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Abstract For a class of nonconvex nonsmooth functions, we consider the problem
of computing an approximate critical point, in the case when only inexact informa-
tion about the function and subgradient values is available. We assume that the errors
in function and subgradient evaluations are merely bounded, and in principle need
not vanish in the limit. We examine the redistributed proximal bundle approach in
this setting, and show that reasonable convergence properties are obtained. We fur-
ther consider a battery of difficult nonsmooth nonconvex problems, made even more
difficult by introducing inexactness in the available information. We verify that very
satisfactory outcomes are obtained in our computational implementation of the inexact
algorithm.
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2 W. Hare et al.

1 Introduction

In this paper we seek to approximately solve the problem

min { f (x) : x ∈ D}, (1)

where f : Rn → R is a locally Lipschitz function and D ⊂ Rn is a convex compact
set.

The information at disposal is provided by an inexact procedure that, given a point
xi , returns some estimations for the function value at xi and for one subgradient at
xi . Accordingly, the available information is f i ≈ f (xi ) and gi ≈ g(xi ) ∈ ∂ f (xi ).
Working with inexact information presents a natural challenge in a number of modern
applications. In this paper, we shall assume that the inexact information is provided in
a manner such that the errors in the function and subgradient values are bounded by
universal constants (see Sect. 2.1 for mathematical details). While the algorithm and
analysis do not require these constants to be known, they do require them to exist across
the entire (compact) constraint set. This assumption is not restrictive; it encompasses
several useful situations. Clearly, if the information is exact, then the assumption holds
trivially (with all errors bounded by 0). Three, more interesting, examples include
derivative-free optimization, Large-scale Lagrangian or Semidefinite relaxations, and
stochastic simulations. We discuss these next.

Example 1 (Derivative-free optimization) Suppose f ∈ C2, and a procedure is pro-
vided that returns exact function values, but does not return any gradient information.
This is the framework for the large research area of derivative-free optimization (DFO)
[5]. One common technique in DFO is to approximate the gradients using finite differ-
ences, linear interpolation, or someother approximation technique.Numerical analysis
and DFO contain a ripe literature on how to approximate gradients, and more impor-
tantly error bounds for various approximation techniques (see [5, § 2–5] for a few
examples). Similar error bounds exist for a variety of (sub-)gradient approximation
techniques [3,5,14,16,17,26]. In general, error bounds are based on the Lipschitz
constant of the true gradient, the geometry of the sample set (the set of points used
to create the approximation), and the diameter of the sample set. As the sample set
is created by the user, its geometry and diameter are assumed to be controlled. The
compactness of D can be used to assume a universal bound on the Lipschitz constant,
and thereby create a universal error bound for the approximated gradients. In this case
the exact value of the universal constant would be unknown, as it would depend on
the bound for the Lipschitz constant of the true gradient, but the bounding constant
itself is known to exist.

Example 2 (Large-scale Lagrangian or Semidefinite relaxations) Another example
arises when solving large-scale or difficult problems by Lagrangian or Semidefinite
relaxations, which amount to minimizing a function of the form f (x) := sup {Fz(x) :
z ∈ Z} for functions Fz(·) that are usually smooth but sometimes may be nonconvex,
[29,33,40]. In some applications it may be impossible to evaluate f precisely but
controllable accuracy is easily obtained; in particular when the set Z is bounded, such
is the case in [10,44]. A similar situation arises in H∞-control, as presented in [1,39].
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Inexact bundle method for nonsmooth nonconvex functions 3

In [1] it is argued that certain nonconvex functions can be locally approximated by use
of the support function of a compact set. A detailed explanation of this approximation
technique is given in [39, §1.9]. An error bound of the form required in this paper is
provided in [1, Lem2.1] and proof that the function is lower-C2 (and therefore locally
Lipschitz) is given in [39, Lem9].

Another example where errors arise in function and gradient evaluation is when the
objective function is provided through a stochastic simulation.

Example 3 (Stochastic simulations) If the objective function is provided through a
stochastic simulation, then the errors in the function and subgradient values are under-
stood through probability distribution functions. (This would encompass, for example,
the situation where the objective function is provided by an expected value estimated
viaMonte-Carlo simulation [42].) Errors can be controlled and reduced by running the
simulation multiple times and applying the central limit theorem. However, it should
be noted that, an error bound of the form used in this paper is not truly accessible
in this situation, as there will always be some nonzero probability of the error being
surprisingly large.

The minimization of nonsmooth convex functions that are given by exact informa-
tion has been successfully approached in several manners. Amongst the most popular
are the bundle and proximal-bundle methods [19, Ch.XV]. Indeed, such methods are
currently considered themost efficient optimizationmethods for nonsmooth problems;
see, e.g., [29,44,45] for more detailed comments.

From the “primal” point of view, bundle methods can be thought of as replacing
the true objective function by a model, constructed through a bundle of informa-
tion gathering past evaluation points and their respective f, g-values. In particular,
proximal-bundle methods, [19, Ch.XV], compute the proximal point of the model
function to obtain new bundle elements and generate better minimizer estimates. This
work is in the direction of adapting one such method to handle both nonconvex objec-
tive functions and inexact information.

Not long after works on bundle methods for the convex case were first developed,
the problem of (locally) minimizing a nonsmooth nonconvex function using exact
information was considered in [20,36] and more recently in [1,18,23,31,37]. Many
of these bundle methods were developed from a “dual” point of view. That is, they
focus on driving certain convex combinations of subgradients towards satisfaction
of first order optimality conditions [27,28,30,34–36]. Except for [18], all of these
methods handle nonconvexity by downshitfing the so-called linearization errors if
they are negative. The method of [18] tilts the slopes in addition to downshifting. Our
algorithm here is along the lines of [18].

Inexact evaluations in subgradient methods had been studied in the nonconvex set-
ting in [48], and in the convex case, for a variety of algorithms, in [8,24,38]. Contrary
to earlier work on inexact subgradient methods, both [48] and [38] allow nonvanishing
noise, i.e., evaluations of subgradients need not be asymptotically tightened. Inexact
evaluations of function and subgradient values in convex bundle methods date back
to [22]. However, the noise in [22] is asymptotically vanishing. The first work where
nonvanishing perturbations in bundle methods had been considered appears to be [15];
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4 W. Hare et al.

but only subgradient values could be computed approximately, while function eval-
uations had to be exact. Non-vanishing inexactness (still in the convex case) in both
functions and subgradient values was introduced in [46], and thoroughly studied in
[25]. For the latest unified theory of convex inexact bundle methods, see [9]. In this
work, we consider behavior of the redistributed bundle method of [18] for nonconvex
functions that are given by inexact information. To the best of our knowledge, the only
other work dealing with inexact information in bundle methods for nonconvex func-
tions is [39]. The method of [39] employs the “downshift” mechanism that modifies
linearization errors if they are negative. In addition to downshifting the cutting-planes,
our method also tilts its slopes (and of course, there are also some other differences
in the algorithms). In [39], the cases where the objective function is either ε-convex
([39, eq. (1.14)]) or lower-C1 ([43, Def.10.29]) are examined. Unlike our work, which
assumes a bounded constraint set, the work of [39] assumes bounded lower level sets.
Overall, our convergence results are quite similar to [39] (see Sect. 5.2 for a thorough
description of some details of this comparison). The algorithms themselves are quite
different, however.

