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Abstract Weanalyze a combined regularization–discretization approach for a class of
linear-quadratic optimal control problems. By choosing the regularization parameterα
with respect to the mesh size h of the discretization we approximate the optimal bang–
bang control. Under weaker assumptions on the structure of the switching function we
generalize existing convergence results and prove error estimates of orderO(h1/(k+1))

with respect to the controllability index k.
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1 Introduction

We consider the following linear-quadratic control problem:

(OS) min
(x,u)∈X

f (x, u)

s.t. ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, T ],
x(0) = a,

u(t) ∈ U a.e. on [0, T ],

where the cost functional f is defined by
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732 M. Seydenschwanz

f (x, u) := 1
2 x(T )T Qx(T ) + qTx(T )

+
∫ T

0

1
2 x(t)TW (t)x(t) + x(t)TS(t)u(t) + w(t)Tx(t) + r(t)Tu(t) dt.

Here, u(t) ∈ R
m is the control, and x(t) ∈ R

n is the state of the system at time t .
Further Q ∈ R

n×n , q ∈ R
n . The functions W : [0, T ] → R

n×n , S : [0, T ] → R
n×m ,

w : [0, T ] → R
n , r : [0, T ] → R

m , A : [0, T ] → R
n×n and B : [0, T ] → R

n×m are
assumed to be Lipschitz continuous. The set U ⊂ R

m is defined by upper and lower
bounds, i.e.,

U := {u ∈ R
m | bl ≤ u ≤ bu}

with bl , bu ∈ R
m , bl < bu .

Numerical solution methods for optimal control problems have been investigated
over the last decades. Most of the research has been dealing with shooting and direct
approximation approaches. Discretizations based on Euler’s method or more general
Runge-Kutta methods are well-studied for the case that the optimal control is at least
Lipschitz continuous (see e.g. [2,8–12,23,25,35]). First results on the error analysis
for bang–bang controls can be found in [36]. In [6,7] Euler discretizations for a class
of linear-quadratic control problemswith bang–bang solutions have been investigated.
These results have been extended to a stable implicit discretization scheme in [5].

Since regularization leads to problemswith smoother solutions a combined regulari-
zation-discretization approach is a good alternative to direct approximation. Therefore
the regularization of the cost functional and constraints of optimal control problems
have been studied over the last years (see e.g. [21,26–28,34]). The dependency of solu-
tions on regularization parameters combined with discretization has been investigated
in [18] for multiplier methods for optimal control problems governed by ODEs, and
in [22] for elliptic problems with state constraints. First results on bang–bang controls
of linear-quadratic problems without mixed state-control-term in the cost functional
have been presented in [4]. The authors proved error estimates of orderO(

√
h), if the

regularization parameter α = √
h is chosen w.r.t. the mesh size h of the discretization.

But by treating the regularization and discretization separately and combining the error
estimates via the triangle inequality the actual error has been overestimated. This is
a known issue in the analysis of combined regularization–discretization approaches
(see e.g. [18]). In [33] the error estimates from [4] have been improved to orderO(h)

by combining proof techniques from [6,7] and [4].
In this paper we will extend these convergence results on the discrete regularization

of linear-quadratic problems with bang–bang controls under weaker assumptions of
order k on the structure of the switching function (see Remarks 2 and 3). In our main
result Theorem 5.1 we prove error estimates of orderO((α+h)1/(k+1))w.r.t. the mesh
size h of the discretization and the regularization parameter α for the control, state
and adjoint state variables.

The organization of the paper is as follows. In Sect. 1 we give some preliminaries
and known auxiliary results for the linear-quadratic control problem (OS). Moreover
we generalize the second-order condition, which has been an important tool of the
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Convergence results for discrete regularization 733

analysis in [6, Lemma 4.1,Theorem 4.2], under weaker assumptions on the structure
of the switching function to order k + 1. In Sect. 2 we present the regularization
technique and prove estimates for the regularization error of order k. The combined
regularization–discretization approach is introduced in Sect. 3. Section 4 is concerned
with error estimates for the optimal values of the discrete control problems. The
main result is then derived in Sect. 5. We present Hölder-type error estimates of
order O(h1/(k+1)) for control, state and adjoint state. In Sect. 6 we improve these
error estimates for linear problems. Finally the theoretical findings are illustrated by
a numerical example.

We use the following notation (cf. [4–7]):Rn is the n-dimensional Euclidean space
with the inner product denoted by 〈x, y〉 and the norm |x | := 〈x, x〉1/2. For an m × n-
matrix B we use the spectral norm ‖B‖ := sup|z|≤1 |Bz|. By L p(0, T ;Rm)we denote
the Banach space of measurable vector functions u : [0, T ] → R

m for 1 ≤ p < ∞,
with

‖u‖p :=
(∫ T

0
|u(t)|p dt

)1/p

< ∞,

and L∞(0, T ;Rm) is the Banach space of essentially bounded vector functions
u : [0, T ] → R

m with the norm

‖u‖∞ := max
1≤i≤m

ess sup
t∈[0,T ]

|ui (t)|.

A function u will be said to be of bounded variation if the total variation VT
0 u of u

on [0, T ] is finite. For 1 ≤ p ≤ ∞ we denote by W 1
p(0, T ;Rn) the Sobolev spaces of

absolutely continuous functions x : [0, T ] → R
n

W 1
p(0, T ;Rn) := {

x ∈ L p (
0, T ;Rn) | ẋ ∈ L p (

0, T ;Rn)}

with

‖x‖1,p := (|x(0)|p + ‖ẋ‖p
p
)1/p

for 1 ≤ p < ∞ and

‖x‖1,∞ := max {|x(0)|, ‖ẋ‖∞} .

We define X := X1 × X2, X1 := W 1∞(0, T ;Rn), X2 := L∞(0, T ;Rm), and we
denote by

U := {u ∈ X2 | u(t) ∈ U a.e. on [0, T ]} = {u ∈ X2 | bl ≤ u(t) ≤ bu a.e. on [0, T ]}

the set of admissible controls, and by

F := {(x, u) ∈ X | u ∈ U , ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, T ], x(0) = a}
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734 M. Seydenschwanz

the feasible set of (OS). The linear ODE

ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, T ],
x(0) = a, (1)

will be called system equation of (OS). It is well known, that for the solution x of (1)
it holds

‖x‖∞ ≤ c1|a| + c2‖u‖1 (2)

with constants c1 and c2 independent of a and u.

Definition 1.1 A pair (x0, u0) ∈ F is called a minimizer for the Problem (OS) if
f (x0, u0) ≤ f (x, u) for all (x, u) ∈ F , and a strict minimizer if f (x0, u0) < f (x, u)

for all (x, u) ∈ F , (x, u) �= (x0, u0).

In view of convexity of the Problem (OS) we make the following assumption
throughout the paper:

(AC) Let the matrices Q and W (t), t ∈ [0, T ], be symmetric and

z(T )T Qz(T ) +
∫ T

0
z(t)TW (t)z(t) + 2z(t)TS(t)v(t) dt ≥ 0

for all (z, v) ∈ F − F , i. e. (z, v) ∈ X with

ż(t) = A(t)z(t) + B(t)v(t) a.e. on [0, T ],
z(0) = 0,

v(t) ∈ U − U a.e. on [0, T ].

