less variables.AlgF4 provides the best results for most of the instances
with γ = 0.9. We attribute this to the rather small values of ωγ (G) for sufficiently
large γ , which results in a small number of feasibilityMIPs of the form F4(k) required
to be solved during the execution of AlgF4. Also, recall that F4(k) has less variables
than F3(k), which may explain the somewhat worse performance of AlgF3. On the
other hand, AlgF3 outperforms AlgF4 for smaller values of γ , which is, perhaps, due
to a better quality of the LP relaxations of the underlying feasibility MIPs.

Tables 3 and 4: In this set of experiments, we solve the maximum γ -quasi-clique
problem for large graph instances with 5000–10,000 vertices and different values of
γ ∈ {0.1, 0.2, . . . , 0.9}. The models F1 and F2 cannot handle large real-life graphs
(see also the results for small- and medium-size instances in Table 1 for another
confirmation of this observation), hence, we focus on the newly proposed approaches.

First, we note that for most of the instances AlgF3 and AlgF4 are not competitive,
which is due to large values of ωγ (G) in the optimal solutions. Therefore, both algo-
rithms are forced to solve a large number of feasibility MIPs, which results in their
ineffectiveness for these instances (recall our previous discussion for instances with
γ = 0.9 in Table 1).

Second, similar to the experiments discussed above, models F3 and F4 yield the
best (or close to the best) results for the majority of the considered graphs. We should
point out again the extremely high quality of their LP relaxations. However, in contrast
to the previous experiments, there exist instances, where F3log and F4log outperform
the otherMIPs. One should recall that F3log and F4log have a less number of variables
than F3 and F4; however, as we show in Theorem 1, the quality of their LP relaxations
is somewhat worse. This trade-off is clearly evident in the results of our experiments
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for the considered large real-life graphs, e.g., networks ca-HEPTh and ca-GRQC in
Table 3 and AS-735 in Table 4.

Table 5: In this set of experiment we explore how the performance of the proposed
MIPs F3, F4, F3log and F4log depends on the value of the upper bound ωu

γ . We
report the total running time, the running time required for the solver to identify an
optimal solution (thus, the difference in these values indicates the time required by
the solver to prove optimality of the obtained solution) and the total number of B&B
nodes explored by the solver.

First, we observe that the total running of the MIP solver does not usually improve
significantly (or may even increase) for the tighter values of ωu

γ in the MIP models.
In particular, for the easier instance (Harvard500) most of the total running time is
spent for proving optimality of the obtained optimal solution (except for the model
F4), which is typically identified rather early by the MIP solver (due to a good quality
of the MIP-based heuristics). Naturally, if ωu

γ = ω	
γ = ωγ (see the row marked by

“†”), then the solution is obtained almost immediately for F3 and F4.
On the other hand, for themore difficult instance (ca-GRQC) a considerable portion

of the total running time is spent for identifying an optimal solution. Consequently,
if ωu

γ = ω	
γ = ωγ (see the row marked by “†”), then the total running times for the

MIP models do not improve significantly (except for the model F4) in comparison
to the MIPs, where ωu

γ is set to |V |. Therefore, the variability of the total running
times required to obtain optimal solutions in our experiments may be attributed to the
effect of the MIP solver parameters (recall that we use the default settings) that guide
dynamically the search in the underlying B&B approach.

The above observations are not particularly surprising. However, from the practical
perspective our results imply that if the decision-maker, who seeks maximum quasi-
cliques, applies the MIP solver with the default settings (and is not interested in either
tuning the solver parameters or using more advanced solver capabilities), then he/she
could simply use |V | as an upper bound in the proposed MIP models.

Table 6: In this table we report the performance of AlgF3 and AlgF4 for each itera-
tion of the methods, i.e., we provide the solution times for feasibility MIPs F3(k) and
F4(k) for each value of k. One can observe that the feasibility MIP models are usually
more difficult to solve when the problem is either infeasible (i.e., k = ωγ + 1), or the
value of k is close to ωγ . In particular, the latter observation typically holds for more
difficult instances; see the results for ca-GRQC with k ∈ {ωγ − 1, ωγ }. In view of
the previous set of the experiments, these results are not too surprising. However, they
also imply that the iterative scheme with feasibility MIPs may be favorable if there
exist good quality lower and upper bounds for the size of the maximum quasi-clique.
Furthermore, feasibility MIPs may be preferred if we are simply interested in veri-
fying existence of a quasi-clique of a particular size, which may be the case in some
practical applications.

Tables 7 and 8: Next, we consider the problem of finding maximum f (·)-dense
subgraphs for four types of the edge density function f (·). The first two correspond to
the maximum s-defective clique and the maximum average s-plex problems, respec-
tively (recall our discussion in Sects. 1 and 3). Note that for both of these functions
we have f (k) = Θ(k2), which implies a relatively strict edge density requirement for
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the obtained subgraphs. Thus, we also consider two other types of functions, namely,
f (k) = γ k3/2 and f (k) = (2|E |/|V | + s)k, which correspond to f (k) = Θ(k3/2)
and f (k) = Θ(k), respectively. Recall that MIP F3 turned out to be the most con-
sistent model in our previous experiments. Therefore, we use GF3( f ) in this set of
experiments. The obtained results illustrate the applicability of our models for finding
f (·)-dense subgraphs, where f (·) can be an arbitrary nonnegative function. In partic-
ular, we want to emphasize a high quality of the LP relaxations, which allowed us to
solve the problem for graphs with up to 10,000 vertices.

5 Concluding remarks

In this paper, we propose new MIP models for solving the maximum γ -quasi-clique
problem. The key advantage of our MIPs is that for sparse graphs the corresponding
LP relaxations are tighter than the LP relaxations of other MIP models available in the
literature. We note that one can easily construct instances of dense graphs, for which
this is not necessarily the case. However, we emphasize here that the vast majority
of real-life graphs in the literature are sparse. Thus, it is not surprising that in our
computational experiments the proposed exact solution approaches are capable of
solving problems on large real-life instances with up to 10,000 vertices. Furthermore,
we demonstrate that our methodology can be naturally generalized for solving the
maximum f (·)-dense subgraph problem, which seeks the largest k such that the graph
has a k-vertex subgraph with at least f (k) edges for a given nonnegative function f (·).

As a possible direction of future research, it is worthmentioning a somewhat related
work in [45], which aims to enumerate all quasi-cliques in a graph. Therefore, it could
be interesting to exploit our MIP models for developing effective methods that can
solve the same problem (or a similar class of problems) and provide all (or almost all)
maximal γ -quasi-cliques and general f (·)-dense subgraphs in a given graph. Finally,
a deeper investigation of the polyhedral relationships between the previous and the
proposed MIP models could be interesting.
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