The remainder of this paper is organized as follows. This section continues with
outlining some general terminology and notation for our nonconvex setting. Section
2 summarizes the notation used in our algorithm. In Sects. 3 and 4 we formally state
our Inexact Proximal Bundle Method and analyze its convergence. Section 6 presents
numerical results.

1.1 General notation and assumptions

Throughout this work we assume that, in problem (1), the objective function f is
proper [43, p. 5], regular [43, Def 7.25], and locally Lipschitz with full domain. Note
that, in the supremum function example in the introduction, that is when f (x) :=
sup {Fz(x) : z ∈ Z} and Z is a compact convex infinite set, if Fz is well-behaved in
Z , then the function is a “lower-C2” function, so proper, regular, and locally Lipschitz
[43, Def 10.29 & Thm 10.31]. Also note that the assumption that f is proper with full
domain means that f is finite-valued for all x ∈ Rn .

In general we shall work with the definitions and notation laid out in [43]. The
closed ball inRn with the center in x ∈ Rn and radius ρ > 0 is denoted by Bρ(x). We
shall use ∂ f (x̄) to denote the subdifferential of f at the point x̄ . Note that regularity
implies that the subdifferential mapping is well-defined and is given by

∂ f (x) :=
{
g ∈ Rn : lim

x→x̄
inf
x �=x̄

f (x) − f (x̄) − 〈g, x − x̄〉
|x − x̄ | ≥ 0

}
. (2)

Alternative equivalent definitions of the subdifferential mapping for regular functions
can be found in [43, Chap. 8].

The family of lower-C1 functions, defined below, was introduced by [49]. It con-
stitutes a broad class of locally Lipschitz functions that contains lower-C2 functions
as a subfamily. Given an open set Ω containing D, combining [6, Thm.2,Cor.3] with
[49, Prop.2.4], the following statements are equivalent:
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Inexact bundle method for nonsmooth nonconvex functions 5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) f is lower−C1 onΩ

(ii)
∀x̄ ∈ Ω ,∀ε > 0 ∃ρ > 0 :
∀x ∈ Bρ(x̄) and g ∈ ∂ f (x)

}
f (x + u) ≥ f (x) + 〈g, u〉 − ε|u|
whenever |u| ≤ ρ and x + u ∈ Bρ(x̄)

(iii)
∀x̄ ∈ Ω ,∀ε > 0 ∃ρ > 0 :
∀y1 , y2 ∈ Bρ(x̄) and g1 ∈ ∂ f (y1) , g2 ∈ ∂ f (y2)

} 〈
g1 − g2, y1 − y2

〉 ≥ −ε|y1 − y2|

(iv) f is semismooth ([34]) and regular onΩ.

(3)

2 Notation for bundle method ingredients

Due to the technical nature of some of the developments in bundle methods, it is useful
to provide a summary of notation upfront.

2.1 Available information

Defining the concept of inexact information for function values is straigthforward.
Given a point x and some error tolerance σ ≥ 0, the statement “φ ∈ R approximates
the value f (x) within σ”, means that |φ − f (x)| ≤ σ . By contrast, for subgradient
values, the notion of inexact information allowsmore interpretations.We shall consider
the following estimates, which make good sense especially in the nonconvex case. At
a point x , an element g ∈ Rn approximates within tolerance θ ≥ 0 some subgradient
of f at x if g ∈ ∂ f (x) + Bθ (0).

The algorithm herein will hinge around previously generated information. Basic
elements include

k an iteration counter,
J k an index set for the information used in iteration k,
{x j } j∈J k a set of points indexed by J k,
x̂ k the algorithmic center at iteration k.

Thealgorithmic centerwill be oneof thebundle points: x̂ k ∈ {x j } j∈J k . The algorithmic
center is essentially the “best” known point up to the k-th iteration.

The algorithm works with inexact information. So we have inexact function and
subgradient values as follows:

f j = f (x j ) − σ j where σ j is an unknown error,
f̂ k = f (x̂ k) − σ̂ k where σ̂ k is an unknown error.

g j ∈ ∂ f (x j ) + Bθ j (0) where θ j is an unknown error.
(4)

Note that the sign of errors σ j is not specified, so that the true function value can
be either overestimated or underestimated. Both error terms σ j and θ j are assumed
bounded:

|σ j | ≤ σ̄ and 0 ≤ θ j ≤ θ̄ for all j. (5)
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6 W. Hare et al.

But the error terms themselves, and their bounds σ̄ , θ̄ , are generally unknown.

2.2 Model functions and some basic relations

As usual in bundle methods, we use the available information to define a piecewise-
linear model of f . If the function f were convex and the data exact, then given a
point x j , any subgradient g j ∈ ∂ f (x j ) would generate a linear lower bound for the
function: f (x j ) + 〈

g j , y − x j
〉 ≤ f (y) for all y. This knowledge gives the classical

cutting-plane model for f :

max
j∈J k

{
f (x j ) +

〈
g j , y − x j

〉}
= f (x̂ k) + max

j∈J k

{
−ekj +

〈
g j , y − x̂ k

〉}

for some index set J k ⊆ {1, . . . , k} referring to some previous iterates, where

ekj = f (x̂ k) − f (x j ) −
〈
g j , x̂ k − x j

〉

are the linearization errors (nonnegative in the convex case).
In our setting, we are working with inexact information. Furthermore, we have to

deal with possible nonconvexity of f . Following the redistributed proximal approach
of [18], we generate a convex piecewise-linear model defined by

Mk(x̂ k + d) := f̂ k + max
j∈J k

{
−ckj +

〈
skj , d

〉}
. (6)

In each affine piece, both the intercept and the slope correspond, respectively, to the
linearization error and subgradient of the “locally convexified” function of the form

f (·) + ηk

2 | · −x̂ k |2, for certain convexification parameter ηk adjusted dynamically,
along iterations. Similarly to [18], such parameter is taken sufficiently large to make
the intercept ckj nonnegative (in the nonconvex case, the linearization errors may be
negative even if the exact data is used).

Accordingly, each affine piece has a shifted nonnegative intercept

0 ≤ ckj := ekj + bkj , for

⎧⎨
⎩
ekj := f̂ k − f j − 〈g j , x̂ k − x j 〉,
bkj := ηk

2

∣∣∣x j − x̂ k
∣∣∣2; (7)

and a modified slope,

skj := g j + ηk
(
x j − x̂ k

)
, (8)

which results from tilting the given approximate subgradient g j at x j by means of ηk .
Any choice for the convexification parameter that keeps ckj in (7) nonnegative is

acceptable. In our proximal redistributed method we take
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Inexact bundle method for nonsmooth nonconvex functions 7

ηk ≥ max

{
max

j∈J k , x j �=x̂ k

−2ekj∣∣x j − x̂ k
∣∣2 , 0

}
+ γ, (9)

for a (small) positive parameter γ , whose role is explained in Remark 1 below.
The term bundle information will be used to denote all the data needed to define

the model Mk in (6); the relevant objects will be indexed by the set J k . Recall that
x̂ k = xj for some j ∈ J k , so the algorithmic center is always included in the bundle
(this is not strictly necessary, but simplifies some issues; and keeping the last best
iterate in the bundle makes some general sense anyway).

