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Abstract In this paper, we present a new relaxed nonmonotone trust region method
with adaptive radius for solving unconstrained optimization problems. The proposed
method combines a relaxed nonmonotone technique with a modified version of the
adaptive trust region strategy proposed byShi andGuo (JComputApplMath 213:509–
520, 2008). Under some suitable and standard assumptions, we establish the global
convergence property as well as the superlinear convergence rate for the new method.
Numerical results on some test problems show the efficiency and effectiveness of the
new proposed method in practice.

Keywords Trust region methods · Nonmonotone techniques · Adaptive trust region
methods

1 Introduction

Consider the following unconstrained optimization problem:

minx∈Rn f (x), (1)
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in which f : Rn → R is a twice continuously differentiable function. Trust region and
line searchmethods are two popular approaches in the literature for solving these kinds
of optimization problems. Line search methods refer to a procedure that computes a
steplength αk in the specific direction dk at current point xk and generates a new
point as xk+1 = xk + αkdk . It is well known that in these methods, one may require
the Hessian approximation matrix to be positive definite for ensuring that the search
direction is a descent direction, see e.g. [17,18].

Trust region (TR) methods are another class of iterative methods for solving uncon-
strained optimization problems [5]. These methods generate a sequence of points that
converges to a point inwhich thefirst and second-order necessary conditions holdunder
some mild assumptions. Moreover, they can be applied to ill-conditioned problems,
have strong global convergence properties and do not require the Hessian approxima-
tion to be positive definite. Due to their strong convergence property and robustness,
they have been intensively studied in the literature [5,17]. In the classical TR meth-
ods, at the current point xk , a trial step dk is computed by approximately solving the
following TR subproblem:

minmk (d) = gTk d + 1

2
dT Bkd

s.t. ‖ d ‖≤ �k, (2)

where ‖.‖ can be an arbitrary vector norm, usually the Euclidean norm, gk = ∇ f (xk),
Bk is the exact Hessian, i.e. ∇2 f (xk), or its symmetric approximation and �k is the
TR radius. Then, the agreement between the actual and the predicted reductions is
computed by the so called TR ratio rk , which is defined by:

rk = Aredk
Predk

,

where the actual reduction Aredk and the predicted reduction Predk are given by:

Aredk := f (xk) − f (xk + dk), (3)

Predk := mk (0) − mk(dk). (4)

Based on themagnitude of rk , the classical TRmethods decidewhether the trial step
is accepted or rejected. More precisely, for a givenμ ∈ (0, 1) , if rk ≥ μ, then the trial
step is accepted and the new point is introduced by xk+1 = xk + dk . In this case, the
TR radius is updated appropriately. On the other hand, if the actual reduction is poor
compared with the predicted reduction, i.e. rk < μ, then the trial step is rejected and
the current point remains unchanged for the next iteration. In this case, the TR radius
is shrunk in an appropriate manner. This process is repeated until the convergence
criteria hold, see e.g. [5,12,18,20].

Appropriately choosing the initial radius and the way of updating TR radii are
crucial points in the performanceof standardTRmethods, see e.g. [1,15,22–24,30,31],
and may cause a meaningful decrease in the number of subproblem solving. Sartenaer
[22] proposed a strategy for automatically determining an initial radius by letting
it to be ‖ g0 ‖. Later, in practical point of view, Lin and Moré [15] introduced a
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better choice for the initial radius by letting �0 = κ ‖ g0 ‖, where κ is a positive
constant. It is worthmentioning that when the sequence {xk}, generated by the classical
TR algorithm, converges to a minimizer x∗, the ratio {rk} may converge to 1. Thus,
for sufficiently large k, the TR radius might be larger than a positive constant. In
this case, the trust region constraint doesn’t play any role at the end. Due to this
fact, Fan and Yuan [10] proposed a TR method with the radius �k converging to
zero. In their approach, the radius is introduced by �k = vk ‖ gk ‖, where vk
is updated according to the magnitude of the ratio rk . Zhang et al. [30] suggested
another scheme for adaptively determining the radius. They employed the adaptive
formula �k = cp ‖ gk ‖‖ B̂−1

k ‖ in their scheme, where c ∈ (0, 1) is a constant,

p is a nonnegative integer and B̂k = Bk + i I is a positive definite matrix, for some
i ∈ N . Recently, somevariants of adaptive trust regionmethods based on the following
updating formula have been proposed in [6,21]:

�k = vk ‖ gk ‖‖ B̂−1
k ‖, (5)

where vk is updated according to the magnitude of rk .
Despite using the current gradient and Hessian information in Zhang’s method,

computing�k in (5) requires an estimation of ‖ B̂−1
k ‖ in each iteration, which causes

some extra computational costs. In order to overcome this drawback, a simple adaptive
trust regionmethodwas proposed by Shi andWang [24], in which the radius is updated
by �k = cp ‖ gk ‖3 /gTk B̂kgk , where c ∈ (0, 1) is a constant, B̂k is a positive definite
matrix and p is a nonnegative integer. A practically efficient and globally convergent
adaptive TR method has been suggested by Shi and Guo in [23]. In their method, the
radius is updated by �k = αk ‖ qk ‖, where qk is chosen so that, for given τ ∈ (0, 1],

− gTk qk
‖ gk ‖ . ‖ qk ‖ ≥ τ. (6)

Moreover, for given ρ ∈ (0, 1), αk is the largest possible α ∈ {
sk, ρsk, ρ2sk, . . .