The following auxiliary results concerning linear-quadratic problems of type (OS)

are common knowledge and can be found in [6]. The feasible set F is nonempty,
closed, convex and bounded. If (AC) holds, then the cost functional is convex and
continuous on F . Therefore, a minimizer (x0, u0) ∈ W 1

2 (0, T ;Rn) × L2(0, T ;Rm)

of (OS) exists (cf. [13, Chap. II, Proposition 1.2]), and since U is bounded we have
(x0, u0) ∈ X = W 1∞(0, T ;Rn) × L∞(0, T ;Rm). Moreover, the cost functional is
Lipschitz continuous on F , i.e. there is a constant L f such that

| f (x, u) − f (z, v)| ≤ L f (‖x − z‖∞ + ‖u − v‖1) ∀(x, u), (z, v) ∈ F .

An immediate consequence of the compactness ofU , the Lipschitz continuity of A and
B as well as the solution formula for linear differential equations, is the existence of a
constant Lx such that for any admissible control u ∈ U and the associated solution x
of the system Eq. (1) we have

‖x‖1,∞ ≤ Lx , (3)

where the constant Lx is independent of x . This estimate shows that the feasible
trajectories are uniformly Lipschitz with Lipschitz modulus Lx .
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Convergence results for discrete regularization 735

Let (x0, u0) ∈ F be a minimizer of (OS). Then there exists an adjoint variable
λ0 ∈ W 1∞(0, T ;Rn) such that the adjoint equation

− λ̇0(t) = A(t)Tλ0(t) + W (t)x0(t) + S(t)u0(t) + w(t) a.e. on [0, T ],
λ0(T ) = Qx0(T ) + q, (4)

and the minimum principle

[
B(t)Tλ0(t) + S(t)Tx0(t) + r(t)

]T (
u − u0(t)

)
≥ 0 ∀u ∈ U, a.e. on [0, T ], (5)

hold. Denoting the switching function by

σ 0(t) := B(t)Tλ0(t) + S(t)Tx0(t) + r(t), (6)

it is well-known that for each i ∈ {1, . . . , m}, the minimum principle (5) implies

u0
j (t) =

⎧⎪⎨
⎪⎩

bl, j , if σ 0
j (t) > 0,

bu, j , if σ 0
j (t) < 0,

undetermined, if σ 0
j (t) = 0.

(7)

Remark 1 Since λ satisfies the adjoint equation, the parameter functions A, W , S
and w are Lipschitz continuous, and u is bounded it follows that λ̇ is bounded, i.e.
there exists a constant Lλ, independent of λ0, such that for any feasible pair (x, u) ∈ F
and the associated solution λ of the adjoint equation we have

‖λ‖1,∞ ≤ Lλ.

Hence λ is uniformly Lipschitz continuous with Lipschitz modulus Lλ independent
of N , which implies that the switching function σ is uniformly Lipschitz continuous,
too. Analogously to (2) for a solution λ0 of (4) it holds

‖λ0‖∞ ≤ c1‖x0‖∞ + c2‖u0‖1 + c3‖w‖∞ + c4|q| (8)

with constants c1, c2, c3 and c4 independent of (x0, u0), w and q.

In the case of Lipschitz continuous optimal controls the convergence analysis
of discretization methods is usually based on a second-order optimality condition
(see e.g. [10,23]). For bang–bang controls such conditions are available, too (see
e.g. [1,14–17,24,29–31]). In [6] a second-order condition which has been introduced
in [14] turned out to be very useful for the analysis of Euler discretization for linear-
quadratic problems. We will extend the approach used in [6, Sect. 4] and [4] to the
class of problems (OS) with a mixed state-control term in the cost functional. Under
weaker assumptions on the structure of the switching function we derive a condition
of order k + 1, which will play an important role in the analysis of convergence for
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736 M. Seydenschwanz

discrete regularization approaches. This condition is closely connected to the con-
trollability index in [19,32] (see Remark 3). We make the following assumption on
bang–bang regularity (cf. [1] resp. [14,15]).

(A1) There exists a solution (x0, u0) ∈ F of (OS) such that the set � of zeros of the
components σ 0

j , j = 1, . . . , m, of the switching function σ 0 defined by (6) is
finite and 0, T /∈ �, i.e. � = {s1, . . . , sl} with 0 < s1 < · · · < sl < T .

Assumption (A1) implies bounded variation of u0. We denote the set of active indices
for the components of the switching function σ 0 by

I(sι) := {1 ≤ j ≤ m : σ 0
j (sι) = 0},

and formulate the second assumption:

(A2)k There is a natural number k ∈ N, for which there exist constants σ̄ , τ̄ > 0,
such that for all ι ∈ {1, . . . , l}, j ∈ I(sι) and all t ∈ [sι − τ̄ , sι + τ̄ ] it holds

∣∣σ j (t)
∣∣ ≥ σ̄ |t − sι|k .

We define k ∈ N as the smallest natural number that fulfills this condition.

Remark 2 TheAssumption (A2)k is aweaker condition thanAssumption (A2) in [4,6]
(since it holds (A2)1 = (A2)). In dependence of the parameter k ∈ N we will derive
generalized convergence results for the discrete regularization approach for problems
of type (OS). Under the Assumptions (A1) and (A2)k wewill prove Hölder-type error
estimates of order O(h1/(k+1)) for control, state and adjoint state.

Example 1.2 We introduce a class of linear problems depending on a parameter k ∈ N,
which fulfills the Assumptions (A1) and (A2)k (cf. [7, Example 2.10], [19, Sect. 4]).
In the context of the labeling in [32] these problems have a controllability index k ∈ N.
With n = k + 1, s ∈ R

k and X = W 1∞(0, 1;Rn) × L∞(0, 1;R) we define

(B)k min
(x,u)∈X

x1(1)

s.t. ẋ j (t) = s j x j+1(t) + u(t) a.e. on [0, 1], j = 1, . . . , k,

ẋk+1(t) = u(t) a.e. on [0, 1],
x(0) = 0n,

−1 ≤ u(t) ≤ 1 a.e. on [0, 1].
The adjoint equation can be written as

−λ̇(t) = (
0, s1λ1(t), s2λ2(t), . . . , skλk(t)

)T
,

λ(1) = (1, 0, . . . , 0)T.

For j = 1, . . . , k + 1 we obtain

λ0j (t) =
⎛
⎝ (−1) j+1

( j − 1)!
j−1∏
i=1

si

⎞
⎠ (t − 1) j−1
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Convergence results for discrete regularization 737

and the corresponding switching function

σ 0(t) =
k+1∑
j=1

λ0j (t).

In order to guarantee that for k ∈ N the Assumption (A2)k is fulfilled, we choose the
parameter s such that the switching function σ has a zero of order k at t = 0.5, which
means that σ(0.5) = 0 and all derivatives up to order k − 1 vanish at t = 0.5, too.
These requirements can be written as

k∑
j=1

(−1)k+ j−�

(k − 1 − �)! 2k−1−�

j−1∏
i=1

si = 0, � = 0, . . . , k − 1

and are fulfilled if we choose s j := −2(k − j + 1) for j = 1, . . . , k. The resulting
switching function is

σ 0(t) = 2k(t − 0.5)k .

Therefore the solution of (B)k fulfills the Assumptions (A1) and (A2)k with k ∈ N.
With the help of (7) we can characterize the optimal control. For odd k it holds

u0(t) =
{

1, 0 ≤ t < 0.5,

−1, 0.5 < t ≤ 1.

If k is even, the optimal control is a constant function u0(t) ≡ −1. Because of the
weakened Assumption (A2)k this example shows, that the error estimates we will
derive in Sects. 5 and 6 hold true for an extended class of control problems in com-
parison to the results in [4].

