
Comput Optim Appl (2014) 59:639–665
DOI 10.1007/s10589-014-9690-8

Strong-branching inequalities for convex mixed integer
nonlinear programs

Mustafa Kılınç · Jeff Linderoth · James Luedtke ·
Andrew Miller

Received: 19 September 2013 / Published online: 7 October 2014
© Springer Science+Business Media New York 2014

Abstract Strong branching is an effective branching technique that can significantly
reduce the size of the branch-and-bound tree for solving mixed integer nonlinear pro-
gramming (MINLP) problems. The focus of this paper is to demonstrate how to effec-
tively use “discarded” information from strong branching to strengthen relaxations of
MINLP problems. Valid inequalities such as branching-based linearizations, various
forms of disjunctive inequalities, and mixing-type inequalities are all discussed. The
inequalities span a spectrum from those that require almost no extra effort to compute
to those that require the solution of an additional linear program. In the end, we per-
form an extensive computational study to measure the impact of each of our proposed
techniques. Computational results reveal that existing algorithms can be significantly
improved by leveraging the information generated as a byproduct of strong branching
in the form of valid inequalities.

Electronic supplementary material The online version of this article (doi:10.1007/s10589-014-9690-8)
contains supplementary material, which is available to authorized users.

M. Kılınç
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: mrk46@pitt.edu

J. Linderoth (B) · J. Luedtke
Department of Industrial and Systems Engineering, University of Wisconsin-Madison,
Madison, WI 53706, USA
e-mail: linderoth@wisc.edu

J. Luedtke
e-mail: jrluedt1@wisc.edu

A. Miller
United Parcel Service, 30328 Atlanta, GA, USA
e-mail: foresomenteneikona@gmail.com

123

http://dx.doi.org/10.1007/s10589-014-9690-8

640 M. Kılınç et al.

Keywords Mixed-integer nonlinear programming · Strong-branching · Disjunctive
inequalities · Mixing inequalities

1 Introduction

In this work, we study valid inequalities derived from strong branching for solving the
convex mixed integer nonlinear programming (MINLP) problem

zminlp = minimize f (x)

subject to g j (x) ≤ 0, ∀ j ∈ J,

x ∈ X, xI ∈ Z
|I |. (1)

The functions f : X → R and g j : X → R ∀ j ∈ J are smooth, convex functions, and

the set X
def= {x ∈ R

n+ | Ax ≤ b} is a polyhedron. The set I ⊆ {1, . . . , n} contains the
indices of discrete variables, and we define B ⊆ I as the index set of binary variables.

In order to have a linear objective function an auxiliary variable η is introduced, and
the nonlinear objective function is moved to the constraints, creating the equivalent
problem

zminlp = minimize{η : (η, x) ∈ S, xI ∈ Z
|I |} (2)

where

S = {(η, x) ∈ R × X | f (x) ≤ η, g j (x) ≤ 0 ∀ j ∈ J }.

We define the set P = {(η, x) ∈ S | xI ∈ Z
|I |} to be the set of feasible solutions to

(2).
Branch and bound forms a significant component of most algorithms for solving

MINLP problems. In NLP-based branch and bound, the lower bound on the value
zminlp comes from the solution value of the nonlinear program (NLP) that is the
continuous relaxation of (2):

znlpr = min{η : (η, x) ∈ S}. (3)

In linearization-based approaches, such as outer-approximation [18] or the LP/NLP
branch-and-bound algorithm [31], the lower bound comes from solving a linear pro-
gram (LP), often called the master problem that is based on a polyhedral outer-
approximation of P:

zmp(K) = min η

s.t. η ≥ f (x̄) + ∇ f (x̄)T (x − x̄) ∀x̄ ∈ K,

g j (x̄) + ∇g j (x̄)T (x − x̄) ≤ 0 ∀ j ∈ J,∀x̄ ∈ K,

x ∈ X, (4)

123

Convex mixed integer nonlinear programs 641

where K is a set of points about which linearizations of the convex functions f (·) and
g j (·) are taken. For more details on algorithms for solving convex MINLP problems,
the reader is referred to the surveys [11,12,22].

Regardless of the bound employed by the branch-and-bound algorithm, algorithms
are required to branch. By far the most common branching approach is branching on
individual integer variables. In this approach, branching involves selecting a single
branching variable xi , i ∈ I such that in the solution x̂ to the relaxation (3) or (4),
x̂i 	∈ Z. Based on the branching variable, the problem is recursively divided, imposing
the constraint xi ≤
x̂i� for one child subproblem and xi ≥ �x̂i for the other. The
relaxation solution x̂ may have many candidates for the branching variable, and the
choice of branching variable can have a very significant impact on the size of the
search tree [3,28]. Ideally, the selection of the branching variable would lead to the
smallest resulting enumeration tree. However, without explicitly enumerating the trees
coming from all possible branching choices, choosing the best variable is difficult to
do exactly. A common heuristic is to select the branching variable that is likely to
lead to the largest improvement in the children nodes’ lower bounds. The reasoning
behind this heuristic is that nodes of the branch-and-bound tree are fathomed when
the lower bound for the node is larger than the current upper bound, so one should
select branching variables to increase the children nodes’ lower bounds by as much
as possible.