}
,

so that rk ≥ μ, where sk is determined by

sk = − gTk qk

qTk B̂kqk
, (7)

and B̂k is defined by

B̂k = Bk + i I, (8)

in which I is the identity matrix and i is the smallest nonnegative integer so that B̂k is
a positive definite matrix.

In the monotone trust region methods, the value of objective function is required to
be decreased in each iteration. It has been shown that this procedure may result in slow
convergence rate in some problems [13,14]. One way to overcome this difficulty is to
use nonmonotone techniques in theTR frameworks.Apparently, the first nonmonotone
line search technique is the so called watchdog technique, which was proposed by
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Chamberlain et al. [4]. Later, Grippo et al. [13] provided a nonmonotone line search
technique forNewton’smethod and extended it for solving unconstrained optimization
problems [14]. In their approach, for given γ ∈ (0, 1), the steplength αk is chosen so
that the following condition holds:

f (xk + αkdk) ≤ fl(k) + γαk∇ f (xk)
Tdk,

where the nonmonotone term fl(k) is defined by

fl(k) = max0≤ j≤m(k)
{
f
(
xk− j

)}
, (9)

in which, for given nonnegative integer M , m (0) = 0 and 0 ≤ m (k) ≤ min {m(k −
1) + 1, M}, for all k ≥ 1.

Nowadays, due to the behavior of nonmonotone techniques in practice, several
authors have been fascinated to employ nonmonotone strategies in the optimization
methods, especially in TR methods. The first variant of this kind goes back to the
work of Deng et al. [8] in which the ratio rk is changed according to the nonmonotone
strategy as proposed in [13]. Later on, several works have been developed based
on various nonmonotone techniques. Among them are the works proposed by Zhou
and Xiao [28,32], Xiao and Chu [27], Toint [25,26], Dai [7] and Panier and Tits
[19]. However, the Grippo’s nonmonotone technique has some disadvantages, see
e.g. [2,29]. In order to overcome these drawbacks, Zhang and Hager [29] suggested
another nonmonotone line search technique in which the maximum over the function
values in (9) is replaced by an average of the function values. More precisely, in their
approach, for given γ ∈ (0, 1), the steplength αk is chosen so that

f (xk + αkdk) ≤ Ck + γαk∇ f (xk)
Tdk,

where the nonmonotone term Ck is defined by

Ck =
{

f (xk) if k = 0,
(ϑk−1Qk−1Ck−1+ f (xk ))

Qk
if k ≥ 0,

(10)

and

Qk =
{
1 if k = 0,
ϑk−1Qk−1 + 1 if k ≥ 0,

where ϑk−1 ∈ [ϑmin, ϑmax] and 0 ≤ ϑmin < ϑmax ≤ 1.
Recently, the nonmonotone techniques and adaptive strategies are simultaneously

employed in the framework of classical TR methods in order to propose an efficient
algorithm in terms of convergence property and practical performance. The first work
in this area goes back to 2003 in which Zhang et al. [31] combined the Grippo’s
nonmonotone technique with adaptive trust region method. Fu and Sun [11] used
Zhang’s adaptive method with a new structured nonmonotone technique in which the
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predicted reduction is computed in a different way than the classical TR methods. In
a recent work, Cui and Wu [6] provided a nonmonotone adaptive approach based on
a combination of the nonmonotone term (10) with the adaptive strategy as provided
in [30]. A combination of a variant of Shi and Guo’s adaptive scheme with Grippo’s
nonmonotone techniquehas beendonebyAhookhosh andAmini [1]. They showed that
their method is practically efficient while it has global convergence property under
some standard assumptions. As the Grippo’s nonmonotone technique suffers from
some drawbacks [2,29], Ahookhosh and Amini in [2] proposed a new nonmonotone
technique as below

Rk = εk fl(k) + (1 − εk) f (xk), (11)

where εk ∈ [εmin, εmax], εmin ∈ [0, 1), εmax ∈ (εmin, 1] and fl(k) is defined by (9).
This nonmonotone term is motivated from the fact that the best convergence results
are obtained by stronger nonmonotone strategy whenever the iterates are far from the
optimum and by weaker nonmonotone strategy whenever the iterates are close enough
to the optimum, see e.g. [29]. By this definition, a stronger nonmonotone strategy is
obtained whenever εk is close to 1 and a weaker strategy is followed whenever εk is
close to 0. Although, the proposed algorithm in [2] has some appealing properties,
especially in practical performance, it roughly uses Rk = f (xk) in the first iterations
until fl(k) could be able to play an active role in (11). Therefore, in the first iterations,
this fact may limit the performance of the proposed algorithm in [2] as the bottom
of steep and curved valleys in some problems may happen in the first iterations. In
order to overcome this difficulty, in this paper, we propose a new relaxed nonmonotone
technique by using (11).

In this paper, we propose a new adaptive TR algorithm which incorporates the
Shi and Guo’s adaptive trust region method with a variant of nonmonotone technique
as provided in [2]. Our approach aims to relax the acceptance of the trial step dk
by allowing the new nonmonotone term to be larger than Rk , especially in the first
iterations, while keeping the properties of Rk to be held. We establish the global
convergence property as well as the local superlinear convergence rate of the new
algorithm under some suitable and standard assumptions. The proposed method is
implemented inMATLABenvironment and applied on some test problems. Numerical
results confirm that the proposed algorithm is practically efficient, too.