The following result is a generalization of [6, Lemma 4.1] (cf. [14, Lemma 3.3]):

Lemma 1.3 Let (x0, u0) be a minimizer for Problem (OS) that fulfills the Assump-
tions (A1) and (A2)k , and let the switching function σ be defined by (6). Then there
are constants β, γ, δ̄ > 0 such that for any admissible control u ∈ U ,

∫ T

0
σ 0(t)T

(
u(t) − u0(t)

)
dt ≥ β ‖u − u0‖k+1

1

if ‖u − u0‖1 ≤ 2γ δ̄, and

∫ T

0
σ 0(t)T

(
u(t) − u0(t)

)
dt ≥ β ‖u − u0‖1

if ‖u − u0‖1 > 2γ δ̄.
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738 M. Seydenschwanz

Proof For 0 < δ < τ̄ we define

I (δ) :=
⋃

1≤ι≤l

[sι − δ, sι + δ] .

Let j ∈ {1, . . . , m} be arbitrary and

� j := {
τ1, . . . , τl j

}
with 0 < τ1 < · · · < τl j < T

the set of zeros of σ j . Moreover we define

I−(δ) :=
⋃

ι=1,...,l j

[τι − δ, τι + δ] and I+(δ) := [0, T ] \ I−(δ).

Since σ is Lipschitz continuous, there exist constants σ j,min with

σ j,min := min
t∈I+(τ̄ )

∣∣σ j (t)
∣∣ > 0.

We choose 0 < δ̄ ≤ τ̄ , such that

δ̄k σ̄ ≤ min
1≤ j≤m

σ j,min.

From the Assumption (A2)k we obtain for all 0 < δ < δ̄ and j ∈ {1, . . . , m}
∣∣σ j (t)

∣∣ ≥ δk σ̄ ∀ t ∈ [0, T ] \ I (δ). (9)

Let u ∈ U be arbitrary. From the minimum principle (5) we know that the signs
of σ j (t) and u j (t) − u0

j (t) coincide a.e. on [0, T ]. It follows from (9), that

J =
∫ T

0
σ 0(t)T

(
u(t) − u0(t)

)
dt ≥

∫

[0,T ]\I (δ)

σ 0(t)T
(

u(t) − u0(t)
)
dt

=
∫

[0,T ]\I (δ)

m∑
j=1

|σ j (t)| |u j (t) − u0
j (t)| dt ≥ δk σ̄

m∑
j=1

∫

[0,T ]\I (δ)

|u j (t) − u0
j (t)| dt.

(10)

Furthermore, for 1 ≤ j ≤ m it holds

|u j (t) − u0
j (t)| ≤ bu, j − bl, j ∀ t ∈ [0, T ],

an with

γ := 2lm max
1≤ j≤m

(bu, j − bl, j )
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Convergence results for discrete regularization 739

we get

m∑
j=1

∫
I (δ)

|u j (t) − u0
j (t)| dt ≤ γ δ.

Together with (10) this implies

J ≥ δk σ̄
(
‖u − u0‖1 − γ δ

)
.

Now we choose δ := min
{
δ̄, 1

2γ ‖u − u0‖1
}
. If δ = δ̄, i.e. it holds ‖u − u0‖1 > 2γ δ̄,

we obtain

J ≥ δ̄k σ̄

2
‖u − u0‖1. (11)

If δ = 1
2γ ‖u − u0‖1, i.e. it holds ‖u − u0‖1 ≤ 2γ δ̄, we have

J ≥ σ̄

2k+1γ k
‖u − u0‖k+1

1 . (12)

With

β := min

{
δ̄k σ̄

2
,

σ̄

2k+1γ k

}

the assertion follows directly from (11) and (12). ��

This Lemma implies a minorant of order k + 1 for the optimal values of (OS) in a
sufficiently small L1-neighborhood and a linear minorant outside this neighborhood.
Moreover it directly implies the following generalization of [6, Theorem 4.2]:

Theorem 1.4 Let (x0, u0) be a minimizer for Problem (OS) that fulfills the Assump-
tions (A1) and (A2)k . Then there are constants β, γ, δ̄ > 0 such that for any feasible
pair (x, u) ∈ F ,

f (x, u) − f
(

x0, u0
)

≥ β ‖u − u0‖k+1
1

if ‖u − u0‖1 ≤ 2γ δ̄, and

f (x, u) − f
(

x0, u0
)

≥ β ‖u − u0‖1

if ‖u − u0‖1 > 2γ δ̄.
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740 M. Seydenschwanz

Proof Let (x0, u0) be a solution of (OS) that fulfills the Assumptions (A1) and (A2)k ,
with corresponding adjoint variable λ0. Further let (x, u) ∈ F be arbitrary. We
define z := x − x0, v := u − u0 and obtain

f (x, u) − f
(

x0, u0
)

= x0(T )T Qz(T ) + 1

2
z(T )T Qz(T ) + qTz(T )

+
∫ T

0

1

2
z(t)TW (t)z(t) + z(t)TS(t)v(t) dt

+
∫ T

0

[
W (t)x0(t) + S(t)u0(t) + w(t)

]T
z(t) dt

+
∫ T

0

[
S(t)Tx0(t) + r(t)

]T
v(t) dt.

With Assumption (AC) it follows

f (x, u) − f
(

x0, u0
)

≥ x0(T )T Qz(T ) + qTz(T )

+
∫ T

0

[
W (t)x0(t) + S(t)u0(t) + w(t)

]T
z(t) dt

+
∫ T

0

[
S(t)Tx0(t) + r(t)

]T
v(t) dt. (13)

Using partial integration we can deduce from the terminal condition of the adjoint
Eq. (4)

x0(T )T Qz(T ) + qTz(T ) = λ0(T )Tz(T )

=
∫ T

0
ż(t)Tλ0(t) dt +

∫ T

0
z(t)Tλ̇0(t) dt.

Since z solves the system Eq. (1) of (OS) with u = v and λ0 solves the adjoint Eq. (4)
with (x, u) = (x0, u0) we obtain

x0(T )T Qz(T ) + qTz(T ) =
∫ T

0
[A(t)z(t) + B(t)v(t)]T λ0(t) dt

−
∫ T

0
z(t)T

[
A(t)Tλ0(t) + W (t)x0(t) + S(t)u0(t) + w(t)

]
dt.

Plugging this into (13) leads together with (6) to

f (x, u) − f
(

x0, u0
)

≥
∫ T

0

[
B(t)Tλ0(t) + S(t)Tx0(t) + r(t)

]T
v(t) dt

=
∫ T

0
σ 0(t)Tv(t) dt,
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Convergence results for discrete regularization 741

and the assertion follows directly from Lemma 1.3. ��

Remark 3 The results of order k + 1 from Lemma 1.3 and Theorem 1.4 are strongly
connected to thefindings in [19] and [32]. In [32] the authors derived stability results for
Mayer-type problems with the help of metric regularity and smoothness assumptions
on the problem parameters. The structure of the switching function is characterized
with the help of the “controllability index”. In the case of control constraints defined
by constant upper and lower bounds

u(t) ∈ U = {
u ∈ R

m
∣∣ bl ≤ u ≤ bu

}
a.e. on [0, T ]

the controllability index depends on the derivatives up to order k − 1 of the switching
function (cf. [32, Remark 1]).

