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Abstract In the paper, we develop a composite version of Mirror Prox algorithm for
solving convex–concave saddle point problems and monotone variational inequali-
ties of special structure, allowing to cover saddle point/variational analogies of what
is usually called “composite minimization” (minimizing a sum of an easy-to-handle
nonsmooth and a general-type smooth convex functions “as if” there were no non-
smooth component at all). We demonstrate that the composite Mirror Prox inher-
its the favourable (and unimprovable already in the large-scale bilinear saddle point
case) O(1/ε) efficiency estimate of its prototype. We demonstrate that the proposed
approach can be successfully applied to Lasso-type problems with several penalizing
terms (e.g. acting together �1 and nuclear norm regularization) and to problems of
semi-separable structures considered in the alternating directions methods, implying
in both cases methods with the O(1/ε) complexity bounds.
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1 Introduction

1.1 Motivation

Our work is inspired by the recent trend of seeking efficient ways for solving problems
with hybrid regularizations or mixed penalty functions in fields such as machine learn-
ing, image restoration, signal processing and many others. We are about to present
two instructive examples (for motivations, see, e.g., [2,6,7]).

Example 1 (Matrix completion) Our first motivating example is matrix completion
problem, where we want to reconstruct the original matrix y ∈ Rn×n , known to be
both sparse and low-rank, given noisy observations of part of the entries. Specifically,
our observation is b = PΩ y + ξ , where Ω is a given set of cells in an n × n matrix,
PΩ y is the restriction of y ∈ Rn×n onto Ω , and ξ is a random noise. A natural way to
recover y from b is to solve the optimization problem

Opt = min
y∈Rn×n

{
1

2
‖PΩ y − b‖22 + λ‖y‖1 + μ‖y‖nuc

}
(1)

where μ, λ > 0 are regularization parameters. Here ‖y‖2 = √Tr(yT y) is the Frobe-
nius norm, ‖y‖1 =∑n

i, j=1 |yi j | is the �1-norm, and ‖y‖nuc =∑n
i=1 σi (y) (σi (y) are

the singular values of y) is the nuclear norm of a matrix y ∈ Rn×n .

Example 2 (Image recovery) Our second motivating example is image recovery prob-
lem, where we want to recover an image y ∈ Rn×n from its noisy observations
b = Ay + ξ , where Ay is a given affine mapping (e.g. the restriction operator PΩ

defined as above, or some blur operator), and ξ is a random noise. Assume that the
image can be decomposed as y = yL + yS + ysm where yL is of low rank, ysm is the
matrix of contamination by a “smooth background signal”, and yS is a sparse matrix of
“singular corruption.” Under this assumption in order to recover y from b, it is natural
to solve the optimization problem

Opt = min
yL,yS,ysm∈Rn×n

{‖A(yL + yS + ysm) − b‖2 + μ1‖yL‖nuc
+μ2‖yS‖1 + μ3‖ysm‖TV} (2)

where μ1, μ2, μ3 > 0 are regularization parameters. Here ‖y‖TV is the total variation
of an image y:

‖y‖TV = ‖∇i y‖1 + ‖∇ j y‖1,
(∇i y)i j = yi+1, j − yi, j , [i; j] ∈ Z2 : 1 ≤ i < n − 1, 1 ≤ j < n,

(∇ j y)i j = yi, j+1 − yi, j , [i; j] ∈ Z2 : 1 ≤ i < n, 1 ≤ j < n − 1.
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Mirror Prox algorithm for multi-term composite minimization and semi-separable problems 277

These and other examples motivate addressing the following multi-term composite
minimization problem

min
y∈Y

{
K∑

k=1

[ψk(Ak y + bk) + Ψk(Ak y + bk)]

}
, (3)

and, more generally, the semi-separable problem

min
[y1;...;yK ]∈Y1×···×YK

{
K∑

k=1

[
ψk(y

k) + Ψk(y
k)
]

:
K∑

k=1

Ak y
k = b

}
. (4)

Here for 1 ≤ k ≤ K the domainsYk are closed and convex,ψk(·) are convexLipschitz-
continuous functions, and Ψk(·) are convex functions which are “simple and fit Yk”.1

The problem of multi-term composite minimization (3) has been considered (in a
somewhat different setting) in [22] for K = 2. When K = 1, problem (3) becomes
the usual composite minimization problem:

min
u∈U {ψ(u) + Ψ (u)} (5)

which is well studied in the case where ψ(·) is a smooth convex function and Ψ (·) is a
simple non-smooth function. For instance, it was shown that the composite versions of
Fast Gradient Method originating in Nesterov’s seminal work [21] and further devel-
oped by many authors (see, e.g., [3,4,8,25,27] and references therein), as applied to
(5), work as if there were no nonsmooth term at all and exhibit the O(1/t2) conver-
gence rate, which is the optimal rate attainable by first order algorithms of large-scale
smooth convex optimization. Note that these algorithms cannot be directly applied to
problems (3) with K > 1.

The problem with semi-separable structures (4) for K = 2, has also been exten-
sively studied using the augmented Lagrangian approach (see, e.g., [5,11,12,16,23,
24,26,28] and references therein). In particular, much work was carried out on the
alternating directions method of multipliers (ADMM, see [5] for an overview), which
optimizes the augmented Lagrangian in an alternating fashion and exhibits an overall
O(1/t) convergence rate. Note that the available accuracy bounds for those algorithms
involve optimal values of Lagrange multipliers of the equality constraints (cf. [23]).
Several variants of this method have been developed recently to adjust to the case
for K > 2 (see, e.g.[10]), however, most of these algorithms require to solve itera-
tively subproblems of type (5) especially with the presence of non-smooth terms in
the objective.

1 The precise meaning of simplicity and fitting will be specified later. As of now, it suffices to give a
couple of examples. When Ψk is the �1 norm, Yk can be the entire space, or the centered at the origin
�p-ball, 1 ≤ p ≤ 2; when Ψk is the nuclear norm, Yk can be the entire space, or the centered at the origin
Frobenius/nuclear norm ball.
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278 N. He et al.

1.2 Our contribution

In this paper, we do not assume smoothness of functions ψk , but instead, we suppose
that ψk are saddle point representable:

ψk(y
k) = sup

zk∈Zk

[
φk(y

k, zk) − Ψ k(z
k)
]
, 1 ≤ k ≤ K , (6)

where φk(·, ·) are smooth functions which are convex–concave (i.e., convex in their
first and concave in the second argument), Zk are convex and compact, and Ψ k(·) are
simple convex functions on Zk . Let us consider, for instance, themulti-term composite
minimization problem (3).Under (6), the primal problem (3) allows for the saddle point
reformulation:

min
y∈Y max

[z1;...;zk ]∈Z1×···×ZK

{
K∑

k=1

[
φk(Ak y + bk, z

k) − Ψ k(z
k) + Ψk(Ak y + bk)

]}
(7)

Note that when there are no Ψk, Ψ k’s, problem (7) becomes a convex–concave saddle
point problemwith smooth cost function, studied in [14]. In particular, it was shown in
[14] thatMirror Prox (MP) algorithm originating from [17], when applied to the saddle
point problem (7), exhibits the “theoretically optimal” convergence rate O(1/t). Our
goal in this paper is to develop novel O(1/t)-converging first order algorithms for
problem (7) (and also the related saddle point reformulation of the problem in (4)),
which appears to be the best rate known, under circumstances, from the literature (and
established there in essentially less general setting than the one considered below).

Our key observation is that composite problem (3), (6) can be reformulated as a
smooth linearly constrained saddle point problem by simply moving the nonsmooth
terms into the problem domain. Namely, problem (3) , (6) can be written as

min
y∈Y, [yk ;τ k ]∈Y+

k
1≤k≤K

max
[zk ;σ k ]∈Z+

k
1≤k≤K

{ K∑
k=1

[
φk(y

k, zk) − σ k + τ k
]

: yk

= Ak y + bk, k = 1, . . . , K

}

Y+
k =

{
[yk; τ k] : yk ∈ Yk, τ

k ≥ Ψk(y
k)
}

, Z+
k

=
{
[zk; σ k] : zk ∈ Zk, σ

k ≥ Ψ k(z
k)
}

, k = 1, . . . , K .

We can further approximate the resulting problem by penalizing the equality con-
straints, thus passing to

min
y∈Y, [yk ;τ k ]∈Y+

k
1≤k≤K

max
[zk ;σ k ]∈Z+

k
1≤k≤K

{
K∑

k=1

[
φk(y

k, zk) − σ k + τ k + ρk‖yk − Ak y − bk‖2
]}
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Mirror Prox algorithm for multi-term composite minimization and semi-separable problems 279

= min
y∈Y, [yk ;τ k ]∈Y+

k
1≤k≤K

max
wk∈Wk , [zk ;σ k ]∈Z+

k
1≤k≤K

{
K∑

k=1

[
φk(y

k, zk) − σ k

+ τ k + ρk〈yk − Ak y − bk, w
k〉
]}

, (8)

where ρk > 0 are penalty parameters and Wk = {wk : ‖wk‖2 ≤ 1}, k = 1, . . . , K .
We solve the convex–concave saddle point problem (8)with smooth cost function by

O(1/t)-converging Mirror Prox algorithm. It is worth to mention that if the functions
φk ,Ψk are Lipschitz continuous on the domains AkY+bk , and ρk are selected properly,
the saddle point problem is exactly equivalent to the problem of interest.

The monotone operator F associated with the saddle point problem in (8) has
a special structure: the variables can be split into two blocks u (all y-, z- and w-
variables) and v (all τ - and σ -variables) in such a way that the induced partition of F
is F = [Fu(u); Fv] with the u-component Fu depending solely on u and constant v-
component Fv . We demonstrate below that in this case the basic MP algorithm admits
a “composite” version which works essentially “as if” there were no v-component
at all. This composite version of MP will be the working horse of all subsequent
developments.

The main body of this paper is organized as follows. In Sect. 2 we present required
background on variational inequalities with monotone operators and convex–concave
saddle points. In Sect. 3 we present and justify the compositeMP algorithm. In Sects. 4
and 5, we apply our approach to problems (3), (6) and (4), (6). In Sect. 4.4, we illustrate
our approach (including numerical results) as applied to the motivating examples. All
proofs missing in the main body of the paper are relegated to the Appendix.

2 Preliminaries: variational inequalities and accuracy certificates

Execution protocols and accuracy certificates. Let X be a nonempty closed convex
set in a Euclidean space E and F(x) : X → E be a vector field.

Suppose that we process (X, F) by an algorithm which generates a sequence of
search points xt ∈ X , t = 1, 2, . . ., and computes the vectors F(xt ), so that after
t steps we have at our disposal t-step execution protocol I t = {xτ , F(xτ )}tτ=1. By
definition, an accuracy certificate for this protocol is simply a collection λt = {λtτ }tτ=1
of nonnegative reals summing up to 1. We associate with the protocol It and accuracy
certificate λt two quantities as follows:

– Approximate solution xt (It , λt ) :=∑t
τ=1 λtτ xτ , which is a point of X ;

– Resolution Res(X ′∣∣It , λt ) on a subset X ′ �= ∅ of X given by

Res(X ′∣∣It , λt ) = sup
x∈X ′

t∑
τ=1

λtτ 〈F(xτ ), xτ − x〉. (9)
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The role of those notions in the optimization context is explained next.2

Variational inequalities. Assume that F is monotone, i.e.,

〈F(x) − F(y), x − y〉 ≥ 0, ∀x, y ∈ X (10)

and let our goal be to approximate a weak solution to the variational inequality (v.i.)
vi(X, F) associated with (X, F); weak solution is defined as a point x∗ ∈ X such that

〈F(y), y − x∗〉 ≥ 0 ∀y ∈ X. (11)

A natural (in)accuracy measure of a candidate weak solution x ∈ X to vi(X, F) is the
dual gap function

εVI(x
∣∣X, F) = sup

y∈X
〈F(y), x − y〉 (12)

This inaccuracy is a convex nonnegative function which vanishes exactly at the set of
weak solutions to the vi(X, F) .

Proposition 1 For every t, every execution protocol It = {xτ ∈ X, F(xτ )}tτ=1 and
every accuracy certificate λt one has xt := xt (It , λt ) ∈ X. Besides this, assuming F
monotone, for every closed convex set X ′ ⊂ X such that xt ∈ X ′ one has

εVI

(
xt
∣∣X ′, F

)
≤ Res

(
X ′∣∣It , λt

)
. (13)

Proof Indeed, xt is a convex combination of the points xτ ∈ X with coefficients λtτ ,
whence xt ∈ X . With X ′ as in the premise of Proposition, we have

∀y ∈ X ′ : 〈F(y), xt − y〉 =
t∑

τ=1

λtτ 〈F(y), xτ − y〉 ≤
t∑

τ=1

λtτ 〈F(xτ ), xτ − y〉

≤ Res(X ′∣∣It , λt ),
where the first ≤ is due to monotonicity of F . ��

Convex–concave saddle point problems Now let X = X1 × X2, where Xi is a closed
convex subset in Euclidean space Ei , i = 1, 2, and E = E1 × E2, and let Φ(x1, x2) :
X1 × X2 → R be a locally Lipschitz continuous function which is convex in x1 ∈ X1
and concave in x2 ∈ X2. X1, X2, Φ give rise to the saddle point problem

SadVal = min
x1∈X1

max
x2∈X2

Φ(x1, x2), (14)

2 Our exposition follows.
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two induced convex optimization problems

Opt(P) = minx1∈X1

[
Φ(x1) = supx2∈X2

Φ(x1, x2)
]
(P)

Opt(D) = maxx2∈X2

[
Φ(x2) = infx1∈X1

Φ(x1, x2)
]
(D) (15)

and a vector field F(x1, x2) = [F1(x1, x2); F2(x1, x2)] specified (in general, non-
uniquely) by the relations

∀(x1, x2) ∈ X1 × X2 : F1(x1, x2) ∈ ∂x1Φ(x1, x2), F2(x
1, x2) ∈ ∂x2 [−Φ(x1, x2)].

