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Abstract This paper presents new algorithms for the dynamic generation of scenario
trees formultistage stochastic optimization. The differentmethods described are based
on random vectors, which are drawn from conditional distributions given the past and
on sample trajectories. The structure of the tree is not determined beforehand, but
dynamically adapted to meet a distance criterion, which measures the quality of the
approximation. The criterion is built on transportation theory, which is extended to
stochastic processes.
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1 Introduction

Scenario trees are the basic data structure for multistage stochastic optimization prob-
lems. They are discretizations of stochastic processes and therefore an approximation
to real phenomena. In this paper we describe general algorithms, which approximate
the underlying stochastic process with an arbitrary, prescribed precision.

The traditional way from data to tree models is as follows:

(i) Historical time series data are collected,
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642 G. Ch. Pflug, A. Pichler

(ii) a parametric model is specified for the probability law which governs the data
process,

(iii) the parameters are estimated on the basis of the observations (and possibly some
additional information),

(iv) future scenarios are generated according to the identified probability laws, and
finally

(v) these scenarios are concentrated in a tree, typically by stepwise reduction.

In the last step a concept of closeness of scenarios and similarity between the simulated
paths and the tree has to be used. Some authors use as a criterion for similarity the
coincidence of moments (cf. Wallace et al. [13,14]), others use distance concepts such
as the squared norm and a filtration distance (cf. Heitsch and Römisch and others [5,7–
11]).

It has been shown in Pflug and Pichler [26] that an appropriate distance concept for
stochastic processes and trees is given by the nested distance (seeDefinition 20 below).
The relevant theorem for multistage stochastic optimization (cited as Theorem 21
below) is extended and simplified for the particular case of pushforward measures
(Theorem 16). Based on transportation theory this paper presents in addition theorems
which are particularly designed to extract scenario trees by employing techniques,
which are adopted from stochastic approximation.

Shapiro [30] mentions that it is standard practice for scenario tree construction to
sample at every stage conditionally on the scenarios generated at the previous stage.
The trees obtained represent a reference model of the initial stochastic process. The
paper [1] by Bally et al. considers Markovian processes as the Brownian diffusion
processes and applies optimal quantization to construct a tree reference model for
option pricing, while Kuhn [16,17] considers more general autoregressive processes.
Our algorithms follow this idea as well, but in addition we construct scenario trees
from observed paths, which may not have a common past.

A related issue is the choice of the tree topology, or the branching structure of the
scenario tree: how bushy and how big should the approximating tree be in order not
to exceed a given, maximal discretization error? The cited papers do not address this
problem. The scenario reductionmethods of Heitsch andRömisch are inspired by their
work on squared norm and filtration distances, but do not give explicit error bounds.

We propose here a new way from data to tree models as follows:

(i) as above, historical time series data are collected,
(ii) a simulator has to be provided, which allows sampling trajectories from all con-

ditional distributions of the estimated data process,
(iii) a threshold for the maximum discretization error has to be specified, then
(iv) our algorithms generate a tree with automatically chosen topology and maximal

chosen discretization error.

The algorithms apply to stochastic processes with higher dimensional state space too,
for which an appropriate distance has to be chosen. This is of relevance and importance
in many economic applications.

The presentedmethods can be applied to approximate stochastic optimization prob-
lemswith continuous-state scenarios by simpler ones defined on discrete-state scenario
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Dynamic generation of scenario trees 643

trees. Pennanen et al. [12,21,22] investigate the convergence of related multistage sto-
chastic programs.

Outline of the paper. The next section (Sect. 2) recalls the notion of transportation
distances on probability spaces. Section 3 provides the mathematical basis for algo-
rithms to approximate probability measures. These algorithms are based on stochastic
approximation. Section 4 generalizes the results to stochastic processes and gives the
related theorems for stochastic programming based on transportation distance. Sec-
tion 5 introduces the nested distance and generalizes the results from transportation
distances to the nested distance. Further, this section explains how scenario trees can
be extracted from a set of trajectories of the underlying process. A series of examples
demonstrates that it is possible to extract useful scenario trees even from a sample,
which is smaller than the nodes of the scenario tree. In Sect. 6 we discuss the relevance
of the algorithms and conclude.

2 Approximation of probability measures

It has been elaborated in a sequence of publications that the nested distance is an
appropriate concept to provide a distance for stochastic processes, the basic theorem
is provided below (Theorem 16). The nested distance is built on the transportation
distance (sometimes alsoWasserstein, or Katorovich distance), which is a distance for
probability measures.

Numerical integration is easily executed for discretemeasures. By theKantorovich–
Rubinstein duality theorem (cf. Villani [32, Theorem 1.14]), the Kantorovich distance
provides the smallest possible error bound to compare expectations with respect
to different measures. The Kantorovich distance, and the more general variant, the
Wasserstein distance, are thus the adequate tool to provide adapted, discrete prob-
ability measures for numerical integration or expectation. In addition, the distances
themselves can be handled numerically.

Having fast computations in mind we are interested in discrete approximating mea-
sures, which have as few as possible supporting points. The approach we outline
here allows different weights for the supporting scenarios, as this optimal quantiza-
tion further improves the approximating precision. Respective measures with equally
weighted supporting points are, e.g., described in Pagés [20], but the same author
provides also optimal quantizers in a series of related papers.

Definition 1 (Transportation distance for probability measures) Assume that P (P̃ ,
resp.) are probability measures on probability spaces � (�̃, resp.), such that for ξ ∈ �

and ξ̃ ∈ �̃ a distance d(ξ, ξ̃ ) is defined. To the metric d one may associate the
pertaining Wasserstein distance of order r ≥ 1 of probability measures by

dr (P, P̃) := inf

{(∫∫
�×�̃

d(ξ, ξ̃ )r π(dξ, d ξ̃ )

)1/r ∣∣∣∣π is a probability measure on � × �̃

with marginal distributions P and P̃

}
.

(1)
The distance d1 is also called Kantorovich distance.
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644 G. Ch. Pflug, A. Pichler

The methods we develop in what follows consider a special probability measure P̃ ,
which is associated with the initial measure P by a transport map.

Remark 2 The Wasserstein distance introduced here is based on the continuous func-
tion (a distance) d. For the theory of more general cost functions we refer, e.g., to
Schachermayer et al. [2].

2.1 Transport maps

A particular situation arises if the second probability measure P̃ is a pushforward
measure (or image measure) of P for some transport map T : � → �̃ linking the
spaces, P̃ = PT := P ◦ T−1. Then an upper bound for the Wasserstein distance is
given by

dr
(
P, PT )r ≤

∫
�

d
(
ξ, T (ξ)

)r
P(dξ), (2)

because the bivariate measure

πT (A × B) := P
(
A ∩ T−1(B)

)
(3)

associated with T has the marginals required in (1).
The situation P̃ = P ◦ T−1 naturally arises in approximations, where the outcome

ξ is approximated by T (ξ). Notice that if T (ξ) is a close approximation of ξ , then
d
(
ξ, T (ξ)

)
is small and the integral in (2) is small as well, which makes PT an

approximation of interest for P .
The upper bound (2) is useful in many respects. First, the measure πT is compu-

tationally much easier to handle than a solution of (1), because the integral in (2) is
just over �, and not over the product � × �̃ as in (1). Further, for r = 2, Brenier’s
polar factorization theorem [3,4] implies that the optimal transport plan π solving (1)
has the general form (3) for some measure preserving map T , such that involving a
transport map is not restrictive. Finally, the transport map allows a generalization to
stochastic processes which we address in Sect. 4.2.

