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Abstract The update of the rigid body transformation in the iterative closest point
(ICP) algorithm is considered. The ICP algorithm is used to solve surface registration
problems where a rigid body transformation is to be found for fitting a set of data
points to a given surface. Two regions for constraining the update of the rigid body
transformation in its parameter space to make it reliable are introduced. One of these
regions gives a monotone convergence with respect to the value of the mean square
error and the other region gives an upper bound for this value. Point-to-plane distance
minimization is then used to obtain the update of the transformation such that it satisfies
the used constraint.

Keywords Convergence · Iterative closest point · Point-to-plane · Point-to-point ·
Registration

1 Introduction

The surface registration problem is to find a rigid body transformation such that a
set of data points fits in some sense to a given surface under the transformation. The
problem occurs in many applications, for example in workpiece localization and shape
verification of produced objects [7,8,15]. In shape verification, deviations between a
produced object and its CAD-model, describing the ideal shape, is to be found. Before
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the true deviations can be found a surface registration problem has to be solved to
align the representation of the measured shape to the CAD-model.

An algorithm that can be used to solve the surface registration problem is the
iterative closest point (ICP) algorithm [3,4,11]. In general there are two common
types of ICP algorithms. These two are based on point-to-point distance minimization
[3], and point-to-plane distance minimization [4]. The planes are the tangent planes
at the closest surface points to the data points. The convergence for some different
registration algorithms are discussed in [9]. The algorithms based on the point-to-point
distances minimization converges to a local minimum and the sequence of values of
the objective function over the iterations is monotone decreasing. Unfortunately, the
asymptotic convergence is linear and in general very slow. Minimization of point-
to-plane distances using a Newton step allows flat regions to slide along each other
and gives a quadratic asymptotic convergence which is much faster. Unfortunately,
monotone convergence can not be ensured without any step size control method like
for example line search, see e.g. [5], where a number of objective function evaluations
are performed to find an appropriate step. If the objective function is expensive to
evaluate, which is the case in surface registration problems, commonly used step size
control methods will then also be expensive.

We are describing how a reliable update of the transformation can be obtained
giving better possibilities of the convergence than using point-to-point distance min-
imization but still have the value of the mean square error under control. It is done
by constraining the transformation in the parameter space to a well-defined region,
which is derived from expressions of point-to-point distance minimization. Point-to-
plane distance minimization is then used to obtain the update of the transformation
such that it satisfies the used constraint.

2 The ICP algorithm

The surface registration problem is to find a rigid body transformation, consisting of a
rotation matrixR ∈ {R3×3 |RTR = I, det (R) = +1} and a translation vector t ∈ R

3,
such that a set of N given data points, {pi }Ni=1, fits in some sense to a set of surface
points, S, under the rigid body transformation. If least squares distance minimization
is considered, the surface registration problem can be written as

min
R,t

f (R, t), (1)

where

f (R, t) = 1

N

N∑

i=1

d(Rpi + t, S)2, (2)

is the objective function and

d(p, S) = min
y∈S ‖p − y‖2,

is the distance between an arbitrary point p to the points in S.
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Algorithm 1 ICP algorithm
/* Operations are performed for i = 1, . . . , N */

Require: {pi }, S (and surface normals), R(0) = I, t(0) = 0

k = 0, p(0)
i = R(0)pi + t(0)

repeat
k = k + 1

y(k−1)
i = C(p(k−1)

i , S)

Find an appropriate update (R†, t†) of the rigid body transformation

p(k)
i =R†p(k−1)

i + t†

R(k) =R†R(k−1)

t(k) =R†t(k−1) + t†

until convergence
return R(k) , t(k)

The ICP algorithm can be used to solve (1). It operates in two principal stages in
each iteration. These stages are; finding closest surface points to the data points, and
finding a rigid body transformation such that the data points are fitted to the surface at
the closest surface points. An initial rigid body transformation, (R(0), t(0)), is required
and using R(0) = I and t(0) = 0 is appropriate if we do not know anything about
the expected transformation. The ICP algorithm is presented by Algorithm 1, where
C denotes a closest surface point operator. That is y(k−1)

i = C(p(k−1)
i , S) is a closest

point in S to a transformed data point p(k−1)
i = R(k−1)pi + t(k−1) . If the closest

surface point is not unique y(k−1)
i can be arbitrarily chosen from the set of closest

surface points {y ∈ S | ‖p(k−1)
i −y‖2 = d(p(k−1)

i , S)}. Methods for finding the closest
point on a surface to a given point are considered in e.g. [2,14].