Using the stability results from [32] it was shown in [19] that the direct Euler
discretization for Mayer-type problems converges with order O(h1/k) w.r.t. the con-
trollability index k and the mesh size h. Under the Assumptions (A1) and (A2)k we
will show convergence of order O(h1/(k+1)) for a discrete regularization approach
applied to linear-quadratic problems of type (OS)with bang–bang controls. Moreover
wewill improve theseHölder-type error estimates for linear problems to orderO(h1/k)

without making further assumptions on the smoothness of the problem parameters.

2 Regularization

By adding the regularization term α
2 ‖u‖22 to the cost functional of our initial prob-

lem (OS) = (OS)0 we obtain the following class of linear-quadratic control problems
with α ≥ 0:

(OS)α min
(x,u)∈X

f α(x, u)

s.t. ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, T ],
x(0) = a,

u(t) ∈ U a.e. on [0, T ].
Hereby, the cost functional is defined as

f α(x, u) := 1

2
x(T )T Qx(T ) + qTx(T ) + α

2
‖u‖22

+
∫ T

0

1

2
x(t)TW (t)x(t) + x(t)TS(t)u(t) + w(t)Tx(t) + r(t)Tu(t) dt

= f (x, u) + α

2
‖u‖22.

The feasible set of (OS)α is F . If we choose α > 0, the cost functional f α is
strictly convex, and therefore the problem (OS)α has got a uniquely defined Lipschitz
continuous solution (xα, uα) (cf. [9, Lemma 4]) and a corresponding adjoint state λα ∈
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742 M. Seydenschwanz

X1 such that the adjoint equation

−λ̇α(t) = A(t)Tλα(t) + W (t)xα(t) + S(t)uα(t) + w(t),

λα(T ) = Qxα(T ) + q

and the minimum principle

(
αuα(t) + B(t)Tλα(t) + S(t)Txα(t) + r(t)

)T (
u − uα(t)

) ≥ 0 ∀ u ∈ U, (14)

hold a.e. on [0, T ]. For t ∈ [0, T ] the switching function σα of (OS)α is defined by

σα(t) := αuα(t) + B(t)Tλα(t) + S(t)Txα(t) + r(t)

From (14) it follows that for α > 0 the optimal control uα is

uα(t) = Pr[bl ,bu ]
[
− 1

α

(
B(t)Tλα(t) + S(t)Txα(t) + r(t)

)]
. (15)

We will show that for α → 0 the solution (xα, uα) of (OS)α converges to (x0, u0).
The order of convergence depends on the structure of the switching function of the
initial problem (OS).

Theorem 2.1 Let (x0, u0) be a solution of (OS) that fulfills the Assumptions (A1)
and (A2)k . Then the uniquely determined solution (xα, uα) of (OS)α can be estimated
by

‖uα − u0‖1 ≤ cuα
1
k and ‖xα − x0‖∞ ≤ cxα

1
k .

For the corresponding adjoint variable it holds

‖λα − λ0‖1 ≤ cλα
1
k .

The constants cu, cx and cλ are independent of the regularization parameter α.

Proof For the solution (xα, uα) of (OS)α it holds

f
(
xα, uα

) + α

2
‖uα‖22 = f α

(
xα, uα

) ≤ f α
(

x0, u0
)

= f
(

x0, u0
)

+ α

2
‖u0‖22

and therefore
f
(
xα, uα

) − f
(

x0, u0
)

≤ α

2

(
‖u0‖22 − ‖uα‖22

)
. (16)
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Since U is bounded we obtain

‖u0‖22 − ‖uα‖22 =
∫ T

0
|u0(t)|2 − |uα(t)|2 dt

=
∫ T

0

(
|u0(t)| + |uα(t)|

) (
|u0(t)| − |uα(t)|

)
dt

≤
∫ T

0

(
|u0(t)| + |uα(t)|

)
|u0(t) − uα(t)| dt

≤
(
‖u0‖∞ + ‖uα‖∞

)
‖u0 − uα‖1

≤ c1‖u0 − uα‖1
with a constant c1 independent of α. With (16) it follows

f
(
xα, uα

) − f
(

x0, u0
)

≤ c1
2

α‖u0 − uα‖1. (17)

From Theorem 1.4 we know that there are constants β, γ , δ̄ > 0 with

f
(
xα, uα

) − f
(

x0, u0
)

≥ β‖uα − u0‖k+1
1 ,

if ‖uα − u0‖1 ≤ 2γ δ̄ and

f
(
xα, uα

) − f
(

x0, u0
)

≥ β‖uα − u0‖1,

if ‖uα − u0‖1 ≥ 2γ δ̄. With (17) we can deduce

c1
2

α‖u0 − uα‖1 ≥ β‖uα − u0‖k+1
1 ,

if ‖uα − u0‖1 ≤ 2γ δ̄ and

c1
2

α‖u0 − uα‖1 ≥ β‖uα − u0‖1,

if ‖uα − u0‖1 ≥ 2γ δ̄. Together with

‖u0 − uα‖1 ≤ T
(
‖u0‖∞ + ‖uα‖∞

)

we obtain c1
2β

α ≥ ‖uα − u0‖k
1, (18)

if ‖uα − u0‖1 ≤ 2γ δ̄ and

c1T

2β

(
‖u0‖∞ + ‖uα‖∞

)
α ≥ ‖uα − u0‖1,
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744 M. Seydenschwanz

if ‖uα − u0‖1 ≥ 2γ δ̄. In both cases it follows for sufficiently small α

‖uα − u0‖k
1 ≤ 2γ δ̄.

From (18) we obtain the desired estimate for the control

‖uα − u0‖1 ≤ cuα
1
k

with a constant cu independent of α. Since z := xα − x0 solves

ż(t) = A(t)z(t) + B(t)
(

uα(t) − u0(t)
)

a.e. on [0, T ],
z(0) = 0

we get from (2)

‖xα − x0‖∞ = ‖z‖∞ ≤ c̄1‖uα − u0‖1 ≤ cxα
1
k

with a constant cx independent of α. Moreover μ := λα − λ0 solves

−μ̇(t) = A(t)Tμ(t)+W (t)
(

xα(t)−x0(t)
)
+S(t)

(
uα(t) − u0(t)

)
a.e. on [0, T ],

μ(T ) = Q
(

xα(T ) − x0(T )
)

.

From (8) we can deduce the estimate

‖λα − λ0‖∞ = ‖μ‖∞ ≤ c̄1‖xα − x0‖∞ + c̄2‖uα − u0‖1 ≤ cλα
1
k

with a constant cλ independent of α. ��
Now we illustrate the theoretical findings of Theorem 2.1 with the help of Prob-

lem (B)k from Example 1.2.

Example 2.2 The L2-regularization of (B)k leads to:

(B)αk min
(x,u)∈X

x1(1) + α
2 ‖u‖22

s.t. ẋ j (t) = s j x j+1(t) + u(t) a.e. on [0, 1], j = 1, . . . , k,

ẋk+1(t) = u(t) a.e. on [0, 1],
x(0) = 0n,

−1 ≤ u(t) ≤ 1 a.e. on [0, 1].
We have already seen that with s j = −2(k − j + 1) for j = 1, . . . , k the switching
function of (B)0k is given by

σ 0(t) = 2k(t − 0.5)k a.e. on [0, 1].
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Using the projection formula (15) the optimal control uα of the regularized prob-
lem (B)αk with α > 0 can be written as

uα(t) = Pr[−1,1]
[
− 1

α
σ 0(t)

]
a.e. on [0, 1].