Notice that taking in (7) the index j ∈ J k for which x̂ k = xj gives bkj = 0 and

ekj = f̂ k − f j = 0, so ckj = 0 and, hence,

Mk(x̂ k) = f̂ k + max
j∈J k

{−ckj } = f̂ k . (10)

Each new iterate in the algorithm is given by solving the proximal point subproblem
for the model Mk . Specifically,

xk+1 = x̂ k + dk,

for the (uniquely defined) direction

dk := arg min
x̂ k+d∈D

{
Mk(x̂ k + d) + 1

2tk
|d|2

}
(11)

= argmin
d∈Rn

{
Mk(x̂ k + d) + iD(x̂ k + d) + 1

2tk
|d|2

}
,

where tk > 0 is an inverse proximal-parameter, and the notation iD stands for the
indicator function of the set D:

iD(y) =
{

0, if y ∈ D,

+∞, otherwise.

As a practical matter, D must be simple enough, for example, defined by box or linear
constraints, so that the resulting bundle method subproblems are quadratic programs.
That said, modern computational tools also allow to solve efficiently somewhat more
complex subproblems, such as consisting in minimizing quadratic functions subject to
convex quadratic constraints, e.g., [2]. So, in practice, D could be defined by convex
quadratics too. As a matter of the theory presented in the sequel, D can be any convex
compact set (subject to the comments in Remark 2 below).

From the optimality conditions of the subproblem above (which is linearly con-
strained if D is polyhedral; or assuming a constraint qualification [47] if D is more
general),

0 ∈ ∂Mk(xk+1) + ∂iD
(
xk+1) + 1

tk
dk .
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8 W. Hare et al.

Since the model (6) is piecewise-linear, this means that there exists a simplicial mul-
tiplier

αk ∈ R|J k |, αk
j ≥ 0,

|J k |∑
j=1

αk
j = 1

such that

dk = −tk
(
Gk + νk

)
, where Gk :=

∑
j∈J k

αk
j s

k
j , νk ∈ ∂iD

(
xk+1). (12)

Once the new iterate is known, we define the aggregate linearization

Ak(x̂ k + d
) := Mk(xk+1) + 〈

Gk, d − dk
〉
. (13)

Thus we have,

Ak
(
xk+1

) = Mk
(
xk+1

)
,Gk ∈ ∂Mk

(
xk+1

)
, and

Gk = ∇Ak
(
x̂ k + d

)
for all d ∈ Rn .

(14)

By the subgradient inequality, it holds that

Ak(x̂ k + d
) ≤ Mk(x̂ k + d

)
for all d ∈ Rn . (15)

The aggregate error is defined by

Ek := Mk(x̂ k) − Mk(xk+1) + 〈
Gk, dk

〉 ≥ 0, (16)

where the inequality follows from Gk ∈ ∂Mk(xk+1) and dk = xk+1 − x̂ k . Using that
f̂ k = Mk(x̂ k) (see (10)) and the optimal multipliers from (12), gives the following
alternative aggregate error expressions:

Ek =
∑
j∈J k

αk
j c

k
j , (17)

and

Ek = f̂ k − Ak(xk+1) + 〈
Gk, dk

〉
.

Similarly, for the aggregate linearization it holds that

Ak(x̂ k + d) = f̂ k +
∑
j∈J k

αk
j

(
−ckj +

〈
skj , d

〉)

= f̂ k − Ek + 〈Gk, d〉, d ∈ Rn, (18)
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Inexact bundle method for nonsmooth nonconvex functions 9

where we have used (12).

3 Algorithm statement

After the new iterate is computed, we first checkwhether it provides sufficient decrease
of the objective function as compared to the previous stability center (naturally, both
are inexact values in our setting). Specifically, the quality of decrease is measured as
a fraction of the quantity

δk :=
(
f̂ k − Mk(x̂ k)

)
+ Ek + tk

∣∣∣Gk + νk
∣∣∣2 = Ek + tk

∣∣∣Gk + νk
∣∣∣2, (19)

where Ek is defined in (17) and Gk and νk are given by (12); the right-most equality
is by (10). Note that since Ek ≥ 0 by (16), it follows from (19) that

δk ≥ 0.

(Here, we note that our definition of the predicted decrease δk differs from [18].) If the
descent is sufficient, then the corresponding point is declared the new stability center
(a so-called serious iteration). Otherwise, the stability center x̂ k remains unchanged,
and the model Mk is refined (a so-called null step).

Our assumptions on defining the next model Mk+1 are standard:

Mk+1(x̂ k + d
) ≥ f̂ k+1 − ck+1

k+1 +
〈
sk+1
k+1 , d

〉
,

Mk+1(x̂ k + d
) ≥ Ak(x̂ k + d

)
. (20)

The conditions in (20) are required to hold on consecutive null steps only; they need
not be required after a serious step is performed. The first relation in (20) just means
that the newly computed information always enters the bundle. The second condition
holds automatically if no information is removed (due to (15)), or if only inactive
pieces (corresponding to αk

j = 0) are removed.
We next describe the different steps of the proposed algorithm.

Algorithm 4 (Nonconvex Proximal Bundle Method with Inexact Information) A pro-
cedure is given, providing for each x a value f approximating f (x) and a vector g
approximating some element in ∂ f (x), as in (4), (5).
Step 0 (initialization)

Select parameters m ∈ (0, 1) and γ > 0 and a stopping tolerance tol ≥ 0.
Choose a starting point x1 ∈ Rn , compute f 1 and g1, and set the initial index

set J 1 := {1}. Initialize the iteration counter to k = 1. Select an initial inverse
prox-parameter t1 > 0. Set f̂ 1 = f 1 and the initial prox-center x̂1 := x1.

Step 1 (trial point finding and stopping test)
Given the model Mk defined by (6), compute the direction dk by solving the

subproblem (11). Define the associated Gk and νk by (12), Ek by (17), and δk by
(19).
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10 W. Hare et al.

Set xk+1 = x̂ k + dk . If δk ≤ tol, stop.
Step 2 (descent test)

Compute ( f k+1, gk+1), the information at xk+1. If

f k+1 > f̂ k − mδk, (21)

then declare the iteration a null-step and go to Step 3.
Otherwise, declare the iteration a serious-step and set x̂ k+1 := xk+1, f̂ k+1 :=

f k+1, select tk+1 > 0, and go to Step 4.
Step 3 (null-step)

Set x̂ k+1 := x̂ k , f̂ k+1 := f̂ k ; choose 0 < tk+1 ≤ tk .
Step 4 (bundle update and loop)

Select the new bundle index set J k+1, keeping the active elements. Select ηk as in
(9) and update the model Mk+1 as needed. Increase k by 1 and go to Step 1. ��

The use of δk as a stationarity measure to stop the algorithm will be clarified by the
relations in Lemma 5; see also Theorems 6 and 7.

As mentioned, Algorithm 4 follows the framework and ideas laid out in [18].
However, in order to ensure convergence of the algorithm in the presence of inexact
information, some adaptations are made. To begin with, the algorithm now assumes a
convex compact constraint set D. As a result, the normal (to the set D) elements vk are
introduced and carried throughout. Next, the computation for the predicted decrease
looks somewhat different. However, applying in (19) the relations (12) and (16), we
see that

δk =
(
f̂ k − Mk(x̂ k)

)
+ Ek + tk

∣∣Gk + νk
∣∣2

= f̂ k − Mk(xk+1) + 〈
Gk, dk

〉 + tk
∣∣Gk + νk

∣∣2
= f̂ k −

(
Mk(x̂ k + dk

) + 〈
νk, dk

〉)
.

Then the predicted decrease from [18] is recovered if there is no constraint set D (or
if x̂ + dk ∈ int(D), so that νk = 0).

Another change from [18] is in the computation of ηk , explained below.