The rest of the paper is organized as follows: In Sect. 2, we describe the structure of
our newproposed nonmonotone adaptive trust region algorithm. Section 3 is devoted to
establish the local and global convergence properties of the algorithm under some stan-
dard assumptions. The superlinear convergence rate is provided in Sect. 4. Numerical
results of performing the new algorithm on some test problems, taken from the litera-
ture, are given in Sect. 5. We end up the paper by some concluding remarks in Sect. 6.

2 The new algorithm

In this section, we propose a new adaptive nonmonotone trust region algorithm based
on a combination of the nonmonotone technique proposed in [2] and the Shi and
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Guo’s adaptive scheme provided in [23]. In our algorithm, the new nonmonotone term
is defined by (1 + ϕk) Rk , where Rk is given by (11) and ϕk is determined by

ϕk =
{

ηk if Rk > 0,
0 if Rk ≤ 0,

(12)

in which {ηk} is a positive sequence satisfying the following condition:

∞∑

k=0

ηk ≤ η < ∞. (13)

It is worth mentioning that, as k → ∞, we have ηk → 0, and therefore the proposed
nonmonotone term converges to that proposed in [2]. Despite the nonmonotone term
(11), the properties of strong nonmonotone strategy are taken into account in the
proposed relaxed term, especially in the first iterations.

The trust region radius is updated by �k = min {vksk ‖ qk ‖, �max}, where qk
and sk are the parameters of the Shi and Guo’s adaptive scheme, defined by (6) and
(7), respectively, and vk is appropriately adjusted in each iteration according to the
magnitude of the following nonmonotone ratio:

rk = (1 + ϕk) Rk − f (xk + dk)

Predk
. (14)

The whole procedure of the new nonmonotone adaptive TR algorithm for solving (1)
is outlined in Algorithm 2.1.
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Throughout the paper, we use the following two index sets in our analysis:

I = {k : rk ≥ μ2} , J = {k : rk < μ2}.
We refer to the k-th iteration as a successful iteration whenever xk+1 = xk + dk ,

i.e. k ∈ I , and as an unsuccessful iteration whenever xk+1 = xk , i.e. k ∈ J .

Remark 2.1 Let the index set I be denoted by {k0, k1, k2, . . .} .For a given nonnegative
integer M , set m (0) = 0 and 0 ≤ m (ki ) ≤ min {m(ki−1) + 1, M}. At the kth
iteration, let ki ∈ I be the largest index so that ki ≤ k. In our setting, we define
fl(k) = max0≤ j≤m(ki ) fki− j . Indeed, fl(k) is considered as the maximum value of f (x)
over the last m(ki ) + 1 successful iteration points.

3 Convergence analysis

In this section, our aim is to establish convergence properties of Algorithm 2.1 under
some suitable assumptions. To do so, the following assumptions are considered on the
problem:

A1 The level set � = {x ∈ Rn | f (x) ≤ eη | f (x0)|} is a closed and bounded set,
where η is defined by (13) and f is a twice continuously differentiable function
over �.

A2 Matrices Bk are uniformly bounded, i.e., there exists a positive constant m1 so
that, for all k ∈ N ∪ {0}, we have ‖ Bk ‖≤ m1.

Remark 3.1 Assumption A1 implies that there exists a positive constant m2, so that
‖ ∇2 f (xk) ‖≤ m2, for all xk ∈ �.

Remark 3.2 Assumption A2 implies that the matrices B̂k are also uniformly bounded.
This can be proved by considering the procedure of generating B̂k in Shi and Guo’s
approach. Indeed, Assumption A2 implies that ‖ B̂k ‖=‖ Bk + i I ‖≤ 2m1 +1, where
the inequality is obtained from the fact that (8) holds for m1 < i ≤ m1 + 1.

Remark 3.3 In order to analyze the convergence property ofAlgorithm2.1, we assume
that the trial step dk is approximately computed by Algorithm 2.6 in [18]. Therefore,
as it has been shown in [18], there exists a constant θ ∈ (0, 1) so that dk satisfies the
following inequality:

Predk ≥ θ ‖ gk ‖ min

{
�k,

‖ gk ‖
‖ Bk ‖

}
. (17)

This inequality is known as a sufficient reduction condition in the literature and
implies that dk �= 0 whenever gk �= 0.

Note that, throughout this section, we use the definition of fl(k) as given in Remark
2.1.

Lemma 3.1 For all k, we have

| f (xk) − f (xk + dk) − Predk | ≤ O
(
‖ dk ‖2

)
, (18)

where Predk is defined by (4).
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Proof The proof is easily obtained by using Taylor’s expansion, Assumptions A2 and
Remark 3.1. �
Lemma 3.2 Let Assumptions A1 and A2 hold and the sequence {xk} be generated
by Algorithm 2.1. Moreover, suppose that there exists a constant δ ∈ (0, 1), so that
‖ gk ‖> δ, for all k. Then, for each k, there exists a nonnegative integer p, so that
xk+p+1 is a successful iteration point.

Proof By contrary, suppose that there exists an iteration k so that, for all nonnegative
integer p, xk+p+1 is an unsuccessful iteration point, i.e.

rk+p < μ2, p = 0, 1, 2, . . . (19)

Using (8), we have qTk+p B̂k+pqk+p > 0. Therefore, there exists a sufficiently small
positive constant � so that

0 < � ‖ qk+p ‖2≤ qTk+p B̂k+pqk+p.

