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Abstract We propose a new iterative search procedure for the numerical treatment of
unconstrained multi-objective optimization problems (MOPs) which steers the search
along a predefined direction given in objective space. Based on this ideawewill present
twomethods: directed search (DS) descent which seeks for improvements of the given
model, and a novel continuation method (DS continuation) which allows to search
along the Pareto set of a given MOP. One advantage of both methods is that they can
be realized with and without gradient information, and if neighborhood information
is available the computation of the search direction comes even for free. The latter
makes our algorithms interesting candidates for local search engines within memetic
strategies. Further, the approach can be used to gain some interesting insights into the
nature of multi-objective stochastic local search which may explain one facet of the
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success ofmulti-objective evolutionary algorithms (MOEAs). Finally, we demonstrate
the strength of the method both as standalone algorithm and as local search engine
within a MOEA.

Keywords Multi-objective optimization · Continuation · Memetic algorithm ·
Stochastic local search

1 Introduction

In many applications one is faced with the problem that several objectives have to
be optimized concurrently leading to a multi-objective optimization problem (MOP).
Multi-objective evolutionary algorithms (MOEAs) have proven to be very effective on
the treatment of such problems. Reasons for this include that algorithms of this kind
are very robust, do not require hard assumptions on the model, and allow to compute
a finite size representation of the solution set, the Pareto set, in one single run [1–3].
On the other hand, it is known that MOEAs need quite a few function evaluations
in order to evolve to a suitable approximation of the set of interest. As one way out,
researchers have proposed memetic algorithms that hybridize local search techniques
withMOEAs in order to obtain fast and reliable global search procedures. (e.g., [4–8]).

In this paper, we propose a new point-wise iterative search procedure that allows
to steer the search into any direction d given in objective space. Since there is no
restriction on d, the Directed Search (DS) method can be used to steer the search
both toward and along the Pareto set of a given MOP. Further, the method can be used
with orwithout gradient information. To realize the gradient freeDS, the neighborhood
information of the point designated for local search can be exploited so that the related
search direction can ideally be computed for free in terms of additional function
evaluations. The latter makes the DS an interesting candidate for integration into set
based heuristics such as MOEAs since in that case the neighbors of a given individual
may be utilized. In this paper, wemake a first attempt to demonstrate the strength ofDS
within a memetic algorithm. As a by-product, we gain some insights into the behavior
of multi-objective stochastic local search (MOSLS) by using the DS approach which
yields some interesting insights and may explain one facet of the huge success of
evolutionary algorithms for the treatment of MOPs.

The idea to steer the search by a direction given in objective space is not new but
appears in the literature in several variations (e.g., [9–13]). Most remarkably, the DS
Descent Method shares some characteristics with NBI [11] and the method presented
in [13]. The DS, however, has a broader applicability. In particular the possibility
to move along the Pareto set and the gradient free realization present novelties that
are beneficial for hybridization with set based heuristics. Preliminary studies of the
DS can be found in [14–16]. In [14] the general idea of the DS is presented, in [15]
some details of the DS Descent method are provided, and in [16] the gradient free DS
Descent method is proposed together with a first memetic algorithm.

The remainder of this paper is organized as follows: in Sect. 2, we will present the
background required for the understanding of the sequel. In Sect. 3, we present the
basic idea of the DS as well as the gradient based descent and continuation methods.
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In Sect. 4, we explain some behavior of MOSLS using DS. In Sect. 5, we present
the idea of the gradient free DS and present further on a gradient free continuation
method. In Sect. 6, we present some numerical results of the DS both as standalone
algorithm and as local searcher within aMOEA. Finally, we draw our conclusions and
give paths for future research in Sect. 7.

2 Notations and background

In the following we consider unconstrained continuous MOPs

min
x∈Rn

F(x), (MOP)

where F is defined as the vector of the objective functions F : Rn → Rk , F(x) =
( f1(x), . . . , fk(x))T , and where each objective fi : Rn → R is (for simplicity)
smooth. The optimality of a MOP is defined by the concept of dominance [17]: a
vector y ∈ Rn is dominated by a vector x ∈ Rn (x ≺ y) with respect to (MOP) if
fi (x) ≤ fi (y), i = 1, . . . , k, and there exists an index j such that f j (x) < f j (y), else
y is non-dominated by x . A point x ∈ Rn is called (Pareto) optimal or a Pareto point
if there is no y ∈ Rn which dominates x . The set of all Pareto optimal solutions is
called the Pareto set, and is denoted by P . The image F(P) of the Pareto set is called
the Pareto front. Both sets typically form a (k − 1)-dimensional object [18].

The Jacobian of F at a point x is given by

J (x) =
⎛
⎜⎝

∇ f1(x)T

...

∇ fk(x)T

⎞
⎟⎠ ∈ Rk×n, (1)

where ∇ fi (x) denotes the gradient of objective fi . If all the objectives of the MOP
are differentiable, the following famous theorem of Kuhn and Tucker [19] states a
necessary condition for the Pareto optimality of unconstrained MOPs.

Theorem 1 Let x∗ be a Pareto point of (MOP), then there exists a vector α ∈ Rk

with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1 such that

k∑
i=1

αi∇ fi (x
∗) = J (x)Tα = 0. (2)

Points satisfying (2) are called Karush–Kuhn–Tucker (KKT) points.

3 The directed search method

Here we first describe the idea of the Directed Search method and will further on
derive a descent and a continuation method out of it.
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3.1 Central idea

Assume a point x0 ∈ Rn with rank(J (x0)) = k is given and a vector d ∈ Rk

representing a desired search direction in objective space. Then, a search direction
ν ∈ Rn in decision space is sought such that for y0 := x0 + hν, where h ∈ R+ is the
step size (i.e., y0 represents a movement from x0 in direction ν), it holds:

lim
h↘0

fi (y0) − fi (x0)

h
= 〈∇ fi (x0), ν〉 = di , i = 1, . . . , k, (3)

if ‖ν‖ = 1. Throughout this paper, ‖·‖ denotes the 2-norm unless specified otherwise.
Using the Jacobian of F , Eq. (3) can be stated in matrix vector notation as

J (x0)ν = d. (4)

Hence, such a search direction ν can be computed by solving a system of linear
equations. Since typically the number of decision variables is (much) higher than the
number of objectives for a given MOP, i.e., n 
 k, the system (4) is (probably highly)
underdetermined which implies that its solution is not unique. One possible choice is
to take

ν+ := J (x0)
+d, (5)

where J (x0)+ ∈ Rn×k denotes the pseudo inverse1 of J (x0) as the following discus-
sion shows (see Sect. 3.2 for further insights): given a candidate solution x0, a new
solution is obtained via x1 = x0 + hν, where ν ∈ Rn is a vector that satisfies (4).
Among the solutions of (4), ν+ is the one with the smallest Euclidean norm. Hence,
given h, one expects for a step in direction ν+ (in decision space) the largest progress
in direction d (in objective space).