Remark 1 (The choice of the convexificaton parameter ηk) As explained in Sect. 2.2,
the term

max
j∈J k , x j �=x̂ k

−2ekj
|x j − x̂ k |2

represents the minimal value of η to imply that for all j ∈ J k the linearization errors
of the “locally convexified” function remain nonnegative:

ekj + η

2

∣∣∣x j − x̂ k
∣∣∣2 ≥ 0.
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Inexact bundle method for nonsmooth nonconvex functions 11

Taking the maximum of this term with 0 yields nonnegativity of ηk , and adding the
“safeguarding” small positive parameter γ makes ηk strictly larger that the minimal
value. This differs from the update in [18] where instead the minimal term was mul-
tiplied by a constant Γ > 1. As illustrated by Fig. 1 in our numerical experiments,
the update (9) works somewhat better than the original version of [18]. The reason
appears to be that it deals better with situations where the minimal term in question is
null or too small. ��

Finally, it is worth remarking that, contrary to many nonconvex bundle methods
endowed with a linesearch, e.g., [21,23,32,34,37], our method does not employ a
linesearch sub-routine. In Sect. 5 we give some indications as to why a linesearch is
not required in our approach.

Remark 2 (Uniformly bounded number of active indices in subproblems) In our analy-
sis below, we shall make the following assumption: “The number of active indices,
i.e., of j ∈ J k such that αk

j > 0, is uniformly bounded in k”. As a practical matter,
this can be readily achieved if D is polyhedral (the typical case). This is because most
(if not all) active-set QP solvers choose linearly independent bases, i.e., work with
“minimal” representations. In the expression of Gk in (12), this means that QP solver
gives a solution with nomore than n+1 positive simplicial multipliers (such a solution
always exists by the Carathéodory Theorem). A similar assumption/property for a QP
solver had been used for a different QP-based method in [13, Sec.5], and specifically
for a bundle procedure in [7].

That said, it is should be noted that if a non-active-set method (for example, an
interior point method) is used, then this assumption need not hold.

We also use below the assumption that {ηk} is bounded. Boundedness of {ηk}
has been established in [18] for the lower-C2 case when the function information is
exact. However, in our setting it is theoretically possible that inexactness results in an
unbounded ηk , even if the objective function is convex. The experiments in Sect. 6
show, however, that behavior of the sequence {ηk} is adequate under various kinds
of perturbations, and the overall performance of the inexact algorithm is satisfactory
indeed.

4 Convergence properties

We proceed with the convergence analysis of Algorithm 4, considering two cases:
either there is an infinite sequence of serious/descent iterations, or from some index
on the stability center x̂ k remains fixed and all the subsequent iterations are of the null
type.

4.1 General asymptotic relations

We start with some relations that are relevant for all the cases.

Lemma 5 Suppose the cardinality of the set { j ∈ J k | αk
j > 0} is uniformly bounded

in k (recall Remark 2).
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12 W. Hare et al.

If Ek → 0 as k → ∞, then

(i)
∑

j∈J k αk
j |x j − x̂ k | → 0 as k → ∞.

If, in addition, for some subset K ⊂ {1, 2, . . .},

x̂ k → x̄, Gk → Ḡ as K � k → ∞, with {ηk | k ∈ K } bounded,

then we also have

(ii) Ḡ ∈ ∂ f (x̄) + Bθ̄ (0).

If, in addition, Gk + νk → 0 as K � k → ∞, then

(iii) x̄ satisfies the following approximate stationarity condition:

0 ∈
(
∂ f (x̄) + ∂iD(x̄)

)
+ Bθ̄ (0). (22)

Finally, if in addition, f is lower-C1, then
(iv) for each ε > 0 there exists ρ > 0 such that

f (y) ≥ f (x̄) − (θ̄ + ε)|y − x̄ | − 2σ̄ , for all y ∈ D ∩ Bρ(x̄). (23)

Proof Recall that the first term in the right-hand side of (9) is the minimal value of
η ≥ 0 to imply that

ekj + η

2

∣∣∣x j − x̂ k
∣∣∣2 ≥ 0

for all i ∈ J k . It is then easily seen that, for such η and for ηk ≥ η + γ , we have that

ckj = ekj + ηk

2

∣∣∣x j − x̂ k
∣∣∣2 ≥ γ

2

∣∣∣x j − x̂ k
∣∣∣2.

Taking into account that αk
j and ckj are nonnegative, if E

k → 0 then it follows from

(17) that αk
j c

k
j → 0 for all j ∈ J k . Hence,

αk
j c

k
j ≥ (

αk
j

)2
ckj ≥ γ

2

(
αk
j

∣∣x j − x̂ k
∣∣)2 → 0.

Thus, αk
j |x j − x̂ k | → 0 for all j ∈ J k . As, by the assumption, the sum in the item (i)

is over a finite set of indices and each element in the sum tends to zero, the assertion
(i) follows.

For each j , let p j be the orthogonal projection of g j onto the (convex, closed) set
∂ f (x j ). It holds that |g j − p j | ≤ θ j ≤ θ̄ . By (12) and (8), we have that
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Inexact bundle method for nonsmooth nonconvex functions 13

Gk =
∑
j∈J k

αk
j g

j + ηk
∑
j∈J k

αk
j

(
x j − x̂ k

)

=
∑
j∈J k

αk
j p

j +
∑
j∈J k

αk
j

(
g j − p j ) + ηk

∑
j∈J k

αk
j

(
x j − x̂ k

)
. (24)

As the number of active indices is uniformly bounded in k, by re-numbering the indices
and filling unused indices with αk

j = 0, we can consider that J k is some fixed index

set (say, {1, . . . , N }). Let J be the set of all j ∈ J k such that lim inf αk
j > 0. Then

item (i) imples that |x j − x̂ k | → 0. Thus, |x j − x̄ | ≤ |x j − x̂ k | + |x̂ k − x̄ | → 0.
As p j ∈ ∂ f (x j ) and x j → x̄ for j ∈ J , and {αk

j } → 0 for j /∈ J , passing onto
a further subsequence in the set K , if necessary, outer semicontinuity of the Clarke
subdifferential [43, Thm 6.6] implies that

lim
k→∞

∑
j∈J k

αk
j p

j ∈ ∂ f (x̄).

As the second term in (24) is clearly in Bθ̄ (0), while the last term tends to zero by
item (i), this shows the assertion (ii).

Item (iii) follows from noting that (Gk + νk) → 0 as K � k → ∞ implies that
{νk} → −Ḡ. As νk ∈ ∂iD(x̂ k) for each k, we conclude that −Ḡ ∈ ∂iD(x̄) (by [43,
Thm6.6]). Adding the latter inclusion and result (ii) gives (22).

We finally consider item (iv). Fix any ε > 0. Let ρ > 0 be such that (3.ii) holds for
x̄ . Let y ∈ D ∩ Bρ(x̄) be arbitrary but fixed. Again, we can consider that J k is a fixed
index set. Let J be the set of j ∈ J k for which |x j − x̂ k | → 0. In particular, it then
holds that x j ∈ Bρ(x̄). By item (i), we have that {αk

j } → 0 for j /∈ J .
Using (3) together with (4), for j ∈ J we obtain that

f (y) ≥ f j +
〈
g j , y − x j

〉
+ σ j +

〈
p j − g j , y − x j

〉
− ε|y − x j |

≥ f j +
〈
g j , y − x j

〉
+ σ j − (θ j + ε)|y − x j |.

By (7) and the linearization error definition,

f j +
〈
g j ,−x j

〉
= f̂ k −

〈
g j , x̂ k

〉
+ bkj − ckj .

