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Abstract Bang-singular controls may appear in optimal control problems where the
control enters the system linearly. We analyze a discretization of the first-order sys-
tem of necessary optimality conditions written in terms of a variational inequality
(or: inclusion) under appropriate assumptions including second-order optimality con-
ditions. For the so-called semilinear case, it is proved that the discrete control has
the same principal bang-singular-bang structure as the reference control and, in L1
topology, the convergence is of order one w.r.t. the stepsize.

Keywords Bang-singular control structure · Approximation of extremals · Euler
method · L1 error estimate
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1 Introduction

The numerical solution of optimal control problems where the control function is of
bang-bang or bang-singular type, often is a challenging problem. In the literature, one
can find numerous examples of successful treatment for various applications, e.g. in
[30,31,33,47,48]. More references are provided in [6,14].

The approaches include direct discretizations aswell as indirect methods like shoot-
ing approaches, partly in combination with so-called arc–parameterization methods;
cf. [6,28,34] for examples. The latter usually require an initial hypothesis on the prin-
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cipal control structure, i.e., the number and kind of subsequent bang-bang or singular
control arcs. It was this fact which has aroused re-newed interest in classical discretiza-
tion methods like Euler or Runge–Kutta schemes and their use for detecting control
structures.

For optimal control problems with continuous control regimes, convergence results
are found e.g. in [12,13,32]. In case of bang-bang control behavior, first convergence
results have beenobtained forRunge–Kuttamethods in [45,46].Recently, convergence
of the Euler method has been obtained under appropriate bang-bang regularity and
second-order optimality conditions in [1–4]. An extension to bang-bang switches of
weaker regularity is addressed in [24].

Concerning the theoretical analysis of numerical methods in bang-singular control
case, important advances have been achieved in deriving optimality conditions [5,
9,20,21,37–39,44], but also in stability investigation of solutions [14,15,40]. For
the latter, the shooting method has been utilized e.g. in [47], and its convergence in
combination with an arc parameterization was proven in [6]. An example for using
Euler’s discretization can be found in [1] but the error analysis therein was mainly
taylored for bang-bang type optimal controls and remained fragmentary for the bang-
singular case. With the present paper, we make an attempt to show that a particular
Euler discretization of the first-order system of necessary optimality conditions (cf.
[15]) converges, and enables us to detect the control structure with an accuracy of
order one of mesh size. The analysis is so far restricted to scalar-valued controls, fixed
initial states, and to semilinear state systems (where the control input enters the system
linearly with constant coefficients).

1.1 Plan of the paper

After the Introduction, the problem and main assumptions are stated in Sect. 2. The
conditions include growth restrictions on problem data, a structural assumption, and
certain second-order optimality condition. Section 3 describes the discretized prob-
lem in variational inequality form including a right-hand side (rhs) perturbation, and
analyzes the existence and uniqueness of solutions. Using an appropriate topology in
the discrete function space, Robinson’s concept of strongly regular generalized equa-
tions [41–43] is applied in Sect. 4. The main Lipschitz stability result (Theorem 1) is
obtained by adapting the fixpoint iteration from [42] to the problem class. In Sect. 5,
the properties of the controls are reconsidered in case when the rhs term vanishes.
For sufficiently small stepsize parameters h, the discrete control is proved to have the
same principal bang-singular-bang structure as the exact solution of the continuous
problem. In L∞ × L1 topology, the discrete state-control pairs converge to the refer-
ence solution as O(h) (see Theorem 2). Finally, a numerical example illustrates the
applicability of the approach.

1.2 Notation

Let be given N � 1. With h = 1/N , find the set of equidistant nodes ti = ih,

i = 0, . . . , N , on [0, 1]. A (multi-)vector v = (v0, . . . , vN−1) ∈ R
kN , vi ∈ Rk, can
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Discretization of semilinear bang-singular-bang control problems 297

be given the interpretation of a piecewise continuous function with constant values vi
on the intervalωi = (ti , ti+1)whereas y = (y0, . . . , yN ) ∈ R

k(N+1) corresponds, e.g.,
to a piecewise linear function with nodes y(ti ) = yi . Thus, the related function spaces
denoted by V h ⊂ L∞, Y h ⊂ W 1∞ are finite-dimensional and their elements will be
identified with the coefficient vectors v ∈ R

kN , y ∈ R
k(N+1). In Y h ⊂ L∞ ⊂ L2,

introduce the following norms

‖y‖∞ = max
0≤i≤N

|yi |, ‖y‖(2) =
(

|yN |2 + h
N−1∑
i=0

|yi |2
)1/2

. (1)

Analogously, set ‖v‖∞ = max0≤i≤N−1 |vi |, ‖v‖p =
(
h

∑N−1
i=0 |vi |p

)1/p
for v ∈

V h ⊂ L∞ ⊂ L p, 1 ≤ p < ∞. In the above definitions, | · | stands for the standard
Euclidean vector norm inRk . If functions are restricted to a certain interval I ⊂ [0, 1],
the modified norms are written as ‖ · ‖(p,I ).

The scalar product in V h will be defined as the related L2 scalar product by
(v, v′) := h

∑N−1
i=0 vTi v′

i with the matrix notation aT b for the standard scalar product
of two column vectors a, b ∈ R

k . Finally, for y ∈ R
N+1 define the finite difference

operators �1y ∈ R
N and �2y ∈ R

N−1,

(�1y)i = h−1(yi+1 − yi ), (�2y)i = h−2(yi+1 − 2yi + yi−1), i ≤ N − 1.

2 Statement of the problem: assumptions

Consider semilinear control problems with scalar-valued control input and prescribed
initial state,

(CP)
minimize J (x, u) := k(x(1)) (2)

subject to

ẋ(t) = f (x(t)) + B u(t) a.e. in [0, 1], (3)

x(0) = a, (4)

α ≤ u(t) ≤ α, a.e. in [0, 1] , (5)

x ∈ W 1∞(0, 1;Rn), u ∈ L∞(0, 1;R). (6)

For sake of simplicity, we assume α = −1, α = 1. Notice that, without changing
the problem type, general control bounds transform easily to this case, and all results
will be invariant w.r.t. possible control rescaling.

Assume that the data functions satisfy
(H0) (smoothness assumption)
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The functions f, k depend smoothly on x ∈ R
n : f, k ∈ C3,1, and there exist

constants c, L independent of x such that

| f (x)| ≤ c + L |x | for all x ∈ R
n .

Moreover, B ∈ R
n is constant.

Define the Pontryagin function H : R
n × R × R

n → R by

H(x, u, p) = pT f (x) + pT B u.

Then, for the given normal case, Pontryagin’s Maximum Principle can be expressed
in form of a variational inequality (or: inclusion)

(VI) ẋ − f (x) − Bu = 0, x(0) − a = 0, (7)

ṗ + ∇x f (x)
T p = 0, p(1) + ∇k(x(1)) = 0, (8)

BT p − μ1 + μ2 = 0, (9)

u − 1 ∈ N+(μ1), −u − 1 ∈ N+(μ2) (10)

for almost every t ∈ [0, 1]. The set N+ stands for the normal cone to R+. Conditions
(9), (10) can be equivalently written in terms of the switching function σ(·) = BT p(·)
and its positive resp. negative parts [σ ]±: for μ1 = [σ ]+, μ2 = [σ ]− and σ

= [σ ]+ − [σ ]−, the relations yield the complementarity system

[σ ]+, [σ ]− ≥ 0, −1 ≤ u ≤ 1, (u − 1) [σ ]+ = (u + 1) [σ ]− = 0.

Assume that (x0, u0) ∈ W 1∞ × L∞ is a (strong) local minimizer of (CP), i.e., there
exists an ε > 0 such that

J (x, u) − J (x0, u0) ≥ 0

for all admissible pairs (x, u) satisfying ‖x − x0‖∞ < ε.
Then, the adjoint and multiplier functions p0, μ0

1, μ
0
2 associated to (x0, u0) are

uniquely determined by (VI) and belong to W 1∞. Further, σ 0 = BT p0 ∈ C1,
and σ̇ 0 = −BT H0

x = −BT∇ f (x0)T p0 ∈ W 1∞. For σ̈ 0 find

σ̈ 0 = P + u0R, P = BT (∇ f (x0)T H0
x − H0

xx f
0), R = −BT H0

xx B, (11)

with functions P, R belonging to W 1∞.
Optimality conditions for (CP) in case of a bang-singular-bang control switching

structure have been derived in [5], see also [7–10,26,36,39,44]. Allover the paper, we
use the following assumptions:
(H1) (strict structural assumption)

The function u0 is of strict bang-singular-bang structure, i.e., there exist points
τs, τ

′
s with 0 < τs < τ ′

s < 1 and a positive constant m such that
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Discretization of semilinear bang-singular-bang control problems 299

u0(t) =
⎧⎨
⎩

u1 if 0 ≤ t < τs,

u0s (t) if τs < t < τ ′
s,

u2 if τ ′
s < t ≤ 1,

with constants u1, u2 ∈ {−1, 1}, and |u0s (t)| ≤ 1 − m for a.a. t on the singular arc
[τs, τ ′

s]. Moreover, σ 0 �= 0 on bang arcs [0, τs) ∪ (τ ′
s, 1].

For given β > 0, define the sets Jβ = { t ∈ [0, 1] : |σ 0(t)| ≥ β > 0 } and
Iβ = (0, 1)\Jβ . Then the singular arc [τs, τ ′

s] is equal to I0 = ⋂
β>0 Iβ .

(H2) (strong second-order optimality condition)
Let Ω = Ω(v, y, b) denote the quadratic form

Ω(v, y, b) = z(1)T K z(1) +
∫ 1

0
z(t)T Q(t)z(t) dt (12)

with K = ∇2k(x0(1)), Q = ∇2
xx H(x0, u0, p0), and v ∈ L2(0, 1;R), y ∈

W 1
2 (0, 1;R), z ∈ W 1

2 (0, 1;Rn) satisfying

y(t) =
∫ t

0
v(s) ds, y(1) =: b, (13)

ż(t) = A(t)z(t) + Bv(t), z(0) = 0, A = ∇ f (x0).

