
Comput Optim Appl (2016) 63:559–583
DOI 10.1007/s10589-015-9773-1

On the shortest path problem with negative cost cycles

Luigi Di Puglia Pugliese1 · Francesca Guerriero1

Received: 14 February 2014 / Published online: 18 July 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, the elementary single-source all-destinations shortest path
problem is considered. Given a directed graph, containing negative cost cycles, the
aim is to find paths with minimum cost from a source node to each other node, that
do not contain repeated nodes. Two solution strategies are proposed to solve the prob-
lem under investigation and their theoretical properties are investigated. The first is a
dynamic programming approach, the second method is based on the solution of the k
shortest paths problem, where k is considered as a variable. Theoretical aspects related
to the innovative proposed strategies to solve the problem at hand are investigated.
The practical behaviour of the defined algorithms is evaluated by considering ran-
dom generated networks and instances derived from vehicle routing benchmark test
problems.

Keywords Shortest paths · Negative cost cycles · Dynamic programming ·
k shortest paths

1 Introduction

The Shortest Path Problem (SPP) is one of the most studied problems in network
optimization [15,23,28]. The problem comes up in practice and arises as sub-problem
in many network optimization algorithms. Solution approaches for the SPP have been
studied for a long time (e.g., [8,23,29,44]). More recently, some improvements and

B Luigi Di Puglia Pugliese
luigi.dipugliapugliese@unical.it

Francesca Guerriero
francesca.guerriero@unical.it

1 Department of Mechanical, Energy and Management Engineering, University of Calabria,
87036 Rende, CS, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-015-9773-1&domain=pdf

560 L. D. P. Pugliese, F. Guerriero

computational studies have been presented by Ahuja et al. [1], Gabow and Tarjan [31]
and Goldberg [34]. The reader is referred to the works of Cherkassky et al. [12] and
Gallo and Pallottino [32] for detailed surveys.

In its basic formulation, the objective is to determine a minimum cost path through
a network from a given source node to a destination node. Several polynomial time
solution approaches have been developed in the scientific literature to address the SPP
in the case there are no negative cost cycles (e.g., see [16,23,42]). On a network with
negative arc costs, but with all cycles having non-negative costs, the best currently
known time bound O(nm) is achieved by the Bellman-Ford algorithm [8,29,44],
where n and m denote the number of nodes and arcs in the network, respectively. If
the arc costs are non-negative, implementations of Dijkstra’s algorithm [23] achieve
better bounds. In particular, an implementation presented by Fredman and Tarjan [30]
runs in O(m + n log n) time.

An interesting extension of the SPP is represented by the k shortest paths problem
(kSPP), whose aim is to find a set of k shortest paths for each node by considering
the first, the second and so on up to the k-th shortest path. Many solution approaches
have been defined to solve the kSPP (e.g., see [36]) and its loopless counterpart (e.g.,
see [43,55]). Dreyfus [25] and Yen [55] cite several additional papers on this subject
going back as far as 1957.

When negative cost cycles are present in the network, the SPP is not well defined,
that is, a finite optimal solution does not exist. In this case, the problem is to check
whether a simple cycle, whose arc costs sum up to a negative number, is present
in the network. This problem is known as Negative Cost Cycle Detection Problem
(NCCDP). It is worth noting that the NCCDP is polynomial. Several procedures have
been defined for the NCCDP. The Bellman-Ford algorithm is one of the earliest and
to date asymptotically fastest algorithm for the NCCDP [12]. Recently, Subramani
[51] has introduced a new approach for the NCCDP; the proposed solution strategy is
based on exploiting the connections between theNCCDP and the problem of checking
whether a system of difference constraints is feasible.

The scientific literature provides several works dealing with algorithms that list up
all cycles in directed as well as undirected graphs in which arc costs are not considered
[11,47]. Yamada and Kinoshita [54] addressed the problem of finding all cycles in a
directed graph with negative costs and they proposed a recursive algorithm. All the
cited references do not solve the SPP in presence of negative cost cycles, rather they
enumerate all the cycles in the network or check whether a negative cost cycle exists.

Solving the SPP in general graph means to find a shortest elementary path, i.e.,
a shortest path with distinct nodes. The elementarity requirement in a network with
negative cost cycles has been studied in the context of branch and price algorithm
for the Vehicle Routing Problem (VRP), see for instance [17]. Indeed, the pricing
problem is formulated on a cyclic graph with no restriction in the cost sign. Besides
the elementarity requirement, constraints on the consumption of resource along paths
are introduced. The scientific literature refers to this problem as the Resource Con-
strained Elementary Shortest Path Problem (RCESPP). Starting with the seminal work
of Beasley and Christofides [6], a variety of solution approaches have been developed
to solve to optimality the RCESPP (see, e.g., [20,22,39]). The single-source single-
destination version of the Elementary Shortest Path Problem (ESPP) can be viewed

123

On the shortest path problem... 561

as a particular instance of the RCESPP, where the resource consumption constraints
are removed.

In this paper, we deal with the more general case in which an elementary shortest
pathmust be found for all nodes and resource consumptions are not taken into account.
In other words, we address the single-source all-destinations version of the ESPP.
In order to solve to optimality the single-source all-destinations ESPP, we define a
dynamic programming approach, applying the concepts introduced by Boland et al.
[10] and Righini and Salani [48] for the RCESPP. In addition, an innovative method,
that is, a dynamic k shortest paths algorithm, is designed. The value of k is a variable
and may assume an arbitrary value for each node of the network.

An in depth analysis is carried out to evaluate the theoretical complexity of the
proposed solution approaches and an extensive computational phase is conducted in
order to asses the efficiency of the defined optimal solution strategies. The proposed
methods are able to solve also the single-source single-destination ESPP. However, it
is worth observing that well-tailored solution approaches for the single-source single-
destination version can be devised but this topic is out of the scope of this work. The
reader is referred to [24,38] for the latter version of the problem.

Studying the ESPP is motivated by different main issues. First, the solution
approaches for the ESPP proposed in this paper, can be used to determine lower
bounds on the optimal cost and to solve the dual Lagrangean problem associated
with the RCESPP. This information can be used to improve the performance of the
state-of-the-art methods.

Secondly, theESPPmodels the currency conversion problem [49]. Indeed,when the
nodes represent currencies and the arcs the transactions with costs equal to exchange
rates, the problem is to find the maximum product path, that is, the best exchange
sequence. The problem can be easily transformed in the SPP and, since the graph can
contain negative cost cycles, it can be viewed as an instance of the ESPP.

In addition, the ESPP is the pricing problem when the multiple traveling salesman
problem (mTSP) is solved with column-generation approaches (see, e.g. [7]). Even
though the mTSP can be used to represent a great variety of real-life applications, the
scientific literature has not devoted too much attention to this problem. The proposed
solution approaches for the mTSP are based on either the branch and bound scheme
[2,33] or focus on the transformation of themTSP to the TSP [45,46]. For this reason,
theESPP as pricing problem of themTSP has not been addressed and exact algorithms
are not available.

The paper is organized as follows. The proposed solution approaches, along with
their theoretical analysis are presented in Sect. 2. Section 3 is devoted to the discussion
of the computational results. Section 4 presents our conclusions. The paper ends with
the Appendix, where a toy example is used to show the operations executed by the
proposed algorithms.

2 Proposed solution approaches

The solution approaches proposed in this paper are based on the idea to compute the
minimum set of paths for each node such that an elementary shortest path is found for
all nodes.

123

562 L. D. P. Pugliese, F. Guerriero

2.1 Notations and definitions

Let G = (N ,A) be a directed graph where N is the set of n nodes, whereas A
denotes the set of m ≤ |N × N | arcs. N contains also the source node s. A
cost ci j is associated with each arc (i, j) ∈ A. A cycle on node i is defined as
an ordered sequence of nodes Ci = (i, j1, . . . , jg, i), where jh �= jk for all pairs
h, k ∈ {1, . . . , g} such that h �= k. It can also be viewed as a sequence of con-
secutive g + 1 arcs

(
(i, j1), . . . , (jg−1, jg), (jg, i)

) ∈ A. It is worth observing, as
shown by Allender [3], that the number of cycles in a complete graph is equal to
C̃ = ∑n

ρ=1
n!(ρ−1)!
ρ!(n−ρ)! . A path πsi from node s to node i is a sequence of nodes

πsi = (s = i1, . . . , il = i), l ≥ 2 and a corresponding sequence of l − 1 arcs
such that the h-th arc in the sequence is (ih, ih+1) ∈ A for h = 1, . . . , l − 1. Thus,
each path contains at least one arc. Let Mπ (j) be the multiplicity of node j in path
π , that is, Mπ (j) = |{v : 1 ≤ v ≤ l, iv = j}|. The path π is said to be an elementary
path if Mπ (j) = 1, for all j ∈ π . A cycle Ci on node i ∈ N is said to be a negative
cost cycle (NCC) if c(Ci) = ∑

(h,k)∈Ci
chk < 0.