To make the notation simpler we will drop the superscript with the iteration index
where it is convenient. If point-to-point distance minimization is used, see e.g. [3], no
surface normals are required and the update of the transformation in Algorithm 1 is
obtained by solving

min
R,t

N∑

i=1

‖Rpi + t − yi‖22, (3)

which is a rigid body transformation problem considered in e.g. [1,6,12,13]. The
update (R†, t†) = (R∗, t∗) is then obtained from

R∗ = argmin
R

∑N
i=1 ‖R(pi − p̄) − (yi − ȳ)‖22,

t∗ = ȳ − R∗p̄,
(4)

where p̄ and ȳ are the arithmetical mean values of pi and yi .
The asymptotic convergence is linear using point-to-point distance minimization

and in general very slow. That iswhy othermethods for finding an appropriate updating
rigid body transformation are needed.
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3 A parametrization of the transformation

A rotation matrix R can be parameterized as

R(z) =
⎡

⎣
c2c3 s1s2c3 − c1s3 c1s2c3 + s1s3
c2s3 s1s2s3 + c1c3 c1s2s3 − s1c3
−s2 s1c2 c1c2

⎤

⎦ , (5)

where z = [z1, z2, z3, z4, z5, z6]T, and s and c with index 1, 2, 3 are abbreviations
for sin and cos of angles z1, z2, z3 respectively. This parametrization of R rotates
points in R

3 through the angle z1 about the x-axis, through the angle z2 about the
y-axis, and through the angle z3 about the z-axis. All rotation matrices in R

3×3 can
be represented by −π < z1, z3 ≤ π and −π/2 ≤ z2 ≤ π/2. A translation vector t
can be parameterized as

t(z) = [z4, z5, z6]T, (6)

where z4, z5, and z6 are the translations in x , y, and z directions. Therefore, an arbitrary
rigid body transformation (R, t) can be parameterized by six parameters given by a
vector z, where −π < z1, z3 ≤ π and −π/2 ≤ z2 ≤ π/2.

Let ϕ be an operator for obtaining the rigid body transformation (R, t) =
(R(z), t(z)) from a given point z in its parameter space andwewrite it as [R, t] = ϕ(z).
We also introduce an operator ϑ for extracting a point z in the parameter space from
an arbitrary rigid body transformation (R, t) such that

z = ϑ(R, t) ⇔ [R, t] = ϕ(z),

if −π < z1, z3 ≤ π and −π/2 < z2 < π/2.

4 Regions of reliable updates

Consider the minimization problem in (3) where a rigid body transformation (R, t) is
to be found. This problem is discussed in e.g. [1,6,12,13]. We replace t with a new
independent vector u by the change of variables t = −Rp̄ + ȳ + u. The objective
function in (3) in terms of R and u is

N∑

i=1

‖Rpi − Rp̄ + ȳ + u − yi‖22

=
N∑

i=1

‖pi − p̄‖22 +
N∑

i=1

‖yi − ȳ‖22 + N‖u‖22 − 2N trace(RC), (7)

where

C = 1

N

N∑

i=1

[
piyTi

]
− p̄ȳT ∈ R

3×3.
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Since both the sum of all (pi − p̄) and the sum of all (yi − ȳ) are equal to the zero
vector their scalar product with u vanish in (7). We define p̃ and ỹ such that

p̃ = 1

N

N∑

i=1

‖pi − p̄‖22 = 1

N

N∑

i=1

‖pi‖22 − ‖p̄‖22,

ỹ = 1

N

N∑

i=1

‖yi − ȳ‖22 = 1

N

N∑

i=1

‖yi‖22 − ‖ȳ‖22,

and we replace u from the change of variables with t+Rp̄− ȳ. The objective function
in (3) can then be written as