There exist constants β > 0, m > 0 such that

Ω(v, y, b) ≥ m
(
‖y‖22 + b2

)

for all v ∈ L2 with v = 0 on Jβ , and (y, b) ∈ W 1
2 × R given by (13).

(The formulation follows [15] but has been adapted to the special case of a semilinear
state equation where both ∇2

uu H and ∇2
xu H vanish.) Without loss of generality, one

can use the same constant m in both (H1), (H2) when shrinking it if necessary.
In [5,9] it was proved that, under conditions (H1), (H2), the extremal (x0, u0) is a

strict Pontryagin minimum [35] for (CP). Moreover, the following relations hold:

R ≥ m > 0 on Iβ, (14)

|σ̈ (τs − 0)| ≥ m2 > 0, |σ̈ (τ ′
s + 0)| ≥ m2 > 0. (15)

Indeed, (14) had been proved in [14, Sect. 3.1]; cf. also [37]. While σ̈ (τs + 0) = 0,
conclude |σ̈ (τs − 0)| = |R · (u0(τs + 0) − u0(τs + 0))| ≥ m2 from (11), and from
jump estimates on u0 implied by (H1). Hence (15) is obtained, too.

It follows that the control u0 has a singular arc of order one (cf. [29,49]) on [τs, τ ′
s]

and coincides therewith u0s = −P/R. Ifβ is taken sufficiently small then, in addition,
Iβ is an open interval.
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3 Variational inequality discretization

Let the interval [0, 1] be divided into subintervalsωi = [ti , ti+1], 0 ≤ i < N , of equal
length h = 1/N , N � 1. Consider the following discretization of (VI):

(VIhδ ) δ1i ∈ (�1x)i − f (xi ) − B ui + {0}, 0 = x0 − a, (16)

δ2i ∈ (�1 p)i + ∇ f (xi+1)
T pi+1 + {0}, δ2N = pN + ∇k(xN ),

(17)

δ3i ∈ BT pi − μ1i + μ2i + {0}, (18)

0 ∈ 1 − ui + N+(μ1i ), 0 ∈ 1 + ui + N+(μ2i ), (19)

for i = 0, . . . , N−1. The formulation includes a right-hand side (or: rhs) perturbation
δ = (δ1, δ2, δ3) of dimension l = n(2N + 1) + N .
For ξ = (p, x, u, μ) ∈ C = R

n(N+1) × R
n(N+1) × R

N × R
2N+ and given δ ∈ R

l ,
(VIhδ ) can be written in abstract form as

δ̄ ∈ ψ(ξ) + NC (ξ), (20)

where NC (ξ) denotes the normal cone to the set C at point ξ , and δ is completed to
δ̄ by zero entries δ1N ∈ Rn and δ4 ∈ R2N . The dimension of the vectors ξ and δ̄

is d = 2n(N + 1) + 3N . For each h = 1/N , N > 1, it follows from (H0) that
ψ : R

d → R
d is at least twice continuously differentiable.

Lemma 1 For each N > 1, h = 1/N, and arbitrary δ ∈ Rl , (VIhδ ) has a solution ξ ∈
C. There exists a constant r̄ > 0 independent of h and δ, such that ξ is bounded by
‖ξ‖∞ ≤ r̄(1+‖δ‖∞). Moreover, ‖u‖∞ +‖x‖∞ +‖p‖∞ ≤ r̄(1+‖δ1‖2 +‖δ2‖(2))

in the norms given by (1).

Proof Any prospective solution of the variational inequality (20) satisfies ‖u‖∞ ≤ 1.
Under Assumption (H0), for i ≥ 0

|xi+1| ≤ |xi | + h | f (xi ) + Bui + δ1i | ≤ (1 + Lh)|xi | + h (c + |B| + |δ1i |)

so that, in analogy to Gronwall’s Lemma [23] (or Lemma 14, Appendix), the estimate

|xi | ≤ eL (|a| + c + |B|) + eL‖δ1‖2 ≤ r̄x (1 + ‖δ1‖2)

follows. All constants herein are independent of h. Further, from (17) we backwards
obtain similar bounds for p. In order to estimate μ, it should be noticed that (19)
yields μ1, μ2 ≥ 0 and μ1i · μ2i = 0 for all i . Consequently, μ1i = [

BT pi − δ3i
]
+ ,

μ2i = [
BT pi − δ3i

]
− are bounded, e.g., by r̄μ(1+ ‖δ‖∞) with constant rμ indepen-

dent of h, and the desired estimate for ξ follows.
Using the above information, for given h, δ one can restrict (VIhδ ) or (20) to
ξ ∈ Cδ = C ∩ {ξ : ‖ξ‖∞ ≤ r̄(1 + ‖δ‖∞)} ⊂ R

d . As far as Cδ is non-empty,
convex and compact, andψ as an operator fromCδ toRd is continuous, one can apply
the existence result fromTheorem 3.1 [27, Chap. 1] for variational inequalities in finite
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dimensions: for compact sets, the assertion follows directly by Brouwer’s Fixed-Point
Theorem. ��

Using the solution (x0, u0, p0, μ0) of the continuous problem (VI), one can find
a reference solution for (VIhδ ) with appropriately chosen rhs term δ = δ̃h . To this
aim, consider piecewise linear interpolations x̃ h, p̃h with node values x̃ h(ti ) = x̃ hi
= x0(ti ), p̃h(ti ) = p0(ti ) and constant ˙̃xh, ˙̃ph on each intervalωi , i = 0, . . . , N−1.
Further, define ũh as as a piecewise continuous function with constant values ũhi on
ωi , i = 0, . . . , N − 1, by

ũh
∣∣∣
ωi

≡ ũhi = h−1
∫

ωi

u0(t) dt. (21)

If we denote by k, k′ indices such that tk ≤ τs < tk+1, tk′ < τ ′
s ≤ tk′+1 then ũhi takes

constant extremal values u1 (or u2 resp.) for i ≤ k−1 (or i ≥ k′ +1), but has singular
values ũhi ∈ (0, 1) for k ≤ i ≤ k′.
For Sτ := {k, k + 1, k′, k′ + 1}, introduce

‖ · ‖(∞,τ ) = max{| · |i : i /∈ Sτ }. (22)

Lemma 2 Let h = 1/N be sufficiently small. Then the functions x̃h, ũh and p̃h

together with μ̃h given by

μ̃h
1i =

[
σ̃ h
i

]
+ , μ̃h

2i =
[
σ̃ h
i

]
−

with the definition

σ̃ h
i = σ τ (ti ), σ τ (t) =

⎧⎨
⎩

σ 0(t + τs − tk) if t ≤ tk,
0 if tk < t ≤ tk′ ,
σ 0(t + τ ′

s − tk′) if t > tk′ ,

solve (VIhδ ) for some δ = δ̃h satisfying |δ̃h1i | + |δ̃h2i | + |δ̃h3i | = O(h), together
with δ̃h2N = 0. Moreover, |(�1δ̃h3 )i | = O(h) uniformly for i < N , ‖�2δ̃h3‖2
= O(

√
h) and ‖�1δ̃h2‖(∞,τ ) + ‖�2δ̃h3‖(∞,τ ) = O(h).

The proof is given in Appendix.

Lemma 3 Under Assumptions (H1) and (H2), the discrete switching function σ̃ h

satisfies ‖�1σ̃ h‖2 + ‖�2σ̃ h‖2 ≤ c with a constant c independent of h. Further,

(�2σ̃ h)i = P̃h
i + Ri ũ

h
i

for some P̃h with the property ‖P̃h − P‖(∞,τ ) = O(h), and (Pi , Ri ) = (P(ti ), R(ti )).
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Proof By direct calculation, for �2σ̃ h obtain

(�2σ̃ h)i =

⎧⎪⎪⎨
⎪⎪⎩

(�2σ τ )i if i ≤ k − 1 or i ≥ k′ + 1,
σ̈ 0(ti ) if k + 1 ≤ i ≤ k′ − 1,
h−2σ 0(τs − h) if i = k,
h−2σ 0(τ ′

s + h) if i = k′.

Therefore, for all i /∈ {k, k′}, we can write (�2σ τ )i = σ̈ 0(θi ) for some θi satisfying
|θi − ti | = O(h) so that

(�2σ τ )i = P(θi ) + R(θi )u
0(θi ).

A closer look on the possible localization of θi yields

u0(θi ) = ũhi = u1 for i ≤ k − 1, u0(θi ) = ũhi = u2 for i ≥ k′ + 1,

and u0(θi ) = u0s (ti ) = −Pi/Ri , k + 1 ≤ i ≤ k′ − 1. For the latter, it follows
from x0, p0, P, R ∈ W 1∞ and condition (14) that |u0s (ti ) − ũhi | = O(h). Using fur-
ther |R(θi ) − Ri | = O(h) and the boundedness of R, the desired representation and
estimates are obtained. ��

4 Solution uniqueness and estimates for (VIh
δ
)

4.1 Linearized VI problem

Let the functions x̃ h, p̃h, ũh and σ̃ h be given as in Sect. 3, (21) ff. For ξ = (p, x, u, ν),
the following linearized variational inequality related to (VIhδ ) will be considered:

δ̄ ∈ T (ξ) + NC (ξ) (23)

where T : R
d → R

d is the linearization of (ψ − δ̄) at (ξ̃ h, δ̃h),

T (ξ) = ψ(ξ̃ h) + ψ ′(ξ̃ h)(ξ − ξ̃ h) − δ̄h, (24)

and δ̄h ∈ R
d is the extension by zeros related to δ̃h .