In the context of solving the Traveling Salesman Problem, Applegate et al. [4]
propose to explicitly calculate the lower bound changes for many candidate branching
variables and choose the branching variable that results in the largest change for the
resulting child nodes. This method has come to be known as strong branching. Strong
branching or variants of strong branching, such as reliability branching [3], have been
implemented in state-of-the-art solvers for solving mixed integer linear programs, the
special case of MINLP where all functions are linear.

For MINLP, one could equally well impose the extra bound constraint on the candi-
date branching variable in the nonlinear continuous relaxation (3). We call this type of
strong branching, NLP-based strong branching. In particular, for a fractional solution
x̂ , NLP-based strong branching is performed by solving the two continuous nonlinear
programming problems

η̂0
i = minimize{η : (η, x) ∈ S0

i } (N L P0
i)

and
η̂1

i = minimize{η : (η, x) ∈ S1
i } (N L P1

i)

for each fractional variable index i ∈ F
def= {i ∈ I | x̂i /∈ Z}, where S0

i = {(η, x) ∈
S | xi ≤
x̂i�} and S1

i = {(η, x) ∈ S | xi ≥ �x̂i}. The optimal values of the
subproblems (η0

i , η
1
i ∀i ∈ F) are used to choose a branching variable [2,28].

In the LP/NLP branch-and-bound algorithm, the NLP continuous relaxation (3) is
not solved at every node in the branch-and-bound tree, although it is typically solved at
the root node. Instead, the polyhedral outer-approximation (4) is used throughout the
branch-and-bound tree. The outer-approximation is refined when an integer feasible
solution to the current linear relaxation is obtained. Since the branch-and-bound tree is

123

642 M. Kılınç et al.

based on a linear master problem, it is not obvious whether strong branching should be
based on solving the nonlinear subproblems (N L P0

i) and (N L P1
i) or based on solving

the LP analogues to these where the nonlinear constraints are replaced by the current
linear outer approximation. However, our computational experience in Sect. 4.3 is that
even when using a linearization-based method, a strong-branching approach based on
solving NLP subproblems can yield significant reduction in the number of nodes in a
branch-and-bound tree. Bonami et al. [13] have also given empirical evidence of the
effectiveness of NLP-based strong branching for solving convex MINLP problems.

On the other hand, using NLP subproblems for strong branching is computationally
more intensive than using LP subproblems, so it makes sense to attempt to use infor-
mation obtained from NLP-based strong branching in ways besides simply choosing
a branching variable. In this work, we describe a variety of ways to transfer strong-
branching information into the child node relaxations. The focus of our work will
be on improving the implementation of the LP/NLP branch-and-bound algorithm in
the software package FilMINT [1]. The information may be transferred to the child
relaxations by adding additional linearizations to the master problem (4) or through
the addition of simple disjunctive inequalities. The idea of applying disjunctive pro-
gramming ideas to solve MINLP problems has been previously employed by many
authors [35,36]. We demonstrate the relation of the simple disjunctive inequalities
we derive to standard disjunctive inequalities. We derive and discuss many different
techniques by which these simple disjunctive strong-branching inequalities may be
strengthened. The strengthening methods range from methods that require almost no
extra computation to methods that require the solution of a linear program. In the end,
we perform an extensive computational study to measure the impact of each of our
methods. Incorporating these changes in the solver FilMINT results in a significant
reduction in CPU time on the instances in our test suite.

The remainder of the paper is divided into 4 sections. Section 2 describes some
simple methods for using inequalities generated as an immediate byproduct of the
strong-branching process. Section 3 concerns methods for strengthening inequalities
obtained from strong branching. Section 4 reports on our computational experience
with all of our described methods, and Sect. 5 offers some conclusions of our work.

2 Simple strong-branching inequalities

In this section, we describe elementary ways that information obtained from the strong-
branching procedure can be recorded and used in the form of valid inequalities for
solving MINLP problems. The simplest scheme is to use linearizations from the NLP
subproblems. Alternatively, valid inequalities may be produced from the disjunction,
and these inequalities may be combined by mixing.

2.1 Linearizations

When using a linearization-based approach for solving MINLP problems, a simple
idea for obtaining more information from the NLP strong-branching subproblems
(N L P0

i) and (N L P1
i) is to add the solutions to these subproblems to the linearization

point set K of the master problem (4).

123

Convex mixed integer nonlinear programs 643

There are a number of reasons why using linearizations about solutions to (N L P0
i)

and (N L P1
i) may yield significant computational benefit. First, the inequalities are

trivial to obtain once the NLP subproblems have been solved; one simply has to eval-
uate the gradient of the nonlinear functions at the optimal solutions of (N L P0

i) and
(N L P1

i). Second, the inequalities are likely to improve the lower bound in the master
problem (4) after branching. In fact, if these linearizations are added to (4), then after
branching on the variable xi , the lower bound zmp(K) will be at least as large as the
bound obtained by an NLP-based branch-and-bound algorithm. Third, optimal solu-
tions to (N L P0

i) and (N L P1
i) satisfy the nonlinear constraints of the MINLP problem.

