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Abstract The mesh adaptive direct search (Mads) algorithm is designed for black-
box optimization problems subject to general inequality constraints. Currently, Mads
does not support equalities, neither in theory nor in practice. The present work pro-
poses extensions to treat problems with linear equalities whose expression is known.
The main idea consists in reformulating the optimization problem into an equivalent
problem without equalities and possibly fewer optimization variables. Several such
reformulations are proposed, involving orthogonal projections, QR or SVD decom-
positions, as well as simplex decompositions into basic and nonbasic variables. All of
these strategies are studied within a unified convergence analysis, guaranteeing Clarke
stationarity under mild conditions provided by a new result on the hypertangent cone.
Numerical results on a subset of the CUTEst collection are reported.
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2 C. Audet et al.

1 Introduction

In some optimization problems, the objective function, as well as the functions defin-
ing the constraints, may be analytically unknown. They can instead be the result of an
experiment or a computer simulation, and, as a consequence, they may be expensive to
evaluate, be noisy, possess several local optima, and even return errors at a priori feasi-
ble points. Moreover, derivatives are unavailable and cannot be estimated, even when
they exist, and therefore cannot be used for optimization. Derivative-free optimization
(Dfo) methods, and more precisely direct-search methods, are designed to handle these
cases by considering only the function values. From aeronautics to chemical engineer-
ing going through medical engineering and hydrology, these algorithms have several
applications in a wide range of fields. More details about these methods and their appli-
cations in numerous fields are exposed in the book [13] and in the recent survey [4].

The present work proposes a direct-search algorithm for blackbox optimization
problems subject to general inequality constraints, lower and upper bounds, and linear
equalities. Without any loss of generality, we consider only the linear equalities of
the type Ax = 0, where A is known a priori and is a full row rank matrix. A simple
linear translation can be applied to nullify a nonzero right-hand-side. We consider
optimization problems of the following form:

min
x∈Rnx

F(x)

subject to C(x) ≤ 0
Ax = 0
L ≤ x ≤ U,

(1)

where A ∈ R
m×nx is full row rank matrix, L , U ∈ (R ∪ {−∞} ∪ {+∞})nx are bound

vectors, possibly infinite, F : R
nx → R ∪ {+∞} is a single-valued objective function,

C : R
nx → (R∪{+∞})p is a vector of general inequality constraints, and nx , m, p ∈ N

are finite dimensions. Allowing the objective and inequality constraints to take infinite
values is convenient in a minimization context for modeling situations in which the
simulation failed to return a valid value.

An example of such a linear constrained derivative-free problem is exposed in [20].
Even if there is only one linear equality treated with a simple variable substitution, it
suggests that other examples with more linear equalities could emerge from chemical
engineering. Moreover, solving this kind of problem can have applications even to
design more general Dfo algorithms. Indeed, the authors of [8] design such algorithm
for nonlinear constrained blackbox optimization. At each iteration, their method needs
to solve linear equality constrained subproblems.

The objective of the present paper is to treat linear equalities with Mads by using
various reformulations of the problem, seen as a wrapper on the original problem. In
addition, we prove a new result on the hypertangent cone, which allows to extend the
Mads convergence theory.

The document is organized as follows. Section 2 reviews literature about equalities
in Dfo. Section 3 presents the basic framework to transform Problem (1) into a problem
on which Mads can be applied, as well as a proof that, under mild conditions, this
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Linear equalities in blackbox optimization 3

framework inherits the Mads convergence properties. Section 4 then introduces four
classes of transformations implementing the basic framework, and Sect. 5 illustrates
the efficiency of these transformations, as well as some hybrid strategies. We conclude
with a discussion and future work in Sect. 6.

2 Handling linear constraints in Dfo

Derivative-free algorithms may be partitioned into direct-search and model-based
methods. At each iteration, direct-search methods evaluate the functions defining the
problem (the blackbox) at a finite number of points and take decision for the next step
based on these values. In model-based methods, models are constructed to approxi-
mate the blackbox and are then optimized to generate candidates where to evaluate
the blackbox.

The first direct-search algorithm considering linearly constrained problems is pro-
posed by May [32]. It extends Mifflin’s derivative-free unconstrained minimization
algorithm [33], a hybrid derivative-free method combining direct-search ideas with
model-based tools. May’s main contribution is to use positive generators of specific
cones which are approximations of the tangent cones of the active constraints. He
proves both global convergence and superlinear local convergence under assumptions
including continuous differentiability of F . Later, Lewis and Torczon [27] proposed
the generalized pattern search (Gps) algorithm [43] to treat problems subject to linear
inequalities. Under assumptions including continuous differentiability of F and ratio-
nality of the constraints matrix, they show convergence to a KKT point, even in the
presence of degeneracy. Other improvements to deal with degeneracy are proposed
in [3], and similar ideas are given in [30] where the unconstrained Gps algorithm is
adapted with directions in the nullspace of the matrix A. Coope and Price extended
these ideas to a grid-based algorithm [14] by aligning the positive basis with the active
set of linear constraints [39]. These extensions were adapted to the generating set
search (Gss) method [18,23,26,28], which allows a broader selection of search direc-
tions at the expense of imposing a minimal decrease condition in order to accept a
new incumbent solution. The positive basis for Gss at each iteration is chosen in the
nullspace of active equality constraints. This approach reduces the dimension of the
problem, because the search directions at each iteration are contained in a subspace.
References [22] and [29] present an algorithm for differentiable nonlinear problems
with nonlinear equality and inequality constraints. An augmented Lagrangian method
is adapted in the Gss framework, which provides a special treatment for linear con-
straints. This method for differentiable equalities and inequalities was first proposed
in a trust-region context in [11]. These ideas are implemented in the HOPSPACK
software package [36].