Denoting zi = xi − x̃ hi , qi = pi − p̃hi and vi = ui − ũhi , in detail the relations read
as follows

(LVIhδ ) δ1i ∈ (�1z)i − Ai zi − Bvi + {0}, z0 = 0, (25)

δ2i ∈ (�1q)i + AT
i+1qi+1 + Qi+1zi+1 + {0}, δ2N = qN + KzN ,

(26)

δ3i ∈ BT qi + σ̃ h
i − ν1i + ν2i + {0}, (27)

ũhi + vi − 1 ∈ N+(ν1i ), −ũhi − vi − 1 ∈ N+(ν2i ), (28)
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for i = 0, . . . , N − 1. The coefficient matrices are

Ai = ∇ f (x0(ti )), Qi = ∇2
xx H

0[ti ], K = ∇2k(x0(1)).

Notice that, for δ = 0, the system (LVIhδ ) has the solution (q, z, v, ν) = (0, 0, 0, μ̃h).
In general, every solution (z, q) of (25), (26) can be represented as

z = S1v + zhδ , q = S2v + qhδ ,

where (S1v, S2v) are the solutions for δ = 0 written in terms of linear solution maps
S1,2, but (zhδ , qhδ ) are related particular solutions for v = 0, and given δ1 ∈ R

Nn, δ2 ∈
R

(N+1)n, δ3 ∈ R
N and qN = δ2N − Kzhδ,N . Inserting the expressions into (27) leads

to
BT qi − δ3i =: −(Chv)i + rhi (δ) (29)

with rhi (δ) = BT qhδ,i − δ3i and (Chv)i = −BT (S2v)i .

Lemma 4 Every solution (q, z, v, ν) of (LVIhδ ) solves

(LVI’) find v ∈ Wh :
(
(Chv)i − σ̃ h

i − rhi (δ), v′
i − vi

)
≥ 0 ∀ v′ ∈ Wh

for i = 0, . . . , N − 1 on Wh = {v′ ∈ R
N : −1 ≤ v′

i + ũhi ≤ 1, i = 0, . . . , N − 1}.
If, in addition, |ν1i − μ̃h

1i | + |ν2i − μ̃h
2i | < β /2 on Jβ , and h is sufficiently small, then

v solves (LVI’) on Wh
β = {v′ ∈ Wh : v′

i = 0 for ti ∈ Jβ} where Jβ = {t ∈ [0, 1] :
σ 0(t) ≥ β}, and β is the constant from (H2).

The proof is a direct consequence of the complementarity relations (28).

4.2 Discrete Goh transformation

Define the vector (y, ζ ) ∈ R
N+1 × R

n(N+1) by

(�1y)i = vi = h−1
∫

ωi

v(t) dt, y0 = 0, (30)

ζi = zi − Byi . (31)

Inserting the expressions into (25), (26) yields

(�1ζ )i = (�1z)i − B(�1y)i
= Ai zi + δ1i

= Aiζi + B1
i yi + δ1i with B1

i = Ai B; (32)

(�1q)i = −AT
i+1qi+1 − Qi+1zi+1 + δ2i

= −AT
i+1qi+1 − Qi+1ζi+1 − MT

i+1yi+1 + δ2i

with MT
i = Qi B. (33)
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The boundary conditions transform into

ζ0 = 0, yN =: b, qN = −K (ζN + B b) + δ2N . (34)

The solutions of the transformed linearized state-adjoint system (32), (33) for δ = 0
can be expressed by ζ = Sy, q = S̃ y + W̃b where S, S̃ are linear solution operators
to (32), (33). Thus, (27) turns into

− (Ĉh y)i + σ̃ h
i − ν1i + ν2i + rhi (δ) = 0 (35)

with the abbreviation (Ĉh y)i = −BT (S̃ y + W̃b)i , and the function rh given by (29).

Lemma 5 Let the Assumptions (H0)–(H2) hold. If h < h̄ with h̄ sufficiently small
then Ωh(y) := (

Chv, v
)
satisfies

Ωh(y) ≥ m

2

(
‖y‖22 + |yN |2

)
(36)

for all v ∈ R
N , y ∈ R

N+1 such that (30) holds together with vi = 0 for ti ∈ Jβ .

(As far as the constant m is taken from (H2) it is independent of N resp. h.)

Proof Denote by Ψ, Φ the discrete fundamental solutions of (32), (33),

Ψi+1 − Ψi = hAiΨi , Φi+1 − Φi = −hAT
i+1Φi+1, Ψ0 = Φ−1 = I.

Notice that, for all i, ΦT
i−1Ψi = Ψ T

i Φi−1 = I . Then, for the discrete data ζ, q explicit
formulas can be given:

ζi = (Sy)i = h Ψi

i−1∑
k=0

ΦT
k B1

k yk,

qi = (S̃ y)i + W̃i b

= −ΦiΨ
T
N+1K (ζN + Bb) + h Φi

N−1∑
k=i

Ψ T
k+1(Qk+1ζk+1 + MT

k+1yk+1).

Consequently, for some positive c independent of h,

‖ζ‖∞ + ‖q‖∞ ≤ c (‖y‖2 + |b|) .

In order to prove the assertion of the lemma, start with (Ĉh y)i = (Chv)i = −BT qi ;
cf. (35). Denoting ỹi = h

∑i−1
k=0 ṽk, i = 0, . . . , N , the quadratic form transforms as
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follows:

(
Chv, ṽ

)
= −h

N−1∑
i=0

BT qi (�
1 ỹ)i = −b̃BT qN + h

N∑
i=1

ỹi B
T (�1q)i−1

= b̃BT K (ζN + Bb) − h
N∑
i=1

ỹi B
T (AT

i qi + Qiζi + MT
i yi )

= b̃BT K (ζN + Bb) + h
N∑
i=1

ỹi (Ri yi − Miζi − (B1
i )

T qi ).

In the last sum on the right, one can substitute the explicit representation for qi and
obtain

−h
N∑
i=1

ỹi (B
1
i )

T qi = h
N∑
i=1

ỹi (B
1
i )

TΦiΨ
T
N+1K (ζN + Bb)

− h2
N−1∑
i=0

N−1∑
k=i

ỹi (B
1
i )

TΦiΨ
T
k+1(Qk+1ζk+1 + MT

k+1yk+1)

= ζ̃ T
N+1K (ζN + Bb) − h

N−1∑
k=0

ζ̃ T
k+1(Qk+1ζk+1 + MT

k+1yk+1)

= ζ̃ T
N K (ζN + Bb) + πN (y, ỹ) − h

N∑
i=1

ζ̃ T
i (Qiζi + MT

i yi ).

For ỹ = y, the error term πN = (ζN+1 − ζN )T K (ζN + Bb) is bounded by

| πN | ≤ h cΩ

(
‖y‖22 + |b|2

)

with some positive constant c = cΩ independent of h.
The sum over the remaining expressions corresponds to a standard integral sum for the
discretization of Ω(y, b) = (Cv, v) from (H2). Therefore, the estimate (36) follows
directly from this second-order condition if only h is taken sufficiently small. ��
For our further analysis it will be useful to restrict the rhs terms δ to a certain neigh-
borhood of δ0 = 0. To this aim, for δ = (δ1, δ2, δ3) and given ρ > 0 define

‖δ‖2D := ‖δ1‖22 + ‖δ2‖2(2) + ‖δ3‖22 + ‖�1δ3‖22, (37)

Dρ = {δ ∈ R
l : ‖δ‖D < ρ }. (38)

Lemma 6 Under assumptions (H0)–(H2), there exist constants ρ > 0 and h′ < h̄
such that, for each δ ∈ Dρ and h ≤ h′, the variational inequality (LVI’) restricted
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to Wh
β has a unique solution vδ ∈ RN . On Dρ , the elements yδ defined by (30) with

v = vδ satisfy
‖yδ′ − yδ‖2 + |yδ′

N − yδ
N | ≤ c‖δ′ − δ‖D, (39)

and the constants c, ρ are independent of h. Moreover, there exist unique multipliers
νδ
1,2 such that ξδ = (zδ, qδ, vδ, νδ) (with (zδ, qδ) defined by (25), (26) for v = vδ) is

a solution of (LVIδh).

Proof The existence and uniqueness of vδ is a consequence of the continuity and strict
monotonicity of Ch together with the boundedness of the closed convex set Wh

β in

R
N , resp. the finite-dimensional subspace V h ; cf. [27].
It remains to prove the Lipschitz continuity of y = yδ w.r.t. δ: First notice that δ3

can be interpreted as a piecewise linear function belonging to W 1
2 (0, 1;R). By the

Theorem of Morrey [11, Theorem 6.25], on intervals the embedding W 1
2 → L∞ is

continuous. Consequently, for rh the estimate

‖�1rh(δ′) − �1rh(δ)‖2 + ‖rh(δ′) − rh(δ)‖∞ ≤ c′ ‖δ′ − δ‖D

(with some c′ > 0 independent of h) follows directly from (29) and the definition of
(zhδ , qhδ ). With the abbreviations v = vδ, v′ = vδ′

etc., from (LVI’) further obtain

(Ch(v′ − v), v′ − v) ≤
(
rh(δ′) − rh(δ),�1(y′ − y)

)
= (rhN−1(δ

′) − rhN−1(δ))(y
′
N − yN )

− h
N−1∑
i=1

(
�1(rh(δ′) − rh(δ))

)
i−1

(y′
i − yi )

≤ c‖δ′ − δ‖D
(|y′

N − yN | + ‖y′ − y‖2
)
.