Computational experience with different linearization approaches for solving MINLP
problems in [1] suggests that the most important linearizations to add to the master
problem (4) are those obtained at points that are feasible to the NLP relaxation. Finally,
depending on the branching strategy employed, using these linearizations may lead to
improved branching decisions. For example, our branching strategy, described in detail
in Sect. 4.1, is based on pseudocosts that are initialized using NLP strong-branching
information, but are updated based on the current polyhedral outer approximation
after a variable is branched on. Thus, the improved polyhedral outer approximation
derived from these linearizations may lead to improved pseudocosts, and hence better
branching decisions.

2.2 Simple disjunctive inequalities

Another approach to collecting information from the strong-branching subproblems
(N L P0

i) and (N L P1
i) is to combine information from the two subproblems using

disjunctive arguments. We call the first very simple inequality a strong-branching cut
(SBC). We omit the simple proof of its validity.

Proposition 1 The SBC
η ≥ η̂0

i + (η̂1
i − η̂0

i)xi (5)

is valid for the MINLP (2), where i ∈ B, and η̂0
i , η̂1

i are the optimal solution values to
(N L P0

i) and (N L P1
i), respectively.

Similar inequalities can be written for other common branching disjunctions, such
as the GUB constraint ∑

i∈S

xi = 1, (6)

where S ⊆ B is subset of binary variables.

Proposition 2 Let (6) be a constraint for the MINLP problem (2). The GUBSBC
inequality

η ≥
∑

i∈S

η̂1
i xi (7)

is valid for (2), where η̂1
i is the optimal solution value to (N L P1

i) for i ∈ S.

123

644 M. Kılınç et al.

If the instance contains a constraint of the form
∑

i∈S xi ≤ 1, then a slack binary
variable can be added to convert it to the form of (6), so that (7) may be used in this
case as well.

The simple SBC (5) can be generalized to disjunctions based on general integer
variables. The following result follows by using a convexity argument and a disjunctive
argument based on the disjunction xi ≤
x̂i� or xi ≥ �x̂i, for some integer variable
xi whose relaxation value x̂i is fractional. A complete proof of Proposition 3 can be
found in the Ph.D. thesis of Kılınç [26].

Proposition 3 For i ∈ I , the SBC

η ≥ η̂0 + (η̂1 − η̂0)(xi −
x̂i�)

is valid for (2), where η̂0 and η̂1 are the optimal solution values to (N L P0
i) and

(N L P1
i), respectively.

2.3 Mixing strong-branching cuts

Mixing sets arose in the study of a lot-sizing problem by Pochet and Wolsey [30] and
were systematically studied by Günlük and Pochet [24]. A similar set was introduced
as a byproduct of studying the mixed vertex packing problem by Atamtürk et al. [5].

A collection of strong-branching inequalities (5) can be transformed into a mixing
set in a straightforward manner. Specifically, let B̂ ⊆ B be the index set of binary
variables on which strong branching has been performed, and let δi = η̂1

i − η̂0
i be

the difference in objective values between the two NLP subproblems (N L P0
i) and

(N L P1
i). Proposition 1 states that the SBC inequalities

η ≥ η̂0
i + δi xi ∀i ∈ B̂ (8)

are valid for the MINLP problem (2). Without loss of generality, assume that δi ≥ 0,
for otherwise, one can define x̃i = 1 − xi , δ̃i = −δi , and write (8) as

η ≥ η̂1
i + δ̃i x̃i ,

which has δ̃i ≥ 0. Since δi ≥ 0, the value

η
def= max

∀i∈B̂
η̂0

i ≤ η

is a valid lower bound for the objective function variable η. Furthermore, by definition,
the inequalities

η ≥ η + σi xi ∀i ∈ B̄ (9)

are valid for (MINLP), where σi = η̂1
i − η and B̄ = {i | σi > 0, i ∈ B̂}. The

inequalities (9) define a mixing set

123

Convex mixed integer nonlinear programs 645

M = {(η, x) ∈ R × {0, 1}|B̄| | η ≥ η + σi xi ∀i ∈ B̄}. (10)

Proposition 4 is a straightforward application of the mixing inequalities of [24] or the
star inequalities of [5] and demonstrates that the inequalities, which we call MIXSBC,
are valid for M, thus valid for the feasible region P of the MINLP problem.

Proposition 4 ([5,24]) Let T = {i1, . . . , it } be a subset of B̄ such that σi(j−1)
< σi j

for j = 2, . . . , t . Then the MIXSBC inequality

η ≥ η +
∑

i j ∈T

θi j xi j (11)

is valid for M, where θi1 = σi1 and θi j = σi j − σi j−1 for j = 2, . . . , t .

If a MIXSBC inequality (11) is violated by a fractional solution x̂ , it may be
identified in polynomial time using a separation algorithm given in [5] or [24].