We define

t1 := 1

2
− 1

2
α1/k and t2 := 1

2
+ 1

2
α1/k,

and for sufficiently small α, we obtain [t1, t2] ⊂ [0, 1]. From the projection for-
mula (15) it follows for odd k ∈ N

uα(t) =

⎧⎪⎨
⎪⎩

1, 0 ≤ t ≤ t1,

− 2k

α
(t − 0.5)k, t1 < t < t2,

−1, t2 ≤ t ≤ 1,

and for even k ∈ N

uα(t) =

⎧⎪⎨
⎪⎩

−1, 0 ≤ t ≤ t1,

− 2k

α
(t − 0.5)k, t1 < t < t2,

−1, t2 ≤ t ≤ 1.

From this we can conclude, that for arbitrary k ∈ N and sufficiently small α > 0 the
optimal controlu0 of (B)0k and the optimal controluα of (B)αk coincide on [0, 1]\[t1, t2].
Since it holds

‖uα − u0‖1 = 2

⎛
⎝1

2
α

1
k −

∫ 1
2α

1
k

0

2k

α
tk dt

⎞
⎠ =

(
1 − 1

k + 1

)
α

1
k ,

this example illustrates the theoretical results of Theorem 2.1.

3 The regularization–discretization approach

We choose a natural number N and define the mesh size h := T/N . The space X2
of controls is approximated by functions in the subspace X2,N ⊂ X2 of piecewise
constant functions represented by their values uh,i := u(ti ) at the grid points ti :=
ih, i = 0, 1, . . . , N − 1. Further, we approximate state and adjoint state variables
by functions in the subspace X1,N ⊂ X1 of continuous, piecewise linear functions
represented by their values xh,i := x(ti ), λh,i := λ(ti ) at the grid points ti , i =
0, 1, . . . , N . We define UN := U ∩ X2,N and X N := X1,N × UN . In order to get a
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746 M. Seydenschwanz

discrete system equation we use Euler’s method:

xh,i+1 = xh,i + h
[
A(ti )xh,i + B(ti )uh,i

]
, i = 0, 1, . . . , N − 1,

xh,0 = a. (19)

Discretizing the cost functional of (OS) with respect to the discretization method for
the system equation and adding a discrete regularization term leads to the following
class of discrete control problems depending on the regularization parameter α:

(OS)αN min
(xh ,uh)∈X N

f α
N (xh, uh)

s.t. xh,i+1 = xh,i + h
[
A(ti )xh,i + B(ti )uh,i

]
, i = 0, 1, . . . , N − 1,

xh,0 = a,

uh,i ∈ U, i = 0, 1, . . . , N − 1.

where the cost functional f α
N is defined by

f α
N (x, u) :=1

2
xT

N QxN + qTxN + h
N−1∑
i=0

α

2
uT

i ui + 1

2
xT

i W (ti )xi + xT
i S(ti )ui

+ h
N−1∑
i=0

w(ti )
Txi + r(ti )

Tui .

The feasible set of (OS)αN is independent of the regularization parameter α. We denote
it by FN . Analogously to (2) it holds for the solution xh of (19)

‖xh‖∞ ≤ c1|a| + c2‖uh‖1 (20)

with constants c1 and c2 independent of a and uh .

Remark 4 Since we added the regularization term h
∑N−1

i=0
α
2 uT

i ui to the cost func-
tional, the problem (OS)αN fulfills a common sufficient condition for the convergence
of finite-dimensional optimization methods. Therefore the combined regularization–
discretization approach is numerically more stable and has advantages over direct
approximation methods as presented for example in [6].

The following auxiliary results are similar to the ones concerning Euler discretiza-
tion (cf. [6]).

Definition 3.1 A pair (xα
h , uα

h ) ∈ FN is called a minimizer for Problem (OS)αN if
f α
N (xα

h , uα
h ) ≤ f α

N (xh, uh) for all (xh, uh) ∈ FN , and a strict minimizer for Prob-
lem (OS)αN if f α

N (xα
h , uα

h ) < f α
N (xh, uh) for all (xh, uh) ∈ FN , (xh, uh) �= (xα

h , uα
h ).

Again, sinceU is compact there exists a constant Lx independent of N such that for
any admissible control uh ∈ U and the associated solution xh ∈ X1,N of the discrete
system Eq. (19) we have

|ẋh(t)| ≤ Lx a.e. on [0, T ],
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Convergence results for discrete regularization 747

which shows that the discrete feasible trajectories are uniformly Lipschitz with Lip-
schitz modulus Lx independent of N , where w.l.o.g. Lx is the same constant as in (3).

Compactness of U further implies that Problem (OS)αN has a solution (xα
h , uα

h ) ∈
X N , and for any solution there exists a continuous, piecewise linear multiplier λα

h ∈
X1,N such that for i = 0, . . . , N − 1 the discrete adjoint equation

− λα
h,i+1 − λα

h,i

h
= A(ti )

Tλα
h,i+1 + W (ti )xα

h,i + S(ti )u
α
h,i + w(ti ),

λα
h,N = Qxα

h,N + q, (21)

and the discrete minimum principle

[
α uα

h,i + B(ti )
Tλα

h,i+1 + S(ti )
Txα

h,i + r(ti )
]T (

u − uα
h,i

) ≥ 0 ∀u ∈ U (22)

are satisfied (cf. [6]). By σα
h : [0, tN−1] → R

m we denote the discrete switching
function, which is the continuous and piecewise linear function defined by the values

σα
h (ti ) := α uα

h,i + B(ti )
Tλα

h,i+1 + S(ti )
Txα

h,i + r(ti ), i = 0, . . . , N − 1.

If α = 0, from (22) we obtain for j = 1, . . . , m, i = 0, . . . , N − 1,

u0
h, j (ti ) =

⎧⎪⎨
⎪⎩

bl, j , if σ 0
h, j (ti ) > 0,

bu, j , if σ 0
h, j (ti ) < 0,

undetermined, if σ 0
h, j (ti ) = 0.

Otherwise if α > 0, the following projection formula holds

uα
h,i = Pr[bl ,bu ]

[
− 1

α

(
B(ti )

Tλα
h,i+1 + S(ti )

Txα
h,i + r(ti )

)]
, i = 0, . . . , N − 1.

(23)
Analogously to (8), for the solution λα

h of (21) we have

‖λα
h‖∞ ≤ c1‖xα

h ‖∞ + c2‖uα
h ‖1 + c3‖w‖∞ + c4|q| (24)

with constants c1, c2, c3 and c4 independent of (xα
h , uα

h ), w and q. For the
following proofs of convergence results we need some auxiliary results (cf. [6,
Lemma 3.1,Lemma 3.2], [33, Satz 3.2.1, Lemma 3.2.2, Satz 3.2.3]):

Lemma 3.2 Let (x, u) ∈ F be arbitrary with u having bounded variation, and let û ∈
UN be the piecewise constant approximation of u in the grid points. Then there exists
a uniquely defined x̂ ∈ X1,N , such that (x̂, û) ∈ FN , and it holds

‖u − û‖1 ≤ hVT
0 u and ‖x − x̂‖∞ ≤ c1hVT

0 ẋ ≤
(

c2 + c3V
T
0 u

)
h,

where c1, c2 and c3 are constants independent of (x, u) and N.
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748 M. Seydenschwanz

Lemma 3.3 Let (xh, uh) ∈ FN . Then there exists a unique state x ∈ X1, such that
(x, uh) ∈ F and

‖x − xh‖∞ ≤ ch,

with a constant c independent of (xh, uh) and N.