Together with (36), the desired Lipschitz property (39) of yδ follows. In particular,

‖yδ‖2 + |yδ
N | ≤ c ‖δ‖D . (40)

Denote φ := −Chvδ + σ̃ h + rh(δ) ∈ R
N . Without loss of generality, one can write

φ = φ1 − φ2 for some φ1, φ2 ≥ 0. From (LVI’) the following relation is obtained:

(φ, v − vδ) = (φ1, w − wδ) − (φ2, w − wδ) ≤ 0 (41)

for wδ = vδ + ũh and all w ∈ ũh + Wh
β . Using φ1,2 as candidates for νδ

1,2, it follows
directly from (28) that the only possible choice is given by

φ1 = [φ]+, φ2 = [φ]−.
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Then, by (41) we have (φ1, w − wδ) ≤ 0, (φ2, w − wδ) ≥ 0 for all w ∈ ũh + Wh
β .

Consequently, for all i with ti /∈ Jβ obtain

φi = [φi ]+ > 0 ⇒ wδ
i = 1, φi = [φi ]− > 0 ⇒ wδ

i = −1.

In case ti ∈ Jβ remember

φi = BT (S̃ y + W̃b)i + σ̃ h
i + rhi (δ).

Inserting y = yδ, b = yδ
N , it follows that

|φi − σ̃ h
i | ≤ c(‖yδ‖2 + |yδ

N | + ‖rh(δ)‖∞) = O(‖δ‖D);

cf. (40). Choosing ρ and h′ sufficiently small one can guarantee |φi | > β/2 > 0
uniformly for δ ∈ Dρ, h < h′ and ti ∈ Jβ so that φ has the same sign as σ 0. Hence,
(27), (28) are fulfilled if and only if νδ

1 = [φ]+, νδ
2 = [φ]−. ��

Lemma 7 Under Assumptions (H0)–(H2), there exist constants h′, ρ and ρ′ such that,
for all h < h′ and δ ∈ Dρ′ , the following statements hold:

(i) On the set Ξρ = {ξ = (z, q, v, ν) : v = �1y, y0 = 0, ‖y‖22 + |yN |2 < ρ2},
the variational inequality (LVIhδ ) has a unique solution ξ h(δ),

(ii) the components (zh(δ), qh(δ), yh(δ), νh(δ)) depend Lipschitz continuously on δ

in the sense

max{‖zδ − zδ
′ ‖2, ‖qδ − qδ′ ‖2, ‖yδ − yδ′ ‖2, ‖νδ − νδ′ ‖∞} ≤ c ‖δ − δ′‖D,

|π zδ − π zδ
′ | + |πqδ − πqδ′ | ≤ c ‖δ − δ′‖D

where π : Rn(N+1) → R
2n denotes the boundary trace operator πφ = (φ0, φN ).

The constant c herein does not depend on h or δ, δ′ ∈ Dρ′ .

Proof For h < h′ and ‖δ‖D < ρ′ with appropriately chosenρ′, it follows fromLemma
6 that (LVIδh) has a solution ξ = ξδ . Due to (40), one can always take ρ′ small enough
to ensure ξ ∈ Ξρ for given ρ > 0. Thus, part (i) of the proof reduces to verifying the
solution uniqueness on the set Ξρ :
Assume for the moment, that (LVIδh) has a second solution ξ̂ δ �= ξδ , and consider

φ̂ = −Ĉh ŷδ + σ̃ h + rh(δ).

By (35) and standard estimates for (32), (33), obtain

‖Ĉh ŷδ‖∞ ≤ c
(‖ŷδ‖2 + |ŷδ

N |) = O(ρ).

On the other hand, (29) yields

‖rh(δ)‖∞ ≤ c‖δ‖D = O(ρ′).
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If now ρ, ρ′ and h′ are sufficiently small then, in particular, ‖φ̂ − σ̃ h‖∞ < β/4 and
thus, for ν̂δ

1 = [φ̂]+, ν̂δ
2 = [φ̂]− deduce

‖ν̂δ
1 − μ̃h

1‖∞ + ‖ν̂δ
2 − μ̃h

2‖∞ < β/2.

Lemma 4 therefore shows that v̂δ solves (LVI’) on Wh
β and hence, coincides with vδ .

By construction of ẑδ, q̂δ and ν̂δ according to (LVIδh) it follows that ξ̂
δ = ξδ , i.e., for

δ ∈ Dρ′ the solution is unique on Ξρ .
Part (ii): The estimates are direct consequences of (39), Lemma 6, together with

the construction

ζ = Sy, z = ζ + By, q = S̃ y + W̃ yN ,

ν1 = [Ĉh y + rh(δ)]+, ν2 = [Ĉh y + rh(δ)]−,

and formula (29) for rh(δ). ��

4.3 Strong regularity

For variational inequalities of type (20), a fundamental existence andLipschitz stability
result was given by Robinson in [42]. The crucial characterizing property concerns
in the strong regularity which, for continuously Fréchet differentiable mappings ψ

from certain Banach space Ξ to its dual space, allows to prove existence and local
uniqueness of solution, and further its Lipschitz continuous dependence on problem
parameters [42, Theorem 2.1]:

Definition 1 [42, Definition 1] Let Ξ be a normed linear space, and let Ω be an
open subset of Ξ containing a point ξ̄ . Let C be a closed convex set in Ξ , and let
ψ : Ω → Ξ∗ (where Ξ∗ is the topological dual of Ξ ) be Fréchet differentiable at
ξ̄ . Suppose that

0 ∈ ψ(ξ) + NC (ξ) (42)

has ξ̄ as a solution, and define, for ξ ∈ Ξ ,

TC (ξ) := ψ(ξ̄) + ψ ′(ξ̄ )(ξ − ξ̄ ) + NC (ξ).

We say that (42) is strongly regular at ξ̄ with associated Lipschitz constant λ if there
exist neighborhoods U of the origin in Ξ∗, V of ξ̄ in Ξ such that the restriction to U
of T−1

C ∩ V is a single-valued function from U to V which is Lipschitzian on U with
modulus λ.

Remark 1 A closer look on the main steps of the proof in [42] shows that, without loss
of generality, the neighborhood U of rhs perturbations δ̄ for the linearized problem
(23) can be restricted to the subspaceΞ0 ⊂ Ξ∗ where all δ̄ components corresponding
to linear components of ψ vanish. In the forthcoming, we will call (42) also strongly
regular (in the sense of Robinson) if the definition holds in this slightly relaxed form.
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In order to make usage of the strong regularity approach for the variational inequal-
ities (VIhδ ), the space R

d will be equipped with a norm reflecting the use of Goh’s
transformation in deriving (39) and the estimates in Lemma 7: DefineΞ = (Rd , |‖ ·‖|)
with the norm of an element ξ = (p, x, u, μ) given by

|‖ξ‖| :=
[
‖p‖2(2) + ‖x‖2(2) + ‖u‖2(−1) + ‖μ‖22

]1/2
, (43)

where

‖u‖(−1) :=
(
y2N + h

N∑
i=1

y2i

)1/2

, yi = h
i−1∑
k=0

uk .

Then Ξ is a Banach space and its dual Ξ∗ can be described as (Rd , |‖ · ‖|∗) with

|‖Θ‖|∗ :=
[
‖φ‖2(2) + ‖ρ‖2(2) + ‖�1ϑ‖22 + ϑ2

N + ‖ω‖22
]1/2

(44)

for Θ = (φ, ρ, ϑ, ω) ∈ R
d . Indeed, one can transform (ϑ, u) as follows

(ϑ, u) = h
N−1∑
i=0

ϑi ui = h
N−1∑
i=0

ϑi (�
1y)i

= −h
N∑
i=1

yi (�
1ϑ)i−1 + ϑN yN ,

and consequently, |(ϑ, u)| ≤ ‖u‖(−1)(‖�1ϑ‖22 + |ϑN |2)1/2 holds true. Notice that the
last estimate is sharp whenever ϑ solves

(�1ϑ)i−1 = yi , i = 1, . . . , N , ϑN = yN .

Moreover, on the subspace Ξ0 of Ξ∗ with zero Θ-entries φN = 0 and ω = 0
corresponding to linear parts of ψ , the norm |‖δ̄‖|∗ is equivalent to ‖δ‖D from (37),
and the constants in the related estimates do not depend on h.

Remark 2 It is well known that all norms in finite-dimensional space are equivalent.
In particular, for the construction (43) the following estimates hold:

‖u‖2(−1) = y2N + h
N∑
i=1

y2i ≤ 2 ‖y‖2∞ ≤ 2 ‖u‖22

(cf. Lemma 14, Appendix); and

‖u‖22 = h−1
N−1∑
i=0

(yi+1 − yi )
2 ≤ 4h−1

N∑
i=1

y2i ≤ 4h−2‖u‖2(−1).
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Thus, for each fixed h > 0, the norm |‖ · ‖| is equivalent to the Euclidean norm in R
d

but the related constants are not independent of h.

Lemma 8 Under assumptions (H0)–(H2), there exists a constant h′ such that each
variational inequality (VIhδ ), h < h′, is strongly regular (in the sense of Robinson)
for δ = δ̃h at the solution ξ̃ h, and the related neighborhoods U = {δ̄ ∈ Ξ0 :
‖δ − δ̃h‖D ≤ ρ′}, V = {ξ ∈ Ξ : |‖ξ − ξ̃ h‖| < ρ̄} and the Lipschitz modulus λ can
be chosen independently of h.

Proof With the definitions of Ξ,Ξ∗ and related norms |‖ · ‖| and |‖ · ‖|∗ from (43),
(44), the assertion is deduced for (ψ − δ) from Lemmas 6, 7 and the estimates for
‖δ̃h‖D from Lemma 2: with the constants ρ, ρ′, c from Lemma 7, sufficiently small h′
and appropriately chosen ρ̄ = O(ρ), the Lipschitz continuity follows with a modulus
λ = O(c). ��
In order to verify local uniqueness and Lipschitz behavior of solutions in (VIhδ ), first
refer to [42, Theorem2.1]: indeed, assumption (H0) together with Lemma 1 guarantees
solution existence for each of the problems (VIhδ ). Further, for arbitrary ρ0 > 0 and
D̄0 = {δ̄ ∈ Ξ0 : ‖δ‖D ≤ ρ0}, ψ(δ̄, ξ) := ψ(ξ) − δ̄ as a mapping from D̄0 × Ξ

to Ξ∗ is twice continuously differentiable so that, for fixed h, the assumptions of
Robinson’s Inverse Function Theorem are fulfilled. However, for obtaining uniform
w.r.t. h estimates of related neighborhoods and Lipschitzmoduli, the fixpoint approach
used in [42] has to reconsidered.