3 Strengthened strong-branching inequalities

The valid inequalities introduced in Sect. 2 can be obtained almost “for free” using
strong-branching information. In this section, we explore methods for strengthen-
ing and combining simple disjunctive inequalities. By doing marginally more work,
we hope to obtain more effective valid inequalities. The section begins by examin-
ing the relationship between the simple SBC (5) and general disjunctive inequalities.
A byproduct of the analysis is a simple mechanism for strengthening the inequali-
ties (5) by using the optimal Lagrange multipliers from the NLP strong-branching
subproblems. The analysis also suggests the construction of a cut-generating linear
program (CGLP) to further improve the (weak) disjunctive inequality generated by
strong branching.

3.1 SBC and disjunctive inequalities

The SBC (5) is a disjunctive inequality. For ease of presentation, we describe the
relationship only for disjunctions of binary variables. The extension to disjunctions on
integer variables is straightforward and can be found in [26]. Let (η̂0, x̂0) and (η̂1, x̂1)

be optimal solutions to the NLP subproblems (N L P0
i) and (N L P1

i), respectively.
Since f (·) and g j (·) are convex, linearizing the nonlinear inequalities about the points
(η̂0, x̂0) and (η̂1, x̂1) gives two polyhedra

X 0
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(η, x)

∣∣∣∣∣∣∣∣∣∣

c0x − η ≤ b0

D0x ≤ d0

Ax ≤ b
xi ≤ 0
x ∈ R

n+

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, X 1
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(η, x)

∣∣∣∣∣∣∣∣∣∣

c1x − η ≤ b1

D1x ≤ d1

Ax ≤ b
−xi ≤ −1

x ∈ R
n+

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12)

123

646 M. Kılınç et al.

that outer-approximate the feasible region of the two strong-branching subproblems.
In the description of the polyhedra (12), we use the following notation for the gra-
dient ∇ f (x) ∈ R

n×1, and Jacobian ∇g(x) ∈ R
n×|J | of the objective and constraint

functions at various points:

c0 = ∇ f (x̂0)T , c1 = ∇ f (x̂1)T ,

b0 = ∇ f (x̂0)T x̂0 − η̂0, b1 = ∇ f (x̂1)T x̂1 − η̂1,

D0 = ∇g(x̂0)T , D1 = ∇g(x̂1)T ,

d0 = ∇g(x̂0)T x̂0 − g(x̂0) d1 = ∇g(x̂1)T x̂1 − g(x̂1).

We may assume that the sets X 0
i and X 1

i are non-empty, for if one of the sets is
empty, the bound on the variable xi may be fixed to its alternative value. Since X 0

i
and X 1

i are polyhedra, we may apply known disjunctive theory to obtain the following
theorem.

Theorem 1 [7] The disjunctive inequality

αx − ση ≤ β (13)

is valid for conv(X 0
i ∪ X 1

i) and hence for the MINLP problem (2) if there exists

λ0, λ1 ∈ R
1×|J |
+ , μ0, μ1 ∈ R

1×m+ , θ0, θ1 ∈ R+ and σ ∈ R+ such that

α ≤ σc0 + λ0 D0 + μ0 A + θ0ei , (14a)

α ≤ σc1 + λ1 D1 + μ1 A − θ1ei , (14b)

β ≥ σb0 + λ0d0 + μ0b, (14c)

β ≥ σb1 + λ1d1 + μ1b − θ1, (14d)

λ0, λ1, μ0, μ1, θ0, θ1, σ ≥ 0. (14e)

One specific choice of multipliers λ0, λ1, μ0, μ1, θ0, θ1, σ in (14) leads to the
strong-branching inequality (5).

Proposition 5 Let (η̂0, x̂0) and (η̂1, x̂1) be optimal solutions to the NLP subproblems
(N L P0

i) and (N L P1
i), respectively, satisfying a constraint qualification. Then,

η ≥ η̂0 + (η̂1 − η̂0)xi

is a disjunctive inequality (13).

Proof Since both (η̂0, x̂0) and (η̂0, x̂0) satisfy a constraint qualification, there exists
Lagrange multiplier vectors λ̂h, μ̂h, φ̂h ≥ 0 and a Lagrange multiplier θ̂h ≥ 0, for
each h ∈ {0, 1} satisfying the Karush–Kuhn–Tucker (KKT) conditions

123

Convex mixed integer nonlinear programs 647

∇ f (x̂ h)T + λ̂h∇g(x̂ h)T + μ̂h A − φ̂h + θ̂hei = 0, (15a)

λ̂h g(x̂ h) = 0, (15b)

μ̂h(Ax̂h − b) = 0, (15c)

φ̂h(x̂ h − h) = 0, (15d)

x̂ h
i θ̂h = 0. (15e)

We assign multipliers σ 0 = 1, λ0 = λ̂0, μ0 = μ̂0, θ0 = θ̂0 − η̂0 + η̂1 into
(14a) and (14c) and σ 1 = 1, λ1 = λ̂1, μ1 = μ̂1, θ1 = θ̂1 + η̂0 − η̂1 into (14b)
and (14d) in Theorem 1. Substituting these multipliers into (14) and simplifying the
resulting inequalities using the KKT conditions (15) demonstrates that the SBC (5) is
a disjunctive inequality. The algebraic details of the proof can be found in [26]. ��

3.2 Multiplier strengthening

The analogy between the strong-branching inequality (5) and disjunctive inequal-
ity (13) leads immediately to simple ideas for strengthening the strong-branching
inequality using Lagrange multiplier information. Specifically, a different choice of
multipliers for the disjunctive cut (13) leads immediately to a stronger inequality.