It is well known that F is monotone on X , and that weak solutions to the vi(X, F) are
exactly the saddle points ofΦ on X1× X2. These saddle points exist if and only if (P)

and (D) are solvable with equal optimal values, in which case the saddle points are
exactly the pairs (x1∗, x2∗) comprised by optimal solutions to (P) and (D). In general,
Opt(P) ≥ Opt(D), with equality definitely taking place when at least one of the sets
X1, X2 is bounded; if both are bounded, saddle points do exist. To avoid unnecessary
complications, from now on, when speaking about a convex–concave saddle point
problem, we assume that the problem is proper, meaning that Opt(P) and Opt(D) are
reals; this definitely is the case when X is bounded.

A natural (in)accuracy measure for a candidate x = [x1; x2] ∈ X1 × X2 to the role
of a saddle point of Φ is the quantity

εsad(x
∣∣X1, X2, Φ) = Φ(x1) − Φ(x2)

= [Φ(x1) − Opt(P)] + [Opt(D) − Φ(x2)]
+ [Opt(P) − Opt(D)]︸ ︷︷ ︸

≥0

(16)

This inaccuracy is nonnegative and is the sum of the duality gap Opt(P) − Opt(D)

(always nonnegative and vanishing when one of the sets X1, X2 is bounded) and the
inaccuracies, in terms of respective objectives, of x1 as a candidate solution to (P)

and x2 as a candidate solution to (D).
The role of accuracy certificates in convex–concave saddle point problems stems

from the following observation: ��
Proposition 2 Let X1, X2 be nonempty closed convex sets, Φ : X := X1 × X2 → R
be a locally Lipschitz continuous convex–concave function, and F be the associated
monotone vector field on X.

Let It = {xτ = [x1τ ; x2τ ] ∈ X, F(xτ )}tτ=1 be a t-step execution protocol associated
with (X, F) and λt = {λtτ }tτ=1 be an associated accuracy certificate. Then xt :=
xt (It , λt ) = [x1,t ; x2,t ] ∈ X.

Assume, further, that X ′
1 ⊂ X1 and X ′

2 ⊂ X2 are closed convex sets such that

xt ∈ X ′ := X ′
1 × X ′

2. (17)

123



282 N. He et al.

Then

εSad
(
xt
∣∣X ′

1, X
′
2, Φ

) = sup
x2∈X ′

2

Φ
(
x1,t , x2

)
− inf

x1∈X ′
1

Φ
(
x1, x2,t

)
≤ Res

(
X ′∣∣It , λt) .

(18)
In addition, setting Φ̃(x1) = supx2∈X ′

2
Φ
(
x1, x2

)
, for every x̂1 ∈ X ′

1 we have

Φ̃
(
x1,t
)

− Φ̃
(
x̂1
)

≤ Φ̃
(
x1,t
)

− Φ(̂x1, x2,t ) ≤ Res({̂x1} × X ′
2

∣∣It , λt ). (19)

In particular, when the problem Opt = minx1∈X ′
1
Φ̃(x1) is solvable with an optimal

solution x1∗ , we have

Φ̃(x1,t ) − Opt ≤ Res
(
{x1∗} × X ′

2

∣∣It , λt
)

. (20)

Proof The inclusion xt ∈ X is evident. For every set Y ⊂ X we have

∀[p; q] ∈ Y :

Res(Y
∣∣It , λt ) ≥

t∑
τ=1

λtτ

[
〈F1(x1τ ), x1τ − p〉 + 〈F2(x2τ ), x2τ − q〉

]

≥
t∑

τ=1

λtτ

[
[Φ
(
x1τ , x2τ

)
− Φ

(
p, x2τ

)
] +
[
Φ
(
x1τ , q

)
− Φ

(
x1τ , x2τ

)]]

[by the origin ofFand sinceΦis convex–concave]

=
t∑

τ=1

λtτ

[
Φ
(
x1τ , q

)
− Φ

(
p, x2τ

)]
≥ Φ

(
x1,t , q

)
− Φ

(
p, x2,t

)

[by origin ofxtand sinceΦis convex–concave]

Thus, for every Y ⊂ X we have

sup
[p;q]∈Y

[
Φ
(
x1,t , q

)
− Φ

(
p, x2,t

)]
≤ Res(Y

∣∣It , λt ). (21)

Now assume that (17) takes place. Setting Y = X ′ := X ′
1 × X ′

2 and recalling what
εSad is, (21) yields (18). With Y = {̂x1} × X ′

2, (21) yields the second inequality in
(19); the first inequality in (19) is evident due to x2,t ∈ X ′

2. ��
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3 Composite Mirror Prox algorithm

3.1 The situation

LetU be a nonempty closed convex domain in aEuclidean space Eu , Ev be aEuclidean
space, and X be a nonempty closed convex domain in E = Eu×Ev .We denote vectors
from E by x = [u; v] with blocks u, v belonging to Eu and Ev , respectively.

We assume that

A1: Eu is equippedwith a norm ‖·‖, the conjugate normbeing ‖·‖∗, andU is equipped
with a distance-generating function (d.g.f.) ω(·) (that is, with a continuously
differentiable convex function ω(·) : U → R) which is compatible with ‖ · ‖,
meaning that ω is strongly convex, modulus 1, w.r.t. ‖ · ‖.
Note that d.g.f. ω defines the Bregman distance

Vu(w) := ω(w) − ω(u) − 〈ω′(u), w − u〉 ≥ 1

2
‖w − u‖2, u, w ∈ U, (22)

where the concluding inequality follows from strong convexity, modulus 1, of
the d.g.f. w.r.t. ‖ · ‖.
In the sequel, we refer to the pair ‖ · ‖, ω(·) as to proximal setup for U .

A2: the image PX of X under the projection x = [u; v] �→ Px := u is contained in
U .

A3: we are given a vector field F(u, v) : X → E on X of the special structure as
follows:

F(u, v) = [Fu(u); Fv],

with Fu(u) ∈ Eu and Fv ∈ Ev . Note that F is independent of v. We assume also
that

∀u, u′ ∈ U : ‖Fu(u) − Fu(u
′)‖∗ ≤ L‖u − u′‖ + M (23)

with some L < ∞, M < ∞.
A4: the linear form 〈Fv, v〉 of [u; v] ∈ E is bounded from below on X and is coercive

on X w.r.t. v: whenever [ut ; vt ] ∈ X , t = 1, 2, . . . is a sequence such that {ut }∞t=1
is bounded and ‖vt‖2 → ∞ as t → ∞, we have 〈Fv, vt 〉 → ∞, t → ∞.

Our goal in this section is to show that in the situation in question, proximal type
processing F (say, F is monotone on X , andwewant to solve the variational inequality
given by F and X ) can be implemented “as if” there were no v-components in the
domain and in F .

A generic applicationwe are aiming at is as follows.Wewant to solve a “composite”
saddle point problem

SadVal = min
u1∈U1

max
u2∈U2

[φ(u1, u2) + Ψ1(u1) − Ψ2(u2)] , (24)

where
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– U1 ⊂ E1 and U2 ⊂ E2 are nonempty closed convex sets in Euclidean spaces
E1, E2

– φ is a smooth (with Lipschitz continuous gradient) convex–concave function on
U1 ×U2

– Ψ1 : U1 → R and Ψ2 : U2 → R are convex functions, perhaps nonsmooth, but
“fitting” the domainsU1,U2 in the following sense: for i = 1, 2, we can equip Ei

with a norm ‖ · ‖(i), andUi - with a compatible with this norm d.g.f. ωi (·) in such
a way that optimization problems of the form

min
ui∈Ui

[αωi (ui ) + βΨi (ui ) + 〈ξ, ui 〉] [α > 0, β > 0] (25)

are easy to solve.
Our ultimate goal is to solve (24) “as if” there were no (perhaps) nonsmooth terms

Ψi . With our approach, we intend to “get rid” of the nonsmooth terms by “moving”
them into the description of problem’s domains. To this end, we act as follows:

– For i = 1, 2, we set Xi = {xi = [ui ; vi ] ∈ Ei × R : ui ∈ Ui , vi ≥ Ψi (ui )} and
set

U := U1 ×U2 ⊂ Eu := E1 × E2, Ev = R2,

X =
{
x = [u = [u1; u2]; v = [v1; v2]] : ui ∈ Ui , vi ≥ Ψi (ui ), i = 1, 2

}
⊂ Eu × Ev,

thus ensuring that PX ⊂ U , where P[u; v] = u;
– We rewrite the problem of interest equivalently as

SadVal = min
x1=[u1;v1]∈X1

max
x2=[u2;v2]∈X2

[Φ(u1, v1; u2, v2) = φ(u1, u2) + v1 − v2]

(26)
Note that Φ is convex–concave and smooth. The associated monotone operator is

F(u = [u1; u2], v = [v1; v2])
= [Fu(u) = [∇u1φ(u1, u2);−∇u2φ(u1, u2)]; Fv = [1; 1]]

and is of the structure required in A3. Note that F is Lipschitz continuous, so that
(23) is satisfied with properly selected L and with M = 0.

We intend to process the reformulated saddle point problem (26) with a properly
modified state-of-the-art MP saddle point algorithm [17]. In its basic version and as
applied to a variational inequality with Lipschitz continuous monotone operator (in
particular, to a convex–concave saddle point problem with smooth cost function), this
algorithm exhibits O(1/t) rate of convergence, which is the best rate achievable with
First Order saddle point algorithms as applied to large-scale saddle point problems
(even those with bilinear cost function). The basic MP would require to equip the
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Mirror Prox algorithm for multi-term composite minimization and semi-separable problems 285

domain X = X1 × X2 of (26) with a d.g.f. ω(x1, x2) resulting in an easy-to-solve
auxiliary problems of the form

min
x=[u1;u2;v1;v2]∈X

[ω(x) + 〈ξ, x〉] , (27)

which would require to account in ω, in a nonlinear fashion, for the v-variables (since
ω should be a strongly convex in both u- and v-variables). While it is easy to construct
ω from our postulated “building blocks” ω1, ω2 leading to easy-to-solve problems
(25), this construction results in auxiliary problems (27) somehow more complicated
than problems (25). To overcome this difficulty, below we develop a “composite”
MP algorithm taking advantage of the special structure of F , as expressed in A3,
and preserving the favorable efficiency estimates of the prototype. The modified MP
operates with the auxiliary problems of the form

min
x=[u1;u2;v1;v2]∈X1×X2

2∑
i=1

[αiωi (ui ) + βivi + 〈ξi , ui 〉] , [αi > 0, βi > 0]

that is, with pairs of uncoupled problems

min
[ui ;vi ]∈Xi

[αiωi (ui ) + βivi + 〈ξi , ui 〉] , i = 1, 2;

recalling that Xi = {[ui ; vi ] : ui ∈ Ui , vi ≥ Ψi (ui )}, these problems are nothing but
the easy-to-solve problems (25).

3.2 Composite Mirror Prox algorithm

Given the situation described in Sect. 3.1, we define the associated prox-mapping: for
ξ = [η; ζ ] ∈ E and x = [u; v] ∈ X ,

Px (ξ) ∈ Argmin
[s;w]∈X

{〈η − ω′(u), s〉 + 〈ζ,w〉 + ω(s)
}

≡ Argmin
[s;w]∈X

{〈η, s〉 + 〈ζ,w〉 + Vu(s)} (28)

Observe that Px ([η; γ Fv]) is well defined whenever γ > 0—the required Argmin is
nonempty due to the strong convexity of ω onU and assumption A4 (for verification,
see item 0◦ in Appendix 1). Now consider the process as follows:

x1 := [u1; v1] ∈ X;
yτ := [u′

τ ; v′
τ ] = Pxτ (γτ F(xτ )) = Pxτ (γτ [Fu(uτ ); Fv])

xτ+1 := [uτ+1; vτ+1] = Pxτ (γτ F(yτ )) = Pxτ (γτ [Fu(u′
τ ); Fv]), (29)

where γτ > 0; the latter relation, due to the above, implies that the recurrence (29) is
well defined.
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Theorem 1 In the setting of Sect. 3.1, assuming that A1–A4 hold, consider the Com-
posite Mirror Prox recurrence 29 (CoMP) with stepsizes γτ > 0, τ = 1, 2, . . . satis-
fying the relation:

δτ := γτ 〈Fu(u′
τ ) − Fu(uτ ), u

′
τ − uτ+1〉 − Vu′

τ
(uτ+1) − Vuτ (u

′
τ ) ≤ γ 2

τ M
2. (30)

Then the corresponding execution protocol It = {yτ , F(yτ )}tτ=1 admits accuracy
certificate λt = {λtτ = γτ /

∑t
i=1 γi } such that for every X ′ ⊂ X it holds

Res(X ′∣∣It , λt ) ≤ Θ[X ′] + M2∑t
τ=1 γ 2

τ∑t
τ=1 γτ

, Θ[X ′] = sup
[u;v]∈X ′

Vu1(u). (31)

Relation (30) is definitely satisfied when 0 < γτ ≤ (
√
2L)−1, or, in the case of M = 0,

when γτ ≤ L−1.