4.4 Lipschitz stability result

The inclusion (VIhδ ) can be transformed to a fixpoint problem as follows: for given
(δ, u) ∈ R

l ×R
N with ‖u‖∞ ≤ 1, denote by (x, p) = (x(δ, u), p(δ, u)) the solution

of (16), (17). Further, defineμ = μ(δ, u) by σ = BT p(δ, u)−δ3 andμ1 = [σ ]+, μ2
= [σ ]−, and introduce

r(δ, u) := T (ξ(δ, u)) − ψ(ξ(δ, u)) + δ̄ (45)

with T given by (24). Obviously, ξ = ξ(δ, u) solves (VIhδ ) if and only if

r(δ, u) ∈ T (ξ(δ, u)) + NC (ξ(δ, u)) =: TC (ξ(δ, u)).

By Lemma 6, for δ ∈ Dρ the set Λ(δ) := T−1
C (δ̄) is nonempty. If Λu(δ) denotes the

set of u-components related to ξ ∈ Λ(δ), and

Φδ(u) := Λu(r(δ, u)), (46)

then the element ξ = ξ(δ, u) solves (VIhδ ) if and only if u ∈ Φδ(u) (see also [15,
Lemma 2.1]). This fixpoint characterization allows to prove

Theorem 1 Under assumptions (H0)–(H2), there exist constants h′, ρ̄′ and ε such
that, for all h < h′ and δ ∈ D′ = {δ ∈ R

l : ‖δ − δ̃h‖D < ρ̄′}, problem (VIhδ ) has
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a unique solution ξ hδ on the set Vε = {ξ ∈ R
d : ‖u − ũh‖(−1) ≤ ε} and, as an

element ofΞ, ξ hδ depends Lipschitz continuously on δ̄ ∈ Ξ∗. The associated Lipschitz
modulus as well as the radii ε, ρ̄′ are independent of h.

Before proving the theorem, some auxiliary estimates will be provided.
First notice that, under assumption (H0), the solutions (x(u, δ), p(u, δ)) of (16),

(17) are uniformly bounded, cf. Lemma 1: if ‖δ‖D < ρ0 then

‖x‖∞ + ‖�1x‖2 + ‖p‖∞ + ‖�1 p‖2 ≤ M0 (47)

for some constant M0 independent of u, δ and h. Shrinking h′ if necessary, similar
bounds are obtained for (x̃ h, p̃h) by definition of these functions and the estimates for
δ̃h from Lemma 2. Therefore,

‖z′‖∞ + ‖�1z′‖2 + ‖q ′‖∞ + ‖�1q ′‖2 ≤ M1 (48)

holds true for z′ = x − x̃ h, q ′ = p − p̃h and M1 := 2M0. As long as h < h′ and
‖δ‖D < ρ0, Lemma 13 from Appendix further yields

‖z′‖2∞ + ‖q ′‖2∞ ≤ M2
(
h′ + ‖z′‖(2) + ‖q ′‖(2)

)
(49)

with a constant M2 independent of u, δ and h.

Lemma 9 Let ρ > 0 be arbitrarily given. If ρ̄′ and ε are suffiently small, h < h′ and
δ ∈ D′, then every solution of (VIhδ ) in Vε satisfies |‖ξ − ξ̃ h‖| < ρ.

Proof If ξ = (p, x, u, μ) is a solution of (VIhδ ) then ξ = ξ(δ, u). By y, ỹh denote
the integrated controls yi = h

∑i−1
k=0 vi related to v = u or v = ũh resp., and set

η := x − By, η̃h = x̃ h − B ỹh . For z := x − x̃ h, q := p − p̃h, ζ := η − η̃h and
ω := y − ỹh , under (H0) we conclude

(�1ζ )i = f (ηi + Byi ) − f (η̃hi + B ỹhi ) + δ1i − δ̃h1i ,

|(�1ζ )i | ≤ L ′(|ζi | + |B| |ωi |) + |δ1i − δ̃h1i |,
|(�1q)i | ≤ L ′(|qi+1| + |zi+1|) + |δ2i − δ̃h2i |,

where L ′ is the common Lipschitz modulus of f and Hx on the set {(x, p) : ‖x‖∞ +
‖p‖∞ ≤ M0}; cf. (47). Applying Lemma 14 from Appendix to the equation for ζ

yields

‖ζ‖∞ ≤ c(‖δ − δ̃h‖D + ‖ω‖2)

with some constant c independent of h, δ and u.
Consequently, ‖z‖2 ≤ (c + |B|)(‖δ − δ̃h‖D + ‖ω‖2). Taking into account this
relation and applying Lemma 14 to q now, an analogous estimate for ‖q‖∞ is obtained.
Summing up, the inequality

‖x − x̃ h‖2 + ‖p − p̃h‖∞ + ‖μ − μ̃h‖∞ ≤ O(‖δ − δ̃h‖D + ‖u − ũh‖(−1)) (50)
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follows and hence the assertion. ��
The preparation for proving Theorem 1 will be continued with an analysis of r =

r(δ, u): by construction, r(δ, u) = (r1, r2, r3, r4) ∈ Ξ0 (i.e. r1N , r4 vanish), and
r3 = δ3 − δ̃h3 . Further,

r1i = f (xi ) − f (x0i ) − Ai (xi − x0i ) + δ1i − δ̃h1i ,

r2i = (∇ f (x0i+1) − ∇ f (xi+1))
T pi+1− ∇2

x (∇ f (x0)T p0)
∣∣∣
ti+1

(xi+1 − x0i+1)

+ δ2i − δ̃h2i ,

r2N = ∇k(x0N ) − ∇k(xN ) + K (xN − x0N ) + δ2N − δ̃h2N .

Consequently, from (48) and

|r1i | ≤ c‖z′‖∞|xi − x0i | + |δ1i − δ̃h1i | ≤ cM1|xi − x0i | + |δ1i − δ̃h1i |, i ≤ N − 1,

|r2i | ≤ c(‖z′‖∞ + ‖q ′‖∞) · (|xi+1 − x0i+1| + |pi+1 − p0i+1|) + |δ2i − δ̃h2i |, i ≤ N ,

it is deduced that, for some constant cr independent of u, h, δ,

|‖r‖|∗ ≤ c
(‖z′‖∞ + ‖q ′‖∞

) · (‖x − x̃ h‖(2) + ‖p − p̃h‖(2)) + ‖δ − δ̃h‖D (51)

≤ crρ + ρ̄′ (52)

if h < h′, δ ∈ D′, |‖ξ − ξ̃ h‖| ≤ ρ, and ρ̄′ < ρ0.
Finally consider r1 = r(δ, u(1)) and r2 = r(δ, u(2)) for given u(1), u(2) and fixed
δ ∈ D′. Denoting by (x ( j), p( j)) the solution of (16), (17), and setting z j = x ( j) −
x̃ h, q j = p( j) − p̃h for j = 1, 2, in analogy to (51) obtain

|‖r1−r2‖|∗ ≤ c max
j=1,2

{‖z j‖∞ +‖q j‖∞} · (‖x (1) − x (2)‖(2) +‖p(1) − p(2)‖(2)). (53)

For the elements z j , q j , j = 1, 2, (49) can be applied so that, with a constant ρ such
that |‖ξ ( j) − ξ̃ h‖| < ρ for j = 1, 2, the auxiliary result

|‖r1 − r2‖|∗ ≤ O(
√
h′ + √

ρ) · (‖x (1) − x (2)‖(2) + ‖p(1) − p(2)‖(2)).

is obtained. If we repeat the arguments from the proof of (50), Lemma 9, we deduce
‖x (1) − x (2)‖(2) + ‖p(1) − p(2)‖(2) ≤ c‖u(1) − u(2)‖(−1) and thus, end up with

|‖r1 − r2‖|∗ ≤ c′
r (

√
h′ + √

ρ) · ‖u(1) − u(2)‖(−1) (54)

where the constant c′
r is independent of h, δ, u(1) and u(2) as long as ξ (1), ξ (2) satisfy

max{|‖ξ (1) − ξ̃ h‖|, |‖ξ (2) − ξ̃ h‖|} < ρ.
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Proof of Theorem 1 Define Wε = {w ∈ R
N : ‖w − ũh‖(−1) ≤ ε}. According to

Lemma 9, one can choose ε and ρ̄′ small enough to ensure

|‖ξ(δ,w) − ξ̃ h‖| ≤ ρ ≤ ρ̄

with the constant ρ̄ from Lemma 8 for all w ∈ Wε and arbitrary h < h′. Shrinking
ε, h′ and ρ̄′ if necessary and taking into account (52) as well as Lemma 2, the estimate

|‖r(δ, w) − δ̄h‖|∗ ≤ crρ + ρ̄′ + ‖δ̃h‖D < ρ′

with constant ρ′ from Lemma 8 will hold uniformly for w ∈ Wε . Thus, for arbitrary
δ ∈ D′ and h < h′, the mapping Φδ(w) from (46) is well-defined and Lipschitz
continuous onWε : it is sufficient to notice that the underlying mapΛ has the Lipschitz
modulus λ.