Thus, from Step 4 of Algorithm 2.1 and (7), we have

�k+p+1 ≤ σ
p+1
0 vk sk+p ‖ qk+p ‖

= −σ
p+1
0 vk

gTk+pqk+p

qTk+p B̂k+pqk+p
‖ qk+p ‖

≤ σ
p+1
0 vk

‖ gk+p ‖‖ qk+p ‖
� ‖ qk+p ‖2 ‖ qk+p ‖

≤ vmax ‖ gk ‖
�

σ
p+1
0 ,

where the second inequality is followed by applying the Cauchy–Schwartz inequality
and the last inequality is obtained from (16) and the fact that in the unsuccessful
iterations, we have xk+p = xk . Now, since σ0 ∈ (0, 1), the latter inequality implies
that

lim
p→∞ �k+p+1 = 0.

Therefore, from Lemma 3.1 and (17), we have

∣
∣
∣
∣
∣
f
(
xk+p

) − f
(
xk+p + dk+p

)

Predk+p
− 1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
f
(
xk+p

) − f
(
xk+p + dk+p

) − Predk+p

Predk+p

∣
∣
∣
∣
∣

≤ O(‖ dk+p ‖2)
θ ‖ gk+p ‖ min

{
�k+p,

‖ gk+p‖
‖Bk+p‖

}

≤ O
(‖ �k+p ‖2)

θδmin
{
�k+p,

δ
m1

}.
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This implies that
∣
∣
∣
f (xk+p)− f (xk+p+dk+p)

Predk+p
− 1

∣
∣
∣ → 0, as p → ∞. Thus, for suffi-

ciently large p, we have

rk+p =
(
1 + ϕk+p

)
Rk+p − f

(
xk+p + dk+p

)

Predk+p
≥ f

(
xk+p

) − f
(
xk+p + dk+p

)

Predk+p
→ 1,

which contradicts (19). This completes the proof of the lemma. �
Remark 3.4 As a consequence of Lemma3.2, one can realize thatwheneverAlgorithm
2.1 does not stop in the finite number of iterations, i.e. the sequence {xk} is an infinite
sequence, then the index set I is infinite.

Lemma 3.3 Suppose that {xk} is generated by Algorithm 2.1. Then, we have

fk+1 ≤ | f0|
k∏

i=0

(1 + ϕi ) − ωk, k ∈ I, (20)

where ωk := θμ2 min
{
‖ gk ‖ �k,

‖ gk‖2
‖Bk‖

}
≥ 0, μ2 ∈ (0, 1) and θ ∈ (0, 1) is the

same constant as in Remark 3.3.

Proof Let k ∈ I , then xk + dk is a successful iteration point. From (14) and (17), for
all k ∈ I , we have

(1 + ϕk) Rk − f (xk+1) ≥ μ2Predk ≥ θμ2 min

{
‖ gk ‖ �k,

‖ gk ‖2
‖ Bk ‖

}
= ωk ≥ 0.

(21)

We proceed the proof by induction. To establish the first step of the induction, the
following two cases are considered:

Case 1 Let k = 0 be a successful iteration. In this case, using (21), we obtain

f1 ≤ (1 + ϕ0) R0 − ω0 = (1 + ϕ0) f0 − ω0 ≤ (1 + ϕ0) | f0| − ω0,

where the equality is followed from (11) and the fact that ϕ0 ≥ 0, by (12). Assume
that (20) holds for k ≥ 1, i.e.,

fk+1 ≤ | f0|
k∏

i=0

(1 + ϕi ) − ωk ≤ | f0|
k∏

i=0

(1 + ϕi ) . (22)

Due to Lemma 3.2, there exists the smallest positive integer p, so that k + p is a
successful iteration. We show that (20) holds for k + p ∈ I , i.e.,

fk+p+1 ≤ | f0|
k+p∏

i=0

(1 + ϕi ) − ωk+p.
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For this purpose, from (12) and (21), we have

fk+p+1 ≤ (
1 + ϕk+p

)
Rk+p − ωk+p

= (
1 + ϕk+p

)
Rk+1 − ωk+p

= (
1 + ϕk+p

) [
εk fl(k+1) + (1 − εk) fk+1

] − ωk+p

≤ (
1 + ϕk+p

) [
εk fl(k+1) + (1 − εk) fl(k+1)

] − ωk+p

≤ (
1 + ϕk+p

)
fl(k+1) − ωk+p

≤ (
1 + ϕk+p

) | f0|
l(k+1)−1∏

i=0

(1 + ϕi ) − ωk+p,

where the first equality is obtained from the fact that iterations k + 1; . . . ; k + p − 1
are unsuccessful iterations, and therefore Rk+1 = · · · = Rk+p, and the last inequality
is followed from Remark 2.1 and the induction’s hypothesis by considering the fact
that k + 1 is an unsuccessful iteration and l (k + 1) ≤ k + 1. Now, as l (k + 1) ≤
k + 1 ≤ k + p, we conclude that

fk+p+1 ≤ (
1 + ϕk+p

) | f0|
k+p−1∏

i=0

(1 + ϕi ) − ωk+p ≤ | f0|
k+p∏

i=0

(1 + ϕi ) − ωk+p.

Case 2 Let k = 0 ∈ J.Due to Lemma 3.2, there exists the smallest positive integer
p, so that p is a successful iteration. In this case, we start the first step of the induction
by k = p (strong induction). The rest of the proof is similar to Case 1. �
Corollary 3.1 For all k, one has:

fk+1 ≤ | f0|
k∏

i=0

(1 + ϕi ) .