The subject of equality constraints in derivative-free optimization was previously
addressed. The approach suggested in the current paper is quite close to the one of [15],
where the problem to be solved includes general equality constraints, implicitly treated
as defining a manifold. The author of [15] explicitly mentions the usefulness of the
proposed procedure to allow the extension of Mads to deal with equality constraints
and discusses the benefits of reducing the problem dimension. The current work is

123



4 C. Audet et al.

focused on linear equalities, rather than general equality constraints, which simplifies
the analysis and presentation. In [31], Martinez and Sobral propose a direct-search
algorithm which can treat equality constraints by relaxing them into two inequalities,
resulting in a narrow domain. Finally, [42] extends Mads to handle sphere equality
constraints.

Derivative-free trust-region methods are a class of model-based algorithms, using
regression or interpolation. The theory considers no constraints but it can be easily
adapted to bound and linearly constrained problems [13]. Moreover, the equalities are
used to reduce the degrees of freedom of the problem [12]. In the LINCOA package [37,
38], Powell proposes an implementation of a derivative-free trust-region algorithm
considering linear inequality contraints by using an active set method. Finally, in [41]
Sampaio and Toint propose an algorithm treating general equality constraints by using
a trust-funnel method [17].

The mesh adaptive direct search (Mads) algorithm [5] is a direct-search method
generalizing Gps and designed for bound-constrained blackbox problems. Its conver-
gence analysis is based on the Clarke calculus [10] for nonsmooth functions. Inequali-
ties including linear constraints are treated with the progressive barrier technique of [6],
and equality constraints are not currently supported. The idea exposed in Sect. 3 is to
treat linear equalities by designing a wrapper and a converter to transform the initial
Problem (1) into a problem on which Mads can be applied.

3 Reformulations without linear equalities

The approach proposed in the present work consists of reformulating Problem (1) by
eliminating the linear constraints Ax = 0, and then by applying the Mads algorithm
to the reformulation. The following notation is used throughout the paper. Let S =
{x ∈ R

nx : Ax = 0} denote the nullspace of the matrix A, and �x = {x ∈ S :
C(x) ≤ 0, L ≤ x ≤ U } the set of feasible solutions to Problem (1).

A straightforward suggestion is to transform the linear equality Ax = 0 into two
inequalities, and to include them to the inequality constraints C(x) ≤ 0, as suggested
in the LINCOA package [37,38]. However, this method is unsuitable in our context
for both theoretical and practical issues. First, existing convergence analysis of Mads
would be limited to its most basic result. The convergence analysis of Mads leading
to Clarke stationarity requires that the hypertangent cone to the feasible set �x is non-
empty at some limit point (Sect. 3.3 of the present document presents the definition
of the hypertangent cone relative to a subspace). However, in the presence of linear
equalities, the hypertangent cone is necessarily empty for every x ∈ R

nx . This is true
because the hypertangent cone is an open set [10] and therefore it is either empty
or its dimension equals nx . Second, almost all evaluations will occur outside of the
linear subspace S. The extreme barrier [5] will reject these points, or the progressive
barrier [6] will invest most of its effort in reaching feasibility rather than improving the
objective function value. This explains that splitting an equality into two inequalities
fails in practice, as observed in [8]. In addition, with such reformulations, Mads fails
to find a feasible point for all the problems tested in Sect. 5.
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Linear equalities in blackbox optimization 5

The ideas introduced for Gps and Gss as described in the previous section could
also be implemented in Mads. Instead of choosing orthogonal positive bases in the
entire space R

nx to generate the mesh in Mads, it is possible to choose a positive basis
of S, and to complete it by directions in R

nx \ S in order to obtain a positive basis of
R

nx . These directions would be pruned by the algorithm because they generate points
outside of S. Some of the strategies presented in Sect. 4 can be seen as particular
instantiations of this approach. However, we prefer to view them from a different
perspective.

3.1 Inequality constrained reformulation

In order to reformulate Problem (1) into an inequality constrained optimization prob-
lem over a different set of variables in R

nz , we introduce the following definition.

Definition 3.1 A converter ϕ is a surjective linear application from R
nz to S ⊂ R

nx ,
for some nz ∈ N. For any x ∈ S, there exists an element z ∈ R

nz such that x = ϕ(z).

By definition, a converter ϕ is continuous, and any z ∈ R
nz is mapped to an

x = ϕ(z) ∈ R
nx that satisfies the linear equalities Ax = 0. Since dim S is equal to

nx − m, it follows that nz ≥ nx − m. Furthermore, nz equals nx − m if and only if the
converter is bijective.

A converter ϕ is used to perform a change of variables, and to reformulate Prob-
lem (1) as follows:

min
z∈Rnz

f (z)

subject to c(z) ≤ 0
L ≤ ϕ(z) ≤ U.

(2)

where f : R
nz → (R ∪ {+∞}) and c : R

nz → (R ∪ {±∞})p are defined by:

f (z) = F(ϕ(z)) and c(z) = C(ϕ(z)).