Lemma 3.4 Let (x, u) ∈ F be arbitrary with u having bounded variation, and let λ

be the corresponding adjoint variable. Moreover let û ∈ UN be the piecewise constant
approximation of u in the grid points, x̂ ∈ X1,N the solution of the discrete system
Eq. (19) with u = û and λ̂ ∈ X1,N the solution of the discrete adjoint Eq. (21)
with (x, u) = (

x̂, û
)
. Then it holds

‖λ − λ̂‖∞ ≤ c1h + c2hVT
0 u

with constants c1 and c2 independent of (x, u) and N.

Remark 5 In order to derive convergence results we introduce the following notations.
Let û0 ∈ UN be the piecewise constant approximation of u0 in the grid points and x̂0 ∈
X1,N the uniquely defined solution of the discrete system Eq. (19) with u = û0.
Moreover let ẑ0 ∈ X1,N resp. zα

h ∈ X1,N be the uniquely defined solutions of the
system Eq. (1) with u = û0 resp. u = uα

h . For arbitrary α ≥ 0 it holds

(
x0, u0

)
∈ F ,

(
ẑ0, û0

)
∈ F ,

(
zα

h , uα
h

) ∈ F ,
(
xα

h , uα
h

) ∈ FN ,
(

x̂0, û0
)

∈ FN .

(25)

4 Convergence of optimal values

To show convergence of the optimal values we have to prove the following auxiliary
result:

Lemma 4.1 For (xh, uh) ∈ FN it holds

∣∣ f (xh, uh) − f α
N (xh, uh)

∣∣ ≤ c̄1h + c̄2α

with constants c̄1 and c̄2 independent of (xh, uh), α and N.

Proof It follows from the Lipschitz continuity of xh , W , S,w and r , that for (xh, uh) ∈
FN it holds (cf. [6, Lemma 3.3])

∣∣∣ f (xh, uh) − f 0N (xh, uh)

∣∣∣ ≤ c̄1h (26)

with a constant c̄1 independent of (xh, uh), α and N . Since U is bounded, we obtain

∣∣∣ f 0N (xh, uh) − f α
N (xh, uh)

∣∣∣ =
∣∣∣∣∣h

N−1∑
i=0

α

2
uT

h,i uh,i

∣∣∣∣∣ ≤ T

2
‖uh‖2∞α = c̄2α, (27)
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Convergence results for discrete regularization 749

with a constant c̄2 independent of (xh, uh), α and N . With the help of the triangle
inequality we obtain the assertion from (26) and (27). ��

Now we are ready to formulate the following theorem:

Theorem 4.2 Let (x0, u0) ∈ F be a solution of (OS), with u0 having bounded vari-
ation. Then, for every solution (xα

h , uα
h ) ∈ FN of (OS)αN it holds

∣∣∣ f
(

x0, u0
)

− f α
N

(
xα

h , uα
h

)∣∣∣ ≤ c̄1h + c̄2α

with constants c̄1 and c̄2 independent of (xα
h , uα

h ), α and N.

Proof Since (xα
h , uα

h ) is a solution of (OS)αN we obtain with (25)

0 ≤ f α
N

(
x̂0, û0

)
− f α

N

(
xα

h , uα
h

) ≤ f α
N

(
x̂0, û0

)
− f

(
x0, u0

)
+ f

(
x0, u0

)

− f α
N

(
xα

h , uα
h

)
.

Therefore it holds

f α
N

(
xα

h , uα
h

) − f
(

x0, u0
)

≤ f α
N

(
x̂0, û0

)
− f

(
x0, u0

)

≤ f α
N

(
x̂0, û0

)
− f

(
x̂0, û0

)
+ f

(
x̂0, û0

)
− f

(
x0, u0

)
.

With Lemmas 3.2, 4.1 and the Lipschitz continuity of f we obtain

f α
N

(
xα

h , uα
h

) − f
(

x0, u0
)

≤ c1h + c2α (28)

with constants c1 and c2 independent of (xα
h , uα

h ), α and N . Since (x0, u0) solves (OS)

it holds

0 ≤ f (zα
h , uα

h )− f
(

x0, u0
)
= f (zα

h , uα
h ) − f α

N

(
xα

h , uα
h

)+ f α
N

(
xα

h , uα
h

) − f
(

x0, u0
)

and therefore

f
(

x0, u0
)

− f α
N

(
xα

h , uα
h

) ≤ f (zα
h , uα

h ) − f α
N

(
xα

h , uα
h

)
≤ f (zα

h , uα
h ) − f

(
xα

h , uα
h

) + f
(
xα

h , uα
h

) − f α
N

(
xα

h , uα
h

)
.

With Lemmas 3.3, 4.1 and the Lipschitz continuity of f we obtain

f
(

x0, u0
)

− f α
N

(
xα

h , uα
h

) ≤ c3h + c4α

with constants c3 and c4 independent of (xα
h , uα

h ), α and N . Together with (28) this
leads to the desired assertion. ��
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5 Hölder-type error estimates

With the help of Theorem 4.2 we can now prove the following convergence result for
the discrete regularization:

Theorem 5.1 Let (x0, u0) ∈ F be a solution of (OS) that fulfills the Assumptions (A1)
and (A2)k . Then, for sufficiently small h every solution (xα

h , uα
h ) ∈ FN of (OS)αN can

be estimated by

‖uα
h − u0‖1 ≤ cu(h + α)

1
k+1 and ‖xα

h − x0‖∞ ≤ cx (h + α)
1

k+1 .

For the corresponding adjoint variables we get

‖λα
h − λ0‖∞ ≤ cλ(h + α)

1
k+1 .

The constants cu, cx and cλ are independent of (xα
h , uα

h ), α and N.

Proof From Theorem 1.4 we know that there exist constants β, γ , δ̄ > 0, such that
with (25) we have

f (zα
h , uα

h ) − f
(

x0, u0
)

≥ β‖uα
h − u0‖k+1

1 , (29)

if ‖uα
h − u0‖1 ≤ 2γ δ̄ and

f (zα
h , uα

h ) − f
(

x0, u0
)

≥ β‖uα
h − u0‖1, (30)

if ‖uα
h −u0‖1 ≥ 2γ δ̄.With Lemmas 3.3, 4.1, Theorem 4.2 and the Lipschitz continuity

of f we further obtain

f (zα
h , uα

h ) − f
(

x0, u0
)

≤ ∣∣ f (zα
h , uα

h ) − f
(
xα

h , uα
h

)∣∣ + ∣∣ f
(
xα

h , uα
h

) − f α
N

(
xα

h , uα
h

)∣∣
+

∣∣∣ f α
N

(
xα

h , uα
h

) − f
(

x0, u0
)∣∣∣

≤ c1L f ‖zα
h − xα

h ‖∞ + c2h + c3α

≤ c̄(h + α)

with a constant c̄ independent of (xα
h , uα

h ), α and N . Together with (29) and (30) it
follows

‖uα
h − u0‖1 ≤ max

{
c̄β−1(h + α),

(
c̄β−1(h + α)

) 1
k+1

}
.