Let w1, w2 be any two points from Wε . Using once more Lemma 8 we have

∥∥∥Φδ(w
1) − Φδ(w

2)

∥∥∥
(−1)

≤ |‖Λ(r(δ, w1)) − Λ(r(δ, w2))‖|
≤ λ |‖r(δ, w1) − r(δ, w2)‖|∗
≤ λc′

r (
√
h′ + √

ρ) · ‖w1 − w2‖(−1)

and ρ = O(ε + ρ̄′); see (53), (50) and Lemma 13. Shrinking h′, ε and ρ̄′ if necessary,
one can make the last term satisfy

∥∥∥Φδ(w
1) − Φδ(w

2)

∥∥∥
(−1)

≤ κ ‖w1 − w2‖(−1) (55)

with a constant κ < 1. Hence Φδ is strictly contractive.
Next we will show that Φδ is a self-map of Wε :

First, consider w0 = w̃h, δ0 = δ̃h : obviously, w0 = Φδ0(w
0) and

∥∥∥Φδ(w
0) − w0

∥∥∥
(−1)

≤ |‖Λ(r(δ, w0)) − Λ(r(δ0, w
0))‖|

≤ λ |‖r(δ, w0) − r(δ0, w
0)‖|∗

≤ λ ‖δ − δ0‖D ≤ λ ρ̄′

follows by the definition of r , and from (50), Lemma 9. Further, for arbitraryw ∈ Wε ,
from the contractivity of Φδ conclude∥∥∥Φδ(w) − w0

∥∥∥
(−1)

≤
∥∥∥Φδ(w) − Φδ(w

0)

∥∥∥
(−1)

+
∥∥∥Φδ(w

0) − w0
∥∥∥

(−1)

≤ κ ε + λ ρ̄′.

The latter can be made smaller than ε : indeed, the above construction shows κ =
O(

√
h′ + √

ε + √
ρ̄′) so that λρ̄′ can be made smaller than (1− κ)ε by shrinking ρ̄′

if necessary.
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The properties of Φδ : Wε → Wε guarantee the existence of a fixpoint w = uhδ in
Wε corresponding to the unique solution ξ hδ = ξ(δ, uhδ ) of (VI

h
δ ) in Vε . The Lipschitz

continuity of uhδ w.r.t. δ is obtained similarly to the proof in [42, Theorem 2.1] with
Lipschitz modulus λ′ = λ (1 − κ)−1. Together with condition (50), this fact yields
the Lipschitz continuous dependence of ξ hδ on δ with a modulus independent of h and
thus, completes the proof. ��

5 Control properties

In this section, consider (VIhδ ) in the special case that δ = 0. As it was shown in the
previous section, there exists a unique solution ξ h0 = ξ̂ = ( p̂, x̂, û, μ̂) of the problem
close to ξ̃ h provided h is sufficiently small. Due to (18), (19), σ̂ := BT p̂ is the
discrete switching function for û: with μ̂1 = [σ̂ ]+, μ̂2 = [σ̂ ]− we have

−1 ≤ ûi ≤ 1, (ûi − 1)[σ̂i ]+ = (ûi + 1)[σ̂i ]− = 0

for i = 0, . . . , N − 1.
In [14], for continuous problems of type (VI) depending on a real parameter it was

shown that (H1) together with the assumptions

R = −pT
[
B, [ f 0, B]] = −BT H0

xx B ≥ m̄ > 0 on Iβ,

min{|σ̈ 0(τs − 0)|, |σ̈ 0(τ ′
s + 0)|} ≥ m̄ > 0

(see [14, Assumptions 2.2-3]), ensures the bang-singular-bang control structure to
be stable under parameter perturbation. Similar results will be proved now for the
discretized problems (VIh0) for sufficiently small step size parameter h. To this aim,
the discrete solution (û, σ̂ ) will be compared to the reference data (u0, σ 0) from (VI).
For simplicity, the discrete functions (ũ, σ̃ ) ∈ R

N ×R
N defined by ũi = u0(ti +0), σ̃i

= σ 0(ti ) will again be denoted by (u0, σ 0).

Lemma 10 For the switching function σ̂ , the following estimate holds:

‖σ̂ − σ 0‖∞ + ‖�1(σ̂ − σ 0)‖2 = O(h).

Moreover, σ̂i = P̂i + R̂i ûi where P̂, R̂ satisfy

‖P̂ − P‖2 + ‖R̂ − R‖2 = O(h),

‖�1(σ̂ − σ 0)‖∞ + ‖P̂ − P‖∞ + ‖R̂ − R‖∞ = O(‖x̂ − x0‖∞ + h)

(The proof is given in Appendix.)
The last lemma in particular yields the following property: there exist ε0 > 0, h̄ > 0

and a constant m̂ > 0 independent of h such that

P̂i − R̂i ≤ −m̂, P̂i + R̂i ≥ m̂ for ti ∈ Iβ (56)

whenever h < h̄ and ‖x̂ − x0‖∞ < ε0 ; cf. (14), (15).
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Lemma 11 Under assumptions (H0)–(H2), there exist indices k̂, k̂′ such that, with
the constant values u1, u2 from Assumption (H1),

ûi ≡ u1, i = 0, . . . , k̂, ûi ≡ u2, i = k̂′, . . . , N − 1,

and |tk̂ − τs | + |tk̂′ − τ ′
s | = O(h1/2).

Proof Without loss of generality, consider the case u1 = −1 only:
At the bang-singular junction point τs , both the function σ 0 and its time derivative
vanish. Thus, for all j such that t j < τs , it follows from (15) that

σ 0(t j ) =
∫ τs

t j
(θ − t j )σ̈

0(θ) dθ ≤ −m2

2
(τs − t j )

2.

Consider σ̂ : if σ̂ j < 0 for all t j < τs then we can choose k̂ = k (see Lemma 2 and
related notation). Otherwise, let k̂ be the first index such that σ̂k̂ ≥ 0, tk̂ < τs : from
the previous lemma conclude

0 ≤ σ̂k̂ ≤ ch − m2

2
(τs − tk̂)

2

and thus, the desired estimate for the left bang arc follows.
Analogously, the right bang arc is confirmed and estimated. ��

In the next step of analyzing the control structure it will be shown that, in a certain
neighborhood of the state trajectory, the discrete controls û consist of two bang arcs
at right and left ends of the interval, and a singular arc located in the interior of
Iβ . Following the ideas from [14], the proof will make use of auxiliary state-adjoint
functions x̂±, p̂± which are obtained from solving (16), (17) with δ = 0, constant
u = u+ ≡ 1 (or u = u− ≡ −1 respectively) and initial value (x̂i , p̂i ) at given t = ti .
Similarly, x±, p± solve (7), (8) with constant u ∈ {−1, 1} and initial value (x0i , p

0
i )

at t = ti . Notice that, for sufficiently small h, the assumptions on the input functions
guarantee the existence of solutions at least for |t j − ti | ≤ �0 (or |t − ti | ≤ �0 for
the continuous version) for some �0 > 0 independent of h.

Lemma 12 Let h̄ > 0, ε0 > 0be the constants used for (56). Further, for given h < h̄,
denote by ξ h0 = ξ̂ = ( p̂, x̂, û, μ̂) the solution of (VIh0) from Theorem 1. Then there
exists a positive ε1 < ε0 with the following property: Whenever the state component
x̂ satisfies ‖x̂ − x0‖∞ < ε1, the control û has bang-singular-bang structure. More
precisely, there exist indices k̂ and k̂′ such that

ûi =
⎧⎨
⎩

u1 if 0 ≤ i ≤ k̂,
ûs,i if k̂ < i < k̂′,
u2 if k̂′ ≤ i ≤ N − 1.

(57)
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In addition, |tk̂ − τs |+ |tk̂′ − τ ′
s |+‖ûs −u0s‖(∞,Iβ) = O(ε1 +h). The singular values

are given by ûs,i = −P̂i/R̂i and belong to [ms − 1, 1 − ms] ⊂ (−1, 1) if ε1 and h
are taken sufficiently small. The constant ms is independent of h.

Proof The proof is similar to that of [14, Theorem 3.1]; see Sect. 4 therein. For clarity
reasons, the main arguments are repeated in the needed discrete formulation assuming
(without loss of generality) that u1 = −1.

Lemma 11 says that û has a bang arc in the left part of the interval [0, 1] where
û = −1 and thus, σ̂ = σ̂− (continued from t0 = 0, e.g.) as long as σ̂− < 0. If h is
sufficiently small, the right end of the arc lies inside Iβ .
Now, from Lemma 10 we have

‖�1(σ̂− − σ−)‖∞ = O(ε1 + h).

and�1σ̂− (as well as the finite difference approximation of the time derivative of σ−)
changes its sign, i.e., (�1σ̂−)i ≤ 0 for i ≥ j and some node t j near τs : Due to (15)
and (56), �2σ̂− ≤ −m̂ < 0 so that |t j − τs | =O(ε1 + h) follows.

Let j be the first index where (�1σ̂−)i ≤ 0. We will distinguish between the
following cases:
Case 1 σ̂−

j < 0.

In this case, û j = −1, (�2σ̂ ) j ≤ −m̂ < 0 and σ̂− is concavely decreasing for
ti > t j . Therefore, σ̂i = σ̂−

i remains to be valid at least for all i with ti − t j ≤ �0.
We obtain:

(�1σ̂ ) j+ν ≤ −m̂ · ν h,

σ̂ j+ν < h
ν−1∑
k=1

(�1σ̂ ) j+k ≤ − m̂

2
(ν − 1)2h2.

If ti is the last node on the interval [t j , t j+�0] then σ̂i ≤ −m̂ (�0−2h)2/2 contradict-
ing the conditions σ 0(t) = 0 for t ≥ τs, |t j−τs | = O(ε1+h), and ‖σ̂ −σ0‖∞ = O(h)

from Lemma 10.
Case 2 σ̂−

j > 0.
In this case, σ̂ ≥ 0 has appeared first for some node t j ′ ≤ t j : if σ̂ j ′ > 0, the function
coincides with the convexly increasing function σ̂+ for t j ′ ≤ ti ≤ t j ′ +�0. Estimating
σ̂+
j ′+ν

in analogy to Case 1, we end up with a contradiction. If σ̂−
j ′ = 0 then proceed

as in Case 3 below.
Case 3 σ̂−

j = 0.