Let �z = {z ∈ R
nz : c(z) ≤ 0 and L ≤ ϕ(z) ≤ U } denote the set of feasible solutions

for the reformulated Problem (2). The following proposition details the connection
between the sets of feasible solutions for both sets of variables x and z.

Proposition 3.2 The image of �z by the converter ϕ is equal to �x , and the preimage
of �x by converter ϕ is equal to �z:

�x = ϕ(�z) and �z = ϕ−1(�x ) := {z ∈ R
nz : ϕ(z) ∈ �x }.

Proof By construction we have ϕ(�z) ⊂ �x = {x ∈ S : C(x) ≤ 0, L ≤ x ≤ U }. In
addition, as ϕ is surjective, for any x ∈ �x ⊂ S, there exists some z ∈ R

nz such that
ϕ(z) = x . Since x belongs to �x , it follows that C(ϕ(z)) ≤ 0 and L ≤ ϕ(z) ≤ U .
Therefore, z ∈ �z and x ∈ ϕ(�z). This implies that �x ⊂ ϕ(�z).
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6 C. Audet et al.

Conversely, as �x is equal to ϕ(�z) and by the definition of the preimage, we have
�z ⊂ ϕ−1(�x ). Moreover, if z ∈ ϕ−1(�x ), then ϕ(z) ∈ �x and z ∈ �z . This implies
that ϕ−1(�x ) ⊂ �z . 	


The converter is a generalization of variable elimination techniques used for linear
constraints, as described for example in Chapter 21 and 22 of [24] and in Chapter
15 of [35]. The classes of converters defined in Sect. 4 use matrix decomposition
techniques presented in [24] and [35], in other optimization contexts.

3.2 Applying Mads on a reformulation

The converter is used to construct a wrapper around the original optimization problem
so that the Mads algorithm is applied to the reformulated one. Figure 1 illustrates
the application of the Mads algorithm to Problem (2). Mads proposes trial points
z ∈ R

nz , which are converted into x = ϕ(z) belonging to the nullspace S. If x is
within the bounds of the original optimization problem, then the blackbox simulation
is launched to evaluate F(x) and C(x). Otherwise, the cost of the simulation is avoided
and F(x) and C(x) are arbitrarily set to an infinite value. In both cases, the outputs
are assigned to f (z) and c(z), and returned to the Mads algorithm.

The Mads algorithm can be applied to Problem (2) and the constraints can be
partitioned into two groups. The constraint functions c(z) are evaluated by launching
the blackbox simulation; the constraints L ≤ ϕ(z) ≤ U are checked a priori, before
executing the blackbox. When these constraints are not satisfied for a given z ∈ R

nz ,
the cost of launching the blackbox is avoided.

A preprocessing phase can be executed to delimit more precisely the domain �z .
For each i ∈ {1, 2, . . . , nz}, solving the following linear programs yields valid lower
and upper bounds �, u ∈ (R ∪ {−∞} ∪ {+∞})nz on z:

Fig. 1 The converter ϕ allows the construction of a wrapper around the original blackbox
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Linear equalities in blackbox optimization 7

�i = min
{

zi : L ≤ ϕ(z) ≤ U, z ∈ R
nz

}
,

ui = max
{

zi : L ≤ ϕ(z) ≤ U, z ∈ R
nz

}
.

Thus, the problem that Mads considers in practice, equivalent to Problems (1)
and (2), is the following:

min
z∈Rnz

f (z)

subject to c(z) ≤ 0
L ≤ ϕ(z) ≤ U
� ≤ z ≤ u.

(3)

The feasible set for this problem is �z , as for Problem (2). The difference is that the
bounds � and u may be used by Mads to scale the variables.

3.3 Convergence analysis

The fundamental convergence result [5] of Mads studies some specific accumulation
points of the sequence of trial points in R

nz . In the proposed approach, the original
problem is formulated in Rnx , but the algorithm is deployed in R

nz . Our convergence
analysis consists in transposing the theoretical results from R

nz to the nullspace S ⊂
R

nx , which contains the entire sequence of trial points.
We use superscripts to distinguish vector spaces. For example, if E is a normed

vector space like R
nz , R

nx , or S, we will denote the open ball of radius ε > 0 centred
at x ∈ E by:

B E
ε (x) :=

{
y ∈ E : ||y − x || < ε

}
.

The convergence analysis relies on the following definition of the Clarke derivative
taken from [21] and adapted with our notations.

Definition 3.3 Let � be a nonempty subset of a normed vector space E , g : � −→ R

be Lipschitz near a given x ∈ �, and let v ∈ E . The Clarke generalized derivative at
x in the direction v is:

g◦(x; v) := lim sup
y → x, y ∈ �

t ↓ 0, y + tv ∈ �

g(y + tv) − g(y)

t
. (4)

An important difference with previous analyses of Mads is that E may be a strict
subset of a greater space. For example, in our context, E corresponds to the nullspace
S, strictly contained in R

nx , and R
nx is the native space of the original optimization

problem.
The next definition describes the hypertangent cone T H

� (x) to a subset � ⊆ E at
x , where E is a normed vector space, as given by Clarke [10].
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8 C. Audet et al.

Definition 3.4 Let � be a nonempty subset of a normed vector space E . A vector
v ∈ E is said to be hypertangent to the set � at the point x ∈ � if there exists a scalar
ε > 0 such that:

y + tw ∈ � for all y ∈ B E
ε (x) ∩ �, w ∈ B E

ε (v) and 0 < t < ε. (5)

The set of hypertangent vectors to � at x is called the hypertangent cone to � at x
and is denoted by T H

� (x).