Proof From (20), it is easily seen that the statement is true for all k ∈ I . Now, let
k ∈ J . Consider two following cases:

Case 1 Assume that there exists at least a successful iteration before iteration k.
Then, from Lemma 3.3, there exists the smallest positive integer p so that k − p ∈ I .
This implies that:

fk−p+1 ≤ | f0|
∏k−p

i=0
(1 + ϕi ).

Moreover, we have fk−p+1 = · · · = fk = fk+1. Therefore, using (12), we obtain:

fk+1 ≤ | f0|
k∏

i=0

(1 + ϕi ).
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Case 2 Assume that there is no successful iteration before iteration k. In this case, we
have: f0 = f1 = · · · = fk+1. Therefore, using (12), we obtain:

fk+1 = f0 ≤ | f0|
k∏

i=0

(1 + ϕi ) .

This completes the proof of the corollary. �
Lemma 3.4 For the sequence {xk}, generated by Algorithm 2.1, one has {xk} ⊆ � .

Proof We proceed by induction on k. For k = 0, the result is trivial from Assumption
A1. Assume that xk ∈ � (induction hypothesis). We show that xk+1 ∈ �. Using
Corollary 3.1 and the inequality between the geometric and arithmetic means, we
have

fk+1 ≤ | f0|
k∏

i=0

(1 + ϕi )

≤ | f0|
(

1

k + 1

k∑

i=0

(1 + ϕi )

)k+1

= | f0|
(

1 + 1

k + 1

k∑

i=0

ϕi

)k+1

(23)

≤ | f0|
(
1 + η

k + 1

)k+1

≤ eη | f0| ,

where the last two inequalities are followed from (12), (13) and the fact that the

sequence

{(
1 + η

k+1

)k+1
}
is an increasing sequence converging to eη. Therefore,

xk+1 ∈ �, and the proof is completed. �
Lemma 3.5 Let qk satisfy (6) and

lim
k→∞

−gTk qk
‖ qk ‖ = 0.

Then, we have

limk→∞ ‖ gk ‖= 0.

Proof Using (6), we have

0 ≤ lim
k→∞ τ ‖ gk ‖≤ lim

k→∞
−gTk qk

‖ qk ‖‖ gk ‖ ‖ gk ‖= lim
k→∞

−gTk qk
‖ qk ‖ = 0.

This completes the proof of the lemma. �
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Lemma 3.6 Assume that the index set I is infinite and is denoted by {k0, k1, k2, . . .}.
Then, for each successful iteration k j , there exist a nonnegative integer L and 0 ≤
r ≤ M − 1, so that k j = kLM+r and

fkLM+r ≤ | f0|
k j−1∏

i=0

(1 + ϕi ) −
L∑

i=0

ω̃i , L = 0, 1, 2, . . . (24)

where ω̃i = min0≤r≤M−1 ωkiM+r .

Proof See Appendix. �
The following theorem states the global convergence property of Algorithm 2.1.

Theorem 3.1 Suppose that assumptions A1 and A2 hold. Then, Algorithm 2.1 either
stops at a stationary point of the problem (1) or generates an infinite sequence {xk}
so that

limk→∞ inf ‖ gk ‖= 0.

Proof Suppose that Algorithm 2.1 does not stop at a stationary point. We show that

lim
k→∞ inf ‖ gk ‖= 0.

By contrary, assume that there exists a positive constant δ so that, for all k,

‖ gk ‖> δ. (25)

Using Lemma 3.6 and (23), we have

L∑

i=0

ω̃i ≤ | f0|
kLM+r−1∏

i=0

(1 + ϕi ) − fkLM+r

≤ eη | f0| − fkLM+r .

Thus, as L → ∞, Assumption A1 implies that

limi→∞ ω̃i = 0. (26)

Due to the definition of ω̃i , there exists 0 ≤ r̄ ≤ M − 1, so that ω̃i = ωkiM+r̄ .
Letting βi = kiM+r̄ , from Lemma 3.3, we have

ω̃i = ωβi = θμ2 min

{
‖ gβi ‖ �βi ,

‖ gβi ‖2
‖ Bβi ‖

}
→ 0, as i → ∞.
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Using (25), (26) and Assumption A2, we conclude that

�βi → 0, as i → ∞. (27)

Therefore, we have �βi = min{vβi sβi ‖ qβi ‖, �max} = vβi sβi ‖ qβi ‖. On the
other hand, using Cauchy–Schwartz inequality, we have

0 ≤ vβi

2m1 + 1

(
gTβi qβi

‖ qβi ‖

)2

≤ vβi

(
gTβi qβi

)2

qTβi B̂βi qβi

= vβi sβi

(
−gTβi qβi

)

≤ vβi sβi ‖ qβi ‖‖ gβi ‖= �βi ‖ gβi ‖,

where the second inequality is obtained from Remark 3.2. Now, Lemma 3.5 and (25)
imply that

lim
i→∞

−gTβi qβi

‖ qβi ‖ �= 0.