N p̃ + N ỹ + N‖t + Rp̄ − ȳ‖22 − 2N trace(RC). (8)

Only the last two terms are dependent of R and t. The rotation matrix in the rigid
body transformation (R∗, t∗) that gives the least value of (8) is usually found from a
singular value decomposition of C, C = U�VT, from which we form R∗ = VUT. It
might happen that this produces a reflection matrix where det(VUT) = −1. In such
case the rotation matrix that gives the least value of (8) is R∗ = V diag(1, 1,−1)UT.
Details about how to find R∗ are given in [1,6,12,13]. Using R∗ the translation vector
t∗ is obtained from t∗ = ȳ − R∗p̄.

We have that p̄(k−1) = R(k−1)p̄ + t(k−1), where p̄(k−1) is the arithmetical mean
value of all transformed data points p(k−1)

i from iteration k − 1, which gives

N∑

i=1

∥∥∥p(k−1)
i − p̄(k−1)

∥∥∥
2

2

=
N∑

i=1

∥∥∥R(k−1)pi + t(k−1) −
(
R(k−1)p̄ + t(k−1)

)∥∥∥
2

2

=
N∑

i=1

‖R(k−1)(pi − p̄)‖22 =
N∑

i=1

‖pi − p̄‖22.

Hence, the value of p̃ do not change in the iterations k = 1, 2, . . . . However, the value
of ỹ changes in the iterations.

For given p̄, ȳ, and C, we define a function g = g(z) as

g(z) = ‖t + Rp̄ − ȳ‖22 − 2trace(RC),

where R = R(z) and t = t(z) given by (5) and (6). Note that it consists of the
terms in (8) that depend on R and t but without the constant factor N . The rigid body
transformation (R∗, t∗) from (4) gives the minimum value of g. We write g∗ = g(z∗),
where z∗ = ϑ(R∗, t∗), and we write g◦ = g(0) which is the value of g at the zero
transformation.
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Let �α ⊂ R
6 be a region such that

z ∈ �α ⇔ g(z) ≤ αg∗ + (1 − α)g◦,

where α is satisfying 0 < α ≤ 1. If α = 1 we have that �α = {z∗}. According to
the definition of �α , its boundary ∂�α is a level surface in the parameter space of
the function g where g(z) = αg∗ + (1 − α)g◦. If 0 < α < 1 and g∗ < g◦ tangent
planes to ∂�α have a normal given by the gradient ∇g(z). Further, if α′′ ≥ α′ we have
�α′′ ⊆ �α′ .

Theorem 1 All types of ICP algorithms, as given by Algorithm 1, do always converge
monotonic to a local minimum or saddle point of the mean square distance objective
function f in (2) if the update of the transformation (R†, t†) satisfies ϑ(R†, t†) ∈ �α ,
where 0 < α ≤ 1.

Proof The convergence is ensured for α = 1 according to the proof of convergence
in [3] since in that case (R†, t†) = (R∗, t∗). It remains to proof convergence for
0 < α < 1. For all quantities with index i we let i = 1, . . . , N without writing it
explicitly. The parameter values of the update of the transformation is written as z†,
i.e. z† = ϑ(R†, t†).

In iteration k the set of data points {p(k−1)
i } from iteration k − 1 is given and from

these points the set of corresponding closest surface points y(k−1)
i = C(p(k−1)

i , S) are
found. For these point pairs the value fk−1 of the objective function f is

fk−1 = 1

N

N∑

i=1

∥∥∥p(k−1)
i − y(k−1)

i

∥∥∥
2

2
.

A rigid body transformation (R†, t†) satisfying ϑ(R†, t†) ∈ �α is applied to p(k−1)
i

giving the update of the data points, p(k)
i = R†p(k−1)

i + t†. For these point pairs the
mean squared distance is

ek = 1

N

N∑

i=1

∥∥∥p(k)
i − y(k−1)

i

∥∥∥
2

2
= p̃ + ỹ + g(z†).

Since fk−1 = p̃+ ỹ + g◦ and g(z†) ≤ αg∗ + (1−α)g◦ ≤ g◦ is fulfilled we have that
ek ≤ fk−1. The equality holds if and only if g∗ = g◦ since g(z†) = g◦ if and only if
g∗ = g◦.