For sufficiently small h and α it holds ‖uα
h − u0‖1 ≤ 2γ δ̄, and from (29) we obtain

‖uα
h − u0‖1 ≤ cu(h + α)

1
k+1 (31)
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with a constant cu independent of (xα
h , uα

h ), α and N . FromAssumption (A1)we know
that u0 has bounded variation, and together with (20), (31) and Lemma 3.2 it follows
for the state variables

‖xα
h − x0‖∞ = ‖xα

h − x̂0 + x̂0 − x0‖∞
≤ ‖xα

h − x̂0‖∞ + ‖x̂0 − x0‖∞
≤ c3‖uα

h − û0‖1 + c4h

≤ c3‖uα
h − u0 + u0 − û0‖1 + c4h

≤ cz(h + α)
1

k+1 (32)

with a constant cz independent of (xα
h , uα

h ) and N . For the corresponding adjoint states
we obtain from (24), (31), (32), Lemmas 3.2 and 3.4

‖λα
h − λ0‖∞ = ‖λα

h − λ̂0 + λ̂0 − λ0‖∞
≤ ‖λα

h − λ̂0‖∞ + ‖λ̂0 − λ0‖∞
≤ c5‖xα

h − x̂0‖∞ + c6‖uα
h − û0‖1 + c7h

≤ cλ(h + α)
1

k+1

with a constant cλ independent of (xα
h , uα

h ) and N . ��

By choosing the regularization parameter α with respect to the mesh size h of the
discretization as α := cαh with a constant cα ≥ 0 independent of N , it follows directly
from Theorem 5.1:

Corollary 5.2 Let (x0, u0) ∈ F be a solution (OS) that fulfills the Assumptions (A1)
and (A2)k . Moreover we choose α := cαh with a constant cα ≥ 0 independent of N .
Then, for sufficiently small h every solution (xα

h , uα
h ) ∈ FN of (OS)αN can be estimated

by

‖uα
h − u0‖1 ≤ cuh

1
k+1 and ‖xα

h − x0‖∞ ≤ cx h
1

k+1 .

For the corresponding adjoint variables we get

‖λα
h − λ0‖∞ ≤ cλh

1
k+1 .

The constants cu, cx and cλ are independent of (xα
h , uα

h ) and N.

Remark 6 For α = 0, Corollary 5.2 directly gives Hölder-type error estimates for the
direct Euler discretization of (OS), under the Assumptions (A1) and (A2)k . Therefore
the results of this paper extend the findings of [7] and [6], too. Equivalent convergence
results for an implicit discretization scheme can be found in [33].
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6 Improved error estimates for linear problems

The error estimates ofTheorem5.1 andCorollary 5.2 canbe improved for the following
class of linear problems:

(OL)α min
(x,u)∈X

f (x, u) = qTx(T ) + α
2 ‖u‖22

s.t. ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, T ],
x(0) = a,

u(t) ∈ U a.e. on [0, T ].

For arbitrary α ≥ 0 the adjoint equation of (OL)α

−λ̇α(t) = A(t)Tλα(t) a.e. on [0, T ],
λα(T ) = q

is independent of (x, u) andα. Therefore it can be solved directly, and it holdsλ0 = λα .
For t ∈ [0, T ] the corresponding switching function is defined by

σα(t) := B(t)Tλα(t) + αuα(t) = B(t)Tλ0(t) + αuα(t) = σ 0(t) + αuα(t).

The discrete adjoint equation for the finite-dimensional Problem (OL)αN is given by

−λα
h,i+1 − λα

h,i

h
= A(ti )

Tλα
h,i+1, i = 0, . . . , N − 1

λα
h,N = q.

Again, it holds λ0h = λα
h . The corresponding discrete switching function σα

h ∈ X1,N

is a continuous, piecewise linear function σα
h : [0, tN−1] → R

m , which is uniquely
defined by

σα
h,i := B(ti )

Tλα
h,i+1 + αuα

h,i = σ 0
h,i + αuα

h,i , i = 0, . . . , N − 1.

From (23) we know for α > 0, that we can characterize the optimal control uα
h

of (OL)αN by

uα
h,i = Pr[bl ,bu ]

[
− 1

α
σ 0

h,i

]
, i = 0, . . . , N − 1. (33)

Since for our linear problems (OL) resp. (OL)αN the corresponding adjoint variables λ0

resp. λ̂0 to (x0, u0) resp. (x̂0, û0) (comp. (25)) are independent of (x, u) and α. There-
fore it holds λα = λ0 and λα

h = λ̂0. From Lemma 3.4 we obtain

‖λα
h − λ0‖∞ = ‖λ̂0 − λ0‖∞ ≤ cλh (34)
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with a constant cλ independent of (xα
h , uα

h ), α and N . For arbitrary i = 0, . . . , N − 1
it further holds

∣∣∣σ 0
h (ti ) − σ 0(ti )

∣∣∣ ≤
∣∣∣B(ti )

Tλ0h(ti+1) − B(ti )
Tλ0(ti )

∣∣∣
≤ ‖B‖∞

∣∣∣λ0h(ti ) − λ0(ti )
∣∣∣ + ‖B‖∞

∣∣∣λ0h(ti+1) − λ0h(ti )
∣∣∣

≤ ‖B‖∞‖λ0h − λ0‖∞ + ‖B‖∞Lλ0h
h

= ‖B‖∞‖λα
h − λ0‖∞ + ‖B‖∞Lλ0h

h

≤ ch

with a constant c independent of (xα
h , uα

h ), α and N . With the Lipschitz continuity
of σ 0 and σ 0

h it follows for i = 0, . . . , N − 2 and t ∈ [ti , ti+1)

∣∣∣σ 0
h (t) − σ 0(t)

∣∣∣ =
∣∣∣σ 0

h (t) − σ 0
h (ti ) + σ 0

h (ti ) − σ 0(ti ) + σ 0(ti ) − σ 0(t)
∣∣∣

≤
∣∣∣σ 0

h (ti ) − σ 0(ti )
∣∣∣ +

∣∣∣σ 0
h (t) − σ 0

h (ti )
∣∣∣ +

∣∣∣σ 0(ti ) − σ 0(t)
∣∣∣

≤ ch +
(

Lσ 0
h

+ Lσ 0

)
h

≤ cσ h (35)

with a constant cσ independent of (xα
h , uα

h ), α and N . From (34) and (35) we obtain

‖λα
h − λ0‖∞ ≤ cλh and max

t∈[0,tN−1]
|σ 0

h (t) − σ 0(t)| ≤ cσ h (36)

with constants cλ and cσ independent of (xα
h , uα

h ), α and N . Using (36) we are now
able to prove the following improved error estimates:

Theorem 6.1 Let (x0, u0) ∈ F be a solution of (OL) that fulfills the Assumptions (A1)
and (A2)k . Then, for sufficiently small h and α every solution (xα

h , uα
h ) ∈ FN of (OL)αN

can be estimated by

‖uα
h − u0‖1 ≤ cu(h + α)

1
k and ‖xα

h − x0‖∞ ≤ cx (h + α)
1
k .

For the corresponding adjoint variable it holds

‖λα
h − λ0‖∞ ≤ cλh.

Moreover uα
h and u0 coincide, except on a set M of measure μ(M) ≤ κ̄(h +α)

1
k . The

constants cu, cx , cλ and κ̄ are independent of (xα
h , uα

h ), α and N.

Proof Let

� j := {
τ1, . . . , τl j

}
with 0 < τ1 < · · · < τl j < T
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be the set of zeros of σ 0
j . Moreover we define

I−(δ) :=
⋃

ι=1,...,l j

[τι − δ, τι + δ] and I+(δ) := [0, T ] \ (I−(δ) ∪ [tN−1, T ]) .

Since the switching function σ j is Lipschitz continuous it follows from the Assump-
tions (A1) and (A2)k

σ 0
j,min := min

t∈I+(τ̄ )
|σ 0

j (t)| > 0.

From (36) we obtain

|σ 0
h, j (t)| ≥ |σ 0

j (t)| − cσ h ≥ σ 0
j,min − cσ h ∀t ∈ I+(τ̄ ).