Theorem 2 Let (η̂0, x̂0) be the optimal (primal) solution to (N L P0
i) with associated

Lagrange multipliers (λ̂0, μ̂0, φ̂0, θ̂0). Likewise, let (η̂1, x̂1) be the optimal (primal)
solution to (N L P1

i) with associated Lagrange multipliers (λ̂1, μ̂1, φ̂1, θ̂1). Define
μ̂∗ = min {μ̂0, μ̂1}, and φ∗ = min {φ0, φ1}. If (N L P0

i) and (N L P1
i) both satisfy a

constraint qualification, then the strengthened strong-branching cut (SSBC)

η̂0 + μ̂∗(b − Ax) + φ̂∗x + (η̂1 − η̂0)xi ≤ η (16)

is a disjunctive inequality (13).

Proof We substitute the multipliers λh = λ̂h , μh = μ̂h − μ̂∗, h ∈ {0, 1}, σ = 1,
θ0 = θ̂0 − η̂0 + η̂1, θ1 = θ̂1 + η̂0 − η̂1 into (14) in Theorem 1. Simplifying the
resulting expressions using the KKT conditions (15) demonstrates the result. Details
of the algebraic steps required are given in the Ph.D. thesis of Kılınç [26]. ��

3.3 Strong-branching CGLP

In Theorem 1, we gave necessary conditions for the validity of a disjunctive inequality
for the set conv(X 0

i ∪ X 1
i). A most violated disjunctive inequality can be found by

solving Cut Generating Linear Program (CGLP) that maximizes the violation of the
resulting cut with respect to a given point (η̂, x̂):

123

648 M. Kılınç et al.

maximize β − α x̂ + σ η̂

subject to α ≤ σc0 + λ0 D0 + μ0 A + θ0ei ,

α ≤ σc1 + λ1 D1 + μ1 A − θ1ei ,

β ≥ σb0 + λ0d0 + μ0b,

β ≥ σb1 + λ1d1 + μ1b − θ1,

λ0, μ0, θ0, λ1, μ1, θ1, σ ≥ 0. (17)

A feasible solution to (17) with a positive objective function corresponds to a
disjunctive inequality violated at (η̂, x̂). However, the set of feasible solutions to
CGLP is a cone and needs to be truncated to produce a bounded optimal solution
value in case a violated cut exists. The choice of the normalization constraint used
to truncate the cone can be a crucial factor in the effectiveness of disjunctive cutting
planes. One normalization constraint studied in [8,9] is the α-normalization:

n∑

i=1

|αi | + σ = 1. (αNORM)

The most widely used normalization constraint was proposed by [6] and is called the
Standard Normalization Condition (SNC) [20]:

∑

h∈{0,1}

(|J |∑

j=1

λh
j +

m∑

j=1

μh
j + θh + σ

)
= 1. (SNC)

The SNC normalization is criticized by Fischetti et al. [20] for its dependence on
the relative scaling of the constraints. To overcome this drawback, they proposed the
Euclidean Normalization

∑

h∈{0,1}

(|J |∑

j=1

‖Dh
j•‖λh

j +
m∑

j=1

‖A j•‖μh
j + θh + ‖ch‖σ

)
= 1, (EN)

instead of (SNC). In (EN), D0
j• and D1

j• are the j th row of the matrices D0 and D1

respectively, and A j• is the j th row of A. We refer reader to [20] for further discus-
sion on normalization constraints and their impact on the effectiveness of disjunctive
inequalities. In Sect. 4.8 we will report on the effect of different normalization con-
straints on our disjunctive inequalities.

3.4 Monoidal strengthening

Disjunctive cuts can be further strengthened by exploiting integrality requirements
of variables. This method was introduced by Balas and Jeroslow, where they call it

123

Convex mixed integer nonlinear programs 649

monoidal strengthening [10]. In any disjunctive cut (13) the coefficient of xk , k ∈ I \{i}
can be strengthened to take the value

α̃k = max{α0
k − θ0�m̂k, α1

k + θ1
m̂k�}

where

α0
k = σc0

k + λ0 D0•k + μ0 A•k,

α1
k = σc1

k + λ1 D1•k + μ1 A•k,

m̂k = α0
k − α1

k

θ0 + θ1 ,

and λ0
k, μ

0
k, θ

0, λ1
k, μ

1
k, θ

1, σ satisfy the requirements (14) for multipliers in a dis-
junctive inequality. The notation D•k, A•k represents the kth column of the associated
matrix.