In the next iteration, i.e. iteration k + 1, the closest surface points y(k)
i = C(p(k)

i , S)

to the data points p(k)
i are computed. For these point pairs the value fk of the objective

function f is

fk = 1

N

N∑

i=1

∥∥∥p(k)
i − y(k)

i

∥∥∥
2

2
.
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The points y(k)
i are the closest surface points to p(k)

i so it is clear that

∥∥∥p(k)
i − y(k)

i

∥∥∥
2

≤
∥∥∥p(k)

i − y(k−1)
i

∥∥∥
2
,

holds for all i and therefore, fk ≤ ek . The equality is satisfied if and only if ‖p(k)
i −

y(k−1)
i ‖2 = d(p(k)

i , S) for all i , i.e. the points y(k−1)
i are closest surface points to the

data points p(k)
i .

To summarize we can conclude that

0 ≤ fk ≤ ek ≤ fk−1

is fulfilled.The lower bound is zero since a sumof squareddistances cannot benegative.
It gives that the sequences of fk and ek are monotone decreasing and bounded below.
Then they will converge to a real value, which is the same value for both sequences.
Since 0 < α ≤ 1 the value of g◦ will approach to the value of g∗ and hence, the
function g will eventually be minimized. The sequence of ek will therefore converge
to the least value of (8). Suppose that the sequence of fk will converge to a value that
is larger than the value of the objective function f at the local extremum. Then this
would contradict the operation of the closest point operator C.

We can do the conclusion that all types of ICP algorithms, as given by Algorithm 1,
do always converge monotonic to a local minimum or saddle point of the mean square
distance objective function f in (2) if the update of the transformation (R†, t†) satisfies
ϑ(R†, t†) ∈ �α . �

Theorem 1 is similar to the convergence theorem given in [3] but it results in better
possibilities to find good updates than using the ICP algorithm based on point-to-
point distance minimization, (4), which results in a slow linear convergence, see e.g.
[9]. The described method to constrain the update (R†, t†) such that ϑ(R†, t†) ∈ �α

results in better possibilities to achieve faster convergence. If α is close to 1 the
convergence of the ICP algorithm will behave just like when using point-to-point
distance minimization (3). If α is close to 0 the updating is more aggressive but we
will still have monotone convergence of the value of the objective function.

An alternative to using the region�α is to consider several iterations. We introduce
the function

hk(z) = ỹ + ‖t + Rp̄ − ȳ‖22 − 2trace(RC),

where ỹ, p̄, ȳ, and C in iteration k are given, and R = R(z) and t = t(z). The value
of h1(0) is denoted h◦ and in each iteration k we let h∗

k = hk(z∗). Let 	β ⊂ R
6 be a

region such that

z ∈ 	β ⇔ hk(z) ≤ βh∗
k + (1 − β)h◦,

where β is satisfying 0 ≤ β ≤ 1. If β = 1 we have that 	β = {z∗}. According to
the definition of 	β , its boundary ∂	β is a level surface in the parameter space of the
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function hk where hk(z) = βh∗
k + (1 − β)h◦. If 0 ≤ β < 1 and h∗

k < h◦ tangent
planes to ∂	β have a normal given by the gradient ∇hk(z). Further, if β ′′ ≥ β ′ in
iteration k we have 	β ′′ ⊆ 	β ′ . The only thing that differs between the functions g
and hk is ỹ, which is constant with respect to z so that ∇hk(z) = ∇g(z).

Theorem 2 For all types of ICP algorithms, as given by Algorithm 1, the value fk
of the mean square distance objective function f in iteration k is bounded above
according to

fk ≤ p̃ + βh∗
k + (1 − β)h◦ ≤ p̃ + h◦,

if the update of the transformation (R†, t†) satisfiesϑ(R†, t†) ∈ 	β , where 0 ≤ β ≤ 1.