2.2 Single-period Wasserstein distance minimization

Assume that P and P̃ are probabilities on � = R
m , which is endowed with the

distance

d(ξ, ξ̃ ).

To the distance d one may associate the pertaining Wasserstein-distance according
to (1) in Definition 1. Our goal is to approximate P by the “best” discrete multivariate
distribution P̃ sitting on s points z(1), . . . , z(s) in the sense that the transportation
distance dr (P, P̃) is minimized.

Given a collection of points Z = (z(1), . . . , z(s)) ,which can be collected in am×s

matrix, introduce the Voronoi partition VZ =
{
V (i)
Z : i = 1, . . . , s

}
of Rm , where
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Dynamic generation of scenario trees 645

V (i)
Z =

{
ξ ∈ R

m
∣∣∣∣d(ξ, z(i)) = min j d(ξ, z( j)) and
d(ξ, z(k)) > min j d(ξ, z( j)) for k < i

}

such that1 ⊎
i∈{1,...s}

V (i)
Z = R

m .

For a given probability P onRm we use the notation PZ for the discrete distribution

sitting on the points of the set Z with masses P
(
V (i)
Z

)
, i.e.,

PZ =
s∑

i=1

P
(
V (i)
Z

)
· δz(i) .

Remark 3 Notice that the measure PZ is induced by the plan T , PZ = PT , where
T : � → Z ⊂ � is the transport map

T (ξ) := z(i), if ξ ∈ V (i)
Z .

For a fixed P let

D(Z) :=
∫

�

min
i=1,...s

d
(
ξ, z(i)

)r
P(dξ) =

s∑
i=1

∫
V (i)
Z

d
(
ξ, z(i)

)r
P(dξ). (4)

Then

D(Z)
1/r = min

{
dr (P, P̄) : P̄(Z) = 1

}
= min

{
dr (P, P̄) : P̄ sits on the points of the set Z

} = dr (P, PZ ), (5)

such that D(Z)measures the quality of the approximation of P , which can be achieved
by probability measures with supporting points Z (cf. [6, Lemma 3.4]).

2.2.1 Facility location

The approximation problem is thus reduced to finding the best point set Z (the facil-
ity location problem) in (4). This problem is an unconstrained, non-convex, high
dimensional (as optimal locations consist of s points in Rm) optimization problem. In
addition, the objective is not everywhere differentiable. In general, it is not possible
to identify the (a) global solution of the facility location problem, but good locations
are often sufficient for applications in stochastic optimization.

In the next section we discuss three algorithms for solving this minimization prob-
lem:

1 The disjoint union
⊎

i Vi symbolizes that the sets are pairwise disjoint, Vi ∩ Vj = ∅, whenever i 
= j .
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646 G. Ch. Pflug, A. Pichler

(i) A deterministic iteration procedure, which is applicable, if the necessary inte-
grations with respect to P can be carried out numerically.

(ii) A stochastic approximation procedure, which is based on a sample from P and
which converges to a local minimum of D.

(iii) A branch-and-bound procedure, which is also based on a sample from P and
which converges to a global minimum of D.

2.2.2 Asymptotics and choice of parameters

Locations, which minimize the objective (5) globally, are called representative points.
It is a well-known result established byDudley (cf. Graf and Luschgy [6]) that D(Z)

1/r

is asymptotically of order s−1/m independently of r . It is desirable to choose r = 1 or
r small, because dr (P, P̄) ≤ dr ′(P, P̄) whenever r ≤ r ′ (a consequence of Hölder’s
inequality) to improve the approximation (5).

On the other hand, choosing the Euclidean distance d(·, : ) := ‖·− : ‖ and r = 2
often simplifies computations significantly. In particular it holds for linear random

variables f thatE f = EPZ f , if PZ =∑s
i=1 P

(
V (i)
Z

)
· δz(i) and Z is a local minimum

of (5) (cf. Graf and Luschgy [6, Remark 4.6]). Hence, (locally) optimal measures are
always (even for s = 1 or s ≤ d) exact for the expectation of linear random variables.
In addition, a transportation map is available in the case of r = 2, cf. Remark 5 below.

However, the choice of the underlying norm and the parameter r ≥ 1 is often driven
by the particular problem at hand, but r = 2 and the Euclidean norm is the preferable
choice for linear problems.

3 Algorithms to approximate probability measures

Before introducing the algorithms we mention the differentiability properties of the
mapping Z → D(Z). This is useful as the first order conditions of optimality for (5)
require the derivatives to vanish.

Let ∇D(Z) be them× s matrix with column vector ∇z(i)D(Z) given by the formal
derivative ∫

V (i)
Z

r d
(
ξ, z(i)

)r−1 · ∇ξ̃ d
(
ξ, z(i)

)
P(dξ), i = 1, . . . s (6)

of (4).

Proposition 4 If P has a density g with respect to the Lebesgue measure, then Z →
D(Z) is differentiable and the derivative is ∇D(Z).

Proof Notice first that by convexity of the distance d the gradient ∇ξ̃ d
(
ξ, z(i)

)
in the

integral (6) is uniquely determined except on a Lebesgue set of measure zero due to
Rademacher’s theorem. As P has a Lebesgue density the exception set has measure
zero and the integral is well defined. That (6) is indeed the derivative follows by
standard means, cf. also Pflug [23, Corollary 3.52, page 184].
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Dynamic generation of scenario trees 647

3.1 The deterministic iteration

We start with a well known cluster algorithm for partitioning a larger set of points in
R
m into s clusters. Algorithm 1 is a typical example of an algorithm, which clusters

a given set of points into subsets of small intermediate distance. The algorithm can
be used to generate representative scenarios. We use it only to find good starting
configurations for the subsequent optimization algorithm.

Algorithm 1 A typical hierarchical cluster algorithm (complete linkage)

(i) Sampling. Suppose that n points
{
z(1), . . . , z(n)

}
in R

m endowed with metric d is given. The set

Z =
{
z(i) : i = 1, . . . , n

}
is iteratively partitioned into disjoint clusters, such that their number

decreases from step to step. At the beginning, each point is a cluster of itself.
(ii) Iteration. Suppose that the current partition of the set is Rm = ⊎

j C j . Find the pair of clusters
(C j ,Ck ) for which

sup
{
d(z, z′) : z ∈ C j , z

′ ∈ Ck
}

is minimal. Create a new cluster by merging C j and Ck .
(iii) Stopping criterion. If the number of clusters has decreased to the desired number s, then stop.

Otherwise goto (ii).

The subsequent single-period algorithm (Algorithm 2, a theory based heuristic)
requires integration with respect to P , as well as nonlinear optimizations to be carried
out numerically. Since this is a difficult task, especially for higher dimensions, we
present an alternative algorithm based on stochastic algorithm later.

Algorithm 2 Discretization of the probability measure P by a discrete probability
sitting on s points: a deterministic, but numerically difficult algorithm

(i) Initialization. Set k = 0 and start with an arbitrary point set Z(0) =
{
z(i) : i = 1, . . . s

}
. It is

advisable to choose the initial point set according to a cluster algorithm, e.g., to use Algorithm 1 to
find clusters and then start with the cluster medians.