A property of the hypertangent cone is that it is an open cone in the vector space
E . The convergence analysis below relies on the assumption made for the Mads
convergence analysis (see [5] for more details). The following theorem asserts that
hypertangent cone mapped by the converter ϕ coincides with the hypertangent cone
in the nullspace S at the point mapped by ϕ.

Theorem 3.5 For every z ∈ �z , the hypertangent cone to �x at x = ϕ(z) in R
nz is

equal to the image by ϕ of the hypertangent cone to �z at z in S. In other words,

T H
�x

(
ϕ(z)

)
= ϕ

(
T H

�z
(z)

)
.

Proof The equality is shown by double inclusion. Both inclusions use the linearity of
the converter ϕ and Proposition 3.2. The first inclusion is based on the continuity of ϕ

while the second requires the open mapping theorem [40]. The cases T H
�x

(ϕ(z)) = ∅
and T H

�z
(z) = ∅ are trivial. In the following, let z be an element of the nonempty set

�z .
First inclusion proof. Let v ∈ T H

�x
(ϕ(z)) ⊆ S be an hypertangent vector to �x , and

let d ∈ R
nz be such that ϕ(d) = v. We show that d is hypertangent to �z at z. By

Definition 3.4, choose ε > 0 such that:

y + tw ∈ �x for all y ∈ BS
ε (ϕ(z)) ∩ �x , w ∈ BS

ε (ϕ(d)) and 0 < t < ε.

(6)
Continuity of ϕ and Proposition 3.2 allow to select ε1 > 0 and ε2 > 0 sufficiently
small so that:

ϕ
(

BR
nz

ε1
(z) ∩ �z

)
⊂

(
BS

ε (ϕ(z)) ∩ �x

)
and ϕ

(
BR

nz

ε2
(d)

)
⊂ BS

ε

(
ϕ(d)

)
.

Let define εmin := min{ε1, ε2, ε}, r ∈ (
BR

nz
εmin

(z) ∩ �z
)
, s ∈ BR

nz
εmin

(d), and 0 < t <

εmin. It follows that y := ϕ(r) ∈ (
BS

ε (ϕ(z)) ∩ �x
)

and w := ϕ(s) ∈ BS
ε (ϕ(d)). Thus,

Assertion (6) and linearity of ϕ ensure that:

ϕ(r + ts) = ϕ(r) + tϕ(s) = y + tw ∈ �x .

Finally, since �z = ϕ−1(�x ), it follows that r + ts ∈ �z . Definition 3.4 is satisfied
with r, s, t and εmin and therefore d ∈ T H

�z
(z) implies that v = ϕ(d) ∈ ϕ(T H

�z
(z)).
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Linear equalities in blackbox optimization 9

Second inclusion proof. Let d ∈ T H
�z

(z) be an hypertangent vector to �z at z. We show

that ϕ(d) ∈ ϕ(T H
�z

(z)) is hypertangent to �x at ϕ(z). By Definition 3.4, choose ε > 0
such that:

r + ts ∈ �z for all r ∈ BR
nz

ε (z) ∩ �z, s ∈ BR
nz

ε (d) and 0 < t < ε.

The open mapping theorem [40] ensures that there exist ε1 > 0 and ε2 > 0 such that:

BS
ε1

(ϕ(z)) ⊂ ϕ
(

BR
nz

ε (z)
)

and BS
ε2

(ϕ(d)) ⊂ ϕ
(

BR
nz

ε (d)
)
.

Define εmin := min{ε1, ε2, ε}, and let

y ∈
(

BS
εmin

(ϕ(z)) ∩ �x

)
, w ∈ BS

εmin
(ϕ(d)) and 0 < t < εmin.

By the choice of εmin, it follows that y belongs to both sets ϕ(BR
nz

ε (z)) and �x .
Consequently, there exists an r ∈ BR

nz
ε (z) such that y = ϕ(r), which also belongs to

�z = ϕ−1(�x ) since ϕ(r) ∈ �x . Let s ∈ BR
nz

ε (d) be such that w = ϕ(s). Applying
the converter ϕ yields:

y + tw = ϕ(r) + tϕ(s) = ϕ(r + ts) ∈ �x

since r + ts ∈ �z . Definition 3.4 is satisfied with y, w, t and εmin, and therefore
ϕ(d) ∈ T H

�x
(ϕ(z)). 	


In our algorithmic framework, we apply the Mads algorithm to Problem (3) which
is an equivalent reformulation of Problem (1). We use the standard assumptions [2,5]
that the sequence of iterates produced by the algorithm belongs to a bounded set, and
that the set of normalized polling directions is asymptotically dense in the unit sphere.
The Mads convergence analysis [5] gives conditions ensuring the existence of a refined
point, i.e., a cluster point of the sequence of trial points at which f ◦(z∗; v) ≥ 0 for
every hypertangent direction v ∈ T H

�z
(z∗), provided that f is locally Lipschitz near

z∗. However, this result holds on the reformulated problem, and is not stated using the
notations of the original equality constrained problem. The following theorem fills the
gap by stating the main convergence result for Problem (3).