3.2 The DS descent method

Assume we are given a direction d ∈ Rk\{0} with di ≤ 0, i = 1, . . . , k. Further, we
assume that we are given a point x0 ∈ Rn with rank(J (x0)) = k and that the image
of F is bounded from below. A greedy search in d-direction using Eq. (5) leads to the
(numerical) solution of the following initial value problem:

x(0) = x0 ∈ Rn

ẋ(t) = J (x(t))+d, t > 0, DS(x0, d)

where t denotes the time. In the following we investigate solutions of (DS(x0, d))
qualitatively. Let γ : [0, t f ] → Rn be such a solution, where t f is the final value, and
let tc be the smallest value of t ≥ 0 such that

1 If the rank of J := J (x0) is k (i.e., maximal) the pseudo inverse is given by J+ = J T (J J T )−1.
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Fig. 1 One possible solution
curve F(γ ) of (DS(x0, d))

�ν ∈ Rn : J (x(t))ν = d. (6)

We will call tc the critical value and γ (tc) the critical point of (DS(x0, d)). γ can be
divided into two parts (compare to Fig. 1): γ ([0, tc]) and γ ([tc, t f ]). In the first part,
F(γ (t)) yields the desired decay in d-direction. From the critical point γ (tc) on a
‘best fit’ is computed (which follows directly by the properties of the pseudo inverse
[20]), i.e.,

ν+(x(t)) = J (x(t))+d = arg min
ν∈Rn

‖J (x(t))ν − d‖. (7)

For the end point γ (t f ) it holds J (γ (t f ))+d = 0. On the one hand, such end points
are of particular interest since they are KKT points with associated convex weight
α = −d/‖d‖1. To see this, let J (γ (t f )) = U�V T be a singular value decomposi-
tion of J (γ (t f )). Since J (γ (t f ))+d = 0, where J (γ (t f ))+ = V�+UT , it is also
J (γ (t f ))T d = V�UT d = 0, i.e., it holds

k∑
i=1

αi∇ fi (γ (t f )) = 0.

On the other hand, the computation of γ in [tc, t f ]might get computationally expensive
since (DS(x0, d)) is stiff in the second part. Further, the computation of γ ([tc, t f ])
does not fit to the original idea of the directed search. Hence, we will restrict ourselves
here to the detection of γ (tc).

As seen above, one cannot expect to get KKT points with associated weight α when
computing γ (tc). However, the following result shows a relation to the well-known
NBI method. The NBI subproblem can be stated as follows2

max
x,l

l

s.t. F(x0) + ld = F(x). NBI(x0, d)

2 We note that the original idea of NBI is not to maximize the distance from F(x0) for a given point x0,
but this is a straightforward adaption to the current context.
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Proposition 1 Let x∗ be the critical point of (DS(x0, d)), then it is a local solution
of (N BI (x0, d)).

Proof Let g(x, l) := l and hi (x, l) := fi (x0) + ldi − fi (x). Assume x∗ is not a local
solution of NBI(x0, d). Then there exist ν = (ν̃, νn+1) ∈ Rn+1, ν̃ ∈ Rn , and l∗ ∈ R
such that

〈∇g(x∗, l∗), ν〉 =
〈(

0
1

)
,

(
ν̃

νn+1

)〉
> 0, and (8)

〈∇hi (x
∗, l∗), ν〉 =

〈(−∇ fi (x∗)
di

)
,

(
ν̃

νn+1

)〉
= 0, i = 1, . . . , k. (9)

By (8) it follows that νn+1 �= 0, and by (9) that

〈∇ fi (x
∗), ν̃〉 = νn+1di , i = 1, . . . , k. (10)

Hence, it is 1
νn+1

J (x∗)ν̃ = d which contradicts that x∗ is a critical point. ��
In turn, local solutions ofNBI(x0, d) are also potential critical points of (DS(x0, d)):

let x∗∗ be a solution of NBI(x0, d) . Assume that there exists a ν ∈ Rn such that
J (x∗∗)ν = d. Then, ν̃ = (ν, 1) ∈ Rn+1 satisfies (8) and (9) which is in contradiction
to the assumption of x∗∗.
Numerical treatment of (DS(x0, d)) Since we are only interested in the detection of
critical points the numerical treatment of (DS(x0, d)) gets significantly simplified. In
the following we describe the steps for a particular realization.

To trace the solution curve of (DS(x0, d)), one can e.g. choose well-established
numerical discretizationmethods (e.g., [21]).As thesemethods do not allow to perform
a correction back to the solution curve, computed errors can not be corrected. In the
following, we present one possible way to compute the solution curve numerically by
a specialized predictor corrector (PC) method (e.g., [22]), i.e., with a procedure which
allows for such a correction: recall that for every point x on the solution curve it holds

F(x) = F(x0) + λyd, (11)

where λy ∈ R. Hence, the curve is contained in the zero set of

H : Rn+1 → Rk, H(x, λy) = F(x) − F(x0) − λyd. (12)

To comply with the needs of PC methods we introduce an additional parameter λx

into the solution curve (which is defined in decision space):

x(0) = (x0, λx,0 = 0) ∈ Rn+1

ẋ(t) =
(
J (x(t))+d

1

)
, t > 0. (13)

So far, we are not able to apply PC methods since the parameters λx and λy para-
metrize different curves. The following little consideration, however, argues that it is
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reasonable tomatch the two parameters: let x0 be given and λx,0 = 0, and let (x1, λx,1)

be an Euler step of (13) with a small step size �λx , i.e., x1 = x0 + �λxν+(x0) and
λx,1 = �λx . By construction of ν+(x0) and since �λx is small we have

di ≈ fi (x1) − fi (x0)

�λx‖ν+(x0)‖ , i = 1, . . . , k. (14)

This implies that F(x1)−F(x0) ≈ �λxd‖ν+(x0)‖, and hence, H(x1, λx,1)/‖ν+(x0)‖
≈ 0. Using this, (13) and (12) can now be used to perform classical PC methods in
order to trace the solution curve: startingwith the point (x0, λx,0) one can integrate (13)
numerically for a small time step, e.g. via the Euler method as described above leading
to a predictor solution (x̃1, λ̃x,1). In a next step, this solution can be corrected to the
desired curve. That is, starting with (x̃1, λ̃x,1) and using a root finding method applied
on (12) one can seek for a solution (x1, λx,1) with H(x1, λx,1)/‖J (x0)+d‖ ≈ 0, and
so on. For details such as step size control we refer to a preliminary study of the DS
in [15].

To define a stopping criterion we can utilize the facts that rank(J (x0)) = k (by
assumption) and that rank(J (x∗)) < k (by definition of the critical point x∗). The
rank of a matrix can of course not be used to detect the critical point numerically, but
instead the condition number κ2 of J (x) can be used: one can e.g. compute

κ2(J (x)) = ‖J (x)‖‖J (x)+‖ = σ1/σk, (15)

where σ1 and σk are the largest and smallest singular values of J (x), respectively, and
stop the process if κ2(J (xi )) ≥ tol, where tol ∈ R+ is a given (large) threshold. This
can be done since by the above discussion κ2(J (x(t))) → ∞ for x(t) → x∗. Alter-
natively, one can stop the search if the difference between two consecutive solutions
is below a given threshold.