For sufficiently small h this implies

σ 0
h, j,min := min

t∈I+(τ̄ )
|σ 0

h, j (t)| ≥ 1

2
σ 0

j,min > 0.

For arbitrary ι ∈ 1, . . . , l j we obtain from (A2)k and (36) for t ∈ [τι − τ̄ , τι + τ̄ ]

|σ 0
h, j (t)| ≥ |σ 0

j (t)| − cσ h ≥ σ̄ |t − τι|k − cσ h

and therefore

∣∣∣∣ 1ασ 0
h, j (t)

∣∣∣∣ ≥ 1

α
|σ 0

j (t)| − cσ

h

α
≥ σ̄

α
|t − τι|k − cσ

h

α
.

We define

γ j := max
{−bl, j , bu, j

}

and

d j (h, α) :=
(
1

σ̄

(
cσ h + γ jα

)) 1
k

.

It holds
∣∣∣ 1α σ 0

h, j (t)
∣∣∣ > γ j and therefore uα

h, j = u0
j , if |t − τι| > d j (h, α). Now we

choose the index i ∈ {0, . . . , N −1}, such that τι ∈ [ti , ti+1). Let � ∈ N be the smallest
number for which it holds

� > d j (h, α)h−1.
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Then we obtain

ti+�+1 − τι ≥ ti+�+1 − ti+1 = �h > d j (h, α)

and

τι − ti−� ≥ ti − ti−� = �h > d j (h, α)

and

d j (h, α)h−1 < � ≤ d j (h, α)h−1 + 1.

By setting

�+
ι := i + � + 1 and �−

ι := i − �

we get for sufficiently small h

t�+
ι

− t�−
ι

= (2� + 1)h ≤
(
2d j (h, α)h−1 + 3

)
h ≤ κd j (h, α)

with a constant κ independent of (xα
h , uα

h ), α and N . For sufficiently small h and α it
follows directly

[t�−
ι
, t�+

ι
] ⊂ [τι − τ̄ , τι + τ̄ ] .

By defining

I j,− :=
⎛
⎝ ⋃

ι=1,...,l j

[t�−
ι
, t�+

ι
]
⎞
⎠ ∪ [tN−1, T ]

we obtain ∣∣∣∣ 1ασ 0
h, j (t)

∣∣∣∣ > γ j ∀ t ∈ [0, T ] \ I j,−. (37)

Now we set

γ := max
1≤ j≤m

γ j , d(h, α) :=
(
1

σ̄
(cσ h + γα)

) 1
k

and M :=
⋃

j=1,...,m

I j,−.

From (37), together with the projection formula (33) and the estimate (36), we can
deduce that u0 and uα

h coincide on [0, T ] \ M . The measure μ(M) can be estimated
by

μ(M) ≤ κ

m∑
j=1

l j d j (h, α) ≤ κ

m∑
j=1

l j d(h, α) ≤ κ̄(h + α)
1
k (38)

with a constant κ̄ independent of (xα
h , uα

h ), α and N . In order to estimate ‖uα
h − u0‖1

we define ρ := max
1≤ j≤m

(bu, j − bl, j ) and it holds
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‖uα
h − u0‖1 =

∫ T

0
|uα

h (t) − u0(t)| dt

=
∫

M
|uα

h (t) − u0(t)| dt

≤ ρμ(M) ≤ ρκ̄(h + α)
1
k = cu(h + α)

1
k (39)

with a constant cu independent of (xα
h , uα

h ), α and N . For the state variables we obtain
analogously to the proof of Theorem 5.1 from (39)

‖xα
h − x0‖∞ ≤ cx (h + α)

1
k (40)

with a constant cx independent of (xα
h , uα

h ), α and N . We get the desired assertion
from the estimates (36), (38), (39) and (40). ��

Again, by coupling α with h we obtain the following convergence result directly
from Theorem 6.1:

Corollary 6.2 Let (x0, u0) ∈ F be a solution of (OL) that fulfills the Assump-
tions (A1) and (A2)k . Moreover we choose α := cαh, with a constant cα > 0 inde-
pendent of N . Then, for sufficiently small h, every solution (xα

h , uα
h ) ∈ FN of (OL)αN

can be estimated by

‖uα
h − u0‖1 ≤ cuh

1
k and ‖xα

h − x0‖∞ ≤ cx h
1
k .

For the corresponding adjoint variable it holds

‖λα
h − λ0‖∞ ≤ cλh .

Moreover uα
h and u0 coincide, except on a set M of measure μ(M) ≤ κ̄h

1
k . The

constants cu, cx , cλ and κ̄ are independent of (xα
h , uα

h ) and N.

Remark 7 Similar results as in Corollary 6.2 can be found in [19] for the direct Euler
discretization of Mayer type problems with controllability index k (see Remark 3).

Table 1 Example (B)k : error discrete regularization with α = 10h

N 20 50 100 200 500

k = 1 : eN 0.25 0.1 0.05 0.025 0.01

eN /h 5 5 5 5 5

k = 3 : eN 0.815 0.5551 0.4194 0.3202 0.2269

eN /
3√h 2.212 2.045 1.947 1.873 1.801

123



Convergence results for discrete regularization 757

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.
8

0.
9

1
−

1.
5

−
1

−
0.

50

0.
51

1.
5

t

(a
)k

=
1,

N
=

10
0

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.
8

0.
9

1
−

1.
5

−
1

−
0.

50

0.
51

1.
5

t

(b
)k

=
1,

N
=

50
0

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.
8

0.
9

1
−

1.
5

−
1

−
0.

50

0.
51

1.
5

t

(c
)
k
=

3,
N

=
10

0

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.
8

0.
9

1
−

1.
5

−
1

−
0.

50

0.
51

1.
5

t

(d
)k

=
3,

N
=

50
0

F
ig

.1
E
xa
m
pl
e

(B
) k
:s
ol
ut
io
n
di
sc
re
te
re
gu
la
ri
za
tio

n
w
ith

α
=

10
h

123



758 M. Seydenschwanz

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.
8

0.
9

1
−

1.
5

−
1

−
0.

50

0.
51

1.
5

t

(a
) k

=
3,

N
=

10
0

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.
8

0.
9

1
−

1.
5

−
1

−
0.

50

0.
51

1.
5

t

(b
)
k
=

3,
N

=
50

0

F
ig

.2
E
xa
m
pl
e

(B
) k
:s
ol
ut
io
n
di
re
ct
E
ul
er

di
sc
re
tiz
at
io
n

123



Convergence results for discrete regularization 759

7 Numerical example

We illustrate the theoretical findings of Corollary 6.2 by approximating the solution
of (B)k from Example 1.2 using discrete regularization:

Example 7.1 We choose α := 10h and define eN := ‖uα
h − u0‖1. The numerical

results of solving (B)k with the discrete regularization technique are displayed in
Table 1 and Fig. 1. They confirm the theoretical results of Corollary 6.2.

Remark 8 Figure 2 shows the solution of the direct Euler discretization of Exam-
ple (B)3. It seems like the optimal control has three switching points. As we can see in
Fig. 1 the combined regularization–discretization approach gives a better understand-
ing of the structure of the optimal control.

8 Conclusions

In this paper we proved error estimates for a combined regularization–discretization
approach for a class of optimal control problems with bang–bang solutions. We were
able to prove convergence of order O(h1/(k+1)) with respect to the controllability
index k for problemswithmixed state-control-term in the cost functional under weaker
assumptions on the structure of the switching function than in [4,6,7].

Acknowledgments The authorwould like to thank the anonymous reviewers for their valuable comments.
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