Theorem 3.6 Let x∗ be the image of a refined point z∗ produced by the application
of Mads on Problem (3): x∗ = ϕ(z∗). If F is locally Lipschitz near x∗, then:

F◦(x∗; v) ≥ 0 for all v ∈ T H
�x

(x∗).

Proof Let z∗ be a refined point produced by the application of Mads to Problem (3)
and set x∗ := ϕ(z∗) be the corresponding point in the original space of variables.

Let v ∈ T H
�x

(x∗) = T H
�x

(ϕ(z∗)) be an hypertangent direction at x∗. By Proposi-

tion 3.5, let d ∈ T H
�z

(z∗) be such that ϕ(d) = v.
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10 C. Audet et al.

If F is locally Lipschitz near x∗, and since ϕ is a linear application, then the
definition of f (z) = F(ϕ(z)) ensures that f is locally Lipschitz near z∗. The Mads
convergence result holds: f ◦(z∗; d) ≥ 0. By Definition (4), let tk → 0 be a sequence
in R, and rk → z∗ and sk → d be two sequences such that both rk and rk + tksk

belong to �z and:

f (rk + tksk) − f (rk) ≥ 0 for every k ∈ N.

The converted sequence {yk} := {ϕ(rk)} and {wk} := {ϕ(sk)} converge respectively
to x∗ and v, and satisfy for every k ∈ N:

f (rk + tksk) − f (rk) ≥ 0 ⇐⇒ F(ϕ(rk + tksk)) − F(ϕ(rk)) ≥ 0

⇐⇒ F(yk + tkwk) − F(yk) ≥ 0.

which shows that F◦(x∗; v) ≥ 0. 	

Corollaries of this theorem can be developed as in [5] by analyzing smoother objec-

tive functions, or by imposing more conditions on the domain �z . For example, by
imposing strict differentiability of F near x∗ and by imposing that �x is regular and
that the hypertangent cone is nonempty, then one can show that x∗ is a contingent
KKT stationary point of F over �x .

4 Different classes of transformations

A converter is a surjective linear application. In this section, we present four different
converters based on an orthogonal projection, SVD and QR decompositions, and
a simplex-type decomposition that partitions the variables into basic and non-basic
variables, as exposed in [35]. For each converter, we describe the ϕ function and show
that it maps any vector onto the nullspace S.

4.1 Orthogonal projection

Define ϕP : R
nx → S as the orthogonal projection of the matrix A into the nullspace

S. For each z ∈ R
nx , define:

ϕP (z) := (I − A+ A)z ∈ S ⊂ R
nx

where A+ = AT (AAT )−1 is the pseudoinverse of A. The inverse of AAT exists
because A is of full row rank. If x = ϕP (z), then:

Ax = A(I − A+ A)z = (A − AAT (AAT )−1 A)z = 0

which confirms that x ∈ S. For this converter, nz = nx .
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4.2 QR decomposition

The QR decomposition of the matrix AT ∈ R
nx ×m is AT = Q R, where Q ∈ R

nx ×nx

is an orthogonal matrix and R ∈ R
nx ×m is an upper triangular matrix. Furthermore,

AT = (
Q1 Q2

) (
R1
0

)

where Q1 ∈ R
nx ×m and Q2 ∈ R

nx ×(nx −m) are composed of orthonormal vectors, and
R1 ∈ R

m×m is an upper triangular square matrix. Finally, 0 corresponds to the null
matrix in R(nx −m)×m . For all z ∈ R

nx −m , the converter ϕQ R : R
nx −m → S is defined

as:

ϕQ R(z) := Q2z.

If x = ϕQ R(z), and since Q is an orthogonal matrix, then

Ax = (
RT

1 0T
) (

QT
1

QT
2

)
Q2z = (

RT
1 0T

) (
0
I

)
z = 0

which shows that x ∈ S. For this converter, nz = nx − m.

4.3 SVD decomposition

Unlike the diagonalization which cannot be applied to every matrix, Singular Value
Decomposition (SVD) is always possible. The full row rank matrix A of Problem (1)
can be decomposed in A = W�V T where W ∈ R

m×m and V ∈ R
nx ×nx are unitary

matrices, and � can be written as:

� =
⎛
⎜⎝

σ1 · · · 0 0 · · · 0
...

. . .
... 0 · · · 0

0 · · · σm 0 · · · 0

⎞
⎟⎠ ∈ R

m×nx

for some positive scalars σi , i ∈ {1, 2, . . . , m}. Since W and V are unitary matrices,
then W −1 = W T and V −1 = V T . For all z ∈ R

nx −m , the converter ϕSV D : R
nx −m → S

is defined as:

ϕSV D(z) := V

(
0m

z

)

where 0m is the null vector in R
m . If x = ϕSV D(z), then:

Ax = W�V T V

(
0m

z

)
= W�

(
0m

z

)
= 0

and therefore x ∈ S. For this converter, nz = nx − m.
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12 C. Audet et al.