It is sufficient to consider (�1σ̂ ) j = 0 since (�1σ̂ ) j �= 0 yields σ̂ j+1 �= 0 and thus,
a situation as in Case 1 or Case 2. (Similarly, one can exclude (�1σ̂ ) j+1 �= 0 by
contradiction).
For (�1σ̂ ) j = (�1σ̂ ) j+1 = 0, obviously (�2σ̂ ) j+1 = 0 so that û j+1 = ûs, j+1.
Whenever ti ≤ 0.5(τs + τ ′

s) + h̄, a change to positive resp. negative values of σ̂

at ti can be excluded by repeating the arguments above. Thus, the left bang arc is
concatenated to a central singular arc.
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The analysis can be carried out similarly from the right end, and the statement on
the control structure together with

|t j − τs | + |t j ′ − τ ′
s | = O(ε1 + h)

follows. Finally, by use of Lemma 10, the estimate for ûs is obtained. ��
The structural information allows to strengthen the general result from Theorem 1 and
formulate a convergence result for the solutions of (VIh0) w.r.t. (discrete) L∞ × L∞ ×
L1 × L∞ topology:

Theorem 2 Let the assumptions (H0)–(H2)hold for the solution ξ0 = (p0, x0, u0, μ0)

of (VI). Further, suppose h′, ε, ρ̄′ and the set Vε be given as in Theorem 1. If h < h′
is small enough to ensure ‖δ̃h‖D < ρ̄′ then the following statements are true:

(i) On Vε , the discrete problem (VIh0) has a unique solution ξ h0 = ξ̂ = ( p̂, x̂, û, μ̂)

estimated by

‖x̂ − x0‖2 + ‖ p̂ − p0‖∞ + ‖μ̂ − μ0‖∞ = O(h),

and ‖x̂ − x0‖∞ =O(h1/2).
(ii) There exists a constant h1 < h′ such that, for each h < h1, the control û has

bang-singular-bang structure in the sense of (57). The state-control pair and
associated bang-singular junction points τ̂ , τ̂ ′ satisfy

‖x̂ − x0‖∞ + ‖û − u0‖1 + |τ̂ − τs | + |τ̂ ′ − τ ′
s | = O(h).

Proof The first estimates from part (i) are a direct consequence of Theorem 1 applied
to the choice δ = 0, and of Lemma 10 (see also the proof of the latter in Appendix). In
order to obtain the estimate for ‖x̂ − x0‖∞ we observe that, under assumption (H0)
on the data, there exists a constant M1 independent of h such that

‖x̂ − x0‖∞ + ‖�1(x̂ − x0)‖2 ≤ M1.

Applying Lemma 13 from Appendix, the desired estimate follows.
For proving part (ii), the technique from [15, Lemma 4.1] will be adapted. To this

aim, define

y0i = h
i−1∑
j=0

u0(t j + 0), ŷi = h
i−1∑
j=0

û j .

Notice that y0 slightly differs from ỹh definedviaGoh transformationwith the input ũh ,
(21). Assumptions (H1) and (H2), however, guarantee that the pointwise differences
do not exceed O(h). By Theorem 1 and Lemma 2, we therefore have

‖ŷ − y0‖1 ≤ ‖ŷ − ỹh‖2 + ‖ỹh − y0‖∞ = O(h). (58)
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Similarly obtain |ŷN − y0N | = O(h).
In part (i) it was particularly proved that ‖x̂ − x0‖∞ → 0 as h → 0. Hence, there

exists a positive h1 < h̄ such that ‖x̂ − x0‖∞ < ε1 holds with the constant ε1 from
Lemma 12 for h < h1, and û has the structure (57). Therefore, the y–differences given
at nodes ti by

ŷi − y0i = h
i−1∑
j=0

(û j − u0j ) = (ŷN − y0N ) − h
N−1∑
j=i

(û j − u0j )

can be estimated, in particular, for points ti from the intersection (τs, τ
′
s) ∩ (τ̂ , τ̂ ′) as

follows: in case τs < τ̂ the above formula yields

|ŷi − y0i | = h

∣∣∣∣∣∣
∑

j : τs<t j<τ̂

(u1 − u0s, j ) +
∑

j :τ̂≤t j<ti

(ûs, j − u0s, j )

∣∣∣∣∣∣
≥ min{m, m̂} |τ̂ − τs | − ‖ûs − u0s‖(1,Iβ) (59)

(and the same relation results in case τs ≥ τ̂ , too). Analogously obtain

|ŷi − y0i | ≥ min{m, m̂} |τ̂ ′ − τ ′
s | − ‖ûs − u0s‖(1,Iβ) − |ŷN − y0N |. (60)

For h < h1, the singular control ûs restricted to nodes ti ∈ Iβ is well defined. Further,
from (14), (56) obtain Ri ≥ m > 0, R̂i ≥ m̂ > 0, ti ∈ Iβ, so that

‖ûs − u0s‖(1,Iβ) ≤ m̂−1‖P̂ − P‖1 + (mm̂)−1‖P‖∞‖R̂ − R‖1 = O(h)

follows from (H0) and Lemma 10.
Combining the estimates (59), (60), we come to the following conclusion: there

exists a constant c > 0 independent of h such that

|τ̂ − τs | + |τ̂ ′ − τ ′
s | ≤ c

(
‖ŷ − y0‖1 + ‖ûs − u0s‖(1,Iβ) + |ŷN − y0N |

)
= O(h).

Finally, by 0 ≤ ûi , u0i ≤ 1 for i = 0, . . . , N − 1,

‖û − u0‖1 ≤ ‖ûs − u0s‖(1,Iβ) + |τ̂ − τs | + |τ̂ ′ − τ ′
s | = O(h)

follows. Remembering (16), for δ = 0 this last estimate also yields
‖x̂ − x0‖∞ =O(h) and hence, the theorem. ��
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6 Numerical test

The discretization approach will be illustrated by approximating the solution of the
following problem,

(Pδ) min J ′(x, u) := 0.5
(
x21 (T ) + x22 (T )

)

w.r.t. ẋ1 = cos x3 − δu, x1(0) = a,

ẋ2 = sin x3, x2(0) = 0,
ẋ3 = u, x3(0) = π/2,
|u| ≤ 1 , (T > 0, a > 2, 0 ≤ δ << 1).

(61)

As it was shown in [14], for small δ the solution is of bang-singular-bang structure, and
the control vanishes along the singular arc. For data δ = 0.15, a = 3, the optimal termi-
nation time for (61) is found from a synthesis approach as T ∗ = 3.5117. The terminal
timeT for (Pδ) is chosen asT = 3.2 < T ∗.Assuming the sameprincipal control struc-
ture as in time-optimal termination case, one can find piecewise analytic expressions
for x, p and determine the bang-singular junction points τs = 2.1482, τ ′

s = 2.6932
for (Pδ): this defines the reference solution u0.

In the numerical tests, we replace (VIh0) by an equivalent system of equations: for
i = 1, . . . , N , the complementarity relations (18), (19) are expressed by

φγ (μ1i , 1 − ui ) = 0, φγ (μ2i , 1 + ui ) = 0,

where φγ (w, ν) = w + ν − √
w2 + ν2 + γ with γ = 0 stands for the Fischer–

Burmeister function [16,17]. Notice that the original function φ0 is non-differentiable
at the origin. In order to ensure robustness of the iterative solutionwhen smooth solvers
like the matlab1 routine fsolve are used, the additional regularization parameter
γ > 0 was introduced (cf. [25] and the survey [18]). Further, the system (VIh0) was
reduced to a problem of finding (u, μ1, μ2). To this aim, the system (16), (17) is solved
explicitely and the resulting vector p = p(u) is inserted into (18). The final problem
consists in solving F̄γ (u, μ1, μ2) = 0 where

F̄γ

1i = BT pi (u) − μ1i + μ2i , F̄γ

2i = φγ (μ1i , 1 − ui ), F̄γ

3i = φγ (μ2i , 1 + ui ).

For the initial values used in fsolve, for given ū find (x̄, p̄) = (x(ū), p(ū)) from
the canonical system (16), (17), and μ̄1,2 = μ1,2(ū) as positive resp. negative parts
of σ = BT p(ū). Afterwards, the vector (ū, μ̄1, μ̄2) is projected onto the closed set
{[−1+γ, 1−γ ]N ×[γ,∞)2N }: this change turns ū and μ̄1,2 into strictly inner points
of their respective domain of definition and again, improves the robustness of the
solution process.

1 matlab is a registered trademark of TheMathWorks, Inc. (see www.mathworks.com).
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Table 1 Approximation errors for control function u and junction times τ̂ , τ̂ ′

γ (N = 50) (N = 100) (N = 200)

‖u − u0‖1 �τ ‖u − u0‖1 �τ ‖u − u0‖1 �τ

5 × 10−5 0.0528 0.1868 0.0399 0.2188 0.0402 0.2028

2 × 10−5 0.0434 0.1332 0.0265 0.1642 0.0252 0.1708

1 × 10−5 0.0398 0.1228 0.0203 0.1548 0.0176 0.1388

5 × 10−6 0.0378 0.1228 0.0166 0.1228 0.0123 0.1228

0 0.0358 0.0918 0.0120 0.0372 0.0012 0.0212

Table 1 summarizes selected results. The initial control data are ū ≡ 1. (It should be
mentioned that tests with ū ≡ 0.5 as well as for some prescribed bang-singular-bang
regimes, showed essentially the same behavior.) One can see that the solution process
gives fairly good approximations of the reference control. Let us mention that, in all
reported cases, the discrete controls have clearly visible bang arcs at left and right ends
of the time interval and an inner singular arc with u = 0 (up to marginal rounding
errors perhaps). Due to the regularization by γ > 0, but also by rounding effects, the
bang-singular junction appears as an intermediate monotonicity interval rather then a
“sharp” jump but is restricted to few nodes: with mε = 0.1 ‖u − u0‖1, we determined
two intervals Is, I ′

s where 1−mε ≥ ui ≥ mε . The approximation error�τ for τs, τ ′
s

is defined as the maximum of distances from τs to interval ends of Is , and from τ ′
s to

interval ends of I ′
s .