Invoking Propositions 1, 2, we arrive at the following

Corollary 1 Under the premise of Theorem 1, for every t = 1, 2, . . ., setting

xt = [ut ; vt ] = 1∑t
τ=1 γτ

t∑
τ=1

γτ yτ .

we ensure that xt ∈ X and that
(i) In the case when F is monotone on X, we have

εVI(x
t
∣∣X, F) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X ] + M2

∑t

τ=1
γ 2
τ

]
. (32)

(ii)Let X = X1×X2, and let F be themonotone vector field associatedwith the saddle
point problem (14) with convex–concave locally Lipschitz continuous cost functionΦ.
Then

εSad(x
t
∣∣X1, X2, Φ) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X ] + M2

∑t

τ=1
γ 2
τ

]
. (33)

In addition, assuming that problem (P) in (15) is solvable with optimal solution x1∗
and denoting by x1,t the projection of xt ∈ X = X1 × X2 onto X1, we have

Φ(x1,t ) − Opt(P) ≤
[∑t

τ=1
γτ

]−1 [
Θ[{x1∗} × X2] + M2

∑t

τ=1
γ 2
τ

]
. (34)

Remark When F is Lipschitz continuous (that is, (23) holds true with some L > 0
and M = 0), the requirements on the stepsizes imposed in the premise of Theorem
1 reduce to δτ ≤ 0 for all τ and are definitely satisfied with the constant stepsizes
γτ = 1/L . Thus, in the case under considerationwe can assumew.l.o.g. that γτ ≥ 1/L ,
thus ensuring that the upper bound on Res(X ′∣∣It , λt ) in (31) is ≤ Θ[X ′]Lt−1. As a
result, (34) becomes

Φ(x1,t ) − Opt(P) ≤ Θ[{x1∗} × X2]Lt−1. (35)
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3.3 Modifications

In this section, we demonstrate that in fact our algorithm admits some freedom in
building approximate solutions, freedomwhich can be used to improve to some extent
solutions’ quality. Modifications to be presented originate from [19]. We assume that
we are in the situation described in Sect. 3.1, and assumptions A1–A4 are in force. In
addition, we assume that

A5: The vector field F described in A3 is monotone, and the variational inequality
given by (X, F) has a weak solution:

∃x∗ = [u∗; v∗] ∈ X : 〈F(y), y − x∗〉 ≥ 0 ∀y ∈ X (36)

Lemma 1 In the situation from Sect. 3.1 and under assumptions A1–A5, for R ≥ 0
let us set

Θ̂(R) = max
u,u′∈U

{
Vu(u

′) : ‖u − u1‖ ≤ R, ‖u′ − u1‖ ≤ R
}

(37)

(this quantity is finite since ω is continuously differentiable on U), and let

{xτ = [uτ ; vτ ] : τ ≤ N + 1, yτ : τ ≤ N }

be the trajectory of the N-step MP algorithm (29) with stepsizes γτ > 0 which ensure
(30) for τ ≤ N. Then for all u ∈ U and t ≤ N + 1,

0 ≤ Vut (u) ≤ Θ̂(max[RN , ‖u − u1‖]), RN := 2

(
2Vu1(u∗) + M2

N−1∑
τ=1

γ 2
τ

)1/2

,

(38)
with u∗ defined in (36).

Proposition 3 In the situation of Sect. 3.1 and under assumptions A1–A5, let N be a
positive integer, and let IN = {yτ , F(yτ )}Nτ=1 be the execution protocol generated by
N-step CoMP (29) with stepsizes γτ ensuring (30). Let also λN = {λ1, . . . , λN } be a
collection of positive reals summing up to 1 and such that

λ1/γ1 ≤ λ2/γ2 ≤ · · · ≤ λN/γN . (39)

Then for every R ≥ 0, with XR = {x = [u; v] ∈ X : ‖u − u1‖ ≤ R} one has

Res(XR |IN , λN ) ≤ λN

γN
Θ̂(max[RN , R]) + M2

N∑
τ=1

λτγτ , (40)

with Θ̂(·) and RN defined by (37) and (38).

Invoking Propositions 1, 2, we arrive at the following modification of Corollary 1.
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Corollary 2 Under the premise and in the notation of Proposition 3, setting

xN = [uN ; vN ] =
N∑

τ=1

λτ yτ .

we ensure that x N ∈ X. Besides this,
(i) Let X ′ be a closed convex subset of X such that x N ∈ X ′ and the projection of X ′
on the u-space is contained in ‖ · ‖-ball of radius R centered at u1. Then

εVI(x
N
∣∣X ′, F) ≤ λN

γN
Θ̂(max[RN , R]) + M2

N∑
τ=1

λτγτ . (41)

(ii) Let X = X1× X2 and F be the monotone vector field associated with saddle point
problem (14) with convex–concave locally Lipschitz continuous cost function Φ. Let,
further, X ′

i be closed convex subsets of Xi , i = 1, 2, such that x N ∈ X ′
1 × X ′

2 and the
projection of X ′

1 × X ′
2 onto the u-space is contained in ‖ · ‖-ball of radius R centered

at u1. Then

εSad(x
N
∣∣X ′

1, X
′
2, Φ) ≤ λN

γN
Θ̂(max[RN , R]) + M2

∑N

τ=1
λτγτ . (42)

4 Multi-term composite minimization

In this section, we focus on the problem (3), (6) ofmulti-term compositeminimization.

4.1 Problem setting

We intend to consider problem (3), (6) in the situation as follows. For a nonnegative
integer K and 0 ≤ k ≤ K we are given

1. Euclidean spaces Ek and Ek along with their nonempty closed convex subsets Yk
and Zk , respectively;

2. Proximal setups for (Ek,Yk) and (Ek, Zk), that is, norms pk(·) on Ek , norms qk(·)
on Ek , and d.g.f.’s ωk(·) : Yk → R, ωk(·) : Zk → R compatible with pk(·) and
qk(·), respectively;

3. Affine mappings y0 �→ Ak y0 + bk : E0 → Ek , where y0 �→ A0y0 + b0 is the
identity mapping on E0;

4. Lipschitz continuous convex functions ψk(yk) : Yk → R along with their saddle
point representations

ψk(y
k) = sup

zk∈Zk

[φk(y
k, zk) − Ψ k(z

k)], 0 ≤ k ≤ K , (43)

whereφk(yk, zk) : Yk×Zk → R are smooth (with Lipschitz continuous gradients)
functions convex in yk ∈ Yk and concave in zk ∈ Zk , and Ψ k(zk) : Zk → R are
Lipschitz continuous convex functions such that the problems of the form

123



Mirror Prox algorithm for multi-term composite minimization and semi-separable problems 289

min
zk∈Zk

[
ωk(z

k) + 〈ξ k, zk〉 + αΨ k(z
k)
]

[α > 0] (44)

are easy to solve;
5. Lipschitz continuous convex functions Ψk(yk) : Yk → R such that the problems

of the form

min
yk∈Yk

[
ωk(y

k) + 〈ξ k, yk〉 + αΨk(y
k)
]

[α > 0] (45)

are easy to solve;
6. For 1 ≤ k ≤ K , the norms π∗

k (·) on Ek are given, with conjugate norms πk(·),
along with d.g.f.’s ω̂k(·) : Wk := {wk ∈ Ek : πk(w

k) ≤ 1} → R which are
strongly convex, modulus 1, w.r.t. πk(·) such that the problems

min
wk∈Wk

[
ω̂k(w

k) + 〈ξ k, wk〉
]

(46)

are easy to solve.

The outlined data define the sets

Y+
k =

{
[yk; τ k] : yk ∈ Yk, τ

k ≥ Ψk(y
k)
}

⊂ E+
k := Ek × R, 0 ≤ k ≤ K ,

Z+
k =

{
[zk; σ k] : zk ∈ Zk, σ

k ≥ Ψ k(z
k)
}

⊂ E
+
k := Ek × R, 0 ≤ k ≤ K .

The problem of interest (3), (6) along with its saddle point reformulation in the just
defined situation read

Opt = min
y0∈Y0

{
f (y0) :=

K∑
k=0

[
ψk(Ak y

0 + bk) + Ψk(Ak y
0 + bk)

]}
(47a)

= min
y0∈Y0

{
f (y0) = max

{zk∈Zk }Kk=0

K∑
k=0

[
φk(Ak y

0 + bk, z
k) (47b)

+Ψk(Ak y
0 + bk) − Ψ k(z

k)
]}

which we rewrite equivalently as

Opt = min
{[yk ;τ k ]}Kk=0

∈Y+
0 ×···×Y+

K

max
{[zk ;σ k ]}Kk=0

∈Z+
0 ×···×Z+

K

{
K∑

k=0

[
φk(y

k, zk) + τ k − σ k
]

: (47c)

yk = Ak y
0 + bk, 1 ≤ k ≤ K

}
.

From now on we make the following assumptions
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B1: We have AkY0 + bk ⊂ Yk , 1 ≤ k ≤ K ;
B2: For 0 ≤ k ≤ K , the sets Zk are bounded. Further, the functions Ψk are
below bounded on Yk , and the functions fk = ψk + Ψk are coercive on Yk :
whenever ykt ∈ Yk , t = 1, 2, . . . , are such that pk(ykt ) → ∞ as t → ∞, we
have fk(ykt ) → ∞.

Note that B1 and B2 imply that the saddle point problem (47c) is solvable; let{[yk∗; τ k∗ ]}0≤k≤K ; {[zk∗; σ k∗ ]}0≤k≤K be the corresponding saddle point.

4.2 Course of actions

Given ρk > 0, 1 ≤ k ≤ K , we approximate (47c) by the problem

Ôpt = min
{[yk ;τ k ]}Kk=0

∈Y+
0 ×···×Y+

K

max
{[zk ;σ k ]}Kk=0

∈Z+
0 ×···×Z+

K

{
K∑

k=0

[
φk

(
yk , zk

)
+ τ k − σ k

]
+

K∑
k=1

ρkπ
∗
k

(
yk − Ak y

0
)}

(48a)

= min
x1∈X1

:=Y+
0 ×···×Y+

K

max
x2∈X2

:=Z+
0 ×···×Z+

K ×W1×···WK

Φ

⎛
⎜⎜⎜⎝
{
[yk; τ k ]

}K
k=0︸ ︷︷ ︸

x1

,

[{
[zk; σ k ]

}K
k=0

; {wk}Kk=1

]
︸ ︷︷ ︸

x2

⎞
⎟⎟⎟⎠ (48b)

where

Φ(x1, x2) =
K∑

k=0

[
φk(y

k, zk) + τ k − σ k
]

+
K∑

k=1

ρk〈wk, yk − Ak y
0 − bk〉.