This discussion shows one potential drawback of the approach, namely that the
determination of the search direction by solving (4) gets inaccurate for points near
the Pareto set due to the high condition number of J (x). However, our experience has
shown that state-of-the-art numerical tools allow to come ‘near enough’ to the Pareto
set even for larger problems (see also the results in Sect. 6). However, large condition
numbers (say, tol > 1000) should be avoided as they might lead to inaccuracies and
higher computational times when solving (4) numerically.

Crucial for the above descent method is of course the proper choice of d to steer
the process. This is in general not an easy task since this is highly problem dependent.
In the next subsection, one particular choice of d is discussed for the realization of the
continuationmethod. Some other choices are used in Sect. 6 where theDS is integrated
into a MOEA.

3.3 The DS continuation method

In this section we propose a new PC method for the continuation along (local) Pareto
sets of a given MOP. The central difference to a classical method is that we suggest
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a new predictor direction which is based on the geometry of the Pareto front and is
realized by DS. Interesting is the fact that this newmethod does not require to compute
the Hessians of the objectives. In the following we present the alternative predictor
direction and propose then a ‘complete’ Hessian free PC method (and the variant in
Sect. 5 is even gradient free).
Predictor Direction Assume we are given a (local) Pareto point x and the associ-
ated convex weight α, i.e., such that Eq. (2) is satisfied. Further, we assume that
rank(J (x)) = k − 1. It is known (e.g., [18]) that in this case α is orthogonal to the
linearized Pareto front at F(x). Thus, a search orthogonal to α (in objective space)
could be promising to obtain new predictor points. To use DS, for instance a QR-
factorization of α can be computed, i.e.,

α = QR, (16)

where Q = (q1, . . . , qk) ∈ Rk×k is orthogonal and qi , i = 1, . . . , k, are its col-
umn vectors, and R = (r11, 0, . . . , 0)T ∈ Rk×1 with r11 ∈ R\{0}. Since by (16)
α = r11q1, i.e., α ∈ span{q1}, and Q orthogonal, it follows that the column vec-
tors q2, . . . , qk build an orthonormal basis of the hyperplane which is orthogonal to
α. Thus, a promising well-spread set of search directions νi may be the ones which
satisfy

J (x)νi = qi , i = 2, . . . , k. (17)

Since α is not in the image of J (x) (otherwise x would not be a Pareto point) and by
assumption on the rank of J (x) it follows that the vectors q2, . . . , qk are in the image
of J (x), i.e., Eq. (17) can be solved for each i ∈ {2, . . . , k}.

We stress that for the case k = 2 the predictor direction (17) coincides—apart
from its length—with one of the gradients ∇ fi (x), i = 1, 2, which has already been
successfully used in [23,24] for bi-objective continuation. Further, we note that such
predictor directions νp = J (x)+q do not have to be tangent to the Pareto set. Instead,
J (x)νp points along the linearized Pareto front. Since as for (5) νp is the most greedy
solution (compare also to Sect. 4) we can expect that the image F(p), where p is the
chosen predictor, is also close to the Pareto front, and thus, that only few iteration
steps are required to correct back to this set.
PC Method Based on the above discussion we derive in the following a new PC
method.
Predictor Assume we are given a Pareto point x0 with associated weight α0. The
predictor direction can—except for its signum—be chosen as described above, i.e.,
one of the normalized vectors ν := ±ν2/‖ν2‖, where ν2 satisfies (4) as described
above for d = q2. To orientate the curve (i.e., to determine the signum of ν) one
can simply use the change of one of the objective values. For this, the signum of the
according entry of the direction vector q2 can be taken. If, for instance, an improvement
according to f2 is sought, then

p := x0 − sgn(q2,2)hν2/‖ν2‖ (18)
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can be chosen as predictor, where q2,2 denotes the 2nd entry of q2, and h is the desired
step size.

To get the value of h we proceed as follows: assume we are given x0 and the
direction ν, ‖ν‖ = 1, associated to the direction q in objective space for the predictor
p = x0 + hν. To obtain an adequate spread of the solutions the function values f j (x)
and f j (p) of at least one objective differ ideally by a (problem dependent) value ε

while the difference for all other objectives does not exceed this threshold. Since this
value can differ for each objective we obtain for the demand on the spread

dw(F(p), F(x)) ≈ ε, (19)

where dw(x, y) = maxi=1,...,k(wi |xi − yi |) is the weighted maximum norm distance
(used to weight the objective space). Assuming that all fi ’s are Lipschitz continuous
and that the step size hi for the i-th objective is sufficiently small we obtain

| fi (p) − fi (x)|︸ ︷︷ ︸
!= ε/wi

≈ Li,x ‖p − x‖︸ ︷︷ ︸
=hi

, i = 1, . . . , k. (20)

Since Li,x can be approximated by the norm of the directional derivative we obtain
for each objective the control

hi = ε

wi |〈∇ fi (x), ν〉| , i = 1, . . . , k, (21)

and hence for the entire MOP

h := min
i=1,...,k

hi . (22)

Corrector Given p, the subsequent solution along the curve can be computed by
solving numerically (DS(x0, d)), using p as initial value and choosing d := −α0, i.e.,
the negative of the weight from the previous solution x0 leading to a new solution x1.
The new associated weight α1 can be updated as follows ([25]):

α1 ∈ argmin
λ

⎧⎨
⎩

∥∥∥∥∥
k∑

i=1

λi∇ fi (x)

∥∥∥∥∥
2

, s.t. λi ≥ 0, i = 1, . . . , k,
k∑

i=1

λi = 1

⎫⎬
⎭. (23)

Algorithm 1 shows a possible realization of the continuation method for bi-objective
problems (BOPs). There are only two choices possible for a continuation along the
Pareto front: ‘right down’ or ‘left up’. Algorithm 1 shows the ‘right down’ movement
starting with one initial solution, the respective realization for a ‘left up’ movement is
analog. The consideration ofMOPswith k > 2 requires an additional data structure for
the efficient representation of the approximation. See e.g. [26–28] for further details.
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Algorithm 1 BOP Continuation for a ‘right down’ movement in objective space
Require: Initial solution (x0, α0), threshold ε ∈ R+, tolerance tol ∈ R+.
Ensure: Set of candidate solutions xi aligned ‘right down’ in objective space
1: i := 0
2: repeat
3: compute q2, ν, and h as in (16), (17), and (22)
4: pi := xi − sgn(q2,2)hν

5: compute xi+1 by solving DS(pi , −αi )

6: compute αi+1 as in (23)
7: set i := i + 1
8: until αi+1,2 ≥ 1 − tol or no improvement in f2 direction could be achieved

4 On multi-objective stochastic local search

In the following we discuss the behavior of multi-objective stochastic local search
(MOSLS) which can to a certain extent be explained using the approach of the DS.
In particular, it may explain one facet of the huge success of global multi-objective
stochastic search algorithms such as MOEAs.

To examine the behavior of MOSLS we investigate the relation of search directions
ν ∈ Rn in decision space and the movement performed in objective space at a given
point x ∈ Rn . The latter can be expressed by J (x)ν: if a line search along ν is
performed, then the new iterate is given by xnew = x + tν, where t is a (small) step
size. If on the other hand xnew is chosen from a small neighborhood N (x) of x (e.g., via
mutation), then we are in the same setting. To see this, define ν := (xnew −x)/‖xnew −
x‖, and we have xnew = x + ‖xnew − x‖ν.