Therefore, the inequality

0 ≤ vβi

2m1 + 1

(
gTβi qβi

‖ qβi ‖

)2

≤‖ gβi ‖ �βi ,

together with (25) and the fact that ∇ f (x) is continuous over the compact set �, by
Assumption A1, imply that

limi→∞ vβi = 0. (28)

Now, we have:

∣
∣
∣
∣
∣
f
(
xβi

) − f
(
xβi + dβi

)

Predβi

− 1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
f
(
xβi

) − f
(
xβi + dβi

) − Predβi

Predβi

∣
∣
∣
∣
∣

≤ O
(‖ dβi ‖2)

θμ2 ‖ gβi ‖ min
{
�βi ,

‖ gβi ‖‖Bβi ‖
}

= O
(‖ dβi ‖2)
O(�βi )

≤ O
(‖ dβi ‖2)

O
(‖ dβi ‖2)

i→∞→ 0,

where the first inequality is obtained from Lemma 3.1 and Remark 3.3. Therefore,

rβi =
(
1 + ϕβi

)
Rβi − f

(
xβi + dβi

)

Predβi

≥ f
(
xβi

) − f
(
xβi + dβi

)

Predβi

→ 1.
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Thus, there exists a positive constant v∗, so that, for sufficiently large βi ∈ I , we
have vβi ≥ v∗, which is a contradiction with (28). This completes the proof of the
theorem. �

4 Convergence rate analysis

In this section, we provide the superlinear convergence rate of Algorithm 2.1. The
following theorem sates the requirements for holding the superlinear convergence rate
of the sequence generated by Algorithm 2.1.

Theorem 4.1 Let Assumptions A1 and A2 hold and dk = −B−1
k gk be a solution of the

subproblem (2). Moreover, suppose that {xk} is the sequence generated by Algorithm
2.1, which converges to a stationary point x∗. Also, assume that∇2 f (x∗) is a positive
definite matrix and ∇2 f (x) is a Lipschitz continuous in a neighborhood of x∗. If Bk

satisfies the following condition:

limk→∞
‖ (

Bk − ∇2 f (x∗)
)
dk‖

‖ dk ‖ = 0, (29)

then, the sequence {xk} converges to the point x∗ superlinearly.

Proof The proof is similar to the proof of Theorem 4.1 in [6]. �

5 Numerical results

In this section, we present and compare the computational results of applying two
versions of Algorithm 2.1, based on two nonmonotone terms given by (10) and (11),
and some other existing algorithms. For ease of reference, we call Algorithm 2.1 with
the nonmonotone terms (10) and (11) as RNATR-Z and RNATR-A, respectively. All
of test problems are taken from Andrei [3] and Moré et al. [16]. In the considered TR
methods, qk has awide scope for choosingwhich only needs to satisfy (4). Two popular
choices of qk are qk = −gk , which is a natural choice, and qk = −B−1

k gk , which
has some interesting properties in theory and in practice, see e.g. [1,23]. In order
to compare the efficiency of the new proposed adaptive radius, we use both above
mentioned qk’s, but in numerical results in terms of number of iterations and function
evaluations, we just focus on the case qk = −gk in order to save the computational
costs in large scale problems.

We have implemented algorithms RNATR-Z and RNATR-A along with the follow-
ing algorithms in MATLAB 7.10.0 (R2010a) environment and run the problems on a
PC with CPU 2.0 GHz and 2GB RAM memory and double precision format:

NATSG: NMATR method proposed in [1] with qk = −gk .
NATSH: NMATR method proposed in [1] with qk = −B−1

k gk .
NATFG: Algorithm 2.1with qk = −gk and the same nonmonotone term ofNMATR.
NATFH: Algorithm 2.1 with qk = −B−1

k gk and the same nonmonotone term of
NMATR.
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NBTR: Classical TR algorithm with the same nonmonotone term of NMATR;
NATR-Z: Algorithm 2.1 with the nonmonotone term as proposed in [29] with ϑ0 =

0.85, ϕk = 0, and qk = −gk ;
NATR-A: Algorithm 2.1with the same nonmonotone term ofNMTR-N1, as proposed

in [2], ϕk = 0, and qk = −gk ;

The following parameters are set in the related algorithms:

μ1 = 0.9, μ2 = 0.1, σ0 = 1

8
, σ1 = 6, ρ = 0.5, v0 = 0.1, vmax = 105,

�max = 100.

For the problem of size n, we set M = 10 whenever n ≥ 5, otherwise we set
M = 2n. Moreover, we set η0 = 104, and

ηk = 103

k2
, k = 1, 2, . . .

As proposed in [15], for the NBTR algorithm, we set the initial radius to be �0 =
0.1 ‖ gk ‖ and the consequence radii are updated according to the following formula:

�k+1 =
⎧
⎨

⎩

min {c1 ‖ dk ‖, �k} rk ≥ μ1,

�k μ2 ≤ rk < μ1,

c0 ‖ dk ‖ Otherwise,

where c0 = 0.25 and c1 = 2.5. The matrix Bk is being updated by the BFGS formula
[17] as below:

Bk+1 = Bk + yk yTk
sTk yk

− BksksTk Bk

sTk Bksk
,

where sk = xk+1 − xk and yk = gk+1 − gk . Note that, the matrix Bk is being updated
as long as the curvature condition holds, i.e. sTk yk > 0; otherwise we set Bk+1 = Bk .
For proper comparison, we provide all codes in the same subroutine and solve the trust
region subproblems by Steihaug–Toint procedure, see e.g. page 205 in [5].