Observe that the monotone operator F(x1, x2) = [F1(x1, x2); F2(x1, x2)] associated
with the saddle point problem in (48b) is given by

F1(x
1, x2) =

[
∇y0φ0

(
y0, z0

)−
K∑

k=1

ρk A
T
k wk; 1;

{
∇ykφk

(
yk, zk

)
+ ρkw

k; 1
}K
k=1

]
,

F2(x
1, x2) =

[ {
−∇zkφk

(
yk, zk

)
; 1
}K
k=0

;
{
−ρk[yk − Ak y

0 − bk]
}K
k=1

]
. (49)

Now let us set

– U =
{

u = [y0; . . . ; yK ; z0; . . . ; zK ;w1; . . . ;wK
] : yk ∈ Yk, zk ∈ Zk,

0 ≤ k ≤ K , πk(w
k) ≤ 1, 1 ≤ k ≤ K

}
,

– X =

⎧⎪⎪⎨
⎪⎪⎩

x = [u = [y0; . . . ; yK ; z1; . . . ; zK ;w1; . . . ;wK
] ;

v = [τ 0; . . . ; τ K ; σ 0; . . . ; σ K ]] :
u ∈ U, τ k ≥ Ψk(yk), σ k ≥ Ψ k(zk), 0 ≤
k ≤ K

⎫⎪⎪⎬
⎪⎪⎭
,

so that PX ⊂ U , cf. assumption A2 in Sect. 3.1.
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The variational inequality associated with the saddle point problem in (48b) can be
treated as the variational inequality on the domain X with the monotone operator

F(x = [u; v]) = [Fu(u); Fv],

where

Fu([y0; . . . ; yK ; z0; . . . ; zK ; w1; . . . ;wK ]︸ ︷︷ ︸
u

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∇yφ0(y0, z0) −
K∑

k=1
ρk AT

k wk

{∇yφk(yk, zk) + ρkw
k
}K
k=1{−∇zφk(yk, zk

}K
k=0{−ρk[yk − Ak y0 − bk]

}K
k=1

⎤
⎥⎥⎥⎥⎥⎥⎦

Fv([τ 0; . . . ; τ K ; σ 0; . . . ; σ K ]︸ ︷︷ ︸
v

) = [1; . . . ; 1]. (50)

This operator meets the structural assumptions A3 and A4 from Sect. 3.1 (A4 is
guaranteed by B2). We can equip U and its embedding space Eu with the proximal
setup ‖ · ‖, ω(·) given by

‖u‖ =
√√√√ K∑

k=0

[
αk p2k (y

k) + βkq2k (z
k)
]+

K∑
k=1

γkπ
2
k (wk),

ω(u) =
K∑

k=0

[
αkωk(y

k) + βkωk(z
k)
]

+
K∑

k=1

γkω̂k(w
k), (51)

where αk, βk , 0 ≤ k ≤ K , and γk , 1 ≤ k ≤ K , are positive aggregation parameters3.
Observe that carrying out a step of the CoMP algorithm presented in Sect. 3.2 requires
computing F at O(1) points of X and solving O(1) auxiliary problems of the form

min
[y0;...;yK ;z0;...;zK ],

[;w1;...;wK ;τ 0;...;τ K ;σ 0;...;σ K ]

{
K∑

k=0

[
akωk(y

k) + 〈ξk, yk〉 + bkτ
k
]

+
K∑

k=0

[
ckωk(z

k) + 〈ηk, zk〉 + dkσ
k
]

+
K∑

k=1

[
ekω̂k(w

k) + 〈ζk, wk〉
]}

:

yk ∈ Yk, τ
k ≥ Ψk(y

k), zk ∈ Zk, σ
k ≥ Ψ k(y

k), 0 ≤ k ≤ K ,

πk(w
k) ≤ 1, 1 ≤ k ≤ K ,

with positive ak, ..., ek , and we have assumed that these problems are easy to solve.

3 In principle, these parameters should be chosen to optimize the resulting efficiency estimates; this indeed
is doable, provided that we have at our disposal upper bounds on the Lipschitz constants of the components
of Fu and that U is bounded, see [17, Section 5] or [14, Section 6.3.3].
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4.3 “Exact penalty”

Let us make one more assumption:

C: For 1 ≤ k ≤ K ,
– ψk are Lipschitz continuous on Yk with constants Gk w.r.t. π∗

k (·),
– Ψk are Lipschitz continuous on Yk with constants Hk w.r.t. π∗

k (·).
Given a feasible solution x = [x1; x2], x1 := {[yk; τ k] ∈ Y+

k }Kk=0 to the saddle point
problem (48b), let us set

ŷ0 = y0; ŷk = Ak y
0 + bk, 1 ≤ k ≤ K ; τ̂ k = Ψk(ŷ

k), 0 ≤ k ≤ K ,

thus getting another feasible (by assumption B1) solution x̂=[̂x1={[̂yk; τ̂ k]}Kk=0; x2
]

to (48b). We call x̂1 correction of x1. For 1 ≤ k ≤ K we clearly have

ψk

(
ŷk
)

≤ ψk

(
yk
)

+ Gkπ
∗
k

(
ŷk − yk

)
= ψk

(
yk
)

+ Gkπ
∗
k

(
yk − Ak y

0 − bk
)

,

τ̂ k = Ψk(ŷ
k) ≤ Ψk

(
yk
)

+ Hkπ
∗
k

(
ŷk − yk

)
≤τ k+Hkπ

∗
k

(
yk−Ak y

0−bk
)

,

and τ̂ 0 = Ψ0(y0) ≤ τ 0. Hence for Φ(x1) = max
x2∈X2

Φ(x1, x2) we have

Φ(̂x1)≤Φ(x1) +
K∑

k=1

[Hk + Gk]π∗
k (yk−Ak y

0 − bk) −
K∑

k=1

ρkπ
∗
k (yk−Ak y

0 − bk).

We see that under the condition

ρk ≥ Gk + Hk, 1 ≤ k ≤ K , (52)

correction does not increase the value of the primal objective of (48b), whence the
saddle point value Ôpt of (48b) is ≥ the optimal value Opt in the problem of interest
(47a). Since the opposite inequality is evident, we arrive at the following

Proposition 4 In the situation of Sect. 4.1, let assumptions B1, B2, C and (52) hold
true. Then

(i) the optimal valuêOpt in (48a) coincides with the optimal value Opt in the problem
of interest (47a);

(ii) consequently, if x = [x1; x2] is a feasible solution of the saddle point problem in
(48b), then the correction x̂1 = {[̂yk; τ̂ k]}Kk=0 of x1 is a feasible solution to the
problem of interest (47c), and

123



Mirror Prox algorithm for multi-term composite minimization and semi-separable problems 293

f (ŷ0) − Opt ≤ εSad(x
∣∣X1, X2, Φ), (53)

where ŷ0(= y0(̂x1)) is the “y0-component” of x̂1;

As a corollary, under the premise of Proposition 4, when applying to the saddle
point problem (48b) the CoMP algorithm induced by the above setup and passing “at
no cost” from the approximate solutions xt = [x1,t ; x2,t ] generated by CoMP to the
corrections x̂1,t of x1,t ’s, we get feasible solutions to the problem of interest (47a)
satisfying the error bound

f (y0(̂x1,t )) − Opt ≤ Θ[x1∗ × X2]L
t

, t = 1, 2, . . . (54)

where L is the Lipschitz constant of Fu(·) induced by the norm ‖ · ‖ given by
(51), and Θ[·] is induced by the d.g.f. given by the same (51) and the u =
[y0; . . . ; yK ; z0; . . . ; zK ;w1; . . . ;wK ] -component of the starting point. Note that
Wk and Zk are compact, whence Θ[x1∗ × X2] is finite.

Remark In principle, we can use the result of Proposition 4 “as is”, that is, to work
from the very beginning with values of ρk satisfying (52); this option is feasible,
provided that we know in advance the corresponding Lipschitz constants and they are
not too large (which indeed is the case in some applications). This being said, when
our objective is to ensure the validity of the bound (53), selecting ρk’s according to
(52) could be very conservative. From our experience, usually it is better to adjust
the penalization coefficients ρk on-line. Specifically, letΦ(x1) = supx2∈X2

Φ(x1, x2)
(cf (15)). We always have Ôpt ≤ Opt. It follows that independently of how ρk are
selected, we have

f (ŷ0) − Opt ≤ [ f (ŷ0) − Φ(x1)]︸ ︷︷ ︸
ε1

+
[
Φ(x1) − Ôpt

]
︸ ︷︷ ︸

ε2

(55)

for every feasible solution x1 = {[yk; τ k]}Kk=0 to (48b) and the same inequality holds

for its correction x̂1 = {[̂yk; τ̂ k]}Kk=0. When x1 is a component of a good (with small
εSad) approximate solution to the saddle point problem (48b), ε2 is small. If ε1 also is
small, we are done; otherwise we can either increase in a fixed ratio the current values
of all ρk , or only of those ρk for which passing from [yk; τ k] to [̂yk; τ̂ k] results in
“significant” quantities

[ψk(ŷ
k) + τ̂ k] − [ψk(y

k) + τ k + ρkπ
∗
k (yk − Ak y

0 − bk)]

and solve the updated saddle point problem (48b).
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4.4 Numerical illustrations

4.4.1 Matrix completion

Problem of interest In the experiments to be reported, we applied the just outlined
approach to Example 1, that is, to the problem

Opt = min
y0∈Rn×n

⎡
⎢⎢⎢⎣υ(y0) = 1

2
‖PΩ y0 − b‖22︸ ︷︷ ︸

ψ0(y0)

+ λ‖y0‖1︸ ︷︷ ︸
Ψ0(y0)

+ μ‖y0‖nuc︸ ︷︷ ︸
Ψ1(y0)

⎤
⎥⎥⎥⎦ . (56)

where Ω is a given set of cells in an n × n matrix, and PΩ y is the restriction of
y ∈ Rn×n onto Ω; this restriction is treated as a vector from RM , M = Card(Ω).
Thus, (56) is a kind of matrix completion problem where we want to recover a sparse
and low rank n × n matrix given noisy observations b of its entries in cells from Ω .
Note that (56) is a special case of (47b) with K = 1, Y0 = Y1 = E0 = E1 = Rn×n ,
the identity mapping y0 �→ A1y0, and φ0(y0, z0) ≡ ψ0(y0), φ1 ≡ 0 (so that Zk can
be defined as singletons, and Ψ k(·) set to 0, k = 0, 1).

Implementing the CoMP algorithm When implementing the CoMP algorithm, we
used the Frobenius norm ‖ · ‖F on Rn×n in the role of p0(·), p1(·) and π1(·), and the
function 1

2‖ · ‖2F in the role of d.g.f.’s ω0(·), ω1(·), ω̂1(·).
The aggregation weights in (51) were chosen as α0 = α1 = 1/D and γ1 = 1,

where D is a guess of the quantity D∗ := ‖y0∗‖F , where y0∗ is the optimal solution
(56). With D = D∗, our aggregation would roughly optimize the right hand side in
(54), provided the starting point is the origin.

The coefficient ρ1 in (48b) was adjusted dynamically as explained at the end of
Sect. 4.3. Specifically, we start with a small (0.001) value of ρ1 and restart the solution
process, increasing by factor 3 the previous value of ρ1, each time when the x1-
component x of current approximate solution and its correction x̂ violate the inequality
υ(y0(̂x)) ≤ (1 + κ)Φ(x) for some small tolerance κ (we used κ=1.e−4), cf. (55).

The stepsizes γt in the CoMP algorithm were adjusted dynamically, specifically, as
follows. At a step τ , given a current guess γ for the stepsize, we set γτ = γ , perform
the step and check whether δτ ≤ 0. If this is the case, we pass to step τ + 1, the new
guess for the stepsize being 1.2 times the old one. If δτ is positive, we decrease γτ in a
fixed proportion (in our implementation—by factor 0.8), repeat the step, and proceed
in this fashion until the resulting value of δτ becomes nonpositive. When it happens,
we pass to step τ +1, and use the value of γτ we have ended up with as our new guess
for the stepsize.

In all our experiments, the starting point was given by the matrix ŷ := P∗
Ωb

(“observations of entries in cells from Ω and zeros in all other cells”) according
to y0 = y1 = ŷ, τ 0 = λ‖ŷ‖1, τ 1 = μ‖ŷ‖nuc, w1 = 0.
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Lower bounding the optimal value When running the CoMP algorithm, we at every
step t have at our disposal an approximate solution y0,t to the problem of interest
(59); y0,t is nothing but the y0-component of the approximate solution xt generated
by CoMP as applied to the saddle point approximation of (59) corresponding to the
current value of ρ1, see (49). We have at our disposal also the value υ(y0,t ) of the
objective of (56) at y0,t ; this quantity is a byproduct of checking whether we should
update the current value of ρ1.4 As a result, we have at our disposal the best found
so far value υ t = min1≤τ≤t υ(y0,τ ), along with the corresponding value y0,t∗ of y0:
υ(y0,t∗ ) = υ t . In order to understand how good is the best generated so far approximate
solution y0,t∗ to the problem of interest, we need to upper bound the quantity υ t −Opt,
or, which is the same, to lower bound Opt. This is a nontrivial task, since the domain of
the problem of interest is unbounded, while the usual techniques for online bounding
from below the optimal value in a convex minimization problem require the domain
to be bounded. We are about to describe a technique for lower bounding Opt utilizing
the structure of (56).

Let y0∗ be an optimal solution to (56) (it clearly exists since ψ0 ≥ 0 and λ,μ > 0).
Assume that at a step t we have at our disposal an upper bound R = Rt on ‖y0∗‖1, and
let

R+ = max
[
R, ‖y0,t‖1

]
.

Let us look at the saddle point approximation of the problem of interest

Ôpt = min
x1=[y0;τ 0;y1;τ 1]∈X̂1

max
x2∈X2

[
Φ(x1, x2) := ψ0(y

0)+τ 0+τ 1+ρ1〈y1 − y0, x2〉
]
,

X1 =
{
[y0; τ 0; y1; τ 1] : τ 0 ≥ λ‖y0‖1, τ 1 ≥ μ‖y1‖nuc

}
,

X2 =
{
x2 : ‖x2‖F ≤ 1

}
. (57)

associated with current value of ρ1, and let

X̂1 =
{
[y0; τ 0; y1; τ 1] ∈ X1 : τ 0 ≤ λR+, τ 1 ≤ μR+} .

Observe that the point x1,∗ = [y0∗; λ‖y0∗‖1; y0∗;μ‖y0∗‖nuc] belongs to X̂1 (recall that
‖ · ‖nuc ≤ ‖ · ‖1) and that

Opt = υ(y0∗) ≥ Φ(x1,∗), Φ(x1) = max
x2∈X2

Φ(x1, x2).

It follows that

Ôpt := min
x1∈X̂1

Φ(x1) ≤ Opt.