4.4 BN decomposition

This fourth converter uses the simplex-type decomposition into basic and nonbasic
variables. It reduces Problem (1) to one with dimension nx − m. The full row rank
matrix A has more columns than rows. Let IB and IN form a partition of the columns
of A such that B = (Ai )i∈IB is a nonsingular m × m matrix, and N = (Ai )i∈IN is a
m × (nx − m) matrix. The vector x is partitioned in the same way:

A = [B N ] and x =
(

xB

xN

)

where xB = {xi : i ∈ IB} is of dimension m and xN = {xi : i ∈ IN } of dimension
nx −m. For any nonbasic variable xN ∈ R

nx −m , setting xB = −B−1 N xN implies that
x satisfies the linear equalities. For all z ∈ R

nx −m , the converter ϕB N : R
nx −m → S

is defined as:

ϕB N (z) :=
(−B−1 N z

z

)
,

and if x = ϕB N (z), then

Ax = [B N ]
(−B−1 N z

z

)
= −B B−1 N z + N z = 0

which confirms that x ∈ S. The optimization problem on which Mads is applied has
nz = nx − m variables and can be written as follows:

min
z∈Rnz

fB N (z)

subject to cB N (z) ≤ 0
L ≤ ϕB N (z) ≤ U

(7)

where fB N (z) = F(ϕB N (z)) and cB N (z) = C(ϕB N (z)). Note that the choice of
matrices (B, N ) is not unique.

4.5 Comments on the converters

The converters presented above reduce the dimension of the space of variables on
which Mads is applied from nx to nz = nx − m, where m is the number of lin-
ear equalities, except for the orthogonal projection technique of Sect. 4.1 for which
the dimension remains nx . The projection is also the only transformation that is not
bijective. For the first three converters (P, QR and SVD), the bounds L ≤ x ≤ U
are translated into linear inequalities, which are treated as a priori constraints, as
shown in Fig. 1. The BN decomposition partitions the variables as basic and non-
basic variables, and optimizes over the nonbasic ones. Therefore, their bounds are
simply Li ≤ zi ≤ Ui , for i ∈ {1, 2, . . . , nz}. Moreover, these first three converters
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Linear equalities in blackbox optimization 13

Table 1 Description of the 10 CUTEst analytical problems

Name nx m n Lower
bounds

Upper
bounds

Linear
ineq.

Quad.
ineq.

HS48 5 2 3 0 0 0 0

HS49 5 2 3 0 0 0 0

HS51 5 3 2 0 0 0 0

HS53 5 3 2 5 5 0 0

HS112 10 3 7 10 0 0 0

HS119 16 8 8 16 16 0 0

DALLASS 46 301 16 46 46 0 0

LOADBAL 31 11 20 20 11 20 0

AVION2 49 15 34 49 49 0 0

PRODPl0 60 20 40 60 0 5 42

1 The original matrix of constraints has 31 rows but a rank of 30
2 The formulation contains four quadratic constraints that can be formulated as linear constraints. We
consider the quadratic formulation to execute our algorithms

are uniquely determined. However, there are exponentially many ways to partition
the variables into basic and nonbasic ones. A practical way to identify a partition is
described in Sect. 5.2 of the numerical experiments.

5 Implementation and numerical results

This section presents the implementation and numerical experiments of the strategies
for handling the linear equalities. First, the set of test problems is presented. Then, the
four converters are compared. Finally, strategies combining different converters are
proposed. All initial points considered in this section are publicly available at https://

www.gerad.ca/Charles.Audet/publications.html.

5.1 Numerical testbed

We consider 10 problems from the CUTEst collection [16] including 6 from the
Hock & Schittkowski collection [19] and 4 others tested in [23,26,28,29]. The degree
of freedom n ranges from 2 to 40, which is representative of the degree of freedom
that Dfo algorithms can usually solve. Most problems have bounds, and two of them
have linear inequality constraints. Linear inequalities are treated a priori, similarly
to the bounds in Fig. 1. One problem has quadratic inequality constraints. Names,
dimensions and information on these analytical problems are summarized in Table 1.

For each problem, 100 different initial feasible points are randomly generated,
yielding a total of 1,000 instances. Each instance is treated with a maximal budget of
100 (n+1) objective function evaluations where n = nx − m is the degree of freedom.
The value 100 (n+1) is typical of the number of evaluations used for plotting data
profiles in Dfo tests, as in [7].
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Fig. 2 Execution of the BN algorithm on the HS119 problem with 900 evaluations

In the next subsections, data profiles [34] are plotted to analyse the results. These
graphs compare a set of algorithms on a set of instances for a relative tolerance α ∈
[0; 1]. Each algorithm corresponds to a plot where each couple (x, y) indicates the
proportion y of problems solved within the relative tolerance α after x groups of n +1
evaluations. The relative tolerance α is used to calculate the threshold below which
an algorithm is considered to solve a specific instance successfully. This threshold is
defined as the best value obtained for this instance by any algorithm tested, with an
added allowance of α multiplied by the improvement between the initial value and
that best value. The value of α used in this section is set to 1 %.

The NOMAD [1,25] (version 3.6.0) and HOPSPACK [36] (version 2.0.2) software
packages are used with their default settings, except for the following: the use of models
in NOMAD is disabled, and the tolerance for the stopping criteria in HOPSPACK is set
to 1E-13, which is comparable to the equivalent NOMAD parameter. In HOPSPACK,
the Gss algorithm named citizen 1 is considered.