Proof For all quantities with index i we let i = 1, . . . , N without writing it explicitly.
The set of data points {p(k−1)

i } from iteration k − 1 is given.
By induction we will first prove that if ϑ(R†, t†) ∈ 	0, i.e. β = 0, then 	0 will not

be empty in any iteration and we have that

ek = 1

N

N∑

i=1

∥∥∥R†p(k−1)
i + t† − y(k−1)

i

∥∥∥
2

2
≤ p̃ + h◦, (9)

where y(k−1)
i = C(p(k−1)

i , S), in all iterations k = 1, 2, . . . .

In the first iteration compute the set of closest surface points y(0)
i = C(p(0)

i , S).
Since h◦ = h1(0) ≥ h1(z∗) 	0 is not empty there must exist a transformation (R†, t†)
satisfying ϑ(R†, t†) ∈ 	0. The rigid body transformation (R†, t†) is applied to p(0)

i

giving the update of the data points, p(1)
i = R†p(0)

i + t†, and the mean squared distance
is

e1 = 1

N

N∑

i=1

∥∥∥p(1)
i − y(0)

i

∥∥∥
2

2
= p̃ + h1(z†).

The last equality follows directly from the definition of hk . Since h1(z†) ≤ h◦ is
fulfilled we have

e1 ≤ p̃ + h◦.

Thus, the inequality (9) is satisfied in iteration k = 1.
Our induction hypothesis is that (9) is true in iteration k = κ . That is, we assume

that

eκ = 1

N

N∑

i=1

∥∥∥p(κ)
i − y(κ−1)

i

∥∥∥
2

2
≤ p̃ + h◦,

is fulfilled. Using this hypothesis we will show that (9) is true in iteration k = κ + 1.
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In iteration k = κ + 1 compute the set of closest surface points, y(κ)
i = C(p(κ)

i , S).
The value fκ of the objective function f is

fκ = 1

N

N∑

i=1

∥∥∥p(κ)
i − y(κ)

i

∥∥∥
2

2
= p̃ + hκ+1(0).

The last equality follows from (8) and the definition of hk . Since ‖p(κ)
i − y(κ)

i ‖2 ≤
‖p(κ)

i − y(κ−1)
i ‖2 for all i we have fκ ≤ eκ resulting in

fκ = p̃ + hκ+1(0) ≤ eκ ≤ p̃ + h◦.

From the relation above it follows that hκ+1(0) ≤ h◦ so 	0 can not be empty and
there must exist a least function value h∗

κ+1 ≤ h◦. The rigid body transformation

(R†, t†) satisfying ϑ(R†, t†) ∈ 	0 is applied to p(κ)
i giving the update of the data

points, p(κ+1)
i = R†p(κ)

i + t†, and the mean squared distance is

eκ+1 = 1

N

N∑

i=1

∥∥∥p(κ+1)
i − y(κ)

i

∥∥∥
2

2
.

It follows directly from the definition of the function hk that

eκ+1 = p̃ + hκ+1(z†).

Since hκ+1(z†) ≤ h◦ we have

eκ+1 ≤ p̃ + h◦.

By mathematical induction we have proved that 	0 is not empty in any iteration and
that (9) is satisfied for all iterations k = 1, 2, . . . .

Now we know that	0 is not empty in iteration k when using the update of the rigid
body transformations (R†, t†) such that ϑ(R†, t†) ∈ 	0. Therefore, there will always
exist a point in 	0. The value of hk on the boundary of 	0 is h◦. The function hk is
continuous so there will always exist a least function value h∗

k = hk(z∗) ≤ h◦. Let
us now consider the case where β ∈ [0, 1] and the updating transformation satisfy
ϑ(R†, t†) ∈ 	β . Since	0 is not empty in any iteration where ϑ(R†, t†) can be chosen
arbitrarily in 	0 the region 	β can not be empty in any iteration k = 1, 2, . . . either.
We can do that conclusion since if ϑ(R†, t†) can be chosen arbitrarily in 	0, it can
also be chosen such that it satisfies ϑ(R†, t†) ∈ 	β . We have that 	β ⊆ 	0 and
ϑ(R∗, t∗) ∈ 	β for all β ∈ [0, 1] and all iterations k = 1, 2, . . .. Therefore, the region
	β can not be empty in any iteration k = 1, 2, . . . either.