4 With our implementation, we run this test for both search points and approximate solutions generated by
the algorithm.
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Further, by Proposition 2 as applied to X ′
1 = X̂1 and X ′

2 = X2 we have5

Φ(x1,t ) − Ôpt ≤ Res(X̂1 × X2
∣∣It , λt ),

where It is the execution protocol generated by CoMP as applied to the saddle point
problem (57) (i.e., since the last restart preceding step t till this step), and λt is the
associated accuracy certificate. We conclude that

�t := Φ(x1,t ) − Res(X̂1 × X2
∣∣It , λt ) ≤ Ôpt ≤ Opt,

and �t is easy to compute (since the resolution is just themaximumof a readily given by
It , λt affine function over X̂1 × X2). Setting υt = maxτ≤t �τ , we get nondecreasing
with t lower bounds on Opt. Note that this component of our lower bounding is
independent of the particular structure of ψ0.

It remains to explain how to get an upper bound R on ‖y0∗‖1, and this is where the
special structure of ψ0(y) = 1

2‖PΩ y − b‖22 is used. Recalling that b ∈ RM , let us set

ϑ(r) = min
v∈RM

{
1

2
‖v − b‖22 : ‖v‖1 ≤ r

}
, r ≥ 0,

It is immediately seen that replacing the entries in b by their magnitudes, ϑ(·) remains
intact, and that for b ≥ 0 we have

ϑ(r) = min
v∈RM

{
1

2
‖v − b‖22 : v ≥ 0,

∑
i

vi ≤ r

}
,

so that ϑ(·) is an easy to compute nonnegative and nonincreasing convex function of
r ≥ 0. Now, by definition of PΩ , the function ϑ+(‖y0‖1) where

ϑ+(r) = λr + ϑ(r)

is a lower bound on υ(y0). As a result, given an upper bound υ t on Opt = υ(y∗), the
easy-to-compute quantity

Rt := max
{
r : ϑ+(r) ≤ υ t}

is an upper bound on ‖y0∗‖1. Since υ t is nonincreasing in t , Rt is nonincreasing in t
as well.

Generating the data In the experiments to be reported, the data of (56) were generated
as follows. Given n, we build “true” n × n matrix y# = ∑k

i=1 ei f
T
i , with k = �n/4�

and vectors ei , fi ∈ Rn sampled, independently of each other, as follows: we draw
a vector from the standard Gaussian distribution N (0, In), and then zero out part of

5 Note that the latter relation implies that what was denoted by Φ̃ in Proposition 2 is nothing but Φ.
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the entries, with probability of replacing a particular entry with zero selected in such
a way that the sparsity of y# is about a desired level (in our experiments, we wanted
y# to have about 10% of nonzero entries). The set Ω of “observed cells” was built at
random, with probability 0.25 for a particular cell to be inΩ . Finally, b was generated
as PΩ(y# + σξ), where the entries of ξ ∈ Rn×n were independently of each other
drawn from the standard Gaussian distribution, and

σ = 0.1

∑
i, j |[y#]i j |
n2

.

We used λ = μ = 10σ .6 Finally, our guess for the Frobenius norm of the optimal
solution to (56) is defined as follows. Note that the quantity ‖b‖22−Mσ 2 is an estimate
of ‖PΩ y#‖22. We define the estimate D of D∗ := ‖y∗‖F “as if” the optimal solution
were y#, and all entries of y# were of the same order of magnitude

D =
√
n2

M
max[‖b‖22 − Mσ 2, 1], M = Card(Ω).

Numerical results The results of thefirst series of experiments are presented inTable 1.
The comments are as follows.

In the “small” experiment (n = 128, the largest n where we were able to solve (56)
in a reasonable time by CVX [13] using the state-of-the-art mosek [1] Interior-Point
solver and thus knew the “exact” optimal value), CoMP exhibited fast convergence:
relative accuracies 1.1e−3 and 6.2e−6 are achieved in 64 and 4,096 steps (1.2 and
74.9 s, respectively, as compared to 4,756.7 s taken by CVX).

In larger experiments (n = 512 and n = 1, 024, meaning design dimensions
262,144 and 1,048,576, respectively), the running times look moderate, and the con-
vergence pattern of the CoMP still looks promising.7 Note that our lower bounding,
while somehow working, is very conservative: it overestimates the “optimality gap”
υ t −υt by 2–3 orders of magnitude for moderate and large values of t in the 128×128
experiment. More accurate performance evaluation would require a less conservative
lower bounding of the optimal value (as of now, we are not aware of any alternative).

In the second series of experiments, the data of (56) were generated in such a way
that the true optimal solution and optimal value to the problem were known from the
very beginning. To this end we take as Ω the collection of all cells of an n× n matrix,
which, via optimality conditions, allows to select b making our “true” matrix y# the
optimal solution to (56). The results are presented in Table 2.

In the third series of experiments, we compared our algorithmwith the basic version
of ADMM as presented in [5]; this version is capable to handle straightforwardly the

6 If the goal of solving (56) were to recover y#, our λ andμwould, perhaps, be too large. Our goal, however,
was solving (56) as an “optimization beast,” and we were interested in “meaningful” contribution of Ψ0
and Ψ1 to the objective of the problem, and thus in not too small λ and μ.
7 Recall that we do not expect linear convergence, just O(1/t) one.
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Table 2 Composite Mirror Prox algorithm on problem (56) with n × n matrices and known optimal value
Opt

t 1 7 8 12 128 256 512 1,024

(a) n = 512, Opt = 607.9854

CPU (s) 1.3 8.3 9.3 11.0 65.9 125.0 244.7 486.0

υt − Opt 92.9 1.58 0.30 0.110 0.095 0.076 0.069 0.069

υt − υt 700.9 92.4 69.5 54.6 52.8 44.2 21.2 3.07

υt−Opt
Opt 0.153 2.6e−3 5.0e−4 1.8e−4 1.6e−4 1.3e−4 1.1e−4 1.1e−4

υt−υt
Opt 1.153 0.152 0.114 0.090 0.087 0.073 0.035 0.005

(b) n = 1,024, Opt=2,401.168

CPU (s) 8.9 48.1 51.9 392.7 752.1 1,464.9

υt − Opt 371.4 3.48 0.21 0.21 0.19 0.16

υt − υt 2772 241.7 201.2 147.3 146.5 122.9

υt−Opt
Opt 0.154 1.5e−3 9e−5 9e−5 8e−5 7e−5

υt−υt
Opt 1.155 0.101 0.084 0.061 0.061 0.051

υt are the best values of υ(·), and υt are lower bounds on the optimal value found in course of t steps.
Platform: MATLAB on 3.40 GHz Intel Core i7-3770 desktop with 16 GB RAM, 64 bit Windows 7

Table 3 Number of steps and CPU time for Composite Mirror Prox algorithm and ADMM algorithm to
achieve relative error ε = 10−4 on problem (56)

n × n Composite Mirror Prox ADMM

Step CPU (s) Step CPU (s)

128 × 128 34 0.77 11 0.13

256 × 256 94 8.02 9 0.37

512 × 512 38 15.06 9 1.42

1024 × 1024 34 81.76 8 8.74

Platform: MATLAB on Intel i5-2400S @2.5GHz CPU with 4GB RAM, 64-bit Windows 7

matrix completion with noisy observations of part of the entries.8 The data in these
experiments were generated in the same way as in the aforementioned experiments
with knownoptimal solutions. The results are presented in Table 3.We see thatADMM
is essentially faster than our algorithm, suggesting that ADMM, when applicable in its
basic form, typically outperforms CoMP. However, this is not the case when ADMM
is not directly applicable; we consider one example of the sort in the next section.

8 Note that in a more complicated matrix recovery problem, where noisy linear combinations of the matrix
entries rather than just some of these entries are observed, applyingADMMbecomes somehow problematic,
whilethe proposed algorithm still is applicable “as is.”
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It should be mentioned that in these experiments the value of ρ1 resulting in negli-
gibly small, as compared to ε2, values of ε1 in (55) was found in the first 10–30 steps
of the algorithm, with no restarts afterwards.

Remark For the sake of simplicity, so far we were considering problem (56), where
minimization is carried out over y0 running through the entire space Rn×n of n × n
matrices. What happens if we restrict y0 to reside in a given closed convex domain
Y0?

It is immediately seen that the construction we have presented can be straightfor-
wardly modified for the cases when Y0 is a centered at the origin ball of the Frobenius
or ‖ · ‖1 norm, or the intersection of such a set with the space of symmetric n × n
matrices. We could also handle the case when Y0 is the centered at the origin nuclear
norm ball (or intersection of this ball with the space of symmetric matrices, or with
the cone of positive semidefinite symmetric matrices), but to this end one needs to
“swap the penalties”—to write the representation (47c) of problem (56) as

min
{yk ;τ k ]}1k=0

∈Y+
0 ×Y+

1

{
ϒ(y0, y1, τ 0, τ 1) := 1

2
‖PΩ y0 − b‖22︸ ︷︷ ︸

ψ0(y0)

+τ 0 + τ 1 : y0 = y1
}
,

Y+
0 = {[y0; τ 0] : y0 ∈ Y0, τ

0 ≥ μ‖y0‖nuc},
Y+
1 = {[y1; τ 1] : y1 ∈ Y1, τ

1 ≥ λ‖y1‖1},

where Y1 ⊃ Y0 “fits” ‖ · ‖1 (meaning that we can point out a d.g.f. ω1(·) for Y1 which,
taken along with Ψ1(y1) = λ‖y1‖1, results in easy-to-solve auxiliary problems (45)).
We can take, e.g. ω1(y1) = 1

2‖y1‖2F and define Y1 as the entire space, or a centered at
the origin Frobenius/‖ · ‖1 norm ball large enough to contain Y0.

4.4.2 Image decomposition

Problem of interest In the experiments to be reported, we applied the just outlined
approach to Example 2, that is, to the problem

Opt = min
y1,y2,y3∈Rn×n

{
‖A(y1 + y2 + y3) − b‖2 + μ1‖y1‖nuc

+μ2‖y2‖1 + μ3‖y3‖TV
}

, (58)

where A(y) : Rn×n → RM is a given linear mapping.

Problem reformulation We first rewrite (58) as a saddle point optimization problem

Opt = min
y1,y2,y3∈Rn×n

{
‖A(y1 + y2 + y3) − b‖2 + μ1‖y1‖nuc

+μ2‖y2‖1 + μ3‖T y3‖1
}
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= min
y1,y2,y3∈Rn×n

{
max‖z‖2≤1

〈z, A(y1 + y2 + y3) − b〉 + μ1‖y1‖nuc

+μ2‖y2‖1 + μ3‖T y3‖1
}

, (59)

where T : Rn×n → R2n(n−1) is the mapping y �→ T y =[ {
(∇i y)n( j−1)+i

}
i=1,...,n−1, j=1,...,n{

(∇ j y)n(i−1)+ j )
}
i=1,...,n, j=1,...,n−1

]
.

Next we rewrite (59) as a linearly constrained saddle-point problem with “simple”
penalties:

Opt = min
y3∈Y3

[yk ;τk ]∈Y+
k , 0≤k≤2

max
z∈Z

{
〈z, A(y1 + y2 + y3) − b〉 + τ1 + τ2 + τ0, y0 = T y3

}
,

where

Y+
0 =

{
[y0; τ0] : y0 ∈ Y0 = R2n(n−1) : ‖y0‖1 ≤ τ0/μ3

}
,

Y+
1 =

{
[y1; τ1] : y1 ∈ Y1 = Rn×n : ‖y1‖nuc ≤ τ1/μ1

}
,

Y+
2 =

{
[y2; τ2] : y2 ∈ Y2 = Rn×n : ‖y2‖1 ≤ τ2/μ2

}

Y3 = Rn×n, Z =
{
z ∈ RM : ‖z‖2 ≤ 1

}
,

and further approximate the resulting problem with its penalized version:

Ôpt = min
y3∈Y3

[yk ;τk ]∈Y+
k , 0≤k≤2

max
z∈Z
w∈W

{ 〈z, A(y1 + y2 + y3) − b〉
+τ1 + τ2 + τ0 + ρ〈w, y0 − T y3〉

}
, (60)

with

W =
{
w ∈ R2n(n−1), ‖w‖2 ≤ 1

}
.