Let πs j be an elementary path from node s to node j such that i ∈ πs j for some
i ∈ N \{s}. Let πsi = πs j ∪ {(j, i)} be the path obtained by extending path πs j to
node i through arc (j, i) ∈ A. Since i ∈ πs j , a cycle Ci = πi j ∪ { j, i} is created.
Proposition 1 Given a pathπs j and its sub-pathπsi , Ci is aNCC iff c(πsi) > c(πs j)+
c ji , (j, i) ∈ A.

Proof The cost of the path πs j can be viewed as the sum of the cost of the sub-path
πsi and the sub-path from i to j , that is c(πs j) = c(πsi) + c(πi j). It follows that

c(πsi) > c(πs j)+c ji ⇔ c(πsi) > c(πsi)+c(πi j)+c ji ⇔ 0 > c(πi j)+c ji = c(Ci).

(1)
This concludes the proof. �	

Since the directed graph G is not assumed to be acyclic and the arc costs are not
constrained in sign, there may be NCCs in G. The ESPP, from the source s to all other
nodes, consists in finding the paths πsi , ∀i ∈ N \{s} such that c(πsi) is minimized
and Mπsi (j) = 1, ∀ j ∈ πsi .

It is well known that the Bellman’s optimality principle does not apply for this
problem, indeed sub-paths of the optimal path for some node may not be optimal. For
more details, the reader is referred to [18].

2.2 Dynamic multi-dimensional labelling approach

The approach, presented in this section, uses the concept of critical node introduced
by Kohl [41]. In particular, a node i is said to be critical if there exists a cycle Ci

that is a NCC. A binary variable is introduced for each critical node in order to keep
track whether the node is visited. This binary variable can be viewed as a resource
associated with node i , bounded to be less than or equal to one (see [6]).

Let S = {i1, i2, . . . , i|S|}, be the set of critical nodes and r [p], p = 1, . . . , |S| be
the binary variable associated with node i p ∈ S.

123

On the shortest path problem... 563

We denote as yi = (c(πsi), ri) the label that contains the cost and the resource
consumptions vector of the path πsi from node s to node i . The resource consumptions
vector ri has the following form: ri [p] ≥ 1, ∀p : jp ∈ πsi and ri [p] = 0, ∀p : jp /∈
πsi . In other words, the vector ri keeps track of the nodes j ∈ S that are visited along
the path πsi .

Definition 1 Let y1i = (c(π1
si), r

1
i) and y2i = (c(π2

si), r
2
i) be two labels associated

with node i . The label y2i is dominated by the label y1i if c(π
1
si) ≤ c(π2

si), r
1
i [p] ≤ r2i [p]

for p = 1, . . . , |S| and at least one inequality is strict.

Definition 2 A label yi = (c(πsi), ri) associated with node i is said to be efficient or
Pareto-optimal if there does not exist a label ȳi that dominates it.

Definition 3 A label yi = (c(πsi), ri) associated with node i is said to be feasible if
ri [p] ≤ 1, ∀p = 1, . . . , |S|.

A set D(i), containing the efficient labels to node i , and the set FS(i) = { j :
(i, j) ∈ A} of successor nodes, are associated with each node i ∈ N .

The main difficulty is that the set S of critical nodes must be known in advance. the
enumerative procedure of Yamada and Kinoshita [54] could be executed to determine
the entire set of negative cost cycles. The nodes belonging to each negative cost cycle
can be used to initialize set S. However, this strategy could be inefficient, since only
a sub-set of all nodes belonging to all negative cost cycles need to be considered. In
addition, the procedure defined by Yamada and Kinoshita [54] is not polynomial.

If the set S is not known in advance, we can modify the solution approaches pre-
sented in [10,48], in order to definewell-tailored procedure for theESPP. In particular,
starting from S = ∅, a label-setting algorithm is executed. The search is stopped when
aNCC, namedCi , is detected. The set S is incremented by adding node i and the label-
setting algorithm is run again. The procedure terminates when no NCC is detected.
This approach is similar to the general state-space augmenting algorithm proposed in
[10] with the difference that the label-setting algorithm is stopped when a negative
cost cycle is detected. In Algorithm 1, we describe the steps of the aforementioned
procedure, whereas the truncated label-setting algorithm is depicted in Algorithm 2.

2.2.1 Correctness of the dynamic multi-dimensional labelling approach

In this section, we prove the correctness of the proposed solution approach. In par-
ticular, at the end of Algorithm 1, the label yi with the smallest cost among those
belonging to the set D(i) is associated with the least cost elementary path from s to i .

Proposition 2 At the end of Algorithm 2, one of the following two situations can
occur:

1. a NCC is detected, that is, the stop conditions of line 13 are verified;
2. if the procedure is stopped by condition of line 27, then all the efficient and feasible

paths from s to each other node i ∈ N \{s} are determined.
(a) At the end of each iteration, the following conditions hold:

i. D(s) = {y1s } = {(0, 0)};

123

564 L. D. P. Pugliese, F. Guerriero

Algorithm 1 : Dynamic Multi-Dimensional Labelling Approach
1: Step 1 (Initialization phase)
2: Set: ζ = 0; Sζ = ∅
3:

4: Step 2 (Run the truncated label-setting algorithm)
5: Run Algorithm 2 with critical nodes restricted to Sζ and get C .
6:

7: Step 3 (Cycle detection)
8: if C �= ∅ then
9: Sζ+1 = Sζ ∪ { j}, MC (j) = 2;
10: ζ = ζ + 1;
11: Go to Step 2.
12: else
13: STOP.
14: end if

ii. ∀ j ∈ N , if D(j) �= ∅ [i.e.: D(j) = {y1j , y2j , . . . , y�
j }] and j �= s, then

yξ
j , ξ = 1, . . . , � is a label related to a feasible path from node s to node
j and D(j) is an efficient set.

(b) Upon termination of the algorithm, if D(j) �= ∅, j ∈ N and j �= s, then D(j)
contains the labels of all efficient and feasible paths from node s to node j .

Proof Let us consider case 1. The conditions of line 13 derive from Proposition 1.
Thus, if they are verified, then a NCC is detected. If case 1 does not occur, then all
NCCs have been forbidden and the algorithm terminates when the list L is found
empty, that is, case 2.

In what follows, we prove case 2.
Let us consider case 2a. Condition 2(a)i holds because, initially, D(s) = {y1s } =

{(0, 0)} and, by the rules of the algorithm, D(s) cannot change.
We prove condition 2(a)ii by induction on the iteration count. Indeed, initially,

condition 2(a)ii holds, since node s is the only node forwhich the set D(s) is nonempty.
Suppose that 2(a)ii holds for some node j at the beginning of some iteration. Let yδ

i
be the label removed from L .

If i = s (which only occurs at the first iteration) and δ = 1, then at the end of this
iteration, we have D(j) = y1j for all successor nodes j of s such that the corresponding
path πs j is feasible, D(j) = ∅ for all other nodes j �= s, j /∈ FS(i). Thus, the set of
labels has the required property.

If i �= s, then yδ
i is the label of some feasible path πδ

si starting from s and ending to
i that is not dominated by the other paths in D(i), by the induction hypothesis. If the
set D(j) changes, for some node j , such that j ∈ FS(i), as a result of the iteration, a
new feasible label ȳ j = (c(π̄s j), r̄ j) is obtained for node j . The created label is related
to the feasible path πs j consisting of path πδ

si followed by the arc (i, j). Finally, note
that, by the rules of the algorithm, the newly created label is added to D(j) only if it
is an efficient label. This completes the induction proof of 2(a)ii.