Numerical results are given in Tables 1 and S1 (see on-line supplementarymaterial).
In these tables, n, ni and n f represent the problem size, the number of iterations and
the number of function evaluations, respectively. For the results of Table 1, all the
considered algorithms are being stopped when ‖ gk ‖≤ 10−8. Moreover, for the
results of Table S1 (see on-line supplementary material), all the considered algorithms
are being stopped whenever ‖ gk ‖≤ 10−6 ‖ g0 ‖. We declare that an algorithm is
failed whenever the number of iteration and the number of function evaluations exceed
10,000 and 20,000, respectively. It is worth mentioning that the number of iterations
and gradient evaluations are the same in the considered algorithms.Moreover, we have
only kept the problems in the tables for which all the considered algorithms converge
to the same local solution. We have also utilized the advantages of the performance
profile of Dolan and Moré [9] to compare the algorithms. Figures 1 and 2 provide the
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Table 1 The effect of the new proposed adaptive radius

Problem Dimension n NBTR
ni /n f

NATSH
ni /n f

NATSG
ni /n f

NATFH
ni /n f

NATFG
ni /n f

Powell badly scaled 2 293/347 258/311 713/834 229/302 241/324
Brown badly scaled 2 34/35 Failed Failed 18/90 18/90
Beale 2 17/19 19/19 16/16 16/16 16/18
Rosenbrock 2 61/67 47/66 126/145 47/57 43/53
Freudenstein and Roth 2 29/37 13/24 19/24 16/20 18/22
Jennrich and Sampson 2 23/42 19/45 225/246 22/33 18/36
Bard 2 25/28 26/37 30/47 21/24 21/24
Helical Valley 3 49/65 46/71 351/377 51/61 36/44
Gaussian 3 8/8 6/16 6/16 8/9 8/9
Gulf Res. and
Development

3 68/77 54/64 1429/1435 50/69 47/62

Box 3-dimensional 3 40/49 43/43 254/254 33/38 33/38
MEYER 3 Failed 3697/4452 4011/4596 2473/2964 3033/4060
Wood 4 91/120 107/123 1867/1882 69/101 79/115
Brown and Dennis 4 50/64 68/70 Failed 34/52 37/52
Powell singular 4 59/67 47/64 115/213 44/53 59/62
Kowalik and Osborne 4 41/49 38/42 989/1101 30/42 31/38
Penalty I 4 68/79 60/71 1326/1397 67/93 63/89
Penalty II 4 189/231 395/527 956/1054 299/549 291/511
Osborne 1 5 Failed 109/119 279/330 94/111 103/131
Brown almost linear 5 673/846 442/1292 888/1501 287/256 287/256
Broyden banded 5 43/57 38/47 36/48 30/44 30/45
Biggs EXP6 6 169/173 259/271 270/301 166/207 213/304
Extended Rosenbrock 8 86/115 70/105 501/516 65/106 69/109
Watson 9 Failed 2984/2993 3167/4103 1089/1998 1769/2024
Chebyquad 10 40/56 42/70 39/47 38/54 41/64
Trigonometric 10 32/32 28/28 28/28 28/28 28/28
Discrete boundary value 10 35/48 32/47 29/43 31/39 32/38
Discrete integral equation 10 18/18 17/19 12/13 16/17 17/18
Broyden tridiagonal 10 57/111 54/101 91/97 54/81 48/68
Linear—Full rank 10 4/4 2/3 2/3 3/4 3/4
Linear—Rank 1 10 3/10 3/21 3/21 10/16 10/16
Linear—Rank 1 with zero 10 3/10 3/19 3/19 10/16 10/16
Osborne 2 11 66/70 64/73 297/354 60/75 58/76
Variably dimensioned 12 22/37 20/39 20/39 23/27 23/27
Extended powell singular 16 206/218 127/145 154/176 125/166 78/101

log2 scale performance profile of the considered algorithms based on ni and n f . The
left and right figures are drawn in terms of ni and n f , respectively. Note that, for every
τ ≥ 1, the performance profile gives the proportion P(τ ) of test problems in which
each considered algorithms has a performance within a factor τ of the best; see [9] for
more complete discussion.

The main focus in the results of Table 1 is to show the efficiency of the new
proposed adaptive radius. It can be easily seen from Fig. 1 and Table 1 that the new
proposed adaptive radius works very well, especially in the sense that it solves all
the considered test problems without any failure, while the other algorithms fail in
some problems. In Table S1 (see on-line supplementary material), our aim is to show
the efficiency of Algorithm 2.1, especially on large scale problems. As it is clear
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Fig. 1 Performance profile based on ni (left) and n f (right) for the results of Table 1
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Fig. 2 Performance profile based on ni (left) and n f (right) for the results of Table S1 (see on-line
supplementary material)

from Fig. 2, one can easily see that: Firstly, the RNATR-A is the best performed
algorithm among the considered algorithms, as it solves about 65 % of test problems
in minimum number of ni and n f . Secondly, the performance index of RNATR-A
grows up rapidly in comparison with the other considered algorithms. It means that in
the cases that RNATR-A is not the best algorithm; its performance index is close to the
performance index of the best algorithm. Moreover, by comparing the performance
of NATR-Z and RNATR-Z, one can see that the relaxation technique results in a great
increase in the number of test problems that are solved in the minimum number of ni
and n f . In addition, in contrast to NATR-Z, the RNATR-Z algorithm solves all the
considered test problems without any failure. Analogous behaviors can be seen in the
performance of NATR-A and RNATR-A. Therefore, the new relaxation technique has
a great influence in the performance of the new proposed algorithm. As an illustration
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Fig. 3 The value of Extended Rosenbrock function on successive iterations for nonmonotone adaptive
trust region methods (NATR-Z and NATR-A), and relaxed nonmonotone adaptive trust region methods
(RNATR-Z and RNATR-A) with dimension n = 5,000

of the effect of our proposed relaxation technique, a typical example is shown in Fig. 3,
where the sequences { fk} are plotted against k for both nonmonotone and the relaxed
nonmonotone techniques.