5.2 BN analysis and implementation

There can be up to
(

nx

m

)
different partitions (IB, IN ) of matrix A, and every choice

is not equivalent in practice. To illustrate this observation, we consider the HS119
problem with the starting point suggested in [19] using all 12,464 feasible partition
schemes. Nocedal and Wright [35] suggest to partition the matrix in a way so that
B is well-conditioned. Figure 2 plots the final objective function values produced by
these executions after 900 objective function evaluations versus the condition number
of the nonsingular matrix B, using a logarithmic scale. Most partitions of the matrix
A lead to final objective function values far away from the optimal. This suggests that
arbitrarily choosing a partition may lead to unsatisfactory solutions.
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Linear equalities in blackbox optimization 15

The figure also reveals a trend that the quality of the solution increases when the
condition number decreases. If the condition number exceeds 103, then the algorithm
always fails to approach the optimal solution within the available budget of evaluations.
However, even when the condition number of B is small, the final solution may be far
from the optimal. This suggests that it is necessary but not sufficient to have a small
condition number.

In order to analyze the impact of the partition choice, we need to discuss the way
that the Mads algorithm handles simple bounds. Mads is applied to the reformulated
Problem (3), in which the redundant bounds � and u on z are made explicit. During
the course of optimization, when Mads produces a trial point outside of these bounds,
the corresponding value zi is projected back to the boundary of the interval [�i ; ui ]. In
the NOMAD implementation, this option is called SNAP_TO_BOUNDS. With the BN
converter, this happens only for the nonbasic variables which possess explicit bounds.

For HS119, 5 variables out of 16 are at one of their bounds in the optimal solution
x∗. Let A := {i ∈ {1, 2, . . . , nx } : x∗

i = Li or x∗
i = Ui } denote the set of indices of

active bounds. The cardinality |IN ∩ A| represents the number of variables in IN that
are active at the solution x∗ for the choice of the partition (B, N ). Recall that IN is
the set of nz indices of the nonbasic variables of Problem (7). In the current problem,
|A| = 5 and |IN ∩ A| belongs to {0, 1, . . . , 5}.

Figure 3 plots the final objective function value with respect to the condition number
of B for each value of |IN ∩ A|. The six plots illustrate the importance of the value
|IN ∩ A|. When |IN ∩ A| = 5, all variables with an active bound are handled directly
by Mads, and all runs converge to the optimal solution when the condition number is
acceptable. As |IN ∩ A| decreases, the number of failed runs increases rapidly, even
when the condition number is low.

Indices of active bounds at the solution as well as the condition number should influ-
ence the choice of the partition (IB, IN ). However, optimizing the condition number is
an NP-hard problem [9], and when solving an optimization problem from a starting
point x0, one does not know which bounds will be active at the optimal solution. More
elaborate solutions overcoming these difficulties are proposed in Sect. 5.4 but a first
method is proposed below.

The indices of the variables are sorted in increasing order with respect to the distance
of the starting point to the bounds. Thus, the last indices of the ordered set will
preferentially be chosen to form IB . More precisely, the index i appears before j if
the distance from x0

i to its closest bound is more than or equal to the distance from x0
j

to its closest bound. When both bounds are finite, the distances are normalized by the
distance between these bounds. Variables with only one finite bound come after the
variables with two bounds in the sorted set. Ties are broken arbitrarily.

The columns of A are sorted in the same order as the indices of the variables and
the following heuristic is applied to take into account the condition number. Construct
a nonsingular matrix B ′ of m independent columns of A by adding the last columns of
the order set. Then let c be the next column of the ordered set that does not belong to
B ′. Define B to be the m ×m nonsingular matrix composed of columns of B ′ ∪{c} that
has the smallest condition number. This requires to compute m condition numbers.
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Fig. 3 Final objective value for HS119 after 900 evaluations versus the condition number. Each point
represents a partition (IB , IN ). Different graphics correspond to different values of |IN ∩A| ∈ {0, 1, . . . , 5}

5.3 Comparison of the four converters with HOPSPACK

A first set of numerical experiments compares the four converters BN, QR, SVD and
P to the HOPSPACK software package on the 1,000 instances. In the case of the
algorithm BN, the partition into the matrices B and N is done by considering the
initial points and bounds, as explained in Sect. 5.2. A more extensive analysis of BN
is presented in Sect. 5.4.

Comparison of the different converters with HOPSPACK is illustrated in Fig. 4.
The converter ϕP associated to the projection is dominated by all other strategies. This
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Fig. 4 Data profiles with a relative tolerance of 0.01 for 10 problems and 100 different starting points

is not surprising since the projection does not reduce the size of the space of variables
in which the optimization in performed.

When the number of function evaluations is low, it seems that HOPSPACK per-
forms better than the other methods. However, inspection of the logs reveals that this
domination is exclusive to the smallest problems, for which HOPSPACK does very
well. For the larger ones, QR, SVD and BN perform better than HOPSPACK.

The figure also reveals that BN, QR and SVD classes of converters outperform the
projection, but it is not obvious to differentiate them. The next section proposes a way
to combine these converters.

5.4 A two-phase algorithm

The partition choice with the BN converter is crucial. Ideally, the partition should be
chosen by considering the active variables at the unknown optimal solution. This sec-
tion proposes a new strategy for the choice of the partition (IB, IN ) by performing the
optimization in two phases. The main idea is to initiate a descent from the starting point
x0 during a first phase, denoted Phase 1 with one of the QR, SVD or BN converters.
This phase is executed with a fraction of the overall budget of function evaluations.
After Phase 1, decisions are taken to choose the partition (IB, IN ) depending on
the best solution x1 produced by Phase 1. Then a second phase, called Phase 2,
launches an optimization with the corresponding BN converter using the remaining
budget of function evaluations.