As a result, it holds that

f (y) ≥ f̂ k − ckj + bkj +
〈
g j , y − x̂ k

〉
+ σ j − (θ j + ε)|y − x j |.

Since bkj ≥ 0 and g j = skj − ηk(x j − x̂ k), we obtain that

f (y) ≥ f (x̂ k) − ckj +
〈
skj , y − x̂ k

〉
− ηk

〈
x j − x̂ k, y − x̂ k

〉
+ σ j + σ̂ k

− (θ j + ε)|y − x j |.
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14 W. Hare et al.

Taking the convex combination in the latter relation using the simplicial multipliers
in (12), and using (17), gives

f (y)
∑
j∈J

αk
j ≥

∑
j∈J

αk
j

(
f (x̂ k) − ckj +

〈
skj , y − x̂ k

〉)
− ηk

〈∑
j∈J

αk
j (x

j − x̂ k), y − x̂ k
〉

+
∑
j∈J

αk
j

(
σ j + σ̂ k) − (θ j + ε)

∑
j∈J

αk
j |y − x j |

≥ f (x̂ k)
∑
j∈J

αk
j − Ek +

〈
Gk, y − x̂ k

〉
−

∑
j /∈J

αk
j

〈
skj , y − x̂ k

〉

−ηk

〈∑
j∈J

αk
j

(
x j − x̂ k

)
, y − x̂ k

〉

−2σ̄ − (θ̄ + ε)
∑
j∈J

αk
j

(∣∣y − x̂ k
∣∣ + ∣∣x j − x̂ k

∣∣). (25)

Passing onto the limit in (25) as K � k → ∞, using item (i) and also that {αk
j } → 0

for j /∈ J (so that, in particular,
∑

j∈J αk
j → 1), we obtain that

f (y) ≥ f (x̄) + 〈
Ḡ, y − x̄

〉 − 2σ̄ − (θ̄ + ε)|y − x̄ |. (26)

As already seen, (Gk +νk) → 0 implies that−Ḡ ∈ ∂iD(x̄), so that 〈−Ḡ, y− x̄〉 ≤
0 for all y ∈ D. Adding this inequality to (26) gives the assertion (23). ��

If f is convex and D = Rn , then condition (23) can be seen to be equivalent to
0 ∈ ∂2σ̄ f (x̄) + Bθ̄ (0), where ∂2σ f (x̄) denotes the usual 2σ -subdifferential of f at x̄ .
This supports that an approximate optimality condition of this order (“linear” in the
errors levels) is what is reasonable to strive to achieve in the setting of perturbed data.
That said, we note that for the convex case (and for so-called “lower models” [9]), our
result is weaker than what can be obtained by other means (basically, in the convex
case a σ̄ -approximate solution can be achieved). This is quite natural, however, as the
convex case analysis takes advantage of the corresponding tools (like the subgradient
inequality), which are not available in our more general setting.

4.2 Null and serious steps

Dependent on the assumptions about tk , we shall prove that the approximate optimality
condition holds for: some accumulation point x̄ of {x̂ k}; all accumulation points of
{x̂ k}; or for the last serious iterate x̂ k = x̄ .

Consider first the case of the infinite number of serious steps.

Theorem 6 (Infinitely many serious iterates) Let the algorithm generate an infinite
number of serious steps. Then δk → 0 as k → ∞.

Let the sequence {ηk} be bounded.
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Inexact bundle method for nonsmooth nonconvex functions 15

(i) If
∑∞

k=1 tk = +∞, then as k → ∞ we have Ek → 0, and there exist K ⊂
{1, 2, . . .} and x̄, Ḡ such that x̂k → x̄,Gk → Ḡ, and Gk + νk → 0 as K � k →
∞.

In particular, if the cardinality of the set { j ∈ J k | αk
j > 0} is uniformly bounded

in k (recall Remark 2), then the conclusions of Lemma 5 hold.
(ii) If lim infk→∞ tk > 0, then these assertions hold for all accumulation points x̄ of

{x̂ k}.
Proof At each serious step k, the opposite of (21) holds. Thus, we have that

f̂ k+1 ≤ f̂ k − mδk, (27)

where δk ≥ 0. It follows that the sequence { f̂ k} is nonincreasing.
Since the sequence {x̂ k} ⊂ D is bounded, by our assumptions on f and σ k the

sequence { f (x̂ k) − σ̂ k} is bounded below, i.e., { f̂ k} is bounded below. Since { f̂ k} is
also nonincreasing, we conclude that it converges.

Using (27), we obtain that

0 ≤ m
l∑

k=1

δk ≤
l−1∑
k=1

(
f̂ k − f̂ k+1

)
,

so that, letting l → ∞,

0 ≤ m
∞∑
k=1

δk ≤ f̂ 1 − lim
k→∞ f̂ k .

As a result,
∞∑
k=1

δk =
∞∑
k=1

(
Ek + tk

∣∣Gk + νk
∣∣2) < +∞. (28)

Hence, δk → 0 as k → ∞. As all the quantities above are nonnegative, it also holds
that

Ek → 0 and tk |Gk + νk |2 → 0 as k → ∞. (29)

If
∑∞

k=1 tk = +∞, but |Gk + νk | ≥ β for some β > 0 and all k, then (28) results
in a contradiction. The fact that no such β exists, means precisely that there exists an
index set K ⊂ {1, 2, . . .} such that

Gk + νk → 0, K � k → ∞. (30)

Passing onto a further subsequence, if necessary, we can assume that {xk} → x̄
and Gk → Ḡ as K � k → ∞. Item (i) is now proven.

If lim infk→∞ tk > 0, then the second relation in (29) readily implies (30) for
K = {1, 2, . . .}, and thus the same assertions can be seen to hold for all accumulation
points of {x̂ k}. ��
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16 W. Hare et al.

In the remaining case, a finite number of serious steps occurs. That is, after a finite
number of iterations the algorithmic center is no more changed: from some k̄ on, the
center is x̂ k = x̂ for all k > k̄, and only null steps follow. The proof makes use of a
simple, yet crucial, relation that we show next. Specifically, by the intercept and slope
definitions in (7) and (8), we see that

−ck+1
k+1 +

〈
sk+1
k+1 , x

k+1 − x̂ k
〉

= −ek+1
k+1 − bk+1

k+1 +
〈
gk+1 + ηk+1

(
xk+1 − x̂ k

)
, xk+1 − x̂ k

〉

= −
(
f̂ k − f k+1 −

〈
gk+1, x̂ k − xk+1

〉)
− ηk+1

2

∣∣∣xk+1 − x̂ k
∣∣∣2

+
〈
gk+1, xk+1 − x̂ k

〉
+ ηk+1

∣∣∣xk+1 − x̂ k
∣∣∣2

= f k+1 − f̂ k + ηk+1

2

∣∣∣xk+1 − x̂ k
∣∣∣2.

As a result, whenever xk+1 is declared a null step, (21) implies that

− ck+1
k+1 +

〈
sk+1
k+1 , x

k+1 − x̂ k
〉
≥ −mδk . (31)

We also note that this crucial relation eliminates the need of performing linesearch at
null steps; see Sect. 5.1 below.

Theorem 7 (Finite serious steps followed by infinitely many null steps)
Let a finite number of serious iterates be followed by infinite null steps. Let the

sequence {ηk} be bounded and lim infk→∞ tk > 0.
Then {xk} → x̂ , δk → 0, Ek → 0, Gk + νk → 0, and there exist K ⊂ {1, 2, . . .}

and Ḡ such that Gk → Ḡ as K � k → ∞.