6 Conclusions

In this paper, a new relaxed nonmonotone adaptive trust region method for solving
unconstrained optimization problems is presented. The new proposed algorithm incor-
porates the Shi and Guo’s adaptive trust region method, proposed in [23], with a new
nonmonotone term inspired by that proposed in [2]. Under some standard assumptions,
theoretical results show that the new algorithm inherits global convergence property
of standard TR methods. We have also established the superlinear convergence rate
of the new proposed algorithm. Numerical results confirm that the new nonmonotone
adaptive strategy provides a powerful tool for the algorithm to perform efficiently in
practice, too.

Acknowledgments The authors would like to thank the Research Councils of K.N. Toosi University of
Technology and the SCOPE research center for supporting this research. The authors would also like to
appreciate the anonymous referees for generously providing us insightful comments which significantly
improved the quality of the paper.

Appendix

Proof of Lemma 3.6 We proceed by induction on L . For L = 0, using Lemma 3.3,
we have

fkr ≤ | f0|
kr−1∏

i=0

(1 + ϕi ) − ωkr−1 ≤ | f0|
kr−1∏

i=0

(1 + ϕi ) − ω̃0, r = 0, 1, . . . , M − 1,
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where ω̃0 = min0≤r≤M−1 ωkr . Suppose that (24) holds for L = t (the induction
hypothesis). For L = t + 1, we show that

fk(t+1)M+r ≤ | f0|
k(t+1)M+r−1∏

i=0

(1 + ϕi ) −
t+1∑

i=0

ω̃i , r = 0, 1, . . . , M − 1. (30)

For this purpose, we proceed by induction on r . From (19), for r = 0, we have:

fk(t+1)M ≤ (
1 + ϕk(t+1)M−1

)
Rk(t+1)M−1 − ωk(t+1)M−1

≤ (
1 + ϕk(t+1)M−1

)
fl(k(t+1)M−1) − ωk(t+1)M−1.

Due to the definition of fl( j) in Remark 2.1, we have

fl(k(t+1)M−1) = fl(k(t+1)M−1) = fl(ktM+M−1). (31)

Thus, from the latter inequality, we have:

fk(t+1)M ≤ (
1 + ϕk(t+1)M−1

)
fl(ktM+M−1) − ωk(t+1)M−1. (32)

Now, using (31), (32), the induction hypothesis (over L) and the fact that l(k(t+1)M−
1) ≤ k(t+1)M − 1, we have

fk(t+1)M ≤ (
1 + ϕk(t+1)M−1

)
⎧
⎨

⎩
| f0|

l(ktM+M−1)−1∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i

⎫
⎬

⎭
− ωk(t+1)M−1

≤ (
1 + ϕk(t+1)M−1

)
⎧
⎨

⎩
| f0|

l(k(t+1)M−1)−1∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i

⎫
⎬

⎭
− ωk(t+1)M−1

≤ (
1 + ϕk(t+1)M−1

)
⎧
⎨

⎩
| f0|

k(t+1)M−2∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i

⎫
⎬

⎭
− ωk(t+1)M−1

= | f0|
k(t+1)M−1∏

i=0

(1 + ϕi ) − (
1 + ϕk(t+1)M−1

) t∑

i=0

ω̃i − ωk(t+1)M−1

≤ | f0|
k(t+1)M−1∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i − ωk(t+1)M−1

≤ | f0|
k(t+1)M−1∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i − ω̃t+1,
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where the second inequality is obtained from the fact that ϕi ≥ 0. Assume that (30)
holds for r = j ≤ M − 2 (induction hypothesis). For r = j + 1, from (21), we have:

fk(t+1)M+ j+1 ≤ (
1 + ϕk(t+1)M+ j+1−1

)
Rk(t+1)M+ j+1−1 − ωk(t+1)M+ j+1−1

≤ (
1 + ϕk(t+1)M+ j+1−1

)
fl(k(t+1)M+ j+1−1) − ωk(t+1)M+ j+1−1.

From Remark 2.1, we have

fl(k(t+1)M+ j) = fl(k(t+1)M+ j+1−1).

Moreover, as l
(
k(t+1)M+ j

) ≤ l
(
k(t+1)M+ j+1 − 1

) ≤ k(t+1)M+ j+1 − 1, then from
induction hypothesis (over r ), we obtain:

fk(t+1)M+ j+1 ≤ (
1 + ϕk(t+1)M+ j+1−1

)
⎧
⎨

⎩
| f0|

l(k(t+1)M+ j )−1∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i

⎫
⎬

⎭
− ωk(t+1)M+ j+1−1

≤ (
1 + ϕk(t+1)M+ j+1−1

)
⎧
⎨

⎩
| f0|

l(k(t+1)M+ j+1−1)−1∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i

⎫
⎬

⎭
− ωk(t+1)M+ j+1−1

≤ (
1 + ϕk(t+1)M+ j+1−1

)
⎧
⎨

⎩
| f0|

k(t+1)M+ j+1−2∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i

⎫
⎬

⎭
− ωk(t+1)M+ j+1−1

≤ | f0|
k(t+1)M+ j+1−1∏

i=0

(1 + ϕi ) − (
1 + ϕk(t+1)M+ j+1−1

) t∑

i=0

ω̃i − ωk(t+1)M+ j+1−1

≤ | f0|
k(t+1)M+ j+1−1∏

i=0

(1 + ϕi ) −
t∑

i=0

ω̃i − ω̃t+1

≤ | f0|
k(t+1)M+ j+1−1∏

i=0

(1 + ϕi ) −
t+1∑

i=0

ω̃i .

This completes the proof of the lemma. �
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