3.5 Lifting

The disjunctive inequality (13) can be lifted to become globally valid if generated at a
node of the branch-and-bound tree. Assume that the inequality is generated at a node
of the branch-and-bound tree where the variables in the set F0 are fixed to zero and
the variables in the set F1 are fixed to one. Without loss of generality, we can assume
that F1 is empty by complementing all variables before formulating the CGLP (17).

Let R be the set of unfixed variables and (α, β, λ0, μ0, λ1, μ1, σ) be a solution to
(17) in the subspace where the variables in the set F0 are fixed to zero so that α ∈ R

|R|.
The lifting coefficient for the fixed variables is given by Balas et al. [8,9] as

γ j = min{σc0
j + λ0 D0• j + μ0 A• j , σc1

j + λ1 D1• j + μ1 A• j }.

Thus, the inequality

∑

j∈R

α j x j +
∑

j∈F0

γ j x j − ση ≤ β

is valid for the MINLP problem (2).

4 Computational experience

In this section, we report on a collection of experiments designed to test the ideas
presented in Sects. 2 and 3 with the end goal of deducing how to most effectively
exploit information obtained when solving NLP subproblems in a strong-branching
scheme. Our implementation is done using the FilMINT solver for convex MINLP
problems.

123

650 M. Kılınç et al.

4.1 FilMINT

FilMINT is an implementation of the LP/NLP-Based Branch-and-Bound algorithm
of Quesada and Grossmann [31], which uses the outer-approximation master problem
(4). In our experiments, all strong-branching inequalities are added directly to (4).
FilMINT uses MINTO [29] to enforce integrality of the master problem via branching
and filterSQP [21] for solving nonlinear subproblems that are both necessary for con-
vergence of the method and used in this work to obtain NLP-based strong-branching
information. In our experiments, FilMINT used the CPLEX (v12.2) software to solve
linear programs.

FilMINT by default employs nearly all of MINTO’s enhanced MILP features, such
as cutting planes, primal heuristics, row management, and enhanced branching and
node selection rules. FilMINT uses the best estimate method for node selection [28].

FilMINT uses a reliability branching approach [3], where strong branching based
on the current master linear program is performed a limited number of times for
each variable. The feasible region of the linear master problem (4) may be signifi-
cantly strengthened by MINTO’s preprocessing and cutting plane mechanisms, and
these formulation improvements are extremely difficult to communicate to the nonlin-
ear solver Filter-SQP. Our approach for communicating NLP-based strong-branching
information to the master problem was implemented in the following manner. For each
variable, we perform NLP-based strong branching by solving (N L P0

i) and (N L P1
i)

the first time the variable is fractional in a relaxation solution. Regardless of the
inequalities we add to the master problem, we solve (N L P0

i) and (N L P1
i) only once

per variable to limit the computational burden from solving NLP subproblems, which is
appropriate in the context of the linearization-based LP/NLP branch-and-bound algo-
rithm that is used in FilMINT. We then simply add the strong-branching inequalities
under consideration to the master problem and then let FilMINT make its branching
decisions using its default mechanism. This affects the bounds in a manner similar to
NLP-based strong branching. For example, for a fractional variable xi , after adding
a simple SBC (5) or linearizations about solutions to (N L P0

i) and (N L P1
i), when

FilMINT performs LP-based strong branching on xi , the bound obtained from fixing
xi ≤
x̂i� will be at least η̂0

i , and likewise the bound obtained from fixing xi ≥ �x̂i
will be at least η̂1

i . Note however, that adding inequalities will also likely affect the
value of the relaxation, so the pseudocosts, which measure the rate of change of the
objective function per unit change in variable bound, may also be affected.

4.2 Computational setup

Our test suite consists of convex MINLPs collected from the MacMINLP collection
[27], the GAMS MINLP World [15], the collection on the website of the IBM-CMU
research group [34], and instances that we created ourselves. The test suite consists
of 40 convex instances covering a wide range of practical applications such as multi-
product batch plant design problems [32,38], layout design problems [16,33], synthe-
sis design problems [18,37], retrofit planning [33], stochastic service system design
problems [19], cutting stock problems [25], uncapacitated facility location problems

123

Convex mixed integer nonlinear programs 651

[23] and network design problems [14]. Characteristics of the instances are given in
Table 1, which lists whether or not the instance has a nonlinear objective function, the
total number of variables, the number of integer variables, the number of constraints,
how many of the constraints are nonlinear, and the number of GUB constraints. We
chose the instances so that no one family of instances is overrepresented in the group
and so that each of the instances is not “too easy” or “too hard.” To accomplish this,
we chose instances so that the default version of FilMINT is able to solve each of these
instances using CPU time in the range of 30 s to 3 h.

The computational experiments were run on a cluster of machines equipped with
Intel Xeon microprocessors clocked at 2.00 GHz and 256 GB of RAM, using only one
thread for each run. In order to concisely display the relative performance of different
solution techniques, we make use of performance profiles (see [17]). A performance
profile is a graph of the relative performance of different solvers on a fixed set of
instances. In a performance profile graph, the x-axis is used for the performance
factor. The y-axis gives the fraction of instances for which the performance of that
solver is within a factor of x of the best solver for that instance. In our experiments,
we use both the number of nodes in the branch and bound tree and the CPU solution
time as performance metrics.