In particular, if the cardinality of the set { j ∈ J k | αk
j > 0} is uniformly bounded

in k (recall Remark 2), the conclusions of Lemma 5 hold for x̄ = x̂ .

Proof Let k be large enough, so that k ≥ k̄ and x̂ k = x̂ , f̂ k = f̂ are fixed.
Define the optimal value of the subproblem (11) by

ψk := Mk(xk+1) + 1

2tk
∣∣dk∣∣2. (32)

We first show that the sequence {ψk} is bounded above. Recall that, by (13),

Ak(x̂) = Mk(xk+1) − 〈
Gk, dk

〉
.
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Inexact bundle method for nonsmooth nonconvex functions 17

We then obtain that

ψk + 1

2tk
∣∣dk∣∣2 = Ak(x̂) + 〈

Gk, dk
〉 + 1

tk
∣∣dk∣∣2

= Ak(x̂) −
〈
νk, dk

〉

≤ Ak(x̂)

≤ Mk(x̂)

= f̂ ,

where the second equality follows from Gk + νk = −dk/tk , the first inequality is by
νk ∈ ∂iD(xk+1) and dk = xk+1 − x̂ , the second inequality is by (15), and the last is
by (10). In particular, ψk ≤ f̂ , so the sequence {ψk} is bounded above.

We next show that {ψk} is increasing. To that end, we obtain that

ψk+1 = Mk+1(xk+2) + 1

2tk+1

∣∣∣dk+1
∣∣∣2

≥ Ak(xk+2) + 1

2tk
∣∣dk+1

∣∣2

= Mk(xk+1) + 〈
Gk, xk+2 − xk+1〉 + 1

2tk
∣∣dk+1

∣∣2

= ψk − 1

2tk
∣∣dk∣∣2 − 〈

νk, xk+2 − xk+1〉 − 1

tk
〈
dk, dk+1 − dk

〉 + 1

2tk
∣∣dk+1

∣∣2

≥ ψk + 1

2tk

∣∣∣dk+1 − dk
∣∣∣2,

where thefirst inequality is by the second assumption in (20) and the fact that tk+1 ≤ tk ,
the second equality is by (13), the third equality is by (12) and (32), and the last is by
νk ∈ ∂iD(xk+1).

As the sequence {ψk} is bounded above and increasing, it converges. Consequently,
taking also into account that 1/tk ≥ 1/t k̄ , it follows that

∣∣dk+1 − dk
∣∣ → 0, k → ∞. (33)

Next, by the definition (19) of δk and the characterization (16) of Ek , we have that

f̂ = δk + Mk(x̂) − Ek − tk
∣∣Gk + νk

∣∣2
= δk + Mk(xk+1) − 〈

Gk, dk
〉 − tk

∣∣Gk + νk
∣∣2

= δk + Mk(x̂ + dk
) + 〈

νk, dk
〉

≥ δk + Mk(x̂ + dk
)
,

where the inequality is by νk ∈ ∂iD(xk+1). Therefore,

δk+1 ≤ f̂ − Mk+1(x̂ + dk+1). (34)
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18 W. Hare et al.

By the first inequality in the assumption (20) on the model, written for d = dk+1,

− f̂ k+1 + ck+1
k+1 −

〈
sk+1
k+1 , d

k+1
〉
≥ −Mk+1(x̂ + dk+1).

As f̂ k+1 = f̂ , adding condition (31) to the inequality above, we obtain that

mδk +
〈
sk+1
k+1 , d

k − dk+1
〉
≥ f̂ − Mk+1(x̂ + dk+1).

Combining this relation with (34) yields

0 ≤ δk+1 ≤ mδk +
〈
sk+1
k+1 , d

k − dk+1
〉
. (35)

Sincem ∈ (0, 1) and
〈
sk+1
k+1 , d

k − dk+1
〉
→ 0 as k → ∞ (recall that {dk −dk+1} → 0

by (33) and {ηk} is bounded), using [41, Lemma 3, p. 45] it follows from (35) that

lim
k→∞ δk = 0.

Since δk = Ek + tk |Gk + vk |2, and lim infk→∞ tk > 0, we have limk→∞ Ek = 0
and limk→∞ |Gk + vk | = 0. Also limk→∞ dk = 0, so that limk→∞ xk = x̂ . Passing
onto a subsequence if necessary, we may also conclude that Gk converges to some
Ḡ. Finally, as x̂ k = x̄ for all k, we clearly have all of the requirements in Lemma 5
fulfilled. The conclusions follow. ��

5 Putting the algorithm in perspective

We next comment on how our approach relates to other methods in the nonsmooth
nonconvex literature. As linesearch is common in methods that tackle nonconvex
problems, we first explain why our method does not need such a procedure. After that,
we describe some differences with the nonconvex bundle method of [39], which also
deals with inexact information on both the function and subgradient values.

5.1 Lack of linesearch

In nonsmooth nonconvex optimization methods, linesearch is a subalgorithm that
usually uses three parameters m,mS,mN ∈ (0, 1), and is invoked at each iteration k.
Let its inner iterations be labeled by � = 1, 2, . . ..

By using a linesearch, instead of just taking x̂ k + dk as the iterate for which the
f, g information is computed, a trial stepsize τ� > 0 is chosen, to define the trial point
y� := x̂ k + τ�dk , for which the values fy� , gy� are computed.
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Inexact bundle method for nonsmooth nonconvex functions 19

Analogously to our algorithm, the inner linesearch iterations define trial intercepts
and slopes

ck� := f̂ k − fy� − 〈
gy� , x̂ k − y�

〉 + ηk

2

∣∣y� − x̂ k
∣∣2, sk� := gy� + ηk

(
y� − x̂ k

)
.

Then, before incorporating the corresponding affine piece in the next model function,
the trial point is classified as follows:

– y� is declared a serious iterate and the linesearch ends when the opposite of (21)
holds (written with the function estimate fy� instead of f k+1), and if the step is
“not too short”. The latter, in view of (7), means that

either τ� ≥ 1 or ck� ≥ mSδ
k . (36)

The alternative above (i.e., the first condition in (36)) was introduced in [21] to
prevent insignificant descent.

– y� is declared a null iterate and the linesearch ends when there is no sufficient
decrease ((21) holds for fy� ) and

− ck� +
〈
sk� , y� − x̂ k

〉
≥ −mN δk (37)

holds. The latter condition can be interpreted as a nonsmooth extension of the
Wolfe condition, see also [36].

– If y� could not be declared serious or null, the inner iteration continues: the counter
� is increased by 1, a new stepsize τ �+1 is chosen, and the process is repeated.

For the inner loop with the linesearch to be well-defined, it must (of course) have
finite termination. When the information is exact, this can be shown taking 0 <

m + mS < mN < 1 when f is upper semidifferentiable [4], a weaker property than
semismoothness. With inexact information, as in (4), it is not clear that linesearch
terminates finitely (unless, perhaps, the information becomes asymptotically exact).

In our proximal redistributed method, there is no need for linesearch, because one
of the two situations above (i.e., satisfaction of either (36) or (37)) always holds for
τ� = 1 and � = 1. To see this, takemN = m andmS arbitrary and recall the descent test
in Step 2 of the algorithm. If a serious step is declared, i.e., the opposite of (21) holds,
then (36) is obviously automatic, as the method always employs τ1 = 1. If, instead, a
null step is declared, (21) holds and, again, no linesearch is necessary, because (31) is
just (37), written with mN = m, y1 = x̂ k + dk = xk+1, ck1 = ck+1

k+1, and sk1 = sk+1
k+1 .

5.2 Relation with Noll’s proximity control algorithm

The proximity control algorithm of [39] uses certain second-order model, denoted
by Φk , which adds to the cutting-plane model Mk a quadratic term of the form
1
2 〈d, Q(x̂ k)d〉 for a matrix varying with x̂ k . Here, without impairing convergence
properties of [39], we take the zero matrix, so that
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20 W. Hare et al.

Φk(x̂
k + d, x̂ k) in [39] corresponds toMk(d) in (6),

and, in the parlance of [39], the first and second order models coincide. We emphasize
the approach in [39] is more general, as the matrices Q(·) can be indefinite, as long
as Q(x̂ k) + 1

tk
I remains positive definite. We mention in passing that the proximity

control parameter τk in [39] corresponds to 1/tk in our method.
The considered problem is unconstrained, but in Sect. 1.5 of thework all null iterates

are assumed to remain in some compact set (this is the ball B(0, M) in (1.13) in [39]).
The cutting-plane model in the proximity control method ensures positivity of the

intercept ckj in (6) by downshifting only, without tilting of the gradients:

In [39], the model (6) takes

{
ckj := ekj + max{−ekj , 0} + γ |x j − x̂ k |2
skj := g j .

Downshifting preserves all the important properties in Lemma 5 (which depend on
having ckj ≥ γ |x j − x̂ k |2). But without tilting the slopes, the relation (31) is no longer
valid at null steps. To address this issue, the proximity control method distinguishes
two cases to update the parameter tk when (27) does not hold. Instead of introducing a
linesearch, as in most of nonconvex bundle algorithms, changing tk results in a curve
search.

More precisely, in [39], an iterate is declared a null step and tk+1 = tk when, for
parameters 0 < m < m̃ < 1,

f k+1 > f̂ k − mδk and f k+1 +
〈
gk+1, x̂ k − xk+1

〉
≤ f̂ k − m̃δk,

or in other words, (21) and ekk+1 ≥ m̃δk hold. Otherwise, the stepsize is deemed “too
bad” and it is updated by tk+1 = tk/2. Combining both conditions above for null steps
gives the inequality

〈
gk+1, x̂ k − xk+1

〉
≤ f̂ k − f k+1 − m̃δk ≤ (m − m̃)δk < 0,

because m < m̃. Since in addition the downshifting procedure ensures that ckk+1 ≥
ekk+1 always, at null steps the inequality in (31) is satisfied with m replaced by m̃:

−ckk+1 +
〈
skk+1, x

k+1 − x̂ k
〉
< −ckk+1 < −ekk+1 ≤ −m̃δk .

Since the parameter tk remains fixed for the subsequence of infinite null steps, the
proximity control update of this parameter satisfies the conditions inTheorem7: tk+1 ≥
tk with lim inf tk > 0. In this sense, Lemma 7 in [39] corresponds to our Theorem 7
and reaches the same conclusion on approximate stationarity (22), involving only the
gradient errors θ̄ . The case of an infinite tail of “too bad” steps (which cannot happen
in our approach), drives tk → 0 and is much more involved:
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Inexact bundle method for nonsmooth nonconvex functions 21

(i) When σ̄ = 0 (no error in the function evaluation), [39, Lemma3] shows that for
lower-C1 functions, whenever (21) holds with tk → 0, the last center is approxi-
mately stationary. Specifically, changing the ball Bθ̄ (0) in (22) to the larger ball

BΘ(0) where Θ = θ̄ + θ̄ + ε

m̃ − m

and ε is given in (3).
(ii) When there is noise in the function too, [39, Lemma6] gives a similar result for

lower-C1 functions, under the following additional assumption on the evaluation
errors:

[39, axiom(1.42)] : ∃ε′′ > 0 and Δk → 0+ such that

σ̂ k ≤ σ k+1 + (ε′′ + Δk)|x̂ k − xk+1|.

This condition imposes some kind of “upper-semicontinuity of the noise” at the
centers. Under this assumption, when there are infinitelymany “too bad” steps, the
last center is approximately stationary in the ball BΘ ′(0), whereΘ ′ = θ̄+ θ̄+ε+ε′′

m̃−m .

The agressive management of tk , halving the parameter when steps are “too bad”,
has also an impact on the convergence analysis for the serious step sequence. When tk
remains bounded away from zero, part ii in [39, Theorems 1 and 2] corresponds to our
result in Theorem 6(ii), proving stationarity on a ball depending only on the gradient
error bound, θ̄ .

As before, the analysis becomes more involved when tk → 0 (parts (iii) to (ix)
in the theorems). Once again, but now for the accumulation points of the serious
step sequence, axiom (1.42) yields stationarity on the ball above. This result is not in
contradiction with our statement in Theorem 6(i), as halving the parameter tk results in
a (convergent) geometric series with ratio 1/2, which does not satisfy our divergence
assumption.

Tofinish this discussion,wemention the followinguseful feature of [39]. Section1.9
therein describes an H∞ control problem for which the axiom (1.42) on “upper-
semicontinuity of the noise” can be effectively ensured in practice.

6 Numerical illustration

In this section we first check the behaviour of Algorithm 4 when the information is
exact, by comparing itwith the exact nonconvexbundlemethodof [18].Wealso numer-
ically test Algorithm 4 for various kinds of inexactness. While there is no intention to
make strong general claims, at least on the given test examples, the approach appears
to be satisfactory. Finally, we explore how the convexification parameter behaves in the
computational tests. Indeed, Theorems 6 and 7 assume that the parameter ηk remains
bounded. In the case of exact information (i.e., σ̄ = θ̄ = 0), under reasonable con-
ditions, [18, Lem. 3] shows boundedness of the convexification parameter sequence.
However, for inexact information showing a similar result would be difficult (if not
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impossible) without imposing additional assumptions on the behavior of the errors
(perhaps of the nature of axiom (1.42) in [39]). This difficulty is illustrated by the
following simple example. Consider a constant function f (x) = 0 and 3 arbitrarily
close points: x0, x̂ = x1, and x2. Suppose that the function error at x0 and x2 both shift
function values down slightly, but the function error at x1 is zero. As the linearization
errors indicate that f is an arbitrarily concave quadratic function, the update (9) would
force ηk to ∞. Nevertheless, our numerical experience in Sect. 6.4 indicates that one
might expect not to encounter such pathological/artificial situations in computation.

6.1 Test functions and types of inexactness

Algorithm 4 was implemented in MATLAB, version 8.1.0.604 (R2013a). Default
values for the parameters were set as follows: m = 0.05, γ = 2, and t1 = 0.1. To
select ηk (in step 5) we use (9) with equality, i.e.,

ηk = max

{
max

j∈J k , x j �=x̂ k

−2ekj
|x j − x̂ k |2 , 0

}
+ γ.

(We also considered ηk = max

{
max j∈J k , x j �=x̂ k

−2ekj
|x j−x̂ k |2 , 0, η

k−1
}

+ γ , but the for-

mula above provided slightly better results.) No parameter tuning was performed for
any of these values here. Although the values form and t1 correspond to the parameters
tuned in [18], they are not necessarily optimal in an inexact setting.