Note that the function ψ(y1, y2, y3) := ‖A(y1 + y2 + y3) − b‖2 = max‖z‖2≤1
〈z, A(y1 + y2 + y3) − b〉 is Lipschitz continuous in y3 with respect to the Euclid-
ean norm on Rn×n with corresponding Lipschitz constant G = ‖A‖2,2, which is
the spectral norm (the principal singular value) of A. Further, Ψ (y0) = μ3‖y0‖1
is Lipschitz-continuous in y0 with respect to the Euclidean norm on R2n(n−1) with
the Lipschitz constant H ≤ μ3

√
2n(n − 1). With the help of the result of Proposi-

tion 4 we conclude that to ensure the “exact penalty” property it suffices to choose
ρ ≥ ‖A‖2,2 + μ3

√
2n(n − 1). Let us denote

U =
{
u = [y0; . . . ; y3; z;w] : yk ∈ Y k, 0 ≤ k ≤ 3,
z ∈ RM , ‖z‖2 ≤ 1, w ∈ R2n(n−1), ‖w‖2 ≤ 1

}
.
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Table 4 Composite Mirror Prox algorithm on problem (58) with n × n matrices

t 8 16 32 64 128 256 512 1,024 2,048

(a) n = 64, Opt = 15.543 (CVX CPU 4525.5 sec)

CPU (s) 0.1 0.2 0.4 0.8 1.6 3.1 6.3 12.6 25.2

υt − υ2,048 1.5e1 2.8e0 6.2e−1 2.3e−1 1.1e−1 4.2e−2 1.5e−2 4.4e−3 0.0e0
υt−υ2,048

υ2,048
9.5e−1 1.8e−1 4.0e−2 1.5e−2 7.0e−3 2.7e−3 9.9e−4 2.8e−4 0.0e0

υt − Opt 1.5e1 2.8e0 6.2e−1 2.3e−1 1.1e−1 4.5e−2 1.8e−2 6.6e−3 2.2e−3
υt−Opt
Opt 9.5e−1 1.8e−1 4.0e−2 1.5e−2 7.1e−3 2.9e−3 1.1e−3 4.2e−4 1.4e−4

(b) n = 512 (CVX not tested)

CPU (s) 6.2 12.3 24.7 49.3 98.6 197.2 394.4 788.9 1,577.8

υt − υ2,048 1.1e2 5.8e1 2.7e1 1.3e1 6.2e0 2.9e0 1.2e0 3.9e−1 0.0e0
υt−υ2,048

υ2,048
9.0e−1 4.9e−1 2.3e−1 1.1e−1 5.2e−2 2.5e−2 1.0e−2 3.3e−3 0.0e0

υt are the best values of υ(·) in course of t steps. Platform: MATLAB on Intel i5-2400S @2.5GHz CPU
with 4GB RAM, 64-bit Windows 7

We equip the embedding space Eu of U with the norm

‖u‖ =
(

α0‖y0‖22 +
3∑

k=1

αk‖yk‖22 + β‖z‖22 + γ ‖w‖22
)1/2

,

and U with the proximal setup (‖ · ‖, ω(·)) with

ω(u) = α0

2
‖y0‖22 +

3∑
k=1

αk

2
‖yk‖22 + β

2
‖z‖22 + γ

2
‖w‖22.

Implementing the CoMP algorithm When implementing the CoMP algorithm, we
use the above proximal setup with adaptive aggregation parameters α0 = · · · = α4 =
1/D2 where D is our guess for the upper bound of ||y∗||2, that is, whenever the norm
of the current solution exceeds 20 % of the guess value, we increase D by factor 2 and
update the scales accordingly. The penalty ρ and stepsizes γt are adjusted dynamically
the same way as explained in the last experiment.

Numerical results In the first series of experiments, we build the n × n observation
matrix b by first generating a randommatrix with rank r = �√n� and another random
matrix with sparsity p = 0.01, so that the observation matrix is a sum of these two
matrices and of random noise of level σ = 0.01; we take y �→ Ay as the identity
mapping. We use μ1 = 10σ,μ2 = σ,μ3 = σ . The very preliminary results of this
series of experiments are presented in Table 4. Note that unlike the matrix completion
problem, discussed in Sect. 4.4.1, here we are not able to generate the problem with
known optimal solutions. Better performance evaluation would require good lower
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Fig. 1 Observed and reconstructed images (size 256 × 256), a observation b, b recovery y1 + y2 + y3,
c low-rank component, d sparse component, e smooth component

bounding of the true optimal value, which is however problematic due to unbounded
problem domain.

In the second series of experiments, we implement the CoMP algorithm to decom-
pose real images and extract the underlying low rank/sparse singular distortion/smooth
background components. The purpose of these experiments is to illustrate how the
algorithm performs with the choice of small regularization parameters which is mean-
ingful from the point of view of applications to image recovery. Image decompo-
sition results for two images are provided on Figs. 1 and 2. On Fig. 1, we present
the decomposition of the observed image of size 256 × 256. We apply the model
(59) with regularization parameters μ1 = 0.03, μ2 = 0.001, μ3 = 0.005. We run
2,000 iterations of CoMP (total of 393.5 s MATLAB, Intel i5-2400S@2.5GHz CPU).
The first component y1 has approximate rank ≈ 1; the relative reconstruction
error is ‖y1 + y2 + y3 − b‖2/‖b‖2 ≈ 2.8 × 10−4. Figure 2 shows the decom-
position of the observed image of size 480 × 640 after 1,000 iterations of CoMP
(total of 873.6 sec). The regularization parameters of the problem (58) were set
to μ1 = 0.06, μ2 = 0.002, μ3 = 0.005. The relative reconstruction error is
‖y1 + y2 + y3 − b‖2/‖b‖2 ≈ 8.4 × 10−3.

In the third series of experiments, we compare the CoMP algorithmwith some other
first-ordermethods. To the best of our knowledge, a quite limited set of knownmethods
are readily applicable to problems of the form (58), where the “observation-fitting”
component in the objective is nonsmooth and the penalty terms involve different com-
ponents of the observed image.As a result, we comparedCoMP to just two alternatives.
The first, below referred to as smoothing-APG, applies Nesterov’s smoothing tech-
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Fig. 2 Observed and decomposed images (size 480 × 640) a observation b, b low-rank component,
c sparse component, d smooth component

niques to both the first ‖ · ‖2 term and the total variation term in the objective of (58)
and then uses the Accelerated Proximal Gradient method (see [20,21] for details) to
solve the resulting problem which takes the form

min
y1,y2,y3∈Rm×n

{
fρ1(y

1, y2, y3) + μ1‖y1‖nuc + μ2‖y2‖1 + fρ2(y
3)
}

(61)

with

fρ1(y
1, y2, y3) = max

z:‖z‖2≤1

{
〈PΩ(y1 + y2 + y3) − b, z〉 − ρ1

2
‖z‖22

}

fρ2(y
3) = max

w:‖w‖∞≤1

{
μ3〈T y3, w〉 − ρ2

2
‖w‖22

}

where ρ1 > 0, ρ2 > 0. In the experiment, we specified the smoothing parameters as
ρ1 = ε, ρ2 = ε

2(n−1)n , ε = 10−3.
The second alternative, referred to as smoothing-ADMM, applies smoothing tech-

nique to the first term in the objective of (58) and uses the ADMM algorithm to solve
the resulting problem
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Fig. 3 ComparingCoMP, smoothing-APG, and smoothing-ADMMonproblem (58)with 128×128matrix.
x-axis: CPU time; y-axis: relative inaccuracy in terms of the objective. Platform:MATLAB on Intel i5-2400S
@2.5GHz CPU with 4GB RAM, 64-bit Windows 7

min
y1,y2,y3∈Rm×n

{
fρ1(y

1, y2, y3) + μ1‖y1‖nuc + μ2‖y2‖1 + μ3‖z‖1
}

s.t. T y3 − z = 0
(62)

the associated augmented Lagrangian being

Lν(x = [y1, y2, y3], z;w) = fρ1(y
1, y2, y3) + μ1‖y1‖nuc + μ2‖y2‖1 + μ3‖z‖1

+〈w, T y3 − z〉 + ν

2
‖T y3 − z‖22

where ν > 0 is a parameter. The basic version of ADMM would require performing
alternatingly x = (y1, y2, y3)-updates and z-updates. Since minimizing Lν in x in a
closed analytic form is impossible, we are enforced to perform x-update iteratively and
hence inexactly. In our experiment, we used for this purpose the Accelerated Proximal
Gradient method, with three implementations differing by the allowed number of inner
iterations (5, 20, 50, respectively).

In the experiment, we generated synthetic data in the same fashion as in the first
series of experiments and compared the performances of the three algorithms (CoMP
and two just described alternatives) by computing accuracies in terms of the objective
achieved with a prescribed time budget. The results are presented in Fig. 3. One
can see that the performance of ADMM heavily depends on the allowed number of
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inner iterations and is not better than the performance of the Accelerated Proximal
Gradient algorithm as applied to smooth approximation of the problem of interest. Our
algorithm, although not consistently outperforming the Smoothing-APG approach,
could still be very competitive, especially when only low accuracy is required.

5 Semi-separable convex problems

5.1 Preliminaries

Our problem of interest in this section is problem (4), (6), namely,

Opt = min
[y1;...;yK ]∈Y1×···×YK

{
f
(
[y1; . . . ; yK ]

)
:=

K∑
k=1

[ψk(y
k)

+Ψk(y
k)] :

K∑
k=1

Ak y
k = b

}

= min
[y1;...;yK ]∈Y1×···×YK

{
K∑

k=1

[
ψk(y

k) + Ψk(y
k)
]

: g
(
[y1; . . . ; yK ]

)
≤ 0

}
,

g
(
[y1; . . . ; yK ]

)
= π∗

(
K∑

k=1

Ak y
k − b

)
= max

π(w)≤1

K∑
k=1

〈Ak y
k − b, w〉,

(63)

where π(·) is some norm and π∗(·) is the conjugate norm. A straightforward approach
to (63) would be to rewrite it as a saddle point problem

min
[y1;...;yK ]∈Y1×···×YK

max
w

{
K∑

k=1

[
ψk(y

k) + Ψk(y
k)
]

+
〈

K∑
k=1

Akz
k − b, w

〉}
(64)

and solve by the Mirror-Prox algorithm from Sect. 3.2 adjusted to work with an
unbounded domain U , or, alternatively, we could replace maxw with maxw: π(w)≤R

with “large enough” R and use the above algorithm “as is.” The potential problemwith
this approach is that if the w-component w∗ of the saddle point of (64) is of large π -
norm (or “large enough” R is indeed large), the (theoretical) efficiency estimate would
be bad since it is proportional to the magnitude of w∗ (resp., to R). To circumvent this
difficulty, we apply to (63) the sophisticated policy originating from [15]. This policy
requires the set Y = Y1 × · · · × YK to be bounded, which we assume below.

Course of actions Note that our problem of interest is of the generic form

Opt = min
y∈Y { f (y) : g(y) ≤ 0} (65)
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where Y is a convex compact set in a Euclidean space E , f and g : Y → R are
convex and Lipschitz continuous functions. For the time being, we focus on (65) and
assume that the problem is feasible and thus solvable.

We intend to solve (65) by the generic algorithm presented in [15]; for our now
purposes, the following description of the algorithm will do:

1. The algorithm works in stages. Stage s = 1, 2, ... is associated with working
parameter αs ∈ (0, 1). We set α1 = 1

2 .
2. At stage s, we apply a first order method B to the problem

(Ps) Opts = min
y∈Y { fs(y) = αs f (y) + (1 − αs)g(y)} (66)

The only property of the algorithm B which matters here is its ability, when run on
(Ps), to produce in course of t = 1, 2, . . . steps iterates ys,t , upper bounds f

t
s on Opts

and lower bounds f
s,t

on Opts in such a way that

(a) for every t = 1, 2, . . ., the t-th iterate ys,t of B as applied to (Ps) belongs to Y ;
(b) the upper bounds f

t
s are nonincreasing in t (this is “for free”) and “are achievable,”

that is, they are of the form

f
t
s = fs(y

s,t ),

where ys,t ∈ Y is a vector which we have at our disposal at step t of stage s;
(c) the lower bounds f

s,t
should be nondecreasing in t (this again is “for free”);

(d) for some nonincreasing sequence εt → +0, t → ∞, we should have

f
t
s − f

s,t
≤ εt

for all t and s.

Note that since (65) is solvable, we clearly have Opts ≤ αsOpt, implying that the
quantity f

s,t
/αs is a lower bound on Opt. Thus, at step t of stage s we have at our

disposal a number of valid lower bounds on Opt; we denote the best (the largest) of
these bounds Opt

s,t
, so that

Opt ≥ Opt
s,t

≥ f
s,t

/αs (67)

for all s, t , and Opt
s,t

is nondecreasing in time.9

3. When the First Order oracle is invoked at step t of stage s, we get at our disposal
a triple (ys,t ∈ Y, f (ys,t ), g(ys,t )). We assume that all these triples are somehow
memorized. Thus, after calling First Order oracle at step t of stage s, we have at our
disposal a finite set Qs,t on the 2D plane such that for every point (p, q) ∈ Qs,t we

9 In what follows, we call a collection as,t of reals nonincreasing in time, if as′,t ′ ≤ as,t whenever s′ ≥ s,
same as whenever s = s′ and t ′ ≥ t . “Nondecreasing in time” is defined similarly.
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have at our disposal a vector ypq ∈ Y such that f (ypq) ≤ p and g(ypq) ≤ q; the
set Qs,t (in today terminology, a filter) is comprised of all pairs ( f (ys′,t ′), g(ys′,t ′))
generated so far. We set

hs,t (α) = min
(p,q)∈Qs,t

[
α(p − Opt

s,t
) + (1 − α)q

]
: [0, 1] → R,

Gap(s, t) = max
0≤α≤1

hs,t (α). (68)

4. Let Δs,t = {α ∈ [0, 1] : hs,t (α) ≥ 0}, so that Δs,t is a segment in [0, 1]. Unless
we have arrived at Gap(s, t) = 0 (i.e., got an optimal solution to (65), see (69)),
Δs,t is not a singleton (since otherwise Gap(s, t) were 0). Observe also that Δs,t

are nested: Δs′,t ′ ⊂ Δs,t whenever s′ ≥ s, same as whenever s′ = s and t ′ ≥ t .
We continue iterations of stage s while αs is “well-centered” in Δs,t , e.g., belongs to
the mid-third of the segment. When this condition is violated, we start stage s + 1,
specifying αs+1 as the midpoint of Δs,t .