Finally notice that, in the given example, the solution could be also found for γ = 0:
in all tests the junction points are approximated with accuracy �τ < 1.5 h, i.e., the
“1–0–1” switching structure of the discrete control becomes evident. For N = 200,
the control is approximated with a remaining tolerance bound of ‖u−u0‖1 = 0.0012.

Acknowledgments The author is grateful to the anonymous referees for their instructive commentswhich,
in particular, helped to close a gap in one of the main proofs.

Appendix

In this section, we first derive several norm estimates for functions fromW 1
2 resp. their

discrete analoga from Y h . Afterwards, the proofs of Lemmas 2 and 10 are given.

Lemma 13 Let w ∈ R
k(N+1) with �1w ∈ R

kN be such that

‖w‖∞ + ‖�1w‖2 ≤ M0 < ∞.

Then, ‖w‖2∞ ≤ M (h + ‖w‖(2)) for some M > 0 independent of h, w.

123



Discretization of semilinear bang-singular-bang control problems 321

Proof Let j be an indexwhere |w j | = ‖w‖∞, and c a constant greater thanM0. Using

w j+k = w j +
k−1∑
l=0

h(�1w) j+l

and analogous formulas for w j−k , it follows from the assumptions on w that

|wi | ≥ |w j | − c
√
h |i − j | ≥ |w j |

(
1 − 1√

2

)

for all i such that |i − j | ≤ m := �|w j |2 · N/(2c2)� and ti ∈ [0, 1]. Taking into
account |w j |2 · N/(2c2) ≤ M2

0 N/(2c2) < N/2, it is easy to see that the conditions
are fulfilled at least for j < i ≤ j + m in case t j ≤ 1/2 (or j − m ≤ i < j
for t j > 1/2) , i.e. on some index set I (w) containing at least m knots on [0, 1].
Consequently,

‖w‖2(2) ≥ h
∑

i∈I (w)

|wi |2 ≥ mh

2
(1 − √

2)2 ‖w‖2∞

≥ h

2
(3 − 2

√
2) ‖w‖2∞

( |w j |2 · N
2c2

− 1

)
= 2M1‖w‖2∞

(
‖w‖2∞ − 2c2h

)

(with M1 = (3 − 2
√
2)/(8c2)) due to h · N = 1.

If now ‖w‖2∞ ≥ 4hc2 then ‖w‖2(2) ≥ M1‖w‖4∞. Otherwise, ‖w‖2∞ < 4hc2 and
hence the lemma. ��

Remark For continuous functions w ∈ W 1
2 (0, 1;Rk) with ‖w‖∞ + ‖ẇ‖2 ≤ M0,

similarly get ‖w‖∞ ≤ M ‖w‖1/22 where M depends only on M0.
The next lemma is a special case of the discrete analogon of Gronwall’s Lemma [22].
In order to emphasize the independence of related constants of the step size h, a short
direct proof is provided.

Lemma 14 (Discrete Gronwall Lemma) Suppose there are given an arbitrary φ ∈
R
kN and some constant L > 0.

(i) If η ∈ R
k(N+1) satisfies |(�1η)i | ≤ L |ηi | + |φi | for i = 0, . . . , N − 1, then

‖η‖∞ ≤ eL(|η0| + ‖φ‖2).
(ii) If η ∈ R

k(N+1) satisfies |(�1η)i | ≤ L |ηi+1| + |φi | for i = 0, . . . , N − 1, then
‖η‖∞ ≤ eL(|ηN | + ‖φ‖2).

Proof The proof starts with the observation

| |ηi+1| − |ηi | | ≤ h |(�1η)i |.
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For part (i) we thus obtain by induction

|ηi+1| ≤ (1 + Lh)|ηi | + h |φi | ≤ (1 + Lh)i+1|η0| + h
i∑

j=0

(1 + Lh)i− j |φ j |

≤ (1 + Lh)N

⎛
⎝|η0| + h

N−1∑
j=0

|φ j |
⎞
⎠ ≤ eL (|η0| + ‖φ‖2) .

Similarly, part (ii) follows from |ηi | ≤ (1 + Lh)|ηi+1| + h|φi |, i ≤ N − 1. ��
Proof of Lemma 2 Consider first xi = x̃ hi , i = 0, . . . , N , and ui = ũhi :

xi+1 − xi =
∫

ωi

ẋ0(t) dt =
∫

ωi

[
f (x0(t)) + B u0(t)

]
dt

=
∫

ωi

[
f (x0(t)) − f (x0(ti ))

]
dt + h [ f (xi ) + B ui ]

due to the construction of ũh . Therefore,

δ̃h1i = h−1
∫ ti+h

ti

[
f (x0(t)) − f (x0(ti ))

]
dt = O(h).

Analogous estimates show that δ̃h2i = O(h) uniformly for i = 0, . . . , N − 1.
The construction of μ̃h

i ensures (19) to be valid for each i ≤ N − 1 if only h is
sufficiently small. In order to find δ̃h3 , insert x̃

h
i , p̃hi and μ̃h

i into (18): for i = 0, . . . , k,

BT pi = σ 0(ti ) =
{

σ̃ h
i + (σ 0(ti ) − σ τ (ti )) if i ≤ k,

σ̃ h
i if i > k.

where σ τ abbreviates σ τ (t) = σ(t + τs − tk). Consequently,∣∣∣δ̃h3i ∣∣∣ = |σ 0(ti ) − σ τ (ti )| = O(h) for i ≤ k,

and δ̃h3i = 0 in case i > k. For �1δ̃h3 , �2δ̃h3 we have

(�1δ̃h3 )i =
⎧⎨
⎩

(�1σ 0)i − (�1σ τ )i if i ≤ k − 1,
−h−1σ 0(tk) if i = k,
0 if i > k,

(�2δ̃h3 )i =

⎧⎪⎪⎨
⎪⎪⎩

(�2σ 0)i − (�2σ τ )i if i ≤ k − 1,
h−2(σ 0(tk−1) − σ τ (tk−1) − 2σ 0(tk)) if i = k,
h−2σ 0(tk) if i = k + 1,
0 if i ≥ k + 2.
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For t ≤ τs ,

σ 0(t) =
∫ t

τs

∫ s

τs

σ̈ 0(θ) dθ ds = O((τs − t)2)

so that |σ 0(tk)| + |σ 0(tk−1)| = O(h2). Analogously obtain |σ τ (tk−1)| = O(h2), too.
Together with the estimates

|(�1σ τ )i − (�1σ 0)i | + |(�2σ τ )i − (�2σ 0)i | = O(h),

the desired results for δ̃h3 and its finite differences directly follow. ��

Proof of Lemma 10 By definition, σ̂ = BT p̂ where p̂ solves the backward initial
value problem for the finite difference equation

(�1 p̂)i = −∇ f (x̂i+1)
T p̂i+1, p̂N = −∇k(x̂N ).

Thus,

(�1( p̂ − p0))i + Ai+1( p̂ − p0)i+1 =
[
∇ f (x0i+1) − ∇ f (x̂i+1)

]T
p̂i+1 − δ̃h2i ,

p̂N − p0N = ∇k(x0N ) − ∇k(x̂N ).

Taking into account assumption (H0), from Theorem 1 and Lemma 2 conclude

‖x̂ − x0‖2 + ‖ p̂ − p0‖2 = O(‖δ̃h‖D) = O(h).

In analogy to Lemma 7, the boundary terms are equally estimated by O(h). Using
Lemma 14 we see that

‖ p̂ − p0‖∞ = O(h) (62)

and the estimate for ‖σ̂ − σ 0‖∞ directly follows.
Consider next �1(σ̂ − σ 0):

(�1(σ̂ − σ 0))i = BT (�1( p̂ − p0))i

= −BT
[
(∇ f̂i+1)

T p̂i+1 − (∇ f 0i+1)
T p0i+1 + δ̃h2i

]
= O(|x̂i+1 − x0i+1| + | p̂i+1 − p0i+1| + |δ̃h2i |)

so that ‖�1(σ̂ − σ 0)‖2 = O(h) follows from Theorem 1 and Lemma 2.
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It remains to find a representation and estimates for �2(σ̂ − σ 0):

(�2σ̂ )i = h−1BT
(
(�1 p̂)i − (�1 p̂)i−1

)
= −BT

(
(�1[∇ f̂ ])Ti p̂i+1 + ∇ f̂ Ti (�1 p̂)i

)
= BT∇ f̂ Ti ∇ f̂ Ti+1 p̂i+1 − BT h−1

∫
ωi

∇2
xx ( p̂

T
i+1 f̂ [t]) dt · (�1 x̂)i

=: P̂i + R̂i ûi .

where f̂ [t] = f (x̂(t)), and x̂(t) stands for the linear interpolation to x̂i , x̂i+1 on ωi .
Therefore, the formula

R̂i − Ri = −BT h−1
∫

ωi

(
∇2
xx ( p̂

T
i+1 f̂ [t]) − ∇2

xx ((p
0)T f 0)i

)
dt · B

leads to the desired estimates for the (discrete) L2 and L∞ norms. Similarly, ‖P̂−P‖r
can be estimated for r ∈ {2,∞}. ��
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