In the following we will first consider the extreme cases—x is either far away or
very close to the Pareto set—and based on this we will derive conclusions of MOSLS
within global search heuristics.
x far away from the Pareto set In [29], it has been observed that the objectives’
gradients typically point nearly in the same direction if x is far from the Pareto set.
For MOPs with this property, the gradients point in the extreme case into the same
direction, and we have for g := ∇ f1(x)/‖∇ f1(x)‖

∇ fi (x) = μi g, i = 1, . . . , k, (24)

where each μi > 0. Then, we have for a search direction ν ∈ Rn that

J (x)ν =
⎛
⎜⎝

μ1gT ν
...

μkgT ν

⎞
⎟⎠ = gT ν

⎛
⎜⎝

μ1
...

μk

⎞
⎟⎠ . (25)

That is, it is either (a) J (x)ν = 0 or (b) a search in direction ν ∈ Rn leads to a
movement in direction d = ±(μ1, . . . , μk)

T in objective space. Since the dimension
of the kernel of J (x) is n−1, thismeans that for a randomly chosen search direction ν ∈
Rn the probability is zero that J (x)ν = 0. Hence, if we choose a point xnew randomly
from a small neighborhood N (x) we can expect that the difference F(y) − F(x) is
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basically a multiple of d. If F(xnew)−F(x) > 0, where ‘>’ is considered component-
wise, (i.e., x ≺ xnew), one can simply flip the search and use x̃new := x − ν where
ν = xnew−x since by the above considerations one can expect that F(x)−F(x−ν) ≈
−(F(x)−F(x+ν)) < 0 (i.e., x̃new ≺ x). Note, however, that the largest improvement
along direction d can be obtained for ν = ±g since in that case ‖J (x)ν‖ is maximized.

As an example we consider the bi-objective problem [30]

f1, f2 : Rn → R2, fi (x) = ‖x − ai‖2, i = 1, 2. (26)

Figure 2a shows an example for n = 2 where 100 points were randomly sampled
around x0 = (30,−30)T . In objective space, a clear movement along d = ±(1, 1)T

can be observed which is (by construction) not the case in decision space.
x near to the Pareto set We again consider the extreme situation, namely now that x
is a Pareto point. That is, there exists a convex weight α ∈ Rk such that J (x)Tα = 0.
Further, let rank(J (x)) = k − 1. Then it holds for any ν ∈ Rn :

〈J (x)ν, α〉 = 〈ν, J (x)Tα〉 = 0. (27)

Hence, we have that either (a) J (x)ν = 0 or (b) that a movement along ν leads to
a movement along the Pareto front since J (x)ν �= 0 is orthogonal to α (compare to
Sect. 3.3). Since the dimension of the kernel of J (x) is n − k + 1, the probability for
event (a) is zero for a chosen direction ν (or a randomly chosen point xnew ∈ N (x),
where N (x) is a small neighborbood of x). Note that the movement along the Pareto
front is regardless of the choice of ν, i.e., regardless if the search in decision space is
performed along the Pareto set or not.

Let us consider the important special case k = 2.Without loss of generality assume
that ∇ f1(x) �= 0 and ∇ f2(x) �= 0. Then there exist α1 �= 0 and α2 �= 0 such that
α1∇ f1(x) + α2∇ f2(x) = 0. Defining w = −α1/α2 we can write

J (x)ν =
( ∇ f1(x)T ν

w∇ f1(x)T ν

)
. (28)

We see that J (x)ν = 0 iff ν is orthogonal to ∇ f1(x). Further, ν ∈ {±∇ f1(x)} is the
greedy direction since in that case ‖J (x)ν‖ is maximized.
Figure 2 shows 100 randomly sampled points in a neighborhood of x0 = (0, 0)T .
Again, by construction, no pattern is visible in decision space, but in objective space
a clear movement along the Pareto front can be observed.
Contribution of MOSLS within global heuristics Based on the observations made
above we make a first attempt to explain the contribution of MOSLS within global
search heuristic such as MOEAs. The above discussion shows mathematically and
empirically that two important features are inherent in MOSLS, namely a pressure
both toward and along the Pareto front. The above considerations hold for extreme
cases. Apparently, candidate solutions do not have to be near nor far away from the
Pareto set. For points x that are ‘in between’ the search can be steered into anydirection.
Figure 2b shows the result of 100 randomly chosen points around x0 = (1,−1)T . This
‘opening’ allows set based stochastic search methods such as MOEAs in principle to
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Fig. 2 Behavior of MOSLS in different stages of the search process

find all regions of the Pareto set/front. The latter of course with all the restrictions that
hold for local seach methods.
To examine the behavior of MOSLS within the entire search process empirically we
consider a simple set based neighborhood search (SNS, see Algorithm 2). In this
method, for entry a of a given archive Ai a solution b ∈ N (a) is chosen in a small
neighborhood leading to the new set of candidate solutions Bi . The next archive Ai+1
consists of the non-dominated solutions of Ai and Bi .
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Algorithm 2 Simple Neighborhood Search (SNS)
Require: Neighborhood Ni (x) of a given point x in iteration i .
Ensure: Sequence Ai of candidate solutions
1: Generate A0 ⊂ Rn at random
2: for i = 1, 2, . . . do
3: Bi := ∅
4: for all a ∈ Ai do
5: choose b ∈ Ni (a) at random
6: Bi := Bi ∪ {b}
7: end for
8: Ai+1 = {a ∈ Ai ∪ Bi : �b ∈ Ai ∪ Bi s.t. b ≺ a}
9: end for

Figure 3 shows some numerical results for problem (26). Figure 3a shows a result
of SNS where A0 has been built by 10 randomly chosen points within the domain
D = [−10, 10]2. In this figure, every second generation is plotted. As neighborhood
in step i we have chosen the maximum normwith radius δi = 5/ i . The result indicates
that for this model SNS has no problem to converge. The final archive is indeed very
close to the true Pareto front. Since a random search along the Pareto set leads to many
non-dominated solutions leading to many entries in the archive we have for sake of a
(very simple) comparison coupled SNS with the archiver ArchiveUpdateTight2 that
allows to reduce the number of archive entries while preserving certain convergence
properties [31]. See Fig. 3b for a result where the number of function evaluations were
restricted to 500 (only the final archive is plotted). As comparison, Fig. 3c contains the
non-dominated solutions froma simple global searcher (all points are chosen randomly
from D) with a budget of 5000 function calls. This observation gets confirmed in Table
1, whereGS and SNS are compared on 14 different benchmark functionswith different
characteristics such as modality and connectedness of the Pareto fronts. SNS wins in
13 out of 14 cases (and significant in 12 cases due to the Wilcoxon rank-sum test) and
is only inferior (significantly) compared to GS on ZDT4 which is highly multi-modal
as it contains 219 local Pareto fronts.