The properties of the aforementioned routine are summarized in the following state-
ment (cf. [15]).

Proposition 5 (i) Gap(s, t) is nonincreasing in time. Furthermore, at step t of stage
s, we have at our disposal a solution ŷs,t ∈ Y to 65 such that

f (ŷs,t ) ≤ Opt + Gap(s, t), and g(ŷs,t ) ≤ Gap(s, t), (69)

so that ŷs,t belongs to the domain Y of problem (65) and is both Gap(s, t)-feasible
and Gap(s, t)-optimal.

(ii) For every ε > 0, the number s(ε) of stages until a pair (s, t) with Gap(s, t) ≤ ε

is found obeys the bound

s(ε) ≤ ln
(
3Lε−1

)
ln (4/3)

, (70)

where L < ∞ is an a priori upper bound on maxy∈Y max[| f (y)|, |g(y)|]. Besides
this, the number of steps at each stage does not exceed

T (ε) = min
{
t ≥ 1 : εt ≤ ε

3

}
+ 1. (71)

5.2 Composite Mirror Prox algorithm for semi-separable optimization

We are about to apply the approach above to the semi-separable problem (63), (6).

Problem setup we consider now is as follows (cf. Sect. 4.1). For every k, 1 ≤ k ≤ K ,
we are given

1. Euclidean spaces Ek and Ek alongwith their nonempty closed and bounded convex
subsets Yk and Zk , respectively;
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2. proximal setups for (Ek,Yk) and (Ek, Zk), that is, norms pk(·) on Ek , norms qk
on Ek , and d.g.f.’s ωk(·) : Yk → R, ωk(·) : Zk → R, which are compatible with
pk(·) and qk(·), respectively;

3. linear mapping yk �→ Ak yk : Ek → E , where E is a Euclidean space;
4. Lipschitz continuous convex functions ψk(yk) : Yk → R along with their saddle

point representations

ψk(y
k) = sup

zk∈Zk

[φk(y
k, zk) − Ψ k(z

k)], 1 ≤ k ≤ K , (72)

whereφk(yk, zk) : Yk×Zk → R are smooth (with Lipschitz continuous gradients)
functions convex in yk ∈ Yk and concave in zk ∈ Zk , and Ψ k(zk) : Zk → R are
Lipschitz continuous convex functions such that the problems of the form

min
zk∈Zk

[
ωk(z

k) + 〈ξ k, zk〉 + αΨ k(z
k)
]

[α > 0] (73)

are easy to solve;
5. Lipschitz continuous convex functions Ψk(yk) : Yk → R such that the problems

of the form

min
yk∈Yk

[
ωk(yk) + 〈ξ k, yk〉 + αΨk(yk)

] [α > 0]

are easy to solve;
6. a norm π∗(·) on E , with conjugate norm π(·), along with a d.g.f. ω̂(·) :

W := {w ∈ E : π(w) ≤ 1} → R compatible with π(·) and is such that problems
of the form

min
w∈W [ω̂(w) + 〈ξ,w〉]

are easy to solve.

The outlined data define the sets

Y+
k =

{
[yk; τ k] : yk ∈ Yk, τ

k ≥ Ψk(y
k)
}

⊂ E+
k := Ek × R, 1 ≤ k ≤ K ,

Z+
k =

{
[zk; σ k] : zk ∈ Zk, σ

k ≥ Ψ k(z
k)
}

⊂ E
+
k := Ek × R, 1 ≤ k ≤ K .

The problem of interest here is problem (63), (72):

Opt = min
[y1;...;yK ]

max
[z1;...;zK ]

{
K∑

k=1

[φk(y
k, zk) + Ψk(y

k)

−Ψ k(z
k)] : π∗

(
K∑

k=1

Ak y
k − b

)
≤ 0,
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[y1; . . . ; yK ] ∈ Y1 × · · · × YK , [z1; . . . ; zk] ∈ Z1 × · · · × ZK

}

= min
{[yk ;τ k ]}Kk=1

max
{[zk ;σ k ]}Kk=1

{
K∑

k=1

[φk(y
k, zk) + τ k

− σ k] : max
w∈W

K∑
k=1

〈Ak y
k − b, w〉 ≤ 0,

{
[yk; τ k] ∈ Y+

k

}K
k=1

,
{
[zk; σ k] ∈ Z+

k

}K
k=1

, w ∈ W

}
. (74)

Solving (74) using the approach in the previous section amounts to resolving a
sequence of problems (Ps) as in (66) where, with a slight abuse of notation,

Y =
{
y =

{
[yk; τ k ]

}K
k=1

: [yk; τ k ] ∈ Y+
k , τ k ≤ Ck , 1 ≤ k ≤ K

}
;

f (y) = max
z={[zk ;σ k ]}Kk=1

⎧⎨
⎩

K∑
k=1

[
φk(y

k , zk) + τ k − σ k
]

: z ∈ Z =
{
[zk; σ k ] ∈ Z+

k

}K
k=1

⎫⎬
⎭ ;

g(y) = max
w

⎧⎨
⎩

K∑
k=1

〈Ak yk − b, w〉 : w ∈ W

⎫⎬
⎭ .

Here Ck ≥ maxyk∈Yk Ψk(yk) are finite constants introduced to make Y compact, as
required in the premise of Proposition 5; it is immediately seen that the magnitudes of
these constants (same as their very presence) does not affect the algorithm B we are
about to describe.

The algorithm B we intend to use will solve (Ps) by reducing the problem to the
saddle point problem

Opt = min
y

max
[z;w]

{
Φ(y, [z;w]) := α

K∑
k=1

[
φk(y

k, zk) + τ k − σ k
]

+ (1 − α)

K∑
k=1

〈Ak y
k − b, w〉 :

y =
{
[yk; τ k]

}K
k=1

∈ Y, [z =
{
[zk; σ k]

}K
k=1

∈ Z; w ∈ W ]
}
,

where α = αs .
Setting

U =
{
u =

[
y1; . . . ; yK ; z1; . . . ; zK ;w

]
: yk ∈ Yk, zk ∈ Zk, 1 ≤ k≤K , w ∈ W

}
,

X =
{ [

u; v = [τ 1; . . . ; τ K ; σ 1; . . . ; σ K ]
]

: u ∈ U, Ψk(y
k) ≤ τ k ≤ Ck,
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Ψ k(z
k) ≤ σ k, 1 ≤ k ≤ K

}
,

X can be thought of as the domain of the variational inequality associated with (75),
the monotone operator in question being

F(u, v) = [Fu(u); Fv],

Fu(u) =
⎡
⎢⎣
{
α∇yφk(yk, zk) + (1 − α)AT

k w
}K
k=1{−α∇zφk(yk, zk)

}K
k=1

(1 − α)[b −∑K
k=1 Ak yk]

⎤
⎥⎦ ,

Fv = α[1; . . . ; 1]. (75)

By exactly the same reasons as in Sect. 4, with properly assembled norm on the
embedding space of U and d.g.f., (75) can be solved by the MP algorithm from
Sect. 3.2. Let us denote

ζ s,t =
[
ŷs,t =

{
[̂yk; τ̂ k]

}K
k=1

∈ Y ; [zs,t ∈ Z;ws,t ∈ W
]]

the approximate solution obtained in course of t = 1, 2, . . . steps of CoMP when
solving (Ps), and let

f̂ ts := max
z∈Z ,w∈W Φ(ŷs,t , [z;w]) = α

K∑
k=1

[ψk(ŷ
k) + τ̂ k] + (1 − α)π∗

(
K∑

k=1

Ak ŷ
k − b

)

be the corresponding value of the objective of (Ps). It holds

f̂ ts − Opt ≤ εSad(ζ
s,t
∣∣Y, Z × W, Φ) ≤ εt := O(1)L/t, (76)

where L < ∞ is explicitly given by the proximal setup we use and by the related
Lipschitz constant of Fu(·) (note that this constant can be chosen to be independent of
α ∈ [0, 1]). We assume that computing the corresponding objective value is a part of
step t (these computations increase the complexity of a step by factor at most O(1)),
and thus that f

t
s ≤ f̂ ts . By (76), the quantity f̂ ts − εt is a valid lower bound on the

optimal value of (Ps), and thus we can ensure that f s,t ≥ f̂ ts − εt . The bottom line is
that with the outlined implementation, we have

f
t
s − f

s,t
≤ εt

for all s, t , with εt given by (76). Consequently, by Proposition (5), the total number
of CoMP steps needed to find a belonging to the domain of the problem of interest
(63) ε-feasible and ε-optimal solution to this problem can be upper-bounded by

O(1) ln

(
3L

ε

)(L
ε

)
,
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where L and L are readily given by the smoothness parameters of φk and by the
proximal setup we use.

5.3 Numerical illustration: �1-minimization

Problem of interest We consider the simple �1 minimization problem

min
x∈X {‖x‖1 : Ax = b} (77)

where x ∈ Rn , A ∈ Rm×n and m < n. Note that this problem can also be written in
the semi-separable form

min
x∈X

{
K∑

k=1

‖xk‖1 :
K∑

k=1

Akxk = b

}

if the data is partitioned into K blocks: x = [x1; x2; . . . ; xK ] and A = [A1, A2,

. . . , AK ].
Our main purpose here is to test the approach described in 5.1 and compare it to the

simplest approach where we directly apply CoMP to the (saddle point reformulation
of the) problem minx∈X [‖x‖1 + R‖Ax − b‖2] with large enough value of R. For the
sake of simplicity, we work with the case when K = 1 and X = {x ∈ Rn : ‖x‖2 ≤ 1}.

Generating the data In the experiments to be reported, the data of (77) were generated
as follows. Given m, n, we first build a sparse solution x∗ by drawing random vector
from the standard Gaussian distribution N (0, In), zeroing out part of the entries and
scaling the resulting vector to enforce x∗ ∈ X . We also build a dual solution λ∗
by scaling a random vector from distribution N (0, Im) to satisfy ‖λ∗‖2 = R∗ for a
prescribed R∗. Next we generate A and b such that x∗ and λ∗ are indeed the optimal
primal anddual solutions to the �1 minimizationproblem (77), i.e. AT λ∗ ∈ ∂

∣∣
x=x∗‖x‖1

and Ax∗ = b. To achieve this, we set

A = 1√
n
F̂n + pqT , b = Ax∗

where p = λ∗
‖λ∗‖22

, q ∈ ∂
∣∣
x=x∗‖x‖1 − 1√

n
F̂nλ∗, and F̂n is am × n submatrix randomly

selected from the DFT matrix Fn . We expect that the larger is the ‖ · ‖2-norm R∗ of
the dual solution, the harder is problem (77).

Implementing the algorithm When implementing the algorithm from Sect. 5.2, we
apply at each stage s = 1, 2, . . . CoMP to the saddle point problem

(Ps) : min
x,τ : ‖x‖2≤1,τ≥‖x‖1

max
w:‖w‖2≤1

{αsτ + (1 − αs)〈Ax − b, w〉} .

The proximal setup for CoMP is given by equipping the embedding space of U =
{u = [x;w] : x ∈ X, ‖w‖2 ≤ 1} with the norm ‖u‖2 =

√
1
2‖x‖22 + 1

2‖w‖22 and

equipping U with the d.g.f. ω(u) = 1
2‖x‖22 + 1

2‖w‖22. In the sequel we refer to the
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Table 5 �1-minimization

n m c Sequential CoMP Simple CoMP

(R∗ = c · n) Steps CPU (s) Steps CPU (s)

1,024 512 1 7,653 18.68 31,645 67.78

5 43,130 44.66 90,736 90.67

10 48,290 49.04 93,989 93.28

4,096 2,048 1 28,408 85.83 46,258 141.10

5 45,825 199.96 93,483 387.88

10 52,082 179.10 98,222 328.31

16,384 8,192 1 43,646 358.26 92,441 815.97

5 48,660 454.70 93,035 784.05

10 55,898 646.36 1,01,881 1,405.80

65,536 32,768 1 45,153 3,976.51 92,036 4,522.43

5 55,684 4,138.62 1,00,341 8,054.35

10 69,745 6,214.18 1,09,551 9,441.46

262,144 1,31,072 1 46,418 6,872.64 96,044 14,456.99

5 69,638 10,186.51 1,09,735 16,483.62

10 82,365 12,395.67 95,756 13,634.60

Platform: ISyE Condor Cluster

resulting algorithm as sequential CoMP. For comparison, we solve the same problem
by applying CoMP to the saddle point problem

(PR) : min
x,τ : ‖x‖2≤1,τ≥‖x‖1

max
w:‖w‖2≤1

{τ + R〈Ax − b, w〉}

with R = R∗; the resulting algorithm is referred to as simple CoMP. Both sequential
CoMP and simple CoMP algorithms are terminated when the relative nonoptimality
and constraint violation are both less than ε = 10−5, namely,

ε(x) := max

{‖x‖1 − ‖x∗‖1
‖x∗‖1 , ‖Ax − b‖2

}
≤ 10−5.