In Step 4 of Algorithm 4 the bundle of information keeps only active elements in
J k+1. In addition to the stopping test in Step 1, there are two emergency exits: when
the iteration count passes max(300, 250n), and when the QP solver computing the
direction dk in (11) fails.

Like [18], we use the Ferrier polynomials as a collection of nonconvex test problems
(see [11], [12]). The Ferrier polynomials are constructed as follows. For each i =
1, 2, . . . , n, we define

hi : Rn �→ R,

x �→ (i x2i − 2xi ) + ∑n
j=1 x j .

Using the functions hi , we define

f1(x) :=
n∑

i=1

|hi (x)|,

f2(x) :=
n∑

i=1

(hi (x))
2,

f3(x) := max
i∈{1,2,...,n} |hi (x)|,
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f4(x) :=
n∑

i=1

|hi (x)| + 1

2
|x |2,

f5(x) :=
n∑

i=1

|hi (x)| + 1

2
|x |.

These functions have 0 as a global minimizer, are known to be nonconvex, nonsmooth
(except for f2), lower-C2, and generally challenging to minimize [18]. As our closed
compact feasible set, we use D = B10(0). We consider 75 test problems

min
x∈D fk(x) for

k ∈ {1, 2, 3, 4, 5}
n ∈ {2, 3, 4, . . . , 16}.

We set x1 = [1, 1/4, 1/9, . . . , 1/n2] for each test problem.
To introduce errors in the available information, at each evaluation we add a ran-

domly generated element to the exact values f (xk+1) and g(xk+1), with norm less or
equal to σ k and θk respectively.

We test 5 different forms of noise:

– N0: No noise, σ̄ = σ k = 0 and θk = 0 for all k,
– N f,g

c : Constant noise, σ̄ = σ k = 0.01 and θk = 0.01 for all k,
– N f,g

v : Vanishing noise, σ̄ = 0.01, σ k = min{0.01, |xk |/100}, θk = min{0.01,
|xk |2/100} for all k,

– Ng
c : Constant Gradient noise, σ̄ = σ k = 0 and θk = 0.01 for all k, and

– Ng
v : Vanishing Gradient noise, σ̄ = σ k = 0 and θk = min{0.01, |xk |/100} for all

k.

The first noise form, N0, is used as a benchmark for comparison. Noise form N f,g
c is

representative of a noisy function where the noise is outside of the optimizer’s control.
The third, N f,g

v , is representative of a noisy simulation where the optimization can use
some technique to reduce noise. The technique is assumed to be expensive, so the
optimizer only applies the technique as a solution is approached. The fourth and fifth,
Ng
c and Ng

v , represent exact functions where subgradient information is approximated
numerically. Like N f,g

v , in Ng
v as a solution is approached, we decrease the amount of

noise.
To address the random nature of the problem, for noise forms N f,g

c , N f,g
v , Ng

c , and
Ng

v , we repeat each test 10 times. (Noise form N0 is deterministic, so no repeating is
required).

As for all the functions the global minimum is zero, we use the formula

Accuracy =
∣∣∣ log10( f̂ k̄)

∣∣∣
to check the performance of the different methods. In all the figures that followwe plot
the resulting average achieved accuracy, when running the corresponding algorithms
until satisfaction of its stopping test, taking tol = 10−3 and tol = 10−6 (left and
right graphs, respectively).
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Fig. 1 Accuracy at termination for Algorithm 4 and [18]

6.2 Comparison with RedistProx algorithm in the exact case

We start by benchmarking Algorithm 4 with the exact variant N0 and the (exact)
RedistProx Algorithm from [18]. Both methods use the relative stopping criterion

δk ≤ tol
(
1 + | f̂ k |

)
.

Examining Fig. 1, we see that Algorithm 4 exhibits a performance comparable to
the exact RedisProx method of [18]. We also notice that the relative stopping criterion
is fairly successful in reaching the desired accuracy (of 3 or 6 digits). When the
tolerance is 10−6, Algorithm 4 seems to behave somewhat better than RedistProx,
possibly because the version of the ηk-update employed in [18] is more likely to cause
QP instabilities (recall Remark 1).

6.3 Impact of noise on solution accuracy

Next, we explore convergence over the variety of error forms N f,g
c ,N f,g

v ,Ng
c ,N

g
v , tak-

ing as relative stopping criterion δk ≤ max
(
tol, σ̄

)(
1 + | f̂ k |

)
. (It is clearly

unreasonable/not-meaningful to aim for accuracy higher than the error bound).
In Figs. 2 and 3, we present the algorithm’s average performance when noise is

present (the results are averaged across all 10 runs of the algorithm). To ease the
interpretation of the graphs, we replot the results with no noise (Algorithm 4 with N0).

Figure 2 reports the result for constant noise (variants N f,g
c and Ng

c ).
ExaminingFig. 2,we see that errors in the evaluations result in poorer final accuracy,

as expected. When the function values and gradients have constant noise, we achieve
an accuracy roughly equal to the magnitude of that error. When function values are
exact, but gradients contain constant error, the results are better, but still notably worse
than when exact calculations are available. Nevertheless, we notice a general increase
in accuracy as tol is decreased.

Figure 3 reports the results for vanishing noise (variants N f,g
v and Ng

v ). In this case,
when tol = 10−3, both noise forms N f,g

v and Ng
v have an accuracy similar to the
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Fig. 2 Accuracy at termination for noise forms N0, N
f,g
c , and Ngc

Fig. 3 Accuracy at termination for noise forms N0, N
f,g
v , and Ngv

exact variant N0. For tol = 10−6, the noisy variants achieve reduced accuracy, but
generally better than in the constant noise case.

6.4 Impact of noise on the convexification parameter ηk

We are interested in exploring the assumption that the parameter ηk remains bounded.
To discuss this, define

ηmin := max
j∈J k , x j �=x̂ k

−2ekj
|x j − x̂ k |2 .

In [18, Rem. 2], it is shown that if η > 2n, then the convexified Ferrier polynomial
fi + η/2| · |2 is convex (i ∈ {1, 2, 3, 4, 5}). Thus, if there is no noise present, then
we would have ηmin ≤ 2n at each iteration, and consequently (if there is no noise)
ηk ≤ ηmin + γ ≤ 2n + 2 at each iteration (as γ = 2). Of course, in the presence of
noise, we cannot expect ηk ≤ 2n + 2 at all iterations. However, we would hope that
ηk does not grow greatly out of proportion to this value.
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Table 1 Termination value of
ηk

Noise
form

Problems with

ηk ≤ 2n + 2 2n + 2 < ηk ≤ 25n 25n < ηk

N0 73 1 1

N
f,g
c 582 94 74

N
f,g
v 703 21 26

N
g
c 729 13 8

N
g
v 731 10 9

In this set of tests, we set tol = 0 and allow the algorithm to run until 25n
function/subgradient evaluations are used (effectively forcing a limiting state to the
algorithm). In Table 1, we report the number of times ηk is below 2n + 2, between
2n + 2 and 25n, or exceeds 25n by the termination of the algorithm.

Examining Table 1, we see that the only situation where ηk seems somewhat uncon-
trolled is the noise form N f,g

c . Recalling that in that case the noise is constant on both
f and g values, this is clearly the hardest noise form to deal with. Overall, the exper-
iments support that the assumption of ηk remaining bounded is quite reasonable in
general, particularly if noise asymptotically vanishes or if the f values are exact. It
is interesting to note that, for all noise forms (including “no-noise”) and on all tests,
Ferrier polynomial f4 in dimension 14 results in ηk > 25n.
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