In an arbitrary iteration k, compute the set of closest surface points, y(k−1)
i =

C(p(k−1)
i , S). The rigid body transformation (R†, t†) satisfying ϑ(R†, t†) ∈ 	β , β ∈
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[0, 1], is applied to p(k−1)
i giving the update of the data points, p(k)

i = R†p(k−1)
i + t†,

and the mean squared distance is

ek = 1

N

N∑

i=1

∥∥∥p(k)
i − y(k−1)

i

∥∥∥
2

2
= p̃ + hk(z†).

The last equality follows from the definition of hk . Since hk(z†) ≤ βh∗
k + (1 − β)h◦

we have

ek ≤ p̃ + βh∗
k + (1 − β)h◦.

The closest surface points y(k)
i = C(p(k)

i , S) to the updated data points p(k)
i are found

and for these point pairs the value fk of the objective function f is

fk = 1

N

N∑

i=1

∥∥∥p(k)
i − y(k)

i

∥∥∥
2

2
.

Since ‖p(k)
i − y(k)

i ‖2 ≤ ‖p(k)
i − y(k−1)

i ‖2 holds for all i we have fk ≤ ek resulting in

fk ≤ p̃ + βh∗
k + (1 − β)h◦. (10)

We know that h∗
k ≤ h◦, so βh∗

k + (1 − β)h◦ ≤ h◦ and from (10) we get

fk ≤ p̃ + h◦. (11)

Since (10) and (11) holds for all β ∈ [0, 1] in an arbitrary iteration k for all (R†, t†)
satisfying ϑ(R†, t†) ∈ 	β the statements in the theorem are true. �

The conclusion we can do from Theorem 2 is that if the updating transformation
(R†, t†) satisfy ϑ(R†, t†) ∈ 	β , then the value of the objective function (2) is bounded
above by h◦.

Schematic illustrations of the regions �α and 	β are shown in Fig. 1. The advan-
tage of using the region�α is that monotone convergence of the mean square error can
always be ensured without any expensive line search method. Unfortunately there is
a risk that the region �α will be quite small after some iterations and the possibilities
in finding good values of (R†, t†) are limited to the neighborhood of z∗ = ϑ(R∗, t∗).
Hence, using an updating transformation in�α might be quite pessimistic. The advan-
tage of using the region	β is that it gives much better possibilities to find good values
of (R†, t†) than �α does. This method is more aggressive but monotone convergence
of the mean square error can not be ensured. The values of ỹ must also be computed
in the iterations.
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(a) (b)

Fig. 1 Schematic illustrations of regions in R6 where z∗ = ϑ(R∗, t∗). a �α , b 	β

5 Trust region step

Let v(z) be a function of point-to-plane distances in iteration k as

v(z) =
N∑

i=1

(
nTi

(
R(z)p(k−1)

i + t(z) − y(k−1)
i

))2
. (12)

The planes with unit normal vector ni are tangent planes of the surface at the surface
points y(k−1)

i . We assume that our surface is G1-continuous, i.e. tangentially continu-
ous, so a surface normal exists for each point in S.

The update of the transformation can be found by minimize a quadratic approxi-
mation of v(z) such that z ∈ �α or z ∈ 	β . That is, the update of the transformation
can be obtained from

z† = argmin
z∈�α or	β

aTz + 1
2 z

THz,

[R†, t†] = ϕ(z†),
(13)

where a is the gradient and H is the Hessian of the function v(z) at z = 0.
The constrainedminimization problem in (13) does not have to be solvedwith some

high accuracy. There is no need to find a very accurate solution since it will just give
an update of the parameters in an iterative process. Computations of �α or 	β can be
done at a very low cost when p̄, ȳ,C, and for	β also ỹ, are given. The computation of
these quantities is the principal additional computational cost when using the update
from (13) instead of using a pure Newton-type iteration, where also an additional line
search processmust be performed to ensure convergence. The number of floating point
operations to obtain p̄, ȳ,C, and ỹ is of order N , but this cost is small in comparison to
the cost of finding closest surface points and obtaining the Hessian and the gradient.
When solving the minimization problem in (13) having all necessary quantities there
is no need to use the N data points nor the N associated closest surface points and
surface normals.
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Fig. 2 Surfaces and data points, a rounded tetrahedron, b rounded cube, c rounded cuboid, d rounded
cuboid, e torus, f sphere