The point x1 is a better candidate than x0 to start an algorithm with the BN converter.
In addition, it is possible to estimate which variables approach one of their bounds
by studying the improvement performed by Phase 1 from x0 to x1. Thereby, unlike
the choice made in Sect. 5.2 to rank the distances of each variable to its bounds, we
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Initialization
Initial point x0 ∈ Ωx

Converter ϕ ∈ {ϕQR, ϕSV D, ϕBN}
Evaluations budget η1 and η2 for each phase

Phase 1
Execute MADS with converter ϕ
Best value after η1 evaluations: x1

Choice of partition (B, N)
if x0 = x1

Apply rule presented in Section 5.2
else

Compute {di}i∈ nx (8)
Rank the variables in a decreasing order of the di

Build B as described in the heuristic in Section 5.2
Scaling

Compute the scale s as in (9)
Phase 2

Execute MADS with the corresponding BN converter
with scale s on the variables
Best value after η2 evaluations: x2

Fig. 5 Two-phase algorithm

consider the value |x0
i − x1

i | for each index i . Moreover, this choice provides some
scaling information to NOMAD for a more efficient Phase 2.

The classes of converters used for Phase 1 and the proportions of evaluations for
each phase are chosen based on numerical experiments in Sect. 5.5. The two-phase
algorithm is summarized in Fig. 5. A detailed description of the ranking method used
for the choice of (B, N ) and the decision rules to determine the scale s are presented
below.

In the unlikely situation where x1 = x0, we apply the rule as defined in 5.2 to
choose the partition. Otherwise, we apply the following rule. The only differences
between this new rule and the former one is the notion of distance used to rank the
variables in a decreasing order. For every i ∈ R

nx , a relative distance di is calculated
for x1

i , normalized by |x0
i − x1

i | when it is non-zero.

di =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞ if xi has no finite bounds
or if x0

i = x1
i when xi is different from its bounds;

|x1
i −bi |

|x0
i −x1

i | if x0
i �= x1

i and x0
i has at least a finite bound,

and bi is its nearest bound;
0 if x1

i is equal to one of its bounds.

(8)
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Fig. 6 Data profiles for ponderation 50–50

The process to determine the scale s is based on the same idea used for the relative
distances di . For every index i , |x0

i − x1
i | provides scaling information on the variable

xi , and the scale si is computed with the following method:

si =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x0
i = x1

i and xi has no finite bound,

or if x0
i = x1

i and xi is equal to one of its bounds;
1

10 |x1
i − bi | if x0

i = x1
i and xi has at least one finite bound,

xi is different from its bounds andbi is its nearest bound;
1

10 |x1
i − x0

i | if x0
i �= x1

i .

(9)

In summary, Phase 2 solves the reformulated problem using the BN converter and
scales the variables using the parameter s.

5.5 Comparison of different two-phase strategies

This section compares two-phase strategies with different converters in Phase 1 and
different ponderations between the two phases.

For each class of converters QR, SVD and BN (set with the former rule defined in
Sect. 5.2), we tested the two-phase strategy with the ponderation 50–50, which means
that the total budget of 100 (n+1) evaluations is equally shared between Phase 1 and
Phase 2. Figure 6 reveals how the changement between each phase is beneficial, and
we notice that Phase 1 works better with SVD.

For Phase 1 using the SVD converter, different ponderations are compared in
Fig. 7. These data profiles show that the best ponderation is 50–50. A too short Phase 1
step is inefficient because it does not lead to a good choice of BN, while a longer
Phase 1 may waste evaluations.
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Fig. 7 Data profiles for Phase 1 with SVD, with different ponderations
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Fig. 8 Data profiles comparing the best two-phase strategy with the previous single-phase strategies

The last comparison shown in Fig. 8 is between the best two-phase strategy SVD:50-
BN:50 and the previous best algorithms BN and SVD. We can conclude that SVD:50-
BN:50 improves both algorithms.

These comparisons demonstrate that the two-phase strategy is effective, and this
suggests that a new multi-phase algorithm involving more than two phases would be
efficient too. We tested such a multi-phase algorithm, a four-phase method in which the
two-phase algorithm SVD:25–BN:25 is repeated twice, but our results (not reported
here) are not as good as expected. After analysis of these results, it appears that some
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changes of phase occurred too soon to be efficient and that there were issues with the
control of the scaling.

We have also conducted some numerical tests with a smaller budget of evaluations.
Our recommendation is to spend the first 50 groups of n + 1 evaluations on Phase 1
and the remaining ones on Phase 2.

6 Discussion

This work introduces a new generic algorithm to treat linear equalities for blackbox
problems, which has been implemented with the Mads algorithm. As a result, Mads
now possesses the ability to treat linear equalities, while preserving the convergence
results that the Clarke derivatives are nonnegative in the hypertangent cone relative to
the nullspace of the constraint matrix. The proof relies on a theoretical result showing
that hypertangent cones are mapped by surjective linear application in finite dimension.

The best strategy identified by numerical results on a collection of 10 problems
from the CUTEst collection consists of first using SVD to identify potentially active
variables and then continuing with BN to terminate the optimization process. This
combines the advantages of both converters and is made possible by a detailed analysis
of the BN converter. Our results are similar to HOPSPACK for small to medium
problems, but are better for the larger instances.

Future work includes the integration of this new ability to the NOMAD software
package as well as its application to linear inequalities. In addition, the inexact restora-
tion method of [8] could rely on the present work.
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