ThoughSNSdoes notmake use of any gradient information, explicit steering, or any
kind of population/swarm based intelligence we think that the results are already rea-
sonable. Certainly, state-of-the-art MOEAs will outperform SNS (in particular when
n or k are increased, and/or more complicated models are beeing considered) which
results from the great importance of the interplay of the different elements of a search
heuristic such as the balance of local and global search (e.g., [32]). However, our focus
in this section is the behavior of stochastic local search which is used within every
state-of-the-art heuristic. As the above discussion shows and the numerical results
indicate, the two key features, pressure toward and along the Pareto front (which are
closely related to the terms convergence and diversity) are already inherent inMOSLS.
Hence, one can even say that the classical EMO task (i.e., to find a finite size approx-
imation of the Pareto front) is a well-conditioned problem. This might be one facet
that explains the huge success of global search heuristics such as MOEAs. We stress
that the above considerations are not restricted to differentiable problems. Note that
many maps are only non differentiable on a zero set. In other words, for such a map
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Fig. 3 a Application of SNS for
20 generations, b SNS coupled
with AU-Tight2 and a budget of
500 function evaluations, c
result of a simple global search
with a budget of 5000 function
evaluations
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Table 1 �1 values and standard deviations obtained by GS and SNS on several benchmark MOPs

Problem GS SNS

ZDT 1 3.67746 2.53825 n = 30, k = 2

(std.dev) (0.25024) (0.38357)

ZDT 2 4.25890 3.04861 n = 30, k = 2

(std.dev) (0.26437) (0.45873)

ZDT 3 3.65511 2.58236 n = 30, k = 2, MM, D

(std.dev) (0.29973) (0.36736)

ZDT 4 490.89280 592.40396 n = 10, k = 2, MM

(std.dev) (19.12823) (3.22944)

ZDT 6 11.46799 8.62762 n = 10, k = 2, MM

(std.dev) (0.41380) (1.07383)

DTLZ 1 109.98199 41.62222 n = 6, k = 2, MM

(std.dev) (21.23505) (10.26279)

DTLZ 2 0.41768 0.20813 n = 11, k = 2, MM

(std.dev) (0.04080) (0.10050)

DTLZ 3 723.45940 153.65992 n = 11, k = 2, MM

(std.dev) (58.65155) (26.21516)

DTLZ 4 1.28054 0.43433 n = 11, k = 2

(std.dev) (0.20119) (0.21565)

Fonseca 0.75282 0.66993 n = 10, k = 2

(std.dev) (0.04957) (0.15155)

Kursawe 42.40731 39.07086 n = 3, k = 2

(std.dev) (0.04730) (1.42769)

Poloni 13.913745388 7.0603285851 n = 2, k = 2, MM, D

(std.dev) (0.4184712873) (0.6042983239)

Viennet 3.11828 2.39613 n = 2, k = 3, D

(std.dev) (0.04413) (0.11528)

Viennet 2 0.71608 0.21305 n = 2, k = 3

(std.dev) (0.01536) (0.08833)

Hereby, n denotes the number of decision variables, k the number of objectives, MM multi-modality, and
D a disconnected Pareto front of the problem. The results are averaged over 30 independent runs with a
budget of 1000 function calls, and the best values are displayed in bold

F and a randomly chosen feasible point x the probability is one that J (x) exists, and
hence, that the above considerations hold.

5 Gradient free directed search

So far, DS requires the Jacobian if the method is realized via (4). Here, we present
an alternative way to obtain such search directions ν without explicitly computing or
approximating the Jacobian. Instead, the information of function values of points near
a given point is utilized for the approximation of ν. This method can be viewed as a
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particular finite difference (FD) method, however, it has two crucial advantages over
the classical Jacobian approximation via FD: (i) fewer additional function evaluations
are required to obtain a direction ν such that Eq. (4) is satisfied, and (ii) existing
neighborhood information can be utilized leading to a further reduction of the cost.
The latter is in particular interesting in the context of set-based optimization strategies
such asMOEAs. The general idea behind themethod is as follows: given a point x0 that
is designated for local search as well as another point xi in the current population (i.e.,
the objective value is known) that is in the vicinity of x0, then the given information
can be used to approximate the directional derivative in direction

νi := (xi − x0)/‖xi − x0‖ (29)

without any additional cost (in terms of function evaluations). That is, it holds

f ′
νi

(x0) = 〈∇ f (x0), νi 〉 = f (xi ) − f (x0)

‖xi − x0‖ + O(‖xi − x0‖), (30)

where O denotes the Landau symbol. This can be seen by considering the forward
difference quotient on the line search function fνi (h) = f (x0 + hνi ).

Now assume a candidate solution x0 ∈ Rn is designated for local search and further
r search directions νi ∈ Rn , i = 1, . . . , r , are given. Then, the matrix F := JV ∈
Rk×r , where V = (ν1, . . . , νr ) ∈ Rn×r , is as follows:

F = JV = (〈∇ fi (x), ν j 〉
)
i=1,...,k, j=1,...,r . (31)

Hence, every element mi j of JV is defined by the value of the directional derivative
of objective fi in direction ν j , and can be approximated as in Eq. (30). Given JV and
a direction d, one can thus obtain a search direction via solving

JVλ = d, (32)

and then setting

ν = Vλ. (33)

We stress that the above method is not a gradient approximation via sampling (as e.g.
done in [33]) but instead a new way to get an approximation of ν without explicitly
computing the gradient.

Next we investigate the solvability and the condition of Eq. (32) which depends
both on the choice of the value of r and the position of the search directions νi to each
other. In case rank(J (x)) = k it is known that

rank(J (x)) = k ⇒ rank(JV ) = min(rank(V ), rank(J )). (34)

If on the other hand x is a critical point (and hence, rank(J (x)) < k), then it follows
by the properties of matrix multiplication that also rank(JV ) < k regardless of the
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choice of V (i.e., regardless of the number r and the choice of the search directions
νi ). This indicates that the condition number of JV can be used to check numerically
if a current iterate is already near to an end point of (DS(x0, d)). It seems to make
sense to choose the search directions orthogonal to each other. This is motivated by
the fact that κ2(JV ) ≤ κ2(J (x)) for the case that V is orthogonal which means that
the condition number κ2(JV ) can indeed be used as a stopping criterion analog to the
original DS method.

The above considerations show that already for r = k search directions νi ,
i = 1, . . . , r , one can find a descent direction ν̃ by solving Eq. (32) regardless of
n. However, by construction it is ν ∈ span{ν1, . . . , νr } which means that only a r -
dimensional subspace of the Rn is explored in one step. One would expect that the
more search directions νi are taken into account, the better the choice of ν̃ is, which
is indeed the case: for r > k, we suggest to choose analog to (5)

ν
(r)
+ := V (JV )+d. (35)

In fact, ν(r)
+ comes closer to ν+ = J (x)+d as r increases, and both vectors are equal

for r = n in case the vi ’s are chosen orthogonal to each other. This is due to the fact that
in this case VV T (i.e., the orthogonal projection onto span{v1, . . . , vr }) converges to
the identity matrix In ∈ Rn×n .