We often use the “extra” gap closed at the root node as a measure to assess the
strength of a class of valid inequalities. The extra gap closed measures the relative
improvement in lower bound at the root node over the lower bound found without
adding the valid inequalities. Specifically, the extra percentage gap closed is

100

(
zCU T S − zmp(K)

zM I N L P − zmp(K)

)
,

where zCU T S is the value of LP relaxation after adding inequalities, zmp(K) is the
value of LP relaxation of reduced master problem after preprocessing and default set
of cuts of MINTO, and zM I N L P is the optimal solution value.

We summarize computational results in small tables that list the (arithmetic) average
extra gap closed, the number of nodes, and the CPU solution time.

Strong-branching inequalities are added in rounds. After adding cuts at a node of
the branch-and-bound tree, the linear program is resolved, and a new solution to the
relaxation of the master problem (4) is obtained. The strong-branching subproblems
(N L P0

i) and (N L P1
i) are solved for all fractional variables in the new solution that

have not yet been initialized, and associated strong-branching inequalities are added.
If inequalities are generated at a non-root node, they are lifted to make them globally
valid, as explained in Sect. 3.5. Recall that NLP-based strong branching is performed
at most once for each variable.

We are primarily interested in the impact of using strong-branching information to
improve the lower bound of a linearization-based algorithm. Therefore, to eliminate
variability in solution time induced by the effect of finding improved upper bounds
during the search, in our experiments we input the optimal solution value to FilMINT
as a cutoff value and disable primal heuristics.

123

652 M. Kılınç et al.

Table 1 Test set statistics

Problem NL Obj Vars Ints Cons NL Cons GUBs

BatchS151208M
√

446 203 1780 1 24

BatchS201210M
√

559 251 2326 1 24

BatchStorage10BM101064
√

239 89 798 1 20

BatchStorageBM101064
√

239 89 798 1 20

CLay0305H 276 55 336 60 15

FLay05H 383 40 461 5 10

FLay05M 63 40 61 5 10

fo7_2 115 42 198 14 0

fo7 115 42 198 14 0

m7 115 42 198 14 0

nd-12 601 40 290 40 4

nd-13 641 40 317 40 2

nd-14 817 48 370 48 2

o7_2 115 42 198 14 0

o7 115 42 198 14 0

RSyn0810M02M 411 168 855 12 200

RSyn0810M03M 616 252 1,435 18 435

RSyn0810M04M 821 336 2,117 24 772

RSyn0815M02M 471 188 960 22 236

RSyn0820M02M 511 208 1,047 28 266

RSyn0830M02M 621 248 1,233 40 322

Safety3
√

260 98 294 0 28

safety_no_rotation_CH
√

409 60 456 6 15

SLay07H
√

477 84 609 0 21

SLay08H
√

633 112 812 0 28

SLay09H
√

811 144 1,044 0 36

SLay09M
√

235 144 324 0 36

sssd-16-8-3 185 152 57 24 24

sssd-17-7-3 169 140 53 21 24

sssd-18-7-3 176 147 54 21 25

sssd-20-8-3 217 184 61 24 28

Syn20M04M 421 160 997 56 462

Syn30M03M 481 180 982 60 386

Syn30M04M 641 240 1,489 80 684

Syn40M02M 421 160 757 56 244

trimloss4 106 85 61 4 20

uflquad-15-60
√

916 15 960 0 0

uflquad-15-80
√

1,216 15 1,280 0 0

uflquad-20-40
√

821 20 840 0 0

uflquad-25-40
√

1,026 25 1,040 0 0

123

Convex mixed integer nonlinear programs 653

4.3 Performance of SBC inequalities and linearizations

Our first experiment was aimed at comparing elementary methods for exploiting infor-
mation from NLP-based strong-branching subproblems. The methods chosen for com-
parison in this experiment were

– FILMINT: The default version of FilMINT.
– LIN: FilMINT, but with the master problem augmented with linearizations from

NLP-based branching subproblems, as described in Sect. 2.1.
– SBC: FilMINT, but with the master problem augmented with the simple strong-

branching cuts (5).
– PSEUDO: FilMINT, but with an NLP-based strong-branching strategy in which

strong-branching inequalities are not added. Rather, only the pseudocost value are
initialized using the NLP-based strong branching information.

We included the method PSEUDO to test whether or not using valid inequalities
derived from NLP-based strong branching can yield improvement beyond simply using
the information for branching. After initializing the pseudocosts based on the solution
values of (N L P0

i) and (N L P1
i), the pseudocosts are then updated based on FilMINT’s

default update strategy. FilMINT is based on the integer programming solver MINTO,
and the pseudocost update strategy for MINTO is described in [28]. Since FilMINT
is a linearization-based solver, updates to the pseudocosts are dependent on the outer
approximation that has been obtained in the master problem.