(ii) Voronoi partition. Find the Voronoi sets V (i)
Z(k) for 1 ≤ i ≤ s.

(iii) Optimization step. For all i compute the center of order r , i.e., let

z(i)(k + 1) ∈ argmin
y

{∫
V (i)
Z(k)

d (ξ, y)r P(dξ)

}
(7)

and form the new set Z(k + 1) =
{
z(i)(k + 1) : i = 1, . . . s

}
.

(iv) Integration step. Calculate D
(
Z(k+1)

)
. Stop, if D(Z(k+1)) ≥ D(Z(k)); otherwise set k := k+1

and goto (ii).

Remark 5 To compute the argmin in the optimization step (iii) of Algorithm 2 is in
general difficult. However, there are two important cases.
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648 G. Ch. Pflug, A. Pichler

(i) Whenever R
m is endowed with the weighted Euclidean metric d

(
ξ, ξ̃
)2 =∑m

j=1 w j

∣∣∣ξ j − ξ̃ j

∣∣∣2 and the order of the Wasserstein distance is r = 2, then the

argmin is known to be the conditional barycenter, i.e., the conditional expected
value

z(i)(k + 1) = 1

P
(
V (i)
Z(k)

) ∫
V (i)
Z(k)

ξ P(dξ). (8)

This is an explicit formula, which is available in selected situations of practical
relevance.Computing (8) instead of (7)may significantly accelerate the algorithm.

(ii) Whenever Rm is endowed with the weighted �1-metric d
(
ξ, ξ̃
)

= ∑m
j=1 w j∣∣∣ξ j − ξ̃ j

∣∣∣, then z(i)(k + 1) in (7) is the componentwise median of the probability

P restricted to V (i)
Z(k). In general and in contrast to the Euclidean metric, no closed

form is available here.

Remark 6 (Initialization)Whenever the probability measure is a measure on R1 with
cumulative distribution function (cdf) G, then the quantiles

z(i)(0) := G−1
(
i − 1/2

s

)
(i = 1, 2, . . . s)

can be chosen as initial points for the Wasserstein distance in (i) of Algorithm 2.
These points are optimal for the Kolmogorov distance, that is, they minimize

supz∈R
∣∣∣P ((−∞, z]) − P̂n ((−∞, z])

∣∣∣ for the measure P and the empirical measure

P̂n = 1
n

∑n
i=1 δz(i) .

For the Wasserstein distance of order r ≥ 1 even better choices are

z(i)(0) = G−1
r

(
i − 1/2

s

)
(i = 1, 2, . . . s),

where Gr is the cdf with density gr ∼ g1/1+r (provided that a density g is available).
This is derived inGraf and Luschgy [6, Theorem 7.5]. Their result is evenmore general
and states that the optimal points z(i) asymptotically follow the density

gr = gm/(m+r)∫
gm/(m+r)

, (9)

whenever the initial probability measure P on R
m has density g.

The following proposition addresses the convergence of the deterministic iteration
algorithm.

Proposition 7 If Z(k) is the sequence of point sets generated by the deterministic
iteration algorithm (Algorithm 2), then
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Dynamic generation of scenario trees 649

D
(
Z(k + 1)

) ≤ D
(
Z(k)

)
.

If D
(
Z(k∗ + 1)

) = D
(
Z(k∗)

)
for some k∗, then D

(
Z(k)

) = D
(
Z(k∗)

)
for all k ≥ k∗

and

∇z(i)D
(
Z(k∗)

) = 0

for all i .

Proof Notice that

D(Z(k)) =
∫

�

min
j

d(ξ, z( j))r P(dξ) =
s∑

i=1

∫
V (i)
Z

d
(
ξ, z(i)(k)

)r
P(dξ)

≥
s∑

i=1

∫
V (i)
Z

d
(
ξ, z(i)(k + 1)

)r
P(dξ) =

∫
�

min
j

d
(
ξ, z(i)(k + 1)

)r
P(dξ)

= D(Z(k + 1)).

If D(Z(k∗ + 1)) = D(Z(k∗)), then necessarily, for all i ,

z(i)j (k) ∈ argmin
y

{∫
V (i)
Z(k)

d (ξ, y)r P(dξ)

}
,

which is equivalent to∫
V (i)
Z

r d
(
ξ, z(i)

)r−1 · ∇ξ̃ d
(
ξ, z(i)

)
P(dξ) = 0 for all i

by Proposition 4. Hence ∇Z D
(
Z(k∗)

) = 0 and evidently, the iteration has reached a
fixed point. ��
Remark 8 We remark here that the method outlined in Algorithm 2 is related to the
k-means method of cluster analysis (see, e.g., McQueen [18]).

3.2 Stochastic approximation

Now we describe how one can avoid the optimization and integration steps of Algo-
rithm 2 by employing stochastic approximation to compute the centers of order r .
The stochastic approximation algorithm (Algorithm 3) requires that we can sample an
independent, identically distributed (i.i.d.) sequence

ξ(1), . . . , ξ(n)

of vectors of arbitrary length n, each distributed according to P .2

2 Generating random vectors can be accomplished by rejection sampling in R
m , e.g., or by a standard

procedure as addressed in the Appendix.
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650 G. Ch. Pflug, A. Pichler

Proposition 9 Suppose that F = (F1,F2 . . .) is a filtration and (Yk) is a sequence
of random variables, which are uniformly bounded from below and adapted to F.
In addition, let (Ak) and (Bk) be sequences of nonnegative random variables also
adapted to F. If

∑
k Bk < ∞ a.s. and the recursion

E[Yk+1|Fk] ≤ Yk − Ak + Bk (10)

is satisfied, then Yk converges and
∑

k Ak < ∞ almost surely.

Proof Let Sk :=∑k
�=1 B� and Tk :=∑k

�=1 A�. Then (10) implies that

E
[
Yk+1 − Sk |Fk

] = E
[
Yk+1 − Sk−1|Fk

]− Bk ≤ Yk − Sk−1 − Ak ≤ Yk − Sk−1.

Hence Yk+1 − Sk is a supermartingale, which is bounded from below and which
converges a.s. by the supermartingale convergence theorem (cf. Williams [33, Chap-
ter 11]). Since Sk converges by assumption, it follows that Yk converges almost surely.
Notice finally that (10) is equivalent to

E
[
Yk+1 − Sk + Tk |Fk

] ≤ Yk − Sk−1 + Tk−1,

and by the same reasoning as above it follows that Yk+1 − Sk + Tk converges a.s.,
which implies that Tk =∑k

�=1 A� converges a.s. ��

Proposition 10 Let F(·) be a real function defined on R
m, which has a Lipschitz-

continous derivative f (·). Consider a recursion of the form

Xk+1 = Xk − ak f (Xk) + ak Rk+1 (11)

with some starting point X0, where E[Rk+1|R1, . . . , Rk] = 0. If ak ≥ 0,
∑

k ak = ∞
and

∑
k a

2
k‖Rk+1‖2 < ∞ a.s., then F(Xk) converges. If further

∑
k ak Rk+1 converges

a.s., then f (Xk) converges to zero a.s.