In the following we investigate empirically the influence of r on the performance
of the new gradient free DS descent method. For this reconsider MOP (26), this
time for n = 10. Consider the point x0 = (1,−1, . . . , 1,−1)T ∈ R10 and direc-
tion d = (−1,−1)T . We obtain ∇ f1(x0) = (0,−4, . . . , 0,−4)T , ∇ f2(x0) =
(4, 0, . . . , 4, 0)T , and ν+ = (−1, 1, . . . ,−1, 1)T . Choose νi = ei as the canoni-
cal unit vectors and consider the search directions ν

(r)
+ , r ∈ {2, 4, 6, 8, 10}, where

the first r search directions are taken. It follows that ν
(2)
+ = (−1, 1, 0, . . . , 0)T ,

ν
(4)
+ = (−1, 1,−1, 1, 0, . . . , 0)T etc., and ν

(10)
+ = ν+. It is ‖J (x0)ν+‖ = √

2 · 20
and ‖J (x0)ν

(r)
+ ‖ = √

2 · 2r . Figure 4 shows the Pareto front together with the images

yr = F(x0 + tν(r)
+ ), r ∈ {2, 4, . . . , 10}, for the step size t = 1. Apparently, the larger

the value of r , the more the improvement in d-direction for the same step size. This
shows—as anticipated—the trade off between cost and performance of one iteration
step depending on r . Crucial for the approximation of F is next to r the choice of the
test points xi . If the function values of points in a neighborhood N (x0) are already
known, it seems to be wise to include them to build the matrix. Nevertheless, it might
be that further test points have to be sampled to obtain a better search direction which
is motivated by the above discussion. As a rule of thumb, we have observed in our
computations that we present in the next section that r ≈ 0.4n leads to good results
for the use within MOEAs.

Assume that we are given x0 ∈ Rn as well as l neighboring solutions x1, . . . , xl ∈
N (x0). According to the discussion above, it is desired that all further search directions
are both orthogonal to each other and orthogonal to the previous ones. In order to
compute the new search directions νl+1, . . . , νr , r > l, one can proceed as follows:
compute V = QR = (q1, . . . , ql , ql+1, . . . , qn)R. Then it is by construction νi ∈
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Fig. 4 Influence of the choice of r in the DDS method

span{q1, . . . , qi } for i = 1, . . . , l, and hence

〈νi , q j 〉 = 0, ∀i ∈ {1, . . . , l}, j ∈ {l + 1, . . . , r}. (36)

One can thus e.g. set

νl+i = ql+i , i = 1, . . . , r − l

xl+i = x0 + νl+i , i = 1, . . . , r − l. (37)

Since the cost for the QR-factorization isO(n3) in termsof flops, onemay alternatively
use the Gram–Schmidt procedure (e.g., [20]) to obtain the remaining sample points
(e.g., if r − l is small and n is large). This leads to a cost of O((r − l)2n) flops. For
the special case that ν1 = x1 − x0 and ν̃2 = x̃2 − x0 are given such that {ν1, ν̃2} are
linearly independent the second search vector ν2 can be computed by

ν2 = ν̃2 − 〈ν1, ν̃2〉ν1. (38)

Having stated the basic idea of the gradient free DS (called DDS for discrete Directed
Search) we are now in the position to perform a movement both toward and along
the Pareto front as for the classical DS. For the DDS Descent Method as standalone
algorithm we refer to some studies made in [34]. More promising is the use of DDS
within set based algorithms such as MOEAs since then the search direction can be
computed for free which we will address in Sect. 6. In the following we will consider
modifications required to make the above continuation method gradient free which
makes it applicable to a broader class of problems.
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5.1 DDS continuation

A gradient free realization of the DS Continuation is mainly possible due to the idea
in (32) and (33) and the observation made in Sect. 4, namely that a local search along
x0 leads with probability one to a movement from F(x0) along the Pareto front. In
the following we describe the details about several tasks that have to be performed to
realize the continuation and will then present the algorithm.
Task 1: steering the search (a) Predictor: in the DS method, a set of predictors is
generated by computing a QR-factorization of the KKT weight α at the given point
x0. This approach can apparently not be chosen here since the computation ofα via (23)
requires gradient information. Instead, we utilize the observation that J (x0)ν points
along the Pareto front for almost all vectors ν ∈ Rn : let ν1, . . . , νk−1 ∈ Rn such that
J (x0)ν1, . . . , J (x0)νk−1 are linearly independent. Consider the QR-factorization

(J (x0)ν1, . . . , J (x0)νk−1) = QR = (q1, . . . , qk)R. (39)

Then, {q1, . . . , qk−1} is such a desired orthonormal basis, i.e., one can e.g. set dp = qi ,
i ∈ {1, . . . , k − 1}, as possible predictor direction. Also the KKT weight α can be
gained by this factorization: since qk is orthogonal to each J (x0)νi , i = 1, . . . , k − 1,
and either qk < 0 or qk > 0, it is

α = sign(qk,1)qk/‖qk‖1. (40)

Hence, by choosing test points xi in the neighborhood N (x0) of x0 and setting
νi := xi − x0, one obtains a gradient free way to get both tangent vectors and KKT
weights if J (x0)νi is approximated via (30). The cost for this is ideally given by k-1
evaluations of F , further evaluations may occur if J (x0)ν1, . . . , J (x0)νk−1 are not
linearly independent (the probability for this event, however, is zero if the xi ’s are
chosen uniformly at random). For the special case k = 2 we assume w.l.o.g. that an
improvement according to f1 is sought for (i.e., a ‘left up’ movement along the Pareto
front). Then, compute x1 ∈ N (x0) and evaluate F(x1). The desired direction given in
objective space is

dp := d̃ = F(x1) − F(x0) (41)

if f1(x1) < f1(x0), else set dp := −d̃ .
(b) Corrector: since the KKT weight α of the previous Pareto point is known (see Eq.
(40)), one can proceed as in the gradient based DS continuation method, i.e., to set
dc = −α. For k = 2, this can be expressed analytically: if dp = (a, b)T , then the
corrector direction is given by

dc = −sign(a)(−b, a)T . (42)
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Task 2: step size control (a) Predictor: the directional derivative used in the step size
control (21) can be replaced by the finite difference leading to

h̃i = ε

| fi (x1) − fi (x0)| , i = 1, . . . , k, (43)

where x1 ∈ N (x0) and ν := x1−x0. Note that if fi (x1) is close to fi (x0), then the step
size can get large. Hence, it is advisable to bound the overall step size by a maximal
value tmax .

In case Eq. (35) is used to compute the search direction ν the above step size control
cannot be used since for ν there does not exist a function value in that direction (since
it is only known that ν ∈ span(ν1, . . . , νr )). Instead, the step size in Eq. (21) can
be chosen using the following estimation of the directional derivative: given x0 and
directions νi , i = 1, . . . , r , and ν = V (JV )+d, then

〈∇ f j (x), ν〉 = 〈∇ f j (x),
r∑

i=1

λiνi 〉 =
r∑

i=1

λi 〈∇ f j (x), νi 〉 =
r∑

i=1

λim j,i , (44)

where the m j,i ’s are the entries of F .
(b) Corrector: for the corrector steps, we follow the suggestions made in [15].
Now we are in the position to explain the gradient free PC method. Starting from an
(approximate) local solution xi , the next (approximate) solution is obtained as follows
(compare to Algorithm 3). First, a predictor pi is selected by performing a step in
direction dp that points along the linearized Pareto front at F(xi ) (lines 1–4). This
point is only optimal if the Pareto set P is not bended around xi but still near to P if
the step size was chosen sufficiently small. Hence, in the second step, pi is corrected
back to the Pareto set (lines 5–8).