Tables 7 and 8 in the Electronic supplementary material give the performance
of each of these methods on each of the instances in our test suite. The tables are
summarized in Fig. 1, which consists of two performance profiles. The first profile
uses the the number of nodes in the branch and bound tree as the solution metric.
This profile indicates that all methods that incorporate NLP-based strong-branching
information are useful for reducing the size of the branch and bound tree, but also that
using strong branching information to derive valid inequalities in addition to making
branching decisions can further reduce the size. The most effective method in terms
of number of nodes is LIN. The second profile uses CPU time as the quality metric.
In this measure, SBC is the best method.

The two profiles together paint the picture that simple strong branching cuts (5) can
be an effective mechanism for improving performance of a linearization-based convex
MINLP solver. The SBC inequalities are not as strong as adding all linearizations,
but this is not a surprising result, as the SBC inequalities aggregate the linearization
information into a single inequality. From the results of this experiment, we also
conclude that a well-engineered mechanism for incorporating “useful” linearizations
from points suggested by NLP-based strong branching, while not overwhelming the
linear master problem (4) is likely to be the most effective “elementary” mechanism
for making use of information from NLP-based strong-branching subproblems. We
return to this idea in Sect. 4.6.

4.4 Performance of GUB-SBC inequalities

A second experiment was designed to test the effectiveness of performing NLP-
based strong branching on the GUB disjunction (6) and using the resulting GUBSBC

123

654 M. Kılınç et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: number of nodes

FILMINT
SBC
LIN

PSEUDO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: solution time

FILMINT
SBC
LIN

PSEUDO

Fig. 1 Performance profile of elementary NLP-based strong-branching inequalities

123

Convex mixed integer nonlinear programs 655

Table 2 Solution statistics comparing SBC versus GUBSBC inequalities

Extra gap closed (%) Average # of nodes Average time

Arithmetic Geometric Arithmetic Geometric

SBC 8.4 367291.8 57656.1 1557.9 431.2

GUBSBC 17.8 409115.7 59489.7 1558.7 470.1

inequality (7). Of primary interest is how the method performs compared to using only
the disjunction on the individual binary variables via the simple SBC inequality (5).

In this experiment, if at least one of the variables in a GUB constraint is fractional
at a solution to the master problem (4), then strong branching on the GUB constraint is
performed, and a GUBSBC inequality (7) is generated. In order to generate a GUBSBC
inequality, nonlinear subproblems (N L P1

i) are solved for each of the variables in
the GUB constraint, regardless of whether the variable value is fractional. In our
implementation, at most one GUBSBC inequality is generated for each GUB, and the
GUBSBC inequalities are generated at the root node only. If we encounter a fractional
binary variable that is not in any GUB constraint, or we are not at the root node, then
a simple SBC inequality (5) is generated for that variable.

In Table 2, we give computational results comparing the relative strength of SBC
inequalities (5) and the GUBSBC inequalities (7). The detailed performance of meth-
ods on each instance is given in Table 9 (see Electronic supplementary material).
The comparison is done for 31 instances from our test set of 40 problems for which
there exists at least one GUB constraint in the problem. On average, adding GUBSBC
inequalities closed 17.8 % of the gap at root node, and adding only SBC inequalities
closed 8.4 %. It is then somewhat surprising that the number of nodes required for
the two methods is approximately equal. For some reason, FilMINT seems to select
less effective branching variables when GUBSBC inequalities are introduced to the
master problem (4).

While adding GUBSBC inequalities can make a significant positive impact on solv-
ing some instances, our primary conclusion from this experiment is that the GUBSBC
inequalities do not improve the performance of FilMINT more than the SBC inequal-
ities, thus we focused our remaining computational experiments on evaluating only
enhanced versions of SBC inequalities.

4.5 Performance of mixing strong-branching inequalities

We next compared the effectiveness of the mixed strong-branching inequalities
(MIXSBC) (11) against the unmixed version (5). There may be exponentially many
mixed strong branching inequalities, so we use the following strategy for adding them
to the master problem. First, as in all of our methods, the NLP subproblems (N L P0

i)

and (N L P1
i) are solved for each fractional variable xi in the solution to the relaxed

master problem (4). The fractional variables for which (N L P0
i) and (N L P1

i) have
been solved define the mixing set B̄. Next, for each variable in the mixing set, we add
the sparsest MIXSBC inequality for that variable:

123

656 M. Kılınç et al.

Table 3 Solution statistics comparing mixing SBC versus SBC

Extra gap closed (%) Average # of nodes Average time

Arithmetic Geometric Arithmetic Geometric

SBC 6.9 394689.0 54788.4 1585.6 504.9

MIXSBC 17.7 412063.4 55650.9 1689.2 521.4

η ≥ η + σi xi + (σh − σi)xh ∀i ∈ B̄, (18)

where h = argmaxi∈B̄ σi . Note that the sparsest MIXSBC inequality (18) already
dominates the SBC inequality (5). Finally, after obtaining a fractional solution from
the relaxation of the master problem, (after adding the inequalities (18)), the two most
violated mixing inequalities are added and the relaxation is resolved. The MIXSBC
inequalities are added in rounds until none are violated or until the inequalities do not
change the relaxation solution by a sufficient amount. Specifically, if