Proof Let Yk := F(Xk) and let K be the Lipschitz constant of f . Using the recur-
sion (11) and the mean value theorem, there is a θ ∈ [0, 1] such that

F(Xk+1) = F(Xk) + f
(
Xk + θ(−ak f (Xk) + ak Rk+1)

)� · (−ak f (Xk) + ak Rk+1)

≤ F(Xk) + f (Xk)
� · (−ak f (Xk) + ak Rk+1)

+ K · ‖−ak f (Xk) + ak Rk+1‖2
≤ F(Xk) − ak ‖ f (Xk)‖2 + ak f (Xk)

�Rk+1 + 2Ka2k ‖ f (Xk)‖2
+ 2Ka2k ‖Rk+1‖2 .
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Dynamic generation of scenario trees 651

Taking the conditional expectation with respect to R1, . . . , Rk one gets

E
[
F(Xk+1)|R1, . . . , Rk

] ≤ F(Xk) − ak ‖ f (Xk)‖2 + 2Ka2k ‖ f (Xk)‖2
+ 2Ka2k ‖Rk+1‖2

≤ F(Xk) − ak
2

‖ f (Xk)‖2 + 2Ka2k ‖Rk+1‖2

for k large enough. Proposition 9, applied for Yk = F(Xk), Ak = ak
2 ‖ f (Xk)‖2 and

Bk = 2Ka2k‖Rk+1‖2, implies now that F(Xk) converges and

∑
k

ak‖ f (Xk)‖2 < ∞ a.s. (12)

It remains to be shown that f (Xk) → 0 a.s. Since
∑

k ak = ∞, it follows from (12)
that lim infk ‖ f (Xk)‖ = 0 a.s. We argue now pointwise on the set of probability
1, where

∑
k ak‖ f (Xk)‖2 < ∞, lim infk ‖ f (Xk)‖ = 0 and

∑
k ak Rk converges.

Suppose that lim supk ‖ f (Xk)‖2 > 2ε. Let m� < n� < m�+1 be chosen such that

‖ f (Xk)‖2 > ε for m� < k ≤ n� and

‖ f (Xk)‖2 ≤ ε for n� < k ≤ m�+1. (13)

Let �0 be such large that

∞∑
k=m�0

ak ‖ f (Xk)‖2 ≤ ε2

2K
and

∥∥∥∥∥
t∑

k=s

ak Rk+1

∥∥∥∥∥ <
ε

2
for all s, t ≥ m�0 .

Then, for � ≥ �0 and m� ≤ k ≤ n�, by the recursion (11) and (13), as well as the
Lipschitz property of f ,

∥∥ f (Xi+1) − f (Xm�
)
∥∥ ≤ K‖Xi+1 − Xm�

‖ = K

∥∥∥∥∥∥
i∑

k=m�

ak f (Xk) + ak Rk+1

∥∥∥∥∥∥
≤ K

i∑
k=m�

ak‖ f (Xk)‖ + K

∥∥∥∥∥∥
i∑

k=m�

ak Rk+1

∥∥∥∥∥∥
≤ K

ε

i∑
k=m�

ak ‖ f (Xk)‖2 + ε

2
< ε.

Since
∥∥ f (Xm�

)∥∥ ≤ ε it follows that lim supk ‖ f (Xk)‖ ≤ 2ε for every ε > 0 and this
contradiction establishes the result. ��

The following result ensures convergence of an algorithm of stochastic approxima-
tion type, which is given in Algorithm 3 to compute useful approximating measures.
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652 G. Ch. Pflug, A. Pichler

Algorithm 3 A stochastic approximation algorithm: discretization of a probability
measure P by a probability measure sitting on s points
(i) Initialization. Sample n random variates from the distribution P . Use a cluster algorithm (e.g.,

Algorithm 1) to find s clusters. Set k = 0 and let Z(0) =
(
z(1)(0), . . . , z(s)(0)

)
be the cluster

medians. Moreover, choose a nonnegative and nonincreasing sequence ak such that

∑
k=1

a2k < ∞ and
∑
k=1

ak = ∞.

(ii) Iteration. Use a new independent sample ξ(k). Find the index i such that

d
(
ξ(k), z(i)(k)

) = min
�

d
(
ξ(k), z(�)(k)

)
,

set

z(i)(k + 1) := z(i)(k) − ak · r d
(
ξ(k), z(i)(k)

)r−1 · ∇
ξ̃
d
(
ξ(k), z(i)(k)

)
and leave all other points unchanged to form the new point set Z(k + 1).

(iii) Stopping criterion. Stop, if either the predetermined number of iterations are performed or if the
relative change of the point set Z is below some threshold ε. If not, then set k = k + 1 and goto (ii).

(iv) Determination of the probabilities.After having fixed the final point set Z , generate another sample
(ξ(1), . . . , ξ(n)) and find the probabilities

pi = 1

n
#

{
� : d

(
ξ(�), z(i)

)
= min

k
d
(
ξ(�), z(k)

)}
.

The final, approximate distribution is P̃ =∑s
i=1 pi · δz(i) , and the distance is

dr
(
P, P̃

)r � 1

n

n∑
�=1

min
k

d
(
ξ(�), z(k)

)r
.

Theorem 11 Suppose that the step lengths ak in Algorithm 3 satisfy

ak ≥ 0,
∑
k

ak = ∞ and
∑
k

a2k < ∞.

Suppose further that the assumptions of Proposition 4 are fulfilled. If Z(k) is the
sequence of point sets generated by the stochastic approximation algorithm (Algo-
rithm 3), then D

(
Z(k)

)
converges a.s. and

∇Z D
(
Z(k)

)→ 0 a.s.

as k → ∞. In particular, if D(Z) has a unique minimizer Z∗, then

Z(k) → Z∗ a.s.
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Proof The matrices Z(k) satisfy the recursion

Z(k + 1) = Z(k) − ak∇Z D
(
Z(k)

)− akW (k)

with

W (k) =
s∑

i=1

1
V (i)
Z(k)

(
ξ(k)

)·r d
(
ξ(k), z(i)(k)

)r−1 · ∇ξ̃ d
(
ξ(k), z(i)(k)

)

−
∫
V (i)
Z(k)

r d
(
ξ(k), z(i)(k)

)r−1 · ∇ξ̃ d
(
ξ(k), z( j)(k)

)
P(dξ).

Notice that the vectors W (k) are independent and bounded, E[W (k)] = 0 and∑
i aiW (i) converges a.s. Proposition 10 applied for Xk = Z(k), F(·) = D(·),

f (·) = ∇Z D(·) and Rk = W (k) leads to the assertion. ��
Remark 12 A good choice for the step sizes ak in Algorithm 3 is

ak = C

(k + 30)3/4
.

These step sizes satisfy the requirements
∑

k ak = ∞, the sequenceak is nonincreasing
and

∑
k a

2
k < ∞.3

Remark 13 A variant of Algorithm 3 avoids determining the probabilities in the sep-
arate step (iv) but counts the probabilities pi on the fly.

3.3 Global approximation

It was mentioned and it is evident that Algorithm 2 converges to a local minimum,
which is possibly not a global minimum. There are also algorithms which find the
globally optimal discretization. However, these algorithms are so complex that only
very small problems, say to find two or three optimal points inR2 orR3, can be handled
effectively. In addition, the probability measure P must have bounded support.