Numerical results are presented in Table 5. One can immediately see that to achieve
the desired accuracy, the simple CoMPwith R set to R∗, i.e., to the exact magnitude of
the true Lagrangian multiplier, requires almost twice as many steps as the sequential
CoMP. In more realistic examples, the simple CoMP will additionally suffer from the
fact that the magnitude of the optimal Lagrange multiplier is not known in advance,
and the penalty R in (PR) should be somehow tuned “online.”

Acknowledgments Research of the first and the third authors was supported by the NSF Grant CMMI-
1232623. Research of the second author was supported by the CNRS-Mastodons Project GARGANTUA,
and the LabEx PERSYVAL-Lab (ANR-11-LABX-0025).
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Appendix 1: Proof of Theorem 1

0o. Let us verify that the prox-mapping (28) indeed is well defined whenever ζ = γ Fv

with γ > 0. All we need is to show that whenever u ∈ U , η ∈ Eu , γ > 0 and
[wt ; st ] ∈ X , t = 1, 2, . . ., are such that ‖wt‖2 + ‖st‖2 → ∞ as t → ∞, we have

rt := 〈η − ω′(u), wt 〉 + ω(wt )︸ ︷︷ ︸
at

+ γ 〈Fv, st 〉︸ ︷︷ ︸
bt

→ ∞, t → ∞.

Indeed, assuming the opposite and passing to a subsequence, we make the sequence rt
bounded. Since ω(·) is strongly convex, modulus 1, w.r.t. ‖ · ‖, and the linear function
〈Fv, s〉 of [w; s] is below bounded on X by A4, boundedness of the sequence {rt }
implies boundedness of the sequence {wt }, and since ‖[wt ; st ]‖2 → ∞ as t → ∞,
we get ‖st‖2 → ∞ as t → ∞. Since 〈Fv, s〉 is coercive in s on X by A4, and γ > 0,
we conclude that bt → ∞, t → ∞, while the sequence {at } is bounded since the
sequence {wt ∈ U } is so and ω is continuously differentiable. Thus, {at } is bounded,
bt → ∞, t → ∞, implying that rt → ∞, t → ∞, which is the desired contradiction
1◦. Recall the well-known identity [9]: for all u, u′, w ∈ U one has

〈V ′
u(u

′), w − u′〉 = Vu(w) − Vu′(w) − Vu(u
′). (78)

Indeed, the right hand side is

[ω(w) − ω(u) − 〈ω′(u), w − u〉] − [ω(w) − ω(u′) − 〈ω′(u′), w − u′〉]
−[ω(u′) − ω(u) − 〈ω′(u), u′ − u〉]

= 〈ω′(u), u − w〉 + 〈ω′(u), u′ − u〉 + 〈ω′(u′), w − u′〉
= 〈ω′(u′) − ω′(u), w − u′〉 = 〈V ′

u(u
′), w − u′〉.

For x = [u; v] ∈ X, ξ = [η; ζ ], let Px (ξ) = [u′; v′] ∈ X . By the optimality condition
for the problem (28), for all [s;w] ∈ X ,

〈η + V ′
u(u

′), u′ − s〉 + 〈ζ, v′ − w〉 ≤ 0,

which by (78) implies that

〈η, u′ − s〉 + 〈ζ, v′ − w〉 ≤ 〈V ′
u(u

′), s − u′〉 = Vu(s) − Vu′(s) − Vu(u
′). (79)

2◦. When applying (79) with [u; v] = [uτ ; vτ ] = xτ , ξ = γτ F(xτ ) =
[γτ Fu(uτ ); γτ Fv], [u′; v′] = [u′

τ ; v′
τ ] = yτ , and [s;w] = [uτ+1; vτ+1] = xτ+1

we obtain:

γτ [〈Fu(uτ ), u
′
τ − uτ+1〉 + 〈Fv, v

′
τ − vτ+1〉] ≤ Vuτ (uτ+1) − Vu′

τ
(uτ+1) − Vuτ (u

′
τ );
(80)
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and applying (79)with [u; v] = xτ , ξ = γτ F(yτ ), [u′; v′] = xτ+1, and [s;w] = z ∈ X
we get:

γτ [〈Fu(u′
τ ), uτ+1 − s〉 + 〈Fv, vτ+1 − w〉] ≤ Vuτ (s) − Vuτ+1(s) − Vuτ (uτ+1).

(81)

Adding (81) to (80) we obtain for every z = [s;w] ∈ X

γτ 〈F(yτ ), yτ − z〉 = γτ [〈Fu(u′
τ ), u

′
τ − s〉 + 〈Fv, v

′
τ − w〉] ≤ Vuτ (s)

−Vuτ+1(s) + γτ 〈Fu(u′
τ ) − Fu(uτ ), u

′
τ − uτ+1〉 − Vu′

τ
(uτ+1) − Vuτ (u

′
τ )︸ ︷︷ ︸

δτ

. (82)

Due to the strong convexity, modulus 1, of Vu(·) w.r.t. ‖ · ‖, Vu(u′) ≥ 1
2‖u − u′‖2

for all u, u′. Therefore,

δτ ≤ γτ‖Fu(u′
τ ) − Fu(uτ )‖∗‖u′

τ − uτ+1‖ − 1

2
‖u′

τ − uτ+1‖2 − 1

2
‖uτ − u′

τ‖2

≤ 1

2

[
γ 2
τ ‖Fu(u′

τ ) − Fu(uτ )‖2∗ − ‖uτ − u′
τ‖2
]

≤ 1

2

[
γ 2
τ [M + L‖u′

τ − uτ‖]2 − ‖uτ − u′
τ‖2
]
,

where the last inequality is due to (23). Note that γτ L < 1 implies that

γ 2
τ [M + L‖u′

τ − uτ‖]2 − ‖u′
τ − uτ‖2 ≤ max

r

[
γ 2
τ [M + Lr ]2 − r2

]
= γ 2

τ M
2

1 − γ 2
τ L

2 .

Let us assume that the stepsizes γτ > 0 ensure that (30) holds, meaning that δτ ≤
γ 2
τ M

2 (which, by the above analysis, is definitely the case when 0 < γτ ≤ 1√
2L

;

when M = 0, we can take also γτ ≤ 1
L ). When summing up inequalities (82) over

τ = 1, 2, . . . , t and taking into account that Vut+1(s) ≥ 0, we conclude that for all
z = [s;w] ∈ X ,

t∑
τ=1

λtτ 〈F(yτ ), yτ − z〉 ≤ Vu1(s) +∑t
τ=1 δτ∑t

τ=1 γτ

≤ Vu1(s) + M2∑t
τ=1 γ 2

τ∑t
τ=1 γτ

,

λtτ = γτ /

t∑
i=1

γi .

��
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Appendix 2: Proof of Lemma 1

Proof All we need to verify is the second inequality in (38). To this end note that
when t = 1, the inequality in (38) holds true by definition of Θ̂(·). Now let 1 < t ≤
N + 1. Summing up the inequalities (82) over τ = 1, . . . , t − 1, we get for every
x = [u; v] ∈ X :

t−1∑
τ=1

γτ 〈F(yτ ), yτ − [u; v]〉 ≤ Vu1(u) − Vut (u) +
t−1∑
τ=1

δτ

≤ Vu1(u) − Vut (u) +
t−1∑
τ=1

δτ

≤ Vu1(u) − Vut (u) + M2
t−1∑
τ=1

γ 2
τ

(we have used (30)). When [u; v] is z∗, the left hand side in the resulting inequality is
≥ 0, and we arrive at

Vut (u∗) ≤ Vu1(u∗) + M2
t−1∑
τ=1

γ 2
τ ,

hence

1

2
‖ut − u∗‖2 ≤ Vu1(u∗) + M2

t−1∑
τ=1

γ 2
τ

hence also

‖ut − u1‖2 ≤ 2‖ut − u∗‖2 + 2‖u∗ − u1‖2 ≤ 4

[
Vu1(u∗) + M2

t−1∑
τ=1

γ 2
τ

]
+ 4Vu1(u∗)

and therefore

‖ut − u1‖ ≤ 2

√√√√2Vu1(u∗) + M2
t−1∑
τ=1

γ 2
t = RN , (83)

and (38) follows. ��
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Appendix 3: Proof of Proposition 3

Proof From (82) and (30) it follows that

∀(x = [u; v] ∈ X, τ ≤ N ) : λτ 〈F(yτ ), yτ − x〉
≤ λτ

γτ

[Vuτ (u) − Vuτ+1(u)] + M2λτγτ .

Summing up these inequalities over τ = 1, . . . , N , we get ∀(x = [u; v] ∈ X):

N∑
τ=1

λτ 〈F(yτ ), yτ − x〉

≤ λ1

γ1
[Vu1(u) − Vu2(u)] + λ2

γ2
[Vu2(u) − Vu3(u)] + · · ·

+λN

γN
[VuN (u) − VuN+1(u)] + M2

N∑
τ=1

λτγτ

= λ1

γ1︸︷︷︸
≥0

Vu1(u) +
[
λ2

γ2
− λ1

γ1

]
︸ ︷︷ ︸

≥0

Vu2(u) + · · · +
[
λN

γN
− λN−1

γN−1

]
︸ ︷︷ ︸

≥0

VuN (u)

−λN

γN
VuN+1(u)︸ ︷︷ ︸

≥0

+M2
N∑

τ=1

λτγτ

≤ λ1

γ1
Θ̂(max[RN , ‖u − u1‖]) +

[
λ2

γ2
− λ1

γ1

]
Θ̂(max[RN , ‖u − u1‖]) + · · ·

+
[
λN

γN
− λN−1

γN−1

]
Θ̂(max[RN , ‖u − u1‖]) + M2

N∑
τ=1

λτγτ ,

= λN

γN
Θ̂(max[RN , ‖u − u1‖]) + M2

N∑
τ=1

λτγτ ,

where the concluding inequality is due to (38), and (40) follows. ��

Appendix 4: Proof of Proposition 5

1o. hs,t (α) are concave piecewise linear functions on [0, 1]which clearly are pointwise
nonincreasing in time. As a result, Gap(s, t) is nonincreasing in time. Further, we have

Gap(s, t) = max
α∈[0,1]

⎧⎨
⎩min

λ

∑
(p,q)∈Qs,t

λpq [α(p − Opt
s,t

) + (1 − α)q] : λpq ≥ 0,

∑
(p,q)∈Qs,t

λpq = 1

⎫⎬
⎭
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= max
α∈[0,1]

∑
(p,q)∈Qs,t

λ∗
pq [α(p − Opt

s,t
) + (1 − α)q]

= max

⎡
⎣ ∑

(p,q)∈Qs,t

λ∗
pq(p − Opt

s,t
),

∑
(p,q)∈Qs,t

λ∗
pqq

⎤
⎦ ,

where λ∗
pq ≥ 0 and sum up to 1. Recalling that for every (p, q) ∈ Qs,t we have

at our disposal ypq ∈ Y such that p ≥ f (ypq) and q ≥ g(ypq), setting ŷs,t =∑
(p,q)∈Qs,t

λ∗
pq ypq and invoking convexity of f, g, we get

f (ŷs,t ) ≤
∑

(p,q)∈Qs,t

λ∗
pq p ≤ Opt

s,t
+ Gap(s, t), g(ŷs,t )

≤
∑

(p,q)∈Qs,t

λ∗
pqq ≤ Gap(s, t);

and (69) follows, due to Opt
s,t

≤ Opt. 2◦. We have f
t
s = αs f (ys,t )+ (1−αs)g(ys,t )

for some ys,t ∈ Y which we have at our disposal at step t , implying that ( p̂ =
f (ys,t ), q̂ = g(ys,t )) ∈ Qs,t . Hence by definition of hs,t (·) it holds

hs,t (αs) ≤ αs( p̂ − Opt
s,t

) + (1 − αs)q̂ = f
t
s − αsOpts,t ≤ f

t
s − f

s,t
,

where the concluding inequality is given by (67). Thus, hs,t (αs) ≤ f
t
s − f

s,t
≤ εt .

On the other hand, if stage s does not terminate in course of the first t steps, αs is well-
centered in the segment Δs,t where the concave function hs,t (α) is nonnegative. We
conclude that 0 ≤ Gap(s, t) = max0≤α≤1 hs,t (α) = maxα∈Δs,t hs,t (α) ≤ 3hs,t (αs).
Thus, if a stage s does not terminate in course of the first t steps, we have Gap(s, t) ≤
3εt , which implies (71). Further, αs is the midpoint of the segment Δs−1 = Δs−1,ts−1 ,
where tr is the last step of stage r (when s = 1, we should define Δ0 as [0, 1]), and αs

is not well-centered in the segmentΔs = Δs,ts ⊂ Δs−1,ts−1 , which clearly implies that
|Δs | ≤ 3

4 |Δs−1|. Thus, |Δs | ≤ ( 34 )s for all s. On the other hand, when |Δs,t | < 1, we
have Gap(s, t) = maxα∈Δs,t hs,t (α) ≤ 3L|Δs,t | (since hs,t (·) is Lipschitz continuous
with constant 3L10 and hs,t (·) vanishes at (at least) one endpoint of Δs,t ). Thus, the
number of stages before Gap(s, t) ≤ ε is reached indeed obeys the bound (70). ��
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