It is important to note that the continuation method has to be started with a (approx-
imate) solution and is of local nature. That is, there is no guarantee that the method
detects several connected components starting from one single solution, however, this
is in certain cases possible since themovement is in fact performed along the boundary
of the image which yields the possibility to reach other parts of the Pareto front. See
Sect. 6.1 for such an example.

Note further that the overall cost of the search process can be reduced significantly
by utilizing existing information. If, for instance, the predictor pi is known and the
corrector has to be performed via DDS, one can (among others) use the direction
vi = (xi − pi )/‖xi − pi‖. Since the value F(xi ) of the previous candidate solution
xi is already known, the incorporation of νi comes for free in the context of DDS.
Similar for all other points in the neighborhood of pi those images are known.

As a first example, consider the problem [27]:

f1, f2 : R2 → R, fi (x) =
2∑
j=1
j �=i

(x j − aij )
2 + (xi − aii )

4, (45)
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Algorithm 3 Gradient Free PC Step
Require: xi : (approximate) Pareto point
Ensure: xi+1: further candidate solution along Pareto front
1: compute dp and F for xi (Task 1 and Eq. (31))
2: compute νp as in Eq. (35)
3: compute tp (Task 2)
4: pi := xi + tpνp
5: compute dc and F for pi (Task 1 and Eq. (31))
6: compute νc as in Eq. (35)
7: compute tc (Task 2)
8: return xi+1 = pi + tcνc
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Fig. 5 Application of the DDS continuation method on MOP (45) for n = 2 and ε = 0.08

where a1 = (1, 1)T and a2 = −a1. Figure 5 shows one result of the gradient free
continuation method for ε = 0.08. We started the search with x0 = a1 and used
the maximum norm with radius δ = 0.3 as neighborhood. A total of 32 solutions
(i.e., correctors) were obtained where 95 function evaluations were needed. Here, a
satisfying approximation of the Pareto front was obtained for a reasonable amount of
function calls spent.

6 Numerical results

Here we present some numerical results of the DS as standalone algorithm and as local
searcher within the state-of-the-art algorithm MOEA/D [3].

6.1 (D)DS continuation

First we briefly investigate the potential of the DS Continuation Method (DS-C) as
standalone algorithm. For this, we first consider the three-objective problem DTLZ2
[35] for n = 12 those Pareto front is equal to the first quadrant of the unit sphere.
Figure 6 shows the numerical results obtained by NBI as well as from a coupling of
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Fig. 6 Numerical result for DTLZ2 for NBI and the DS Continuation: left the obtained front and right a
projection to the ( f1 − f2)-plane

DS-C and the recover algorithm [27] in order to obtain a ‘global’ view on the part of
the solution set that is already computed: first a partition of the domain is generated
via (small) boxes. Then, for every newly generated candidate solution x we checked
if the box that contains x is already associated to a solution found by DS-C. If so,
we have discarded x . Else, we have added it to the archive and have associated this
vector to the respective box. As stopping criterion for the corrector we have chosen
‖xi+1 − xi‖ ≤ 1e − 6. For NBI, we have used the quasi-normal n̂ = (−1,−1,−1)T

as proposed in [11]. Apparently, NBI misses some regions of the front (the region
which is outside the ‘n̂-shadow’ of the convex hull of individual minima) which is
not the case for the recover algorithm which captures all regions of the front. The
crucial difference is that the recover algorithm determines the search direction from
a given solution which allows in this case to find points at the boundary of the Pareto
set. Given the strong relation of DS and NBI, the recover method can thus be seen
as a possible remedy for the ‘n̂-shadow problem’. Another possible remedy is e.g.
proposed in [36]. We also compared the recover method that used DS (called R-DS)
with its original variant that uses the continuation method proposed in [18] (R-H) on
the same example. While the approximations qualities were the same—a Hausdorff
distance of the image of the solution set to the Pareto front dH = 0.03423 for R-DS
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Fig. 7 Numerical result of DDS Continuation and Zigzag Method on ZDT3

and dH = 0.03545 for R-H—this does not hold for the computational cost: R-DS
used a budget of 3696 function and 935 Jacobian evaluation while R-H spent 4786
function, 4479 Jacobian, and 13,437 Hessian evaluations.

Despite its local nature, DS-C is not necessarily restricted to the connected com-
ponents of the Pareto sets: recall that the search is performed along the boundary
of the image which yields the possibility that along it further connected components
of the Pareto front can be found. Figure 7 shows a numerical result of DDS-C on
ZDT3 [37] for n = 30 starting with the minimizer of the first objective and using the
radius δ = 0.1 for the neighborhood search. By performing a movement along the
boundary of the domain, all connected components of the Pareto front could be found.
Shown is also the result of the Zigzag Method [24] (shifted in f2-space for sake of
a better comparison) which also incorporates a movement along the boundary of the
domain. The approximation qualities obtained by both methods are very similar while
the costs differ: DDS Continuation used 2036 function evaluations while the Zigzag
Method needed 36,290 function evaluations plus another 36,290 Jacobian calls. Note
that a budget of 2036 function evaluations is equivalent to about 70 Jacobian calls if
the Jacobians are approximated by finite differences. Thus, better results by gradient
based continuation-like methods can hardly be expected.

6.2 DS coupled with MOEA/D

MOEA/D employs a decomposition approach to convert the problem of approximat-
ing the Pareto front into a certain number of scalar optimization subproblems. There
is a weight vector λi associated to each scalar subproblem i . From a practical point
of view, this weight can be used to steer the local search over this direction. Algo-
rithm 4 describes the coupling of DS (or DDS) and MOEA/D. The notation regarding
MOEA/D procedures and parameters is taken from [3]. There exist more sophisticated
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approaches to control the application of the local search for this (for example [38–40]);
most of them have been proposed for discrete domains and are valuable to explore for
future work.

Algorithm 4 Hybrid MOEA/D (MOEA/D/DS and MOEA/D/DDS)
1: Set the weight vectors λi and the neighborhoods B(i) = {i1, . . . , iT } for each decomposed problem

(λi1 , . . . , λiT are the T closest weight vectors to λi ).
2: Set up an initial population P0 = {x1, . . . , xN }.
3: Initialize the reference point z, EP = ∅, gen = 1.
4: repeat
5: for i = 1, . . . , N do
6: Select two indices k, l from B(i) and generate, using genetic operators, a new solution yi from

xk and xl .
7: Improving stage: use yi to replace xi and its corresponding x j , j ∈ B(i), regarding the corre-

sponding scalar problem to λi .
8: Apply the LS procedure to yi . (Alg. 5)
9: Update the reference point z.
10: Remove from EP all the vectors dominated by yi , and add it to EP if no vectors in EP dominate

yi .
11: end for
12: gen = gen + 1.
13: until Stopping criteria is satisfied
14: return EP.