For the sake of completeness we mention such an algorithm which is able to pro-
vide a globally best approximating probability measure located on not more than s
supporting points. Algorithm 4 produces successive refinements, which converge to a
globally optimal approximation of the initial measure P .

4 Trees, and their distance to stochastic processes

In this section we give bounds for the objective value of stochastic optimization prob-
lems. By generalizing an important result from multistage stochastic optimization we

3 The exponent s = 3/4 is a compromise between s ≤ 1 to obtain
∑

k=1
1
ks = ∞ and s > 1

2 for∑
k=1

1
k2s

< ∞.
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Algorithm 4 Optimal discretizetion of probability P by a probability P̃ sitting on s
points: a global optimization algorithm.

• Suppose that the optimal configuration of s points in a bounded set (for simplicity the unit cube [0, 1]m
inRm ) is to be found. The optimal configuration is an element of [0, 1]m×s . At stage � the unit cube is
dissected into smaller cubes, say [0, 1]m =⋃C j .By considering all selectionsC j1 ×C j2 × . . .×C js
a dissection of the search space is defined. The “local” problem finds a stochastic lower and a stochastic
upper bound for

min
z(i)∈C ji

∫
�
min
i

d
(
u, z(i)

)
P(du).

• Bounding step. Configurations which have a lower bound larger than the upper bound of another
configuration are excluded and not investigated further.

• Branching step. The best configuration will be refined by dissecting the pertaining cubes into smaller
cubes.

• Stopping. If the gap between the upper bound and the lower bound is small enough, then stop.

provide bounds first when the law of the underlying process is approximated by a
process with a pushforward measure.

The goal is to construct a valuated probability tree, which represents the process
(ξt )

T
t=0 in the best possible way. Trees are represented by a tuple consisting of the

treestructure (i.e., the predecessor relations), the values of the process sitting on the
nodes and the (conditional) probablities sitting on the arcs of the tree. To be more
precise, let T = (n, pred, z, Q) represent a tree with

• n nodes;
• a function pred mapping {1, 2, . . . , n} to {0, 1, 2, . . . , n}. pred(k) = � means that
node � is a direct predecessor of node k. The root is node 1 and its direct predecessor
is formally encoded as 0;

• a valuation zi ∈ R
m of each node i ∈ {1, 2, . . . , n};

• the conditional probability Q(i) of reaching node i from its direct predecessor;
for the root we have Q(1) = 1.

It is always assumed that these parameters are consistent, i.e., that they form a tree
of height T , meaning that all leaves of the tree are at the same level T . The distance
of each node to the root is called the stage of the node. The root is at stage 0 and the
leaves of the tree are at stage T .

Let 	̃ be the set of all leaf nodes, which can be seen as a probability space carrying
the unconditional probabilities P(n) to reach the leaf node n ∈ 	̃ from the root.
Obviously the unconditional probability P̃(i) of any node i is the product of the
conditional probabilities of all its predecessors (direct and indirect).

Let predt (n) denote the predecessor of node n at stage t. These mappings induce
a filtration F̃ = (F̃0, . . . , F̃T ), where F̃t is the sigma-algebra induced by predt . F̃0

is the trivial sigma-algebra and F̃T is the power set of 	̃. The process (ξ̃t ) takes the
values zi for all nodes i at stage t with probability P̃(i).

On the other hand, also the basic stochastic process (ξt ) is defined on a filtered prob-
ability space

(
	,F = (F0, . . . ,FT ), P

)
, where F0 is the trivial sigma-algebra. Via

the two stochastic processes, the basic process (ξt ) defined on 	 and its discretization
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(ξ̃t ) defined on 	̃, a distance between u ∈ 	 and v ∈ 	̃ is defined by

d(u, v) =
T∑
t=1

dt

(
ξt (u), ξ̃t (v)

)
, (14)

where dt are distances on R
mt (the state Rmt may depend on the stage t , but to keep

the notation simple we consider only R
m processes in what follows, i.e., mt = m for

all t). To measure the quality of the approximation of the process (ξt ) by the tree T
one may use the nested distance (see Definition 20 below) or its simpler variant, a
stagewise transportation bound.

4.1 Approximation of stochastic processes

Different algorithms have been demonstrated in the previous sections to construct a
probability measure P̃ =∑s

i=1 piδzi approximating P . The approximating measures
P̃ presented are all induced by the transport map

T : � → Z

ξ → zi , if ξ ∈ V (i)
Z .

It holds moreover that V (i)
Z = {T = zi } (and in particular P

(
V (i)
Z

) = P(T = zi )),
which shows that the facility location problems can be formulated by involving just
transport maps (cf. Remark 3).

In what followswe generalize the concept of transport maps to stochastic processes.
We generalize a central theorem in stochastic optimization, which provides a bound
in terms for the pushforward measure for transport maps. We demonstrate that an
adequately measurable, finitely valued transport map represents a tree. Further, we
employ stochastic approximation techniques again to find a useful tree representing
a process. The methods allow computing bounds for the corresponding stochastic
optimization problem.

4.2 The main theorem of stochastic optimization for pushforward measures

Consider a stochastic process ξ = (ξt )
T
t=0, which is discrete in time. Each component

ξt : 	 → �t has the state space �t (which may be different for varying t’s). Further
let � := �0 × . . . �T and observe that �t is naturally embedded in �.

Definition 14 We say that a process x = (xt )Tt=0 (with xt : � → Xt ) is nonantic-
ipative with respect to the stochastic process ξ = (ξt )

T
t=0 , if xt is measurable with

respect to the sigma algebra σ
(
ξ0, . . . ξt

)
. We write

x � σ(ξ), if xt is measurable with respect to the

sigma algebra σ
(
ξ0, . . . ξt

)
for every t = 0, . . . T .
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It follows from the Doob–Dynkin Lemma (cf. Shiryaev [31, Theorem II.4.3]) that
a process x is nonanticipative, if there is a measurable function (denoted xt again),
such that xt = xt (ξ0, . . . ξt ), i.e., xt (ω) = xt

(
ξ0(ω), . . . ξt (ω)

)
for all t .

Definition 15 A transport map T : � → �̃ is nonanticipative if

T ◦ ξ � σ(ξ),

that is, each component T (ξ)t ∈ �̃t depends on the vector (ξ0, . . . ξt ), but not on
(ξt+1, . . . ξT ), i.e, T (ξ0, . . . ξT )t = T (ξ0, . . . ξt , ξ

′
t+1, . . . ξ

′
T )t for all (ξ ′

t+1, . . . ξ
′
T )

and t = 0, . . . T .

We consider first the stochastic optimization problem

min {EP [Q (x, ξ)] : x ∈ X, x � σ(ξ)} , (15)

where the decision x is measurable with respect to the process ξ , x � σ(ξ).
The following theorem generalizes an important observation (cf. [26, Theorem 11])

to image measures. This outlines the central role of a nonanticipative transport map
in stochastic optimization.

Theorem 16 (Stagewise transportation bound) Let X be convex and the R-valued
function Q̃ : X × �̃ → R be uniformly convex in x, that is,

Q̃
(
(1 − λ)x0 + λx1, ξ̃

) ≤ (1 − λ)Q̃
(
x0, ξ̃

)
+ λQ̃

(
x1, ξ̃

)
(ξ̃ ∈ �̃).