123

On the shortest path problem... 565

Algorithm 2 : Truncated label-setting algorithm with Sζ

1: Step 1 (Initialization phase)
2: Set: y1s = (0, 0); D(s) = {y1s }; D(j) = ∅, ∀ j ∈ N \{s}; L = {y1s }; C = ∅.
3:

4: Step 2 (Label selection)
5: Select the lexicografically minimal label yξ

i from the list L and remove it from L .
6:

7: Step 3 (Label extension)
8: for all j ∈ FS(i), j �= s do
9: Set: π̄s j = π

ξ
si ∪{(i, j)}; c(π̄s j) = c(πξ

si)+ci j ; r̄ j [p] = r ξ
i [p], p = 1, . . . , |Sζ |;

10: if j ∈ Sζ then
11: r̄ j [p̂] = r̄ j [p̂] + 1 with i p̂ = j .
12: end if
13: if j /∈ Sζ and j ∈ π

ξ
si and c(π̄s j) < c(πξ

s j) then
14: STOP. A NCC C is detected.
15: Return C .
16: else
17: if r̄i [p] ≤ 1, p = 1, . . . , |Sζ | then
18: if ȳ j = (c(π̄s j), r̄ j) is not dominated by any label in D(j) then
19: D(j) = D(j) ∪ {ȳ j }; L = L ∪ {ȳ j };
20: remove from D(j) and L all the labels that are dominated by ȳ j .
21: end if
22: end if
23: end if
24: end for
25:

26: Step 4 (Termination check)
27: if L = ∅ then
28: STOP. The label yi = argminȳ∈D(i){c(π̄si)} is associated with the optimal

elementary path from s to i , ∀i ∈ N .
29: Return C .
30: else
31: Go to Step 2.
32: end if

Let now consider condition 2b. Using part 2(a)ii, we have that, at each iteration,
∀ j ∈ N such that D(j) �= ∅, D(j) is an efficient set. Thus, the property mentioned
is also satisfied when the algorithm terminates. In addition, the way in which the
candidate list L is updated and the termination condition (i.e., the algorithm terminates
when there are no more labels left to be scanned) guarantee that all the labels with
the potential to determine a new label for at least one node are scanned during the
execution of the algorithm. �	
Proposition 3 (Correctness of Algorithm 1) At the end of Algorithm 1, the label yi
with the smallest cost among those belonging to the set D(i) is associated with the
least cost elementary path from s to i, ∀i ∈ N .

123

566 L. D. P. Pugliese, F. Guerriero

Proof From Proposition 2, it follows that all the efficient and feasible labels
yi ,∀i ∈ N , are determined. Since the set D(i) is an efficient set, the path π̄si

= argminy∈D(i){c(πsi)} has minimum cost among all the feasible paths from s to i ,
that is, π̄si is the optimal solution ∀i ∈ N . �	

2.2.2 Complexity analysis

The complexity of Algorithm 1 is O(n22n), in the worst case. This result is formally
stated in the following lemma.

Lemma 1 In the worst case, the complexity of Algorithm 1 is O(n22n).

Proof The total number of efficient labels is at most 2|S|. Thus, at most 2|S| labels are
selected from set L . Since each label contains |S| + 1 elements, the total number of
operations required by the dominance check is bounded by |S|2|S|. Thus, the com-
plexity of Algorithm 2 is O(|S|22|S|). A node i is added to the set S at each iteration
of Algorithm 2. Since the cardinality of set S is n in the worst case, the complexity of
Algorithm 1 is O(n22n). �	

The scientific literature proposes a relaxation of the elementary constraint by con-
sidering a surrogate resource γ which counts the number of nodes in the path.

This idea was proposed by Feillet et al. [26] and applied by Righini and Salani
[48] for solving the RCESPP. It is worth observing that [26,48] consider the single-
source single-destination case. In their approach, a labelling algorithm is executed and
labels with γ > |N | are declared unfeasible. At the end of the algorithm, if the path
is acyclic, then it is the optimal elementary path, otherwise, the repeated nodes are
added to the set S. In our algorithm, the labelling procedure (Algorithm 2) is stopped
when a cycle is detected, thus the resource γ does not make sense. The approach to
augment the set S is the same of that proposed by Boland et al. [10] and by Righini
and Salani [48]. The difference is that in the latters the optimal path has to be found
for a single destination. For more details, the reader is referred to [19,22]. In [37] the
authors proposed a new state-space reduction technique combined with the strategies
defined in [48]. This strategy cannot be extended to the single-source all-destinations
version of the ESPP.

For a numerical example illustrating the operations executed by Algorithm 1 the
reader is referred to the Appendix.

2.3 Labelling approach based on the k shortest paths problem

In this section, we describe a labelling approach in which the first k paths are deter-
mined for each node i ∈ N . The aim of the procedure is to determine the smallest
set of paths for each node i . Under this respect, k is a variable and can take different
values for each node. The main idea is to start with k = 1 for each node. Whenever
a NCC is detected, k is incremented for a specific node and the labelling algorithm is
run again. When no NCC is detected, from the set of paths associated with each node,
the optimal solution is chosen.

123

On the shortest path problem... 567

It is worth observing that when the kSPP is solved, the paths are ranked by non-
decreasing cost. In our context, it is necessary to store equivalent paths. This is
necessary because paths with the same cost can have a different structure, that is,
they can contain different nodes.

Let Ki be the number of best paths from node s to node i . The set	i contains the Ki

paths ordered by non-decreasing cost, that is, c(πk
si) ≤ c(πk+1

si), ∀k = 1, . . . , Ki −1.
For the case of q equivalent paths, that is, c(πk

si) = c(πk+1
si), k = h, . . . , h + q,

with h ≥ 1 and h + q ≤ Ki we have that πk
si �= π

p
si , k = h, . . . , h + q − 1 and

p = k + 1, . . . , h + q − 1.

Definition 4 Set	i ,∀ i ∈ N is said to be path-elementary, if each pathπk
si ∈ 	i , k =

1, . . . , Ki does not contain repeated nodes.

A vector yi ∈ R
Ki is associated with each node i and stores the costs of the paths

belonging to the set 	i , that is, yi [k] represents the cost of path πk
si ∈ 	i .

Every time a NCC C is detected, the number of paths that have to be found for each
node i ∈ C is increased, that is, Ki = Ki + 1, ∀i ∈ C , and the labelling algorithm is
executed again. When no NCC is detected, yi [1] is the cost of the optimal elementary
shortest path from node s to node i ∈ N .

The proposed solution approach iteratively solves the kSPP for a fixed value of
Ki , ∀i ∈ N . The steps of the labelling procedure are depicted in Algorithm 3. It is
iteratively run after that Ki , ∀i ∈ N , is coherently updated. The dynamic labelling
solution strategy is reported in Algorithm 4.

2.3.1 Correctness of the dynamic labelling approach

In this section, we prove the correctness of the proposed solution approach. In partic-
ular, at the end of Algorithm 4, π1

si is the least cost elementary path from s to i .

Proposition 4 At the end of Algorithm 3, we have one of the following two cases:

1. a NCC is detected, that is, conditions of line 9 are verified;
2. if condition of line 30 is verified, then all the first Ki elementary paths are deter-

mined for each node i ∈ N , that is, sets 	i , ∀i ∈ N , are path-elementary.
(a) At the end of each iteration, the following conditions hold:

i. ys[1] = 0;
ii. ∀i ∈ N \{s}, if yi [k] �= +∞, then πk

si is an elementary path.
(b) Upon termination of the algorithm, 	i , ∀i ∈ N , is path-elementary.

Proof Let us consider case 1: The first part of conditions in line 9, that is, yi [k] �=
+∞, ∀k ∈ {1, . . . , Ki }, checks whether all the Ki paths to node i are determined.
The second one checks whether it is not possible to generate at least one elementary
path. The third part derives from Proposition 1, thus if it is verified for some k̄, a
NCC is found and the algorithm terminates. It follows that the presence of a NCC
is verified only if the entire set of paths from node s to the considered node i are
determined. If case 1 does not occur, then the determined value Ki is sufficient to
skip NCCs involving node i, ∀i ∈ N , and the algorithm terminates when the list L is
found empty, that is, case 2.

123

568 L. D. P. Pugliese, F. Guerriero

Algorithm 3 : Truncated labelling algorithm for dynamic kSPP
1: Step 1 (Initialization phase)
2: Set: ys[1] = 0; yi [k] = +∞, k = 1, . . . , Ki , ∀i ∈ N \{s};π1

ss = {s},	s = {π1
ss};

	i = ∅,∀i ∈ N \{s}; L = {s}; C = ∅.
3:

4: Step 2 (Node selection)
5: Select a node i from L and delete it from L .
6:

7: Step 3 (Label extension)
8: for all j ∈ FS(i), j �= s do
9: if yi [k] �= +∞, ∀k ∈ {1, . . . , Ki } and �k̂ : j /∈ π k̂

si and ∃k̄ : j ∈ π k̄
si , yi [k̄] +

ci j < y j [1] then
10: STOP. A cycle C = π k̄

si ∪ {(i, j)} is detected.
11: Return C .
12: else
13: for all k = 1, . . . , Ki : yi [k] �= +∞, j /∈ πk

si do
14: for all ξ = 1, . . . , K j do
15: if yi [k] + ci j < y j [ξ] or (yi [k] + ci j = y j [ξ] and πk

si ∪ {(i, j)} �= π
ξ
s j)

then
16: y j [δ + 1] = y j [δ], δ = ξ, . . . , K j − 1;
17: πδ+1

s j = πδ
s j , δ = ξ, . . . , K j − 1;

18: y j [ξ] = yi [k] + ci j ;

19: π
ξ
s j = πk

si ∪ {(i, j)};
20: 	 j = 	 j ∪

{
π

ξ
s j

}

21: add node j to L if it does not already belong to it.
22: BREAK
23: end if
24: end for
25: end for
26: end if
27: end for
28:

29: Step 4 (termination check)
30: if L = ∅ then
31: STOP. yi [1] is the cost of the optimal elementary path π1

si .
32: Return C .
33: else
34: Go to Step 2.
35: end if

Case 2: Let us consider case 2a. Condition 2(a)i holds because, initially, ys[1] = 0
and, by the rules of the algorithm, ys[1] cannot change.

We prove condition 2(a)ii by induction on the iteration count. Indeed, initially,
condition 2(a)ii holds, since node s is the only node for which the cost is not equal

123

On the shortest path problem... 569

Algorithm 4 : Dynamic Labelling Approach
1: Step 1 (Initialization phase)
2: Set: ζ = 0; Ks = 1; K ζ

i = 1 ∀i ∈ N \{s}.
3:

4: Step 2 (Run the truncated labelling algorithm)
5: Run Algorithm 3 with K ζ

i , i ∈ N and get C .
6:

7: Step 3 (Cycle detection)
8: if C �= ∅ then
9: K ζ+1

i = K ζ
i + 1, ∀i ∈ C , K ζ+1

i = K ζ
i , ∀i ∈ N \C ;

10: ζ = ζ + 1;
11: Go to Step 2.
12: else
13: STOP.
14: end if

to +∞. Suppose that 2(a)ii holds for some node j at the beginning of some iteration.
Let i be the node removed from L .

If i = s (which only occurs at the first iteration), then at the end of this iteration,
we have y j [1] �= +∞ for all successor nodes j of s and the corresponding path
πs j = {(s, j)} is elementary, and y j [1] = +∞ for all other nodes j �= s, j /∈ FS(i).
Thus, the set of paths has the required property.

If i �= s, then yi [k] is the cost of the k-th path πk
si starting from s and ending to i

that does not contain repeated nodes, by the induction hypothesis. If y j [k] changes, for
some node j ∈ FS(i) and k, then a new path is obtained for node j . The created path
πk
s j consists of path πk

si followed by the arc (i, j). Finally, note that, by the rules of

the algorithm, the newly created path is elementary because j /∈ πk
si . This completes

the induction proof of 2(a)ii.
Let now consider condition 2b. Using part 2(a)ii, we have that, at each iteration,

πk
s j , ∀ j ∈ N such that y j [k] �= +∞ is an elementary path. Thus, the property

mentioned is also satisfied when the algorithm terminates. In addition, the way in
which the candidate list L is updated and the termination condition (i.e., the algorithm
terminates when there are no more nodes left to be scanned) guarantee that all the
nodes with the potential to determine a new path for at least one node are scanned
during the execution of the algorithm. �	
Proposition 5 (Correctness of Algorithm 4) At the end of Algorithm 4, π1

si is the
optimal path from node s to node i, ∀i ∈ N .

Proof The algorithm terminates when no cycle is detected. From Proposition 4, we
know that if no cycles are detected, then Algorithm 3 provides the path-elementary
set	i , ∀i ∈ N , containing the first Ki elementary paths (see part 2 of Proposition 4).
Since the paths are ordered in non-decreasing order of the cost, the path π1

si belonging
to each set 	i represents the least cost path. In addition, being 	i path-elementary,
π1
si is the optimal path. �	

123

570 L. D. P. Pugliese, F. Guerriero

2.3.2 Complexity analysis

Let K be the highest number of paths to some node i at the end of the Algorithm 4,
that is, K = maxi∈N {|Ki |}. In the worst case, |Ki | is equal to the number of cycles
involving node i . We know that the number of cycles Ci in a complete network is
equal to

∑n−1
ρ=1

∏ρ
β=1(n − β), where ρ indicates the number of nodes, different from

i , included in the cycles. Since Ki is incremented for each node i included in the
detected cycles C (see line 9 of Algorithm 4), |Ki | assumes, in the worst case, the
following value:

∑n−1
ρ=1(ρ + 1)

∏ρ
β=1(n − β).

Lemma 2 In the worst case, the complexity of the Algorithm 4 is O(n2K 4).

Proof The running time of one iteration of the inner forloop in line 14 of Algorithm
3 is O(K). Since the forloops of line 13 and 14 of Algorithm 3 take K 2, the number
of iterations in lines 13 – 25 of Algorithm 3 isO(K 3). The FS contains at most n − 1
elements, thus lines 8 – 27 of Algorithm 3 performO(nK 3) operations. The forloop of
line 8 of Algorithm 3 is invoked nK times. Consequently, Algorithm 3 takesO(n2K 4).
�	

Anumerical example illustrating the operations executed byAlgorithm4 is reported
in the Appendix.

3 Computational experiments

The aim of this section is to evaluate the behaviour of the proposed solution approaches
and to compare them in terms of computational cost. The proposed algorithms have
been coded in Java and tested by using an Intel(R) core(TM) i7 CPUM620, 2.67 GHz,
ram 4.00 GB, under a Microsoft 7 operating system. In the next section, we present
the considered instances and how they were generated.

3.1 Test problems

The computational results are carried out on two groups of test problems. The first
one is composed of random networks, the instances belonging to the second group are
derived from VRP benchmark test problems.

The test problems of the first group (i.e., fully random networks) have been gener-
ated randomly by using the Netgen generator of Klinglman et al. [40]. In particular,
we consider networks with number of nodes n belonging to {300, 350, 400, 450, 500}
and for each value of n we consider three arc densities, that is, 10, 30 and 50. With
these parameters, the minimum and maximum number of arcs are 3000 and 25000,
respectively. The cost ci j ,∀(i, j) ∈ A is randomlygenerated from the interval [0, 100].

For each network, a given number of instances have been generated, in such a way
that at least a fixed number of negative cost cycles is present. The procedure used to
build the test problems is detailed in what follows. Let #c be the number of negative
cost cycles and let leng be the number of arcs belonging to a given cycle. For each
fully random network, we have generated 30 instances by letting #c = 1, . . . , 30. In

123

On the shortest path problem... 571

Table 1 Characteristics of the
CVRP benchmark instances

Set Paper |Set | Nodes

Min Max

F [27] 3 45 135

A − A [4] 27 32 80

A − B [4] 23 31 78

A − P [4] 24 16 101

CE [14] 13 13 101

S [50] 6 50 100

B [53] 60 100 100

CMT [13] 14 50 199

T [52] 13 75 385

GWKC [35] 20 200 483

other words, each instance has a number of cycles at least equal to #c. The value leng
has been randomly chosen in the interval [2, 5].

The procedure used to build the test instances relies on the solution of the shortest
path problem for each fully random network, obtaining a tree T . Let πi j be the path
from node i to node j in T . Exactly #c cycles are chosen by selecting #c arcs (j, i) ∈
A\T . Each cycle C#c

i , #c = 1, . . . , 30 is composed by the arcs belonging to the path
πi j and by the arc (j, i). Starting from each leaf node and exploring the related branch
by following only inverse arcs, the first path πi j , from which it is possible to generate
a cycle with leng nodes is selected. The cost c ji of arc (j, i) is modified in order to
obtain a new cost c̄ j i = c ji − c(C#c

i) − 1. It follows that evaluating the cost of the
cycle C#c

i considering the new cost c̄ j i we have c̄(C#c
i) = −1.

It is worth observing that the procedure described above does not ensure that exactly
#c negative cost cycles are introduced, but the value #c indicates the minimum number
of negative cost cycles present in the network.

The second group of instances are derived from Capacited VRP (CVRP) test prob-
lems taken from the scientific literature. We have considered ten sets of test problems.
Each set is associated with the scientific contribution in which the corresponding test
problems have been introduced for the first time.

Table 1 shows the name of each set, the paper in which the related test problems
have been introduced, the number of problems and the characteristics of the instances
in terms of number of nodes (i.e., the maximum and the minimum number of nodes
over the networks belonging to the considered set are reported).

In order to test the algorithm for the ESPP on the CVRP test problems, we have
considered the related RCESPP, that is, the pricing problem obtained when a branch
and price approach is used to solve the CVRP. First, we have modified the CVRP
test problems by adding a prize at each node. As described in [48], the value of each
prize can be chosen in the range [1, 20]. The cost of a path is the sum of the cost
associated with the arcs minus the prizes collected at the nodes. Second, we get the
ESPP instances by considering the Lagrangean relaxation of the RCESPP. Indeed,
given a Lagrangean multiplier, the problem is an instance of the ESPP. For each

123

572 L. D. P. Pugliese, F. Guerriero

RCESPP test problem we have considered 20 ESPP instances by choosing several
values for the Lagrangean multiplier. These values are selected in a such way that
instances with different degree of complexity are obtained: the lower the value of the
Lagrangean multiplier, the more difficult the ESPP instances. As suggested in [6],
the Lagrangean multiplier is set equal to 0.1, 0.2, . . . , 2 for the 1st , the 2nd , . . . , the
20th ESPP instances. Thus we have tested 4060ESPP instances.

3.2 Test codes

The codes considered in this work are named DMLA, implementing Algorithm 1
described in Sect. 2.2; and the code DLA is related to Algorithm 4, defined in Sect.
2.3.

Considering DLA, in order to select a node from L , see line 5 of Algorithm 3, we
implement the FIFO strategy. In addition, at each iteration, the costs for each node are
inizialized by considering the partial solutions obtained in the previous iteration. In
particular, the set L contains all nodes such that at least one path has been determined
in the previous iteration and the labels are those available at the end of the previous
iteration. Of course, for the nodes belonging to the detected cycle, the dimension of
the associated label is incremented by one. This type of initialization speeds up the
search process at each iteration.

The same type of initialization is not possible for DMLA. Indeed, at each iteration,
an additional resource is introduced, augmenting the dimension of each label. Since
the efficiency of a solution is affected by the dimension of the associated label, a
solution that in the previous iteration was dominated, with the new definition of the
label could represent an efficient sub-path. For this reason, in DMLA the initialization
is that reported in Algorithm 2.

3.3 Computational results

In this section, we analyze the behaviour of the proposed solution approaches. In the
next section we focus on the results collected when solving the first group of instances,
that is, the fully random networks. In Sect. 3.3.2, the resulting best performing algo-
rithm on the first group of instances is tested on the second one.

3.3.1 Computational results on the fully random networks

The collected results are organized in three classes. The first one is related to the
instances with #c ∈ [1, 10], the second class to those with #c ∈ [11, 20] and the
results obtained on the instances with #c ∈ [21, 30] belong to the third class. In what
follows, we present a summary of the collected computational results. Amore detailed
accounting of the experiments is given in [18].
Results for DMLA. The results are collected in Table 2, where the average execution
time (column time) and the average number of iterations (column iter) are reported
for each value of the indicator #c. It is worth observing that the column iter reports
the average number of executions of Algorithm 2 in Algorithm 1. As expected, the

123

On the shortest path problem... 573

Table 2 Average execution time in ms and average number of iterations obtained by DMLAwhen solving
the first, the second and the third class of test problems

DMLA
#c Time Iter #c Time Iter #c Time Iter

1 68.64 1.07 11 3411.22 18.00 21 49217.28 39.33

2 127.92 2.27 12 4501.15 20.07 22 57689.17 41.53

3 217.36 3.67 13 6140.20 22.40 23 73947.59 43.60

4 434.72 5.80 14 7985.17 24.67 24 93819.00 45.13

5 582.40 7.40 15 11858.16 27.53 25 117422.99 46.93

6 885.05 9.33 16 14540.33 29.93 26 148047.03 48.47

7 1215.77 11.00 17 20057.57 32.53 27 208258.21 50.73

8 1886.57 13.20 18 26119.77 34.93 28 351173.85 53.93

9 2338.98 14.60 19 33535.01 36.93 29 438542.73 55.47

10 3063.86 17.00 20 42470.75 39.47 30 599554.48 57.87

AVG 1082.13 8.53 17061.93 28.65 213767.23 48.30

Fig. 1 Average execution time and average number of iterations of DMLA as a function of the indicator
#c of the number of negative cost cycles

computational results underline that the higher the number of negative cost cycles,
the higher the execution time. Table 2 shows that the computational cost for solving
the second and the third class of instances is 15.77 and 197.54 times higher than the
execution time required to solve the instances of the first class.

This behaviour can be justified by considering the number of iterations. Indeed,
DMLA performs, on average, 8.53, 28.65 and 48.30 iterations, for the instances
belonging to the first, the second and the third class, respectively. Figure 1 shows the
trend of the average computational cost and the average number of iterations with
respect to the indicator #c of the number of negative cost cycles.

From Figure 1, it is clear that the computational cost grows exponentially with
respect to the increase of the number of negative cost cycles, whereas, a linear trend
is observed for the number of iterations. This behaviour is due to the fact that the
higher the number of negative cost cycles, the higher the execution time per iteration.
In particular, the time per iteration grows exponentially with the indicator #c of the
number of negative cost cycles. This trend is shown in Figure 2.

123

574 L. D. P. Pugliese, F. Guerriero

Fig. 2 Average execution time
per iteration of DMLA as a
function of the indicator #c of
the number of negative cost
cycles

Table 3 Average execution time in ms and average number of iterations obtained by DLA when solving
the first, the second and the third class of test problems

DLA
#c Time Iter #c Time Iter #c Time Iter

1 98.80 3.27 11 573.04 33.20 21 1045.21 71.13

2 133.12 4.87 12 635.44 36.33 22 1128.41 76.87

3 151.84 6.73 13 659.36 38.60 23 1210.57 85.73

4 166.40 8.93 14 693.68 40.73 24 1290.65 92.07

5 197.60 11.13 15 747.77 46.07 25 1278.17 95.00

6 210.08 12.47 16 887.13 54.00 26 1361.37 102.87

7 234.00 15.87 17 957.85 57.73 27 1551.69 113.07

8 276.64 18.67 18 975.53 60.67 28 1982.25 135.87

9 372.32 22.47 19 925.61 59.60 29 2415.94 162.07

10 392.08 25.00 20 1054.57 66.27 30 2482.50 176.40

AVG 223.29 12.94 811.00 49.32 1574.67 111.11

A possible explanation of this trend can be found by considering the dimension
of the state-space induced by the definition of the labels. Indeed, the state-space is
composed by states associated with efficient partial solutions. The number of Pareto-
optimal solutions is strongly related to the dimension of the labels. Indeed, the higher
the number of negative cost cycles, the higher the dimension of the labels due to the
fact that a higher number of additional node resources must be introduced. In addition,
as shown in [5,9,21], the number of non-dominated solutions increases exponentially
with the size of the labels. As a consequence, the state-space grows exponentially with
the increase of the number of the negative cost cycles.
Results for DLA. In Table 3, we report the average computational cost under column
time and the average number of times Algorithm 3 is called by Algorithm 4 under
column iter, for each value of the indicator #c. As expected, the higher the number
of negative cost cycles the higher the execution time. Indeed, the computational cost
for solving the instances belonging to the second and the third class is 3.63 and 7.05
times higher than that required for the instances of the first class. This behaviour is
justified by the number of iterations executed by DLA. In particular, DLA performs
3.81 and 8.59 times higher number of iterations for the second and the third class of

123

On the shortest path problem... 575

Fig. 3 Average execution time and average number of iterations of DLA as a function of the indicator #c
of the number of negative cost cycles

Table 4 Average execution
time in ms and average number
of iterations varying the density

Density DMLA DLA

Time Iter Time Iter

10 56.14 28.23 0.30 52.51

30 83.49 28.62 0.64 50.56

50 92.29 28.63 1.67 70.29

instances, respectively, than that executed by the algorithm for solving the instances
belonging to the first class.

Figure 3 shows the trend of the computational cost and the number of iterations
executed by DLA.

From Figure 3, it is evident that both the execution time and the number of iterations
present the same trend. In particular, both parameters show a linear trend. However, the
average execution time and the average number of iterations grow faster for #c > 26
than the increasing observed for #c ≤ 26.
Comparison The results underline that DLA behaves the best. Indeed, on average,
DMLA is 88.89 times slower than DLA. However, it is worth observing that the
number of iterations performed by DLA is 2.03 times higher than that of DMLA.
The worst performance in terms of computational cost of DMLA is due to the average
time per iteration. Indeed, the time per iteration obtained with DLA is 93.87 times
lower than that of DMLA.

Table 4 shows the performance of DMLA and DLA varying the density, that is, the
ratio between the number of arcs and the number of nodes. Density does not seem to
strongly affect the number of iterations executed by DMLA, that are almost the same
for all three different values of density tested. In addition, the computational time of
DMLA increases, on average, by the 45% and 11% when the density value varies
from 10 to 30 and from 30 to 50, respectively. In addition, the execution time is less
than doubled when the density increases from 10 to 50. The results summarized in
Table 4 underline a different situation for DLA, whose performance is more affected
by the density than DMLA. Indeed, when the density increases from 10 to 30 and from
30 to 50 the execution time of DLA increases more than 2 and 2.5 times, respectively.
In addition, the computational time is multiplied by a factor of five when the density
increases from 10 to 50.

123

576 L. D. P. Pugliese, F. Guerriero

Fig. 4 Average execution time
in ms of DMLA and DLA as a
function of the indicator #c of
the number of negative cost
cycles

From Figure 4, it is possible to observe that the higher the number of negative
cost cycles, the higher the difference, in terms of execution time, between DLA and
DMLA. More specifically, DLA is 4.85, 21.04 and 135.75 times faster than DMLA
for the instances belonging to the first, the second and the third class, respectively.

The DLA behaves better than DMLA for two main reasons: 1) DMLA is strongly
affected by the dimension of the label; 2) DLA takes advantage of the fact that it main-
tains the partial solutions at each iteration. This aspect justifies the lower computational
cost per iterations.

3.3.2 Computational results on CVRP benchmark instances

In this section, we evaluate the behaviour of the best performing algorithm, that is,
DLA by considering the CVRP benchmark instances. An execution time limit of one
hour for each instance has been imposed.

The results collected on the corresponding ESPP instances are summarized in
Table 5. We report the name of the set under the first column, the column min λ

reports the minimum value of the Lagrangean multiplier such that at least one instance
is solved, the last three columns show the numerical results obtained. In particular,
for each set, we have considered average results for each value of the Lagrangean
multiplier. Under column min, we report the minimum values related to the time
(in seconds), number of iterations (iter), number of distinct cycles (cycles) detected
during the execution of the DLA and the percentage (%) of the instances solved,
evaluated over all the average results, obtained for each value of the multiplier. Under
column max the maximum values and under column mdm the medium values on all
the instances associated with each set. It is worth observing that the first six sets, that
is, F, A − A, A − B, A − P, CE , and S contain instances associated with CVRP
test problems for which the optimal solution is known. The remaining four sets are
composed of instances for which the related CVRP test problems are not solved to
optimality.

The average results reported in Table 5 (see rowAVG) underline that on all the con-
sidered test problems, in the medium case, the 60% of instances are solved within the
time limit of one hour. In the worst case, only the 21% of instances is solved, whereas
95% of instances are solved in the best case (see row AVG, columnmax of Table 5). It
is worth observing that for the first six sets, at least one instances with the Lagrangean
multiplier equal to 0.1 is solved (see column min λ of Table 5). For the remaining

123

On the shortest path problem... 577

Table 5 Results obtained on the
instances derived from CVRP
benchmark test problems

The time is given in seconds

Set Min Min mdm Max
λ

F 0.1 Time 0.00 0.61 3.57

Iter 1.00 50.35 269.00

Cycles 0.00 2.73 13.00

% Solved 33% 83% 100%

A − A 0.1 Time 0.04 74.88 828.83

Iter 11.81 458.45 2262.09

Cycles 2.04 13.29 33.50

% Solved 7% 79% 100%

A − B 0.1 Time 0.00 146.92 1015.13

Iter 1.00 948.93 3227.60

Cycles 0.00 14.56 36.60

% Solved 4% 35% 96%

A − P 0.1 Time 0.00 29.38 360.37

Iter 1.00 171.47 1273.20

cycles 0.00 4.28 15.83

% Solved 4% 73% 100%

CE 0.1 Time 0.00 19.85 380.31

Iter 1.00 103.89 1028.00

cycles 0.00 2.64 8.80

% solved 38% 76% 100%

S 0.1 Time 0.10 11.28 111.27

Iter 11.33 173.58 816.00

Cycles 0.33 3.15 17.00

% Solved 50% 78% 100%

B 0.7 Time 0.03 168.22 941.88

Iter 4.12 997.60 3134.00

Cycles 0.95 18.77 33.00

% Solved 2% 35% 100%

CMT 0.6 Time 0.19 305.52 906.53

Iter 61.25 1092.18 4975.75

Cycles 3.75 11.79 27.50

% Solved 14% 29% 57%

T 0.6 Time 11.31 208.41 892.76

Iter 195.83 1248.68 2775.00

Cycles 11.67 25.18 51.60

% Solved 38% 49% 92%

GWKC 0.3 Time 0.27 18.34 221.11

Iter 1.00 96.94 926.50

Cycles 0.00 4.73 17.67

% Solved 15% 64% 100%

AVG Time 1.19 98.34 566.18

Iter 28.93 534.20 2068.71

cycles 1.87 10.11 25.45

% Solved 21% 60% 95%

123

578 L. D. P. Pugliese, F. Guerriero

sets, DLA is able to solve at least one instance with the Lagrangean multiplier equal
to 0.7, 0.6, 0.6, and 0.3 for set B, CMT, T , and GWKC , respectively.

In addition, even though the best performance is observed for the first six sets of
instances, the results collected on the other sets can be considered satisfactory. Indeed,
the average percentage of solved problem is of 17, 44 and 87% in the worst, medium
and best case, respectively.

4 Conclusions

In this paper we have investigated the shortest path problem in presence of negative
cost cycles. This study is the first attempt to provide solution methods for the single-
source all-destinations shortest path problem with negative cost cycles. The scientific
literature provides strategies that are able to determine the presence of negative cost
cycles and algorithms for solving the elementary shortest path problem on graph with
negative cost cycles in conjunction with resource consumption constraints.

Two different strategies have been devised to solve to optimality the problem under
investigation. The main idea behind the proposed solution approaches is to compute,
for each node, the minimum number of paths such that the shortest paths from the
source node to all others nodes are determined. In addition, the two methods dynam-
ically increase the number of paths that have to be found for some node. The main
difference among the proposed approaches is related to the way in which the num-
ber of paths is incremented. In the first method, the number of paths that have to be
found is determined by considering a dummy node resource that keeps trace about
the visiting at the node. This results in a constrained multi-objective shortest path in
which the node associated with the dummy resource can be visited only once along
the paths. The second proposed approach is based on the idea behind the k shortest
paths methods. In particular, the value of k is different per node and it is incremented
each time a further path that passes through such a node is needed in order to avoid a
negative cost cycle. The theoretical complexity of the proposed solution approaches
in the worst case is derived.

The proposed optimal strategies have been evaluated empirically on a large set of
test problems. In particular, we have considered two groups of instances. The first one
refers to fully random networks, the second group contains the instances derived from
vehicle routing problem benchmarks. Referring to the first group of instances, we
have considered instances with up to 500 nodes and 25000 arcs with 30 negative cost
cycles at least present in the networks. The experiments underline the superiority of the
innovative strategy based on the k shortest paths problem. Indeed, it outperforms the
dynamic programming based approach. In particular, the best performing algorithm
is able to solve the instances based on fully random networks with 500 nodes, 25000
arcs and at least 30 negative cost cycles in about 5 seconds.

The proposed method based on the k shortest paths problem has been tested on
instances derived from the vehicle routing problem benchmarks. In particular, we
have considered two classes of test problems: the first one refers to those that the
literature solves to optimality, the second class contains the test problems for which
only near optimal solutions are known. Starting from the vehicle routing problem

123

On the shortest path problem... 579

benchmarks we have derived several instances of the elementary shortest path problem
with a different degree of difficulty. The computational results suggest that the best
performing algorithm solves to optimality near to all the more difficult instances
belonging to the first class within a reasonable amount of time. For the instances
of the second class, the solution approach based on the k shortest paths problem does
not solve the more difficult instances. However, despite to the N P-hard complexity
of the problem, the numerical results are satisfactory.

From the computational results, we can conclude that the solution approach based
on the k shortest paths problem is very efficient for solving the elementary shortest
path problem on medium-large size fully random networks. In addition, the proposed
method is able to solve in a reasonable amount of time instances derived from the
vehicle routing problem benchmarks.

Acknowledgments The authors would like to thank Professor Francesco Scarcello for his valuable com-
ments and helpful suggestions related to the complexity analysis of the proposed solution approaches. They
also wish to thank the editor and the anonymous referees having contributed to improve the quality and
readability of the paper, with their constructive suggestions and comments.

5 Appendix

In this appendix, we show how the proposed Algorithm 1 and 4 work by considering
the instance of Figure 5.

Fig. 5 Graph example

s

1

2

3

4

5

6

2

-4
-7

5

3

-2

1

3

3

-2
2

5.1 Algorithm 1

In Table 6, we report set S, the labels at the end of Algorithm 2, the last selected label
and the detected cycle C . The labels reported in Table 6 have the following form:
< π(y) >. The superscript reported next to the labels indicates that the related label
is dominated.

At the first iteration of Algorithm 1 (see column 1st iteration of Table 6), the label
< s, 2, 5, 4(−8) > is selected. When we try to extend the label to node 2 a NCC
is detected. Indeed, path πs2 = {s, 2, 5, 4} ∪ {2} has a cost equal to −5 that is less
than the cost of path πs2 = {s, 2} associated with label < s, 2(−4) >. The dummy
resource is introduced to node 2. At the 2nd iteration, the NCC {1, 2, 3, 1} is detected

123

580 L. D. P. Pugliese, F. Guerriero

Table 6 Labels associated with each node at the end of Algorithm 2 at each iteration of Algorithm 1

1st iteration 2nd iteration 3rd iteration

S ∅ {2} {2, 1}
s < s(0) > < s(0, 0) > < s(0, 0, 0) >

1 < s, 1(2) > < s, 1(2, 0) > < s, 1(2, 0, 1) >

< s, 2, 1(−1, 1) > < s, 2, 1(−1, 1, 1) >

2 < s, 2(−4) > < s, 2(−4, 1) >D < s, 2(−4, 1, 0) >

< s, 1, 2(−5, 1) > < s, 1, 2(−5, 1, 1) >

3 < s, 2, 3(−2) > < s, 2, 3(−2, 1) >D < s, 2, 3(−2, 1, 0) >

< s, 1, 2, 3(−3, 1) > < s, 1, 2, 3(−3, 1, 1) >

4 < s, 2, 5, 4(−8) > < s, 2, 3, 1, 4(4, 1) >D < s, 2, 3, 1, 4(4, 1, 1) >D

< s, 2, 5, 4(−8, 1) >D < s, 2, 5, 4(−8, 1, 0) >

< s, 1, 4(7, 0) > < s, 1, 4(7, 0, 1) >

< s, 1, 2, 5, 4(−9, 1) > < s, 1, 2, 5, 4(−9, 1, 1) >

5 < s, 2, 5(−6) > < s, 2, 5(−6, 1) > < s, 2, 5(−6, 1, 0) >

< s, 1, 2, 5(−7, 1) > < s, 1, 2, 5(−7, 1, 1) >

6 < s, 2, 5, 6(−4) > < s, 2, 5, 6(−4, 1) >D < s, 2, 5, 6(−4, 1, 0) >D

< s, 2, 5, 4, 6(−5, 1) >D < s, 2, 5, 4, 6(−5, 1, 0) >

< s, 1, 2, 5, 4, 6(−6, 1) > < s, 1, 2, 5, 4, 6(−6, 1, 1) >

< s, 1, 2, 5, 6(−5, 1, 1) >D

< s, 1, 4, 6(10, 0, 1) >

Last extracted label < s, 2, 5, 4(−8) > < s, 1, 2, 3(−3, 1) > < s, 1, 4(7, 0, 1) >

C {2, 5, 4, 2} {1, 2, 3, 1} ∅

and node 1 is inserted in the set S. The introduction of the resource at node 2 and 1
avoids the generation of NCCs and the optimal solution is found at the 3rd iteration.

5.2 Algorithm 4

In Table 7, we report the paths and the related cost (< πk
si (yi [k]) >) at the end of each

iteration ofAlgorithm 4when solving the ESPP on the network of Figure 5. At the 1st

iteration, node 3 is selected. Since all the conditions of line 9 are verified, Algorithm
3 terminates and the cycle {1, 2, 3, 1} is returned. The value of Ki , i = 1, 2, 3 is
incremented of one and Algorithm 3 is executed again. Node 4 is selected (see 2nd

iteration). When path π1
s4 = {s, 1, 2, 5, 4} is extended to node 2, conditions of line 9

are satisfied, thus the NCC {2, 5, 4, 2} is detected and Algorithm 3 is stopped. The
number of paths that need to be found for nodes 2, 5 and 4 is increased. After other
three iterations, see 3rd , 4th and 5th iteration of Table 7, condition of line 29 is verified.
Since C = ∅, Algorithm 4 terminates and yi [1],∀i ∈ N , is the optimal cost.

123

On the shortest path problem... 581

Ta
bl
e
7

Pa
th
s
an
d
co
st
s
th
at
ar
e
fo
un

d
fo
r
ea
ch

no
de

at
th
e
en
d
of

A
lg
or
ith

m
3
in

ea
ch

ite
ra
tio

n
of

A
lg
or
ith

m
4

1s
t
ite
ra
tio

n
2n

d
ite
ra
tio

n
3r

d
ite
ra
tio

n
4t
h
ite
ra
tio

n
5t
h
ite
ra
tio

n

K
i

y i
K
i

y i
K
i

y i
K
i

y i
K
i

y i

s
1

<
s(
0)

>
1

<
s(
0)

>
1

<
s(
0)

>
1

<
s(
0)

>
1

<
s(
0)

>

1
1

<
s,
1(
2)

>
2

<
s,
2,

3,
1(

−1
)
>

2
<

s,
2,

3,
1(

−1
)
>

2
<

s,
2,

3,
1(

−1
)
>

2
<

s,
2,

3,
1(

−1
)
>

<
s,
1(
2)

>
<

s,
1 (
2)

>
<

s,
1(
2)

>
<

s,
1(
2)

>

2
1

<
s,
1,
2(

−5
)
>

2
<

s,
1,
2(

−5
)
>

3
<

s,
1,
2(

−5
)
>

4
<

s,
1,
2(

−5
)
>

5
<

s,
1,
2(

−5
)
>

<
s,
2(

−4
)
>

<
s,
2(

−4
)
>

<
s,
2(

−4
)
>

<
s,
2(

−4
)
>

<
s ,
1,
4,

2(
10

)
>

<
s,
1,
4,

2(
10

)
>

<
s,
1,
4,

2(
10

)
>

+∞
+∞ +∞

3
1

<
s,
1,
2,

3(
−3

)
>

2
<

s,
1,
2,

3(
−3

)
>

2
<

s,
1,
2,

3(
−3

)
>

2
<

s,
1,
2,

3(
−3

)
>

2
<

s,
1,
2,

3(
−3

)
>

<
s,
2,

3(
−2

)
>

<
s,
2,

3(
−2

)
>

<
s,
2,

3(
−2

)
>

<
s,
2,

3(
−2

)
>

4
1

<
s,
1,
4(
7)

>
1

<
s,
1,
2,

5,
4(

−9
)
>

2
<

s,
1,
2,

5,
4(

−9
)
>

3
<

s,
1,
2,

5,
4(

−9
)
>

4
<

s,
1,
2,

5,
4(

−9
)
>

<
s,
2,

5,
4(

−8
)
>

<
s,
2,

5,
4(

−8
)
>

<
s,
2,

5,
4(

−8
)
>

<
s,
2,

3,
1,
4(
4)

>
<

s,
2,

3,
1,
4(
4)

>

<
s,
1,
4(
7)

>

5
1

<
s,
1,
2,

5(
−7

)
>

1
<

s,
1,
2,

5(
−7

)
>

2
<

s,
1,
2,

5(
−7

)
>

3
<

s,
1,
2,

5(
−7

)
>

4
<

s,
1,
2,

5(
−7

)
>

<
s,
2,

5(
−6

)
>

<
s,
2,

5(
−6

)
>

<
s,
2,

5(
−6

)
>

+∞
<

s,
1,
4,

2,
5(
8)

>

+∞
6

1
+∞

1
<

s,
1,
2,

5,
4,
6(

−6
)
>

1
<

s,
1,
2,

5,
4,
6(

−6
)
>

1
<

s,
1,
2,

5,
4,
6(

−6
)
>

1
<

s,
1,
2,

5,
4,
6(

−6
)
>

L
as
te
xt
ra
ct
ed

no
de

3
4

4
4

5

C
{1,

2,
3,
1}

{2,
5,
4,
2}

{2,
5,
4,
2}

{2,
5,
4,
2}

∅

123

582 L. D. P. Pugliese, F. Guerriero

References

1. Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for the shortest path problem.
Technical Report CS-TR-154-88. Departement of Computer Science, Princeton University (1988)

2. Ali, Al, Kennington, J.L.: The asymmetric m-traveling salesmen problem: a duality based branch-and-
bound algorithm. Discret. Appl. Math. 13, 259–276 (1986)

3. Allender, E.W.: On the number of cycles possible in digraphs with large girth. Discret. Appl. Math.
10, 211–225 (1985)

4. Augerat, P., Belenguer, J.M., Benavent, E., Corberan, A., Naddef, D., Rinaldi, G.: Computational
results with a branch and cut code for the capacitated vehicle routing problem. Technical Report
949-M. Universite Joseph Fourier, Grenoble, France (1995)

5. Barndorff-Nielsen, O., Sobel, M.: On the distribution of the number of admissible points in a vector
random sample. Theory Propability Appl. 11(2), 283–305 (1966)

6. Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest path problem. Net-
works 19(4), 379–394 (1989)

7. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution proce-
dures. Omega 34(3), 209–219 (2006)

8. Bellman, R.E.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)
9. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of maxima in a

set of vectors and applications. J. ACM 25(4), 536–543 (1978)
10. Boland, N., Dethridge, J., Dumitrescu, I.: Accelerated label setting algorithms for the elementary

resource constrained shortest path problem. Oper. Res. Lett. 34(1), 58–68 (2006)
11. Chen, S., Ryan, D.R.: A comparison of three algoritms for finding fundamental cycles in a directed

graph. Networks 11, 1–12 (1981)
12. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory and experimental

evaluation. Math. Program. 73(2), 129–174 (1996)
13. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi,

A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization, chapter 11. John Wiley, Chichester (1979)
14. Christofides, N., Eilon, S.: An algorithm for the vehicle dispatching problems. Oper. Res. Q. 20(3),

309–318 (1969)
15. Dantzig, G.B.: On the shortest route through a network. Management Science, pp. 187–190, (1960)
16. Daskin, M.S.: Network and Discrete Location. Wiley, New York (1995)
17. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing

problem with time windows. Oper. Res. 40(2), 342–354 (1992)
18. Di Puglia Pugliese, L., Guerriero, F.: Solution approaches for the elementary shortest path problem.

Technical Report 5/10, University of Calabria, LOGICA, (2010). Downloadable from http://uweb.deis.
unical.it/dipugliapugliese/

19. Di Puglia Pugliese, L., Guerriero, F.: A computational study of solution approaches for the resource
constrained elementary shortest path problem. Ann. Oper. Res. 201(1), 131–157 (2012)

20. Di Puglia Pugliese, L., Guerriero, F.: A reference point approach for the resource constrained shortest
path problems. Transp. Sci. 47(2), 247–265 (2013)

21. Di Puglia Pugliese, L., Guerriero, F.: Shortest path problem with forbidden paths: the elementary
version. Eur. J. Oper. Res. 227(2), 254–267 (2013)

22. Di Puglia Pugliese, L., Guerriero, F.: A survey of resource constrained shortest path problem: exact
solution appoaches. Networks 62(3), 183–200 (2013)

23. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
24. Drexl, M., Irnich, S.: Solving elementary shortest-path problems as mixed-integer programs. OR

Spectrum 36(2), 281–296 (2014)
25. Dreyfus, S.E.: An appraisal of some shortest path algorithms. Oper. Res. 17, 395–412 (1969)
26. Feillet, D., Dejax, P., Gendreau, M., Gueguen, C.: An exact algorithm for the elementary shortest path

problem with resource constraints: application to some vehicle routing problems. Networks 44(3),
216–229 (2004)

27. Fisher, M.L.: Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res. 42,
626–642 (1994)

28. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
29. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

123

http://uweb.deis.unical.it/dipugliapugliese/
http://uweb.deis.unical.it/dipugliapugliese/

On the shortest path problem... 583

30. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algo-
rithms. J. ACM 34(3), 596–615 (1987)

31. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithm for network problems. SIAM J. Comput. 18(5),
1013–1036 (1989)

32. Gallo, G., Pallottino, S.: Shortest path algorithms. Ann. Oper. Res. 13(1), 1–79 (1988)
33. Gavish, B., Srikanth, K.: An optimal solution method for large-scale multiple traveling salesman

problems. Oper. Res. 34(5), 698–717 (1986)
34. Goldberg, A.V.: Scaling algorithms for the shortest path problem. In: 4th ACM-SIAM Symposium on

Discrete Algorithms, pp. 222–231 (1993)
35. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.-M.: Metaheuristics in vehicle routing. In: Crainic, T.G.,

Laporte, G. (eds.) Fleet Management and Logistics, pp. 33–56. Kluwer, Boston (1998)
36. Guerriero, F., Musmanno, R., Lacagnina, V., Pecorella, A.: A class of label-correcting methods for the

k shortest paths problem. Oper. Res. 49(3), 423–429 (2001)
37. Guerriero, F., Di Puglia Pugliese, L.: Multi-dimensional labelling approaches to solve the linear frac-

tional elementary shortest path problem with time windows. Optim. Methods Softw. 26(2), 295–340
(2011)

38. Ibrahim,M.S.,Maculan,N.,Minoux,M.:A strongflow-based formulation for the shortest path problem
in digraph with negative cycles. Int. Trans. Oper. Res. 16, 361–369 (2009)

39. Irnich, S.: Resource extension functions: properties, inversion and generalization to segments. OR
Spectrum 30(1), 113–148 (2008)

40. Klingman, D., Napier, A., Stutz, J.: Netgen: A program for generating large-scale (un)capacitated
assignment, transportation, and minimum cost flow network problems. Manag. Sci. 20 (1974)

41. Kohl, N.: Exact methods for time constrained routing and related scheduling problems. PhD thesis,
Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens
Plads, Building 321, DK-2800 Kgs. Lyngby (1995)

42. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and algorithms.
Transp. Sci. 18, 1–55 (1984)

43. Martins, E.Q., Pascoal, M.M., Santos, J.L.: Deviation algorithms for ranking shortest paths. Int. J.
Found. Comput. Sci. 10(3), 247–261 (1999)

44. Moore, E.F.: The shortest path through a maze. In: Interantional Symposium on the Theory of Switch-
ing, pp. 285–292. Harvard University Press (1959)

45. Orloff, C.S.: Routing a fleet of m vehicles to/from a central facility. Networks 4, 147–162 (1974)
46. Rao, M.R.: A note on the multiple traveling salesman problem. Oper. Res. 28(3), 628–632 (1980)
47. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees.

Networks 5, 237–252 (1975)
48. Righini, G., Salani,M.:Newdynamic programming algorithms for the resource constrained elementary

shortest path problem. Networks 51(3), 155–170 (2008)
49. Sedgewick, R., Wayne, K.: Shortest paths. http://www.cs.princeton.edu/rs/AlgsDS07/, (2007)
50. Solomon,M.M.: Vehicle routing and schedulingwith timewindow constraints: models and algorithms.

PhD thesis, Department of Decision Science, University of Pennsylvania (1983)
51. Subramani, K.: A zero-space algorithm for negative cost cycle detection in networks. J. Discret. Algo-

rithms 5, 408–421 (2007)
52. Taillard, D.: Parallel iterative search methods for vehicle routing problems. Networks 23, 661–673

(1993)
53. Van Bredam, A.: An Analysis of the behavior of heuristics for the vehicle routing problem for a

selection of problems with vehicle-related. Customer-related, and time-related constraints. PhD thesis,
University of Antwerp (1994)

54. Yamada, T., Kinoshita, H.: Finding all the nagative cycles in a directed graph. Discret. Appl. Math.
118, 279–291 (2002)

55. Yen, J.Y.: Finding the k-shortest loopless paths in a network. Manage. Sci. 17, 711–715 (1971)

123

http://www.cs.princeton.edu/rs/AlgsDS07/

	On the shortest path problem with negative cost cycles
	Abstract
	1 Introduction
	2 Proposed solution approaches
	2.1 Notations and definitions
	2.2 Dynamic multi-dimensional labelling approach
	2.2.1 Correctness of the dynamic multi-dimensional labelling approach
	2.2.2 Complexity analysis

	2.3 Labelling approach based on the k shortest paths problem
	2.3.1 Correctness of the dynamic labelling approach
	2.3.2 Complexity analysis

	3 Computational experiments
	3.1 Test problems
	3.2 Test codes
	3.3 Computational results
	3.3.1 Computational results on the fully random networks
	3.3.2 Computational results on CVRP benchmark instances

	4 Conclusions
	Acknowledgments
	5 Appendix
	5.1 Algorithm 1
	5.2 Algorithm 4

	References