Algorithm 5 LS Procedure (gen, i)
1: if Startls ≤ gen then
2: if mod(gen, kls ) == 0 and mod(i, hls ) == 0 then
3: if Tls has not been reached then
4: Apply, up to Dls times, the LS (DS/DDS) procedure to yi in order to get y

′
i

5: Set yi ← y′
i .

6: end if
7: end if
8: end if
9: return yi

For the sake of comparison we have used the ZDT problems [35] and tested over the
functions ZDT1 to ZDT4 (using the modifications presented in [41] in order to make
them unconstrained and differentiable over the entire domain). The parameter setting
used for this benchmark was: population size = 50, neighborhood size T = 10,
function evaluations for ZDT 1 to 3 = 5000, function evaluations for ZDT 4 =
10, 000, initial step size = 1, hls = 1, kls = 20, Startls = 20, r for DDS = 7,
Dls = 3, Tls for ZDT 1 to 3 = 500, Tls for ZDT 4 = 1000, where Tls denotes the
number of function evaluations after which the local search is not applied any more.
Further, we have used the UF functions of the CEC09-competition problem suite [42].
The code for this specific version of MOEA/D was taken from [43]. The parameters
were: population size = 120, neighborhood size T = 60, function evaluations =
50, 000, replaced neighbors Tr = 6, initial step size = 1, Dls = 3, F (for Differential
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Table 2 Results on �2 and Hypervolume indicators for the ZDT and UF problems

Problem �2 Hypervolume

MD MD/DDS MD/DS MD MD/DDS MD/DS

ZDT 1 0.52723 0.47869 0.41636 114.6688 115.8445 116.6319

(std.dev) (0.19902) (0.22428) (0.22606) (1.5695) (1.7952) (1.8084)

ZDT 2 0.91824 0.74658 0.66601 110.4825 112.1839 113.0544

(std.dev) (0.42883) (0.4998) (0.49617) (3.2805) (3.9638) (4.0418)

ZDT 3 0.81688 0.77392 0.71203 119.552 120.4113 121.2138

(std.dev) ( 0.25095) (0.25119) (0.27828) (2.6732) (2.7322) (2.8983)

ZDT 4 7.6429 7.4658 7.5273 40.2909 42.1296 41.5298

(std.dev) (2.813) (2.8661) (2.8202) (30.3759) (30.8694) (30.4259)

UF1 0.0355 0.0167 0.0198 0.9663 0.9789 0.9763

(std.dev.) (0.0015) (0.0008) (0.0005) (0.0018) (0.0013) (0.0011)

UF2 0.0277 0.0280 0.0243 0.9722 0.9731 0.9784

(std.dev.) (0.00178) (0.0025) (0.0015) (0.0020) (0.0022) (0.0015)

UF3 0.0925 0.0668 0.0798 0.9124 0.9170 0.9192

(std.dev.) (0.0034) (0.0024) (0.0023) (0.0055) (0.0034) (0.0033)

UF4 0.0878 0.0822 0.0797 0.9186 0.9261 0.9266

(std.dev.) (0.0006) (0.0004) (0.0077) (0.0008) (0.0006) (0.0095)

UF5 0.8261 1.1005 0.9493 0.7672 0.7047 0.7198

(std.dev.) (0.0166) (0.02086) (0.0197) (0.0050) (0.0047) (0.0053)

UF6 0.2918 0.2417 0.2527 0.8325 0.8537 0.8505

(std.dev.) (0.0158) (0.0115) (0.0140) (0.0073) (0.0060) (0.0064)

UF7 0.0258 0.0148 0.0137 0.9703 0.9844 0.9854

(std.dev.) (0.0035) (0.0005) (0.0005) (0.0041) (0.0063) (0.0066)

UF8 0.2441 0.1230 0.1967 0.9494 0.96642 0.9529

(std.dev.) (0.1326) (0.0674) (0.1349) (0.0185) (0.0086) (0.0181)

UF9 0.3385 0.2652 0.3535 0.9644 0.9760 0.9800

(std.dev.) (0.1004) (0.0877) (0.1337) (0.0198) (0.0228) (0.2072)

UF10 2.5567 2.3465 2.9263 0.0543 0.0807 0.0537

(std.dev.) (0.3437) (0.3277) (0.2498) (0.0390) (0.0666) (0.0343)

CONVEX 2.2122 2.1851 2.0629 0.9556 0.9560 0.9709

(std.dev.) (0.0691) (0.0481) (0.0579) (0.0026) (0.0016) (0.0051)

These results show the average and standard deviation value over 30 independent runs. In the table, MD
abbreviates MOEA/D
The best values are displayed in bold

Evolution(DE)) = 0.5, CR(for DE) = 1, start of LS application = generation
10, r for DDS = 7, hls = 1, kls = 10, Startls = 20, Tls = 1500. Different
coding for the basis MOEA/D is justified from a practical point of view, since each
particular algorithm is known to have the best performance for that corresponding
benchmark. Since it is accepted that the Tchebycheff approach is the most efficient
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Fig. 8 Numerical results for MOEA/D (diamonds), MOEA/D/DS (crosses) and MOEA/D/DDS (squares)
on the benchmark models ZDT 1 to ZDT 4. The true Pareto fronts are indicated by dotted lines

scalarization function for MOEA/D in terms of function evaluations, we have chosen
this variant for comparison for both test suites. The performance indicators used were
the averaged Hausdorff distance �2 [44] and the Hypervolume indicator [45]. Table
2 compiles the average over 30 independent runs. We can observe that MOEA/D/DS
andMOEA/D/DDS have the best values in most of the cases. Some plots of the output
population are shown in Fig. 8.

7 Conclusions and future work

We have presented the DS method for unconstrained MOPs which allows to steer
the search into any given direction d in objective space. Based on this idea we have
presented a class of descentmethods and a novel continuation procedure.Bothmethods
are applicable with and without gradient information. For the latter, neighborhood
information can be expoited which makes the DS an interesting candidate as local
searcher within memetic algorithms. We have further on illustrated both standalone
algorithms on some numerical examples and have shown the potential of DS within
MOEA/D.

As a by-product we were able to explain the behavior of multi-objective sto-
chastic local search using the DS approach. We could show that both movement
toward and along the Pareto front—which are closely related to the terms spread and
convergence—are inherent features in MOSLS which explains a facet of the huge
success of global multi-objective stochastic search algorithms such as specialized
evolutionary algorithms. We conjecture that this new insight might be interesting for
the design of future memetic strategies.

For future work, we intend to adapt DS to constrained models which is not done
yet but needs careful considerations. Further, the improvement of the hybrids of DS
and global search methods will be an important task. In this paper, we have considered
a general purpose MOEA. In order to tap the full potential of the DS, however, we
will have to specialize on particular performance indicators. The reason for this is that

123



The directed search method for multi-objective memetic... 331

such indicators implicitly transform the MOP into a scalar optimization problem, and
hence, a greedy search direction for every point is well-defined, and this direction is
even defined in objective space in case of Pareto front approximations. Hence, the DS
comes as a natural choice. Finally, an application to many objective problems (i.e.,
k > 3) by means of the hybrid MOEA would an interesting task which is, however,
strongly related to the previous problem as the ’optimal’ distribution of the solutions
along the Pareto set/front is not accepted yet.
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