Moreover, let Q : X × � → R be linked with Q̃ by∣∣∣Q(x, ξ)− Q̃
(
x, ξ̃
)∣∣∣ ≤ c

(
ξ, ξ̃
)

for all ξ ∈ � and ξ̃ ∈ �̃, (16)

where c : � × �̃ → R is a function (called cost function).
Then for every nonanticipative transport map

T : � → �̃

it holds that∣∣∣∣∣ inf
x�σ(ξ)

EP Q
(
x(ξ), ξ

)− inf
x̃�σ(ξ̃ )

EPT Q̃
(
x̃
(
ξ̃
)

, ξ̃
)∣∣∣∣∣ ≤ EP c

(
ξ, T (ξ)

)
. (17)

Remark 17 Equation (17) relates the problem (15), the central problem of stochastic
optimization, with another stochastic optimization problem on the imagemeasure PT .
The problem on PT may have a different objective (Q̃ instead of Q), but it is easier
to solve, as it is reduced to the simpler probability space with pushforward measure
PT instead of P .

The right hand side of (17), EP c
(
ξ, T (ξ)

)
, is notably not a distance, but an expec-

tation of the cost function c in combination with the transport map T .
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Remark 18 In a typical application of Theorem 16 one has that �̃ ⊂ � and Q̃(·) =
Q(·). Further, c(ξ, ξ̃

) = L · d
(
ξ, ξ̃
)
, where d is a distance on � × � and L , by means

of (16), is a Lipschitz constant for the objective function Q.

Proof of Theorem 16 First, let x̃ be any feasible policy with x̃ � σ(ξ̃ ), that is, x̃t =
x̃t
(
ξ̃0, . . . ξ̃t

)
for all t . It follows from the measurability of the transport map T that

the derived policy x := x̃ ◦ T is nonanticipative, i.e., x � σ(ξ). By relation (16) it
holds for the policy x that

EQ (x(ξ), ξ) = EQ
(
x̃(T (ξ)), ξ

) ≤ EQ̃
(
x̃(T (ξ)), T (ξ)

)+ Ec
(
ξ, T (ξ)

)
,

and by change of variables thus

EQ (x(ξ), ξ) ≤ EPT Q̃
(
x̃(ξ̃ ), ξ̃

)
+ Ec (ξ, T (ξ)) .

One may pass to the infimum with respect to x̃ and it follows, as x = x̃ ◦ T � σ(ξ),
that

inf
x�σ(ξ)

EQ (x(ξ), ξ) ≤ inf
x̃�σ(ξ̃ )

EPT Q̃
(
x̃(ξ̃ ), ξ̃

)
+ Ec (ξ, T (ξ)) . (18)

For the converse inequality suppose that a policy x � σ(ξ) is given. Define

x̃ := E (x |T ) , i.e., x̃t (ξ̃ ) := E

(
xt | Tt (·) = ξ̃

)
(Figure 1 visualizes the domain and codomain of this random variable) and note that
x̃ � σ(T (ξ)) by construction and as T is nonanticipative.

As the function Q̃ is convex it follows from Jensen’s inequality, conditioned on{
T (·) = ξ̃

}
, that

Q̃
(
x̃
(
ξ̃
)

, ξ̃
)

= Q̃
(
E (x |T )

(
ξ̃
)

, ξ̃
)

= Q̃
(
E

(
x(ξ)| T (ξ) = ξ̃

)
, ξ̃
)

≤ E

(
Q̃
(
x(ξ), ξ̃

)∣∣∣ T (ξ) = ξ̃
)

.

By assumption (16) linking Q and Q̃ it holds further that

Q̃
(
x̃
(
ξ̃
)

, ξ̃
)

≤ E

(
Q̃
(
x(ξ), ξ̃

)∣∣∣ T (ξ) = ξ̃
)

= E

(
Q̃
(
x(ξ), T (ξ)

)∣∣∣ T (ξ) = ξ̃
)

≤ E

(
Q
(
x(ξ), T (ξ)

)+ c
(
ξ, T (ξ)

)∣∣∣ T (ξ) = ξ̃
)

= E

(
Q
(
x(ξ), T (ξ)

)∣∣∣ T (ξ) = ξ̃
)

+ E

(
c
(
ξ, T (ξ)

)∣∣∣ T (ξ) = ξ̃
)

,
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Fig. 1 Left themeasurable transportmap T , mapping trajectories ξ to ξ̃ = T (ξ).Right the diagramdisplays
the domain and codomain of the functions involved. The diagram is commutative on average

and by taking expectations with respect to the measure PT it follows that

EPT Q̃
(
x̃
(
ξ̃
)

, ξ̃
)

≤ E Q
(
x(ξ), T (ξ)

)+ E c
(
ξ, T (ξ)

)
.

Recall that x � σ(ξ) was arbitrary, by taking the infimum it follows thus that

inf
x̃�σ(T ((ξ))

EPT Q̃
(
x̃
(
ξ̃
)

, ξ̃
)

≤ inf
x�σ(ξ)

E Q
(
x(ξ), ξ

)+ E c
(
ξ, T (ξ)

)
.

Together with (18) this is the assertion. ��

4.3 Approximation by means of a pushforward measure

In this section we construct a tree by establishing a transport map T : � → �̃ with
the properties of Definition 15. The algorithm is based on stochastic approximation
and extends Algorithm 3, as well as an algorithm contained in Pflug [24]. We do not
require more than a sample of trajectories (i.e., scenarios). The scenarios may result
from observations or from simulation.

Algorithm 5 is the tree equivalent of Algorithm 3. It uses a sample of trajectories
to produce a tree approximating the process ξ . The algorithm further provides the
estimate E c(ξ, T (ξ)), which describes the quality of the approximation of the tree
T ◦ ξ in comparison with the original process ξ .
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Algorithm 5 Generation of a tree with pre-specified structure by stochastic approxi-
mation (based on Algorithm 3)

(i) Initialization. Set k = 0, let cE = 0 set the counters c(n) = 0 and let Z (0)(n) ∈ �t be chosen for
each node n of the tree. Moreover, choose a nonnegative and nonincreasing sequence ak such that

∑
k=1

a2k < ∞ and
∑
k=1

ak = ∞.

(ii) Iteration. Use a new independent trajectory

ξ(k) = (ξ0(k), . . . , ξT (k)
)

with law P .
Find a trajectory of successive nodes n0, n1, . . . nT in the tree with nt = predt (nt+1) such that

nt ∈ argmin
n′∈Nt (n0,...nt−1)

dt
(
ξt (k), Z (k)(n′)

)
,

where Nt (n0, . . . nt−1) collects all nodes at stage t with predecessors n0, . . . nt−1. Assign the new
values

Z (k) (nt ) := Z (k−1) (nt ) − ak · r dt
(
ξt (k), Z

(k−1) (nt )
)r−1 · ∇

ξ̃
dt
(
ξ(k)t , Z

(k−1) (nt )
)
,

increase the counters c(nt ) = c(nt ) + 1 for the nodes n0, n1, . . . nt and set cE := cE +(∑T
t=0 dt

(
ξ(k)t , Z (k−1) (nt )

))r
. For the other nodes let the values unchanged, i.e., Z (k)(n) :=

Z (k−1)(n) whenever n /∈ {n0, n1, . . . nT }.
(iii) Stopping criterion. Stop, if the predetermined number of iterations is performed. If not, then set

k = k + 1 and goto (ii).
(iv) Set the conditional probabilities p(n) = c(n)/N , where N is the total number of random draws.