6 Numerical experiment

A numerical experiment is presented in order to test the performance of the discussed
methods for updating the rigid body transformation in the ICP-algorithm according to
(13).
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Differences between observed values fk of the objective function f , given by (2), in iteration
k = 0, 1, . . . , 30 of the ICP-algorithm, given by Algorithm 1, and a computed least value f̂ of f using the
surface a rounded tetrahedron, b rounded cube, c rounded cuboid, d rounded cuboid, e torus, f sphere. The
function values marked “Point-to-point” are obtained by update the transformation according to (4). The
function values marked “�α” and the function values marked “	β” are obtained by update the transfor-

mation according to (13). Observations where fk − f̂ = 0 are removed because of the logarithmic scale

Six different G1-continuous surfaces are used in the experiment, which are shown
in Fig. 2. The first four surfaces might seem to have sharp edges and corners but they
really are G1-continuous so for each point on these surfaces there exists a surface
normal vector. The last two surfaces are kinematic surfaces [10] which are invariant
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under some rigid body transformations. We are sampling 1000000 points from each
of these six surfaces. In addition to the sampled surface points a local quadratic surface
approximation is also used at each of these sampled points to represent the surface
as the set of points S. We are also sampling a set of 1000 data points pi from each
surface and to these data points we are adding a noise from a normal distribution. The
data points are then transformed by a rigid body transformation giving them a specific
initial position and orientation. The sets of data points are also shown in Fig. 2. The
problem is then to find a rigid body transformation such that the data points are fitted
to the surface points in S, in least square sense, under the transformation.

We are using 30 iterations of the ICP-algorithm with the discussed methods for
updating the transformation. Two different values, 0.1 and 0.9, of both α and β are
used. The difference between the observed values fk of the objective function f given
by (2) and a pre-computed absolute least value f̂ of f , is presented in Fig. 3 for all 30
iterations. Point-to-point distance minimization given by (4) is used as a comparison
to the methods of �α and 	β , where Newton’s method and point-to-plane distance
minimization are utilized together with the step size control in (13).

The search for the closest point in S to an arbitrary data point, written as the opera-
tor C in Algorithm 1, is done by first finding the closest point among all the 1000000
sampled surface points in S. The corresponding local quadratic surface approximation
is then used to find an even better closest point. Required surface normals are obtained
from the local surface approximations. When using an update given by (13) a mini-
mization problem has to be solved. As a starting point we are using z∗ = ϑ(R∗, t∗)
which is known to be feasible. The constrained minimization problem in (13) is solved
approximately by using a barrier method with a reciprocal barrier function. The com-
putational time to solve this problem is about 20 microseconds which is far less than
the computational time for the handling of all computations of the data points.

7 Conclusions

In Fig. 3we can see that the constrainingmethods using�α and	β works prettywell in
our numerical experiment. It is clear that these methods give much faster convergence
than minimizing point-to-point distances. The combination of using Newton’s method
tominimize point-to-plane distances and the constraints of�α or	β seems to be really
successful when solving surface registration problems where a set of data points is to
be fitted to a surface with known surface normals.

The constraint of 	β was sufficient when utilizing the Newton step δ to find good
updates of the transformation giving a fast convergence, except in the fourth test,
Fig. 3d, where the convergence fails initially for 	0.1. In the fifth test, Fig. 3e, the
method of 	0.1 shows a strange behaviour after convergence but we should have in
mind that our set of surface points S is just sampled together with a quadratic surface
approximation which result in a non-exact surface representation. A conclusion is that
it might be a good idea to use �α or 	β to constrain the Newton step in some initial
iterations before an undamped Newton method can be used.

We can also see in Fig. 3 that the observed convergence using �α are much slower
than the observed convergence using 	β . That is because the region �α is more
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constrained than the region 	β , which provides less possibilities in finding good
updating transformations. The more aggressive choice of α in �α , that is having
α = 0.1 , gives better observed convergence for all six problems than using the more
defensive value α = 0.9 . The same holds also for 	β in most cases.
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