The quantity Ed
(
ξ, T (ξ)

)r is estimated by

Ed
(
ξ, T n(ξ)

)r � 1

N
cE . (19)

Example 19 To demonstrate Algorithm 5 we consider a standard Gaussian random
walk in three stages first. The tree with bushiness (10, 5, 2), found after 1000 and
100,000 samples, is displayed in Fig. 2 (left plots). The probability distribution of the
leaves is annotated in the plots. The final distribution of the initial process is N (0, 3)
(Fig. 2a). The Gaussian walk and the tree are at a distance of

(
Ed(ξ, T (ξ))2

)1/2 �
0.084, where we have employed the usual Euclidean distance and r = 2.

The process which we also consider is the running maximum

Mt := max

⎧⎨
⎩

t ′∑
i=1

ξi : t ′ ≤ t

⎫⎬
⎭ with ξi ∼ N (0, 1) i.i.d. (20)

Note, that the runningmaximum isnot aMarkovian process. The results ofAlgorithm5
are displayed in Fig. 2 (right) for a bushiness of (3, 3, 3, 2). The running maximum
process and the tree in Fig. 2c have distance

(
Ed(ξ, T (ξ))2

)1/2 � 0.13.
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Fig. 2 Trees produced by Algorithm 5 after 1000 (Figure 2b) and 100,000 (Fig. 2c) samples. Annotated is
a density plot of the probability distribution at the final stage. a 1000 sample paths of the standard Gaussian
random walk and the (non-Markovian) running maximum process. b Trees with bushiness (10, 5, 2) and
(3, 3, 3, 2) approximating the process in Fig. 2a. c The transportation bound to the underlying Gaussian
process is 0.084, the transportation bound to the non-Markovian running maximum process is 0.13

5 The nested distance

In the previous section we have proposed an algorithm to construct an approximating
tree from observed sample paths by stochastic approximation. It is an essential obser-
vation that the algorithm proposed establishes a measure P̃ on the second process
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which is induced by a nonanticipative transport map T , P̃ = PT . It is a significant
advantage of Theorem 16 that the bound

E c
(
ξ, T (ξ)

)
(21)

in equation (17) is very cheap to compute (Eq. (19) in Algorithm 5, e.g., provides
E c
(
ξ, T (ξ)

)
as a byproduct). However, the algorithm is not designed for a pre-

specified measure P̃ on the second process.
In the general situation the quantity (21) is not symmetric, that is, there does not

exist a transportationmap T̃ , say, such thatE c
(
ξ, T (ξ)

) = E c
(
T̃ (ξ̃ ), ξ̃ )

)
. For this (21)

does not extend to a distance of processes, as is the case for the Wasserstein distance
for probability measures.

The nested distance was introduced to handle the general situation. In what follows
we recall the definition and cite the results, which are essential for tree generation.
Then we provide algorithms again to construct approximating trees, which are close
in the nested distance.

Definition 20 (The nested distance, cf. [25]) Assume that two probability models

P = (	, (Ft ) , P, ξ) and P̃ =
(
	̃,
(
F̃t

)
, P, ξ̃

)

are given, such that for u ∈ 	 and v ∈ 	̃ a distance d(u, v) is defined by (14). The
nested distance of order r ≥ 1 is the optimal value of the optimization problem

minimize
(in π)

(∫∫
d (u, v)r π (du, dv)

)1/r

subject to π
(
A × 	̃ | Ft ⊗ F̃t

)
= P (A | Ft ) (A ∈ Ft , t = 0, . . . T ) and

π
(
	 × B | Ft ⊗ F̃t

)
= P̃

(
B | F̃t

) (
B ∈ F̃t , t = 0, . . . T

)
, (22)

where the infimum in (22) is among all bivariate probabilitymeasuresπ ∈ P
(
	 × 	̃

)
which are measures forFT ⊗F̃T . Its optimal value – the nested, or multistage distance
– is denoted by

dlr
(
P, P̃

)
.

By (14) the distance depends on the image measures induced by ξt : 	 → R
m and

ξ̃ : 	̃ → R
m on R

m .

It can be shown by counterexamples that the optimal measure π in (22) cannot be
described by a transport map in general.

The following theorem is the counterpart of Theorem 16 for general measures and
proved in [26]. However, the nested distance can be applied to reveal the same type
of result.
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Theorem 21 Let P = (	, (Ft ) , P, ξ) and P̃ =
(
	̃,
(
F̃t

)
, P, ξ̃

)
be two probability

models. Assume thatX is convex and the cost function Q is convex in x for any fixed ξ .
Moreover let Q be uniformly Hölder continuous in ξ with constant Lβ and exponent
β, that is

∣∣∣Q(x, ξ) − Q(x, ξ̃ )

∣∣∣ ≤ Lβ

(
T∑
t=1

dt (ξt , ξ̃t )

)β

for all x ∈ X. Then the optimal value function inherits the Hölder constants with
respect to the nested distance,∣∣∣∣∣

min {EP [Q (x, ξ)] : x ∈ X, x � F, P = (	,F, P, ξ)}
−min

{
E p̃ [Q

(
x, ξ̃
)
] : x ∈ X, x � F̃, P̃ =

(
	̃, F̃, P̃, ξ̃

)} ∣∣∣∣∣ ≤ Lβ dlr (P, P̃)β

(23)
for any r ≥ 1. This bound cannot be improved.

The relation between the nested distance and the single period Wasserstein
distance. The nested distance dlr (P, P̃) can be bounded by the Wasserstein distances
of the conditional probabilities as is described in Theorem 23 below. It uses the notion
of the K -Lipschitz property.

Definition 22 (K -Lipschitz property) Let P be a probability on R
mT , dissected into

transition probabilities P1, . . . , PT onRm . We say that P has the K-Lipschitz property
for K = (K1, . . . , KT−1), if the transitional probability measures satisfy

dr
(
Pt+1(·|ut ), Pt+1(·|vt )

) ≤ Kt d
(
ut , vt

)
(24)

for all ut , vt ∈ R
m(t−1) and t = 1, . . . , T − 1.

Theorem 23 (Stagewise transportation distance) Suppose that the probability mea-
sure P on RmT fulfills a (K1, . . . , KT−1)-Lipschitz property and that the conditional
distributions of P and P̃ satisfy

dr (P1, P̃1) ≤ ε1

and

dr
(
Pt+1(·|vt ), P̃t+1(·|vt )

)
≤ εt+1 for all vt and t = 0, . . . , T − 1. (25)

Then the nested distance is bounded by

dlr (P, P̃) ≤
T−1∑
t=1

εt ·
T∏
s=t

(1 + Ks). (26)

Proof The proof is contained in [19]. ��
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Remark 24 As variant of the results one may consider distorted distances such as the
Fortet–Mourier distance (cf. Rachev [28] or Römisch [29]). Küchler [15] combines a
nonanticipativity condition for the approximating process (a pushforward approxima-
tion) and aLipschitz property for the conditional processes (such as (24) in Theorem23
below) to establish a stability result similar to Theorem 16.

The previous sections address approximations of a probability measure, where the
quality of the approximation is measured by the Wasserstein distance. The algorithms
described in Sect. 3 can be employed at every node separately to build the tree. To
apply the general result (26) it is necessary to condition on the values of the previous
nodes (cf. (25)), which have already been fixed in earlier steps of the algorithm. To
apply the algorithms described in Sect. 3 in connection with Theorem 23 it is thus
necessary that the conditional probability measure is available to compute (25), that
is, samples from

Ft+1 (·| ξt , ξt−1, . . . , ξ0)

can be drawn.
We outline this approach in the next section for a fixed branching structure of

the tree, and in the following section with an adaptive branching structure to meet a
prescribed approximation quality.

5.1 Fixed branching structure

Algorithm 6 elaborates on generating scenario trees in further detail. The trees are
constructed to have bt successor nodes at each node at level t , the vector (b1, . . . bT )

is the bushiness of the tree.

Algorithm 6 Tree generation with fixed bushiness
Parameters. Let T be the desired height of the tree and let (b1, . . . , bT ) be the given bushiness parameters
per stage.

• Determining the Root. The value of the process at the root is ξ0. Its stage is 0. Set the root as the
current open node.

• Successor generation. Enumerate the tree stagewise from the root to the leaves.

(i) Let k be the node to be considered next and let t < T be its stage. Let ξ0, ξ1, . . . ξt be the
already fixed values at node k and all its predecessors. Call the stochastic approximation algorithm
(Algorithm 3) to generate bt points z(1), . . . , z(bt ) out of the probability distribution

Ft+1(·|ξt , ξt−1, . . . , ξ0) (27)

and find the corresponding conditional probabilities p
(
z̃(i)
)
.

(ii) Store the bt successor nodes, say with node numbers (n1, . . . , nbt ) of node k and assign to

them the values ξ(n1) = z(1), . . . , ξ(nbt ) = z(nbt ) as well as their conditional probabilities

q(ni ) = p
(
z̃(i)
)
.

• Stopping Criterion. If all nodes at stage T − 1 have been considered as parent nodes, the generation
of the tree is finished. One may then calculate the unconditional probabilities out of the conditional
probabilities.
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Fig. 3 1000 trajectories of the process (28) in Example 25

The algorithm based on Theorem 23 described in this and the following section
have been implemented in order to demonstrate their behavior by using the following
example.

Example 25 Consider the Markovian process

ξ0 = 2, ξt+1 = ξ
1−βt
t · eηt , (28)

where β0 = 0.62, β1 = 0.69, β2 = 0.73, β3 = 0.75 and β4 = 0.77, and

η0 ∼ η2 ∼ η4 ∼ N
(
0, 0.5β2

t

)
and η0 ∼ η2 ∼ N

(
0, 0.2β2

t

)
.

Notice that the distribution, given the past, is explicitly available by (28), although the
conditional variance depends heavily on t .

Figure 3 displays some trajectories of the process (28). A binary tree, approximating
the process (28), is constructed by use of Algorithm 6. Figure 4 displays the tree
structure, as well as the approximating binary tree.

5.2 Tree, meeting a prescribed approximation precision

Assume that the law of the process to be approximated satisfies the K -Lipschitz
property introduced in Definition 22. Theorem 23 then can be used to provide an
approximation of the initial process in terms of the nested distance up to a prescribed
precision. Algorithm 7 outlines this approach. Again, as in the preceding algorithm,

123



Dynamic generation of scenario trees 665

0 1 2 3 4 5 0 1 2 3 4 5

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6

(a) (b)

Fig. 4 A binary tree generated by Algorithm 6 approximating process (28), Example 25. a The structure
of the binary tree. b The approximating process

it is necessary to have samples of the distribution Ft+1 (·|ξt , ξt−1, . . . , ξ0) available,
given that the past is revealed up to the present stage t .

The algorithm is demonstrated again for the process (28) in Example 25. Results
are displayed in Fig. 5.

Algorithm 7 Dynamic tree generation with flexible bushiness
• Parameters. Let T be the desired height of the tree, let (b1, . . . , bT ) be the minimal bushiness val-

ues and (d1, . . . , dT ) the maximal stagewise transportation distances. These two vectors are fixed in
advance.

• Determining the Root. The value of the process at the root is ξ0, its stage is 0. Set the root as the
current open node.

• WHILE there are open nodes DO

(i) Let k be the next open node and let t < T be its stage. Let ξ0, . . . ξt−1, ξt be the already fixed
values at node k and at its predecessors. Set the initial number of successors of k to s = bt+1.

(ii) Call the stochastic approximation algorithm (Algorithm 3) to generate s points z∗1,, . . . , z∗s out of
the distribution

Ft+1
(·|ξt , ξt−1, . . . , ξ0

)
(29)

and compute the distance d = d
(
Ft+1(·|ξt , ξt−1, . . . , ξ0),

∑s
i=1 pi · δz(i)

)
.

(iii) If the distance d is larger than dt+1, then increase b by one and return to (ii).
(iv) Store the b successor nodes of node k using the values z∗k as well as their conditional probabilities

p∗
k and mark them as open.

• Stopping Criterion. If all nodes at stage T − 1 have been considered as parent nodes, the generation
of the tree is finished.

6 Summary

This paper addresses scenario tree generation, which is of interest in many economic
and managerial situations, in particular for stochastic multistage optimization.
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Fig. 5 A tree, dynamically generated by Algorithm 7, approximating the process (28). The maximal
stagewise distances were 0.30, 0.15, 0.30, 0.30 and 0.40. The approximating tree process has 390 nodes and
224 leaves. a The branching structure of the tree with bushiness (3, 4, 4, 2). b The approximating process

It is demonstrated that techniques, which are used to approximate probability mea-
sures, can be extended to generate approximating trees,whichmodel stochastic process
in finite stages and states.

Various algorithms are shown first to approximate probability measures by dis-
crete measures. These algorithms are combined then at a higher level to provide tree
approximations of stochastic processes. The generated trees meet a quality criterion,
which is formulated in terms of the nested distance. The nested distance is the essential
distance to compare stochastic scenario processes for stochastic optimization.

The algorithms presented require sampling according to probability distributions
based on the past evolutions of the process. Several examples and charts demonstrated
the quality of the solutions.
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Appendix: Conditional method for multivariate distributions

To generate instances from a multivariate distribution (random vectors) with cdf
F (z1, . . . zm) one may employ rejection sampling, or the ratio of uniforms method,
or generate the vector component by component by proceeding as follows:

(i) Generate Z1 from F1 (z), where F1(z1) = F (z1,∞, . . . ∞) is the first marginal.
This can be accomplished by solving

U1 = F1(Z1)

(the probability integral transform, where U1 is a uniformly distributed random
variable) or by rejection sampling;
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(ii) Given the random vector up to dimension i−1 one may generate Zi conditionally
on (Z1, . . . Zi−1) by solving

Ui = Fi (zi | Z1, . . . Zi−1) = F (Z1 . . . , Zi−1, xi ,∞, . . . ∞)

F (Z1, . . . Zi−1,∞, . . . ∞)
,

where Ui is uniformly distributed, and independent from U1, . . .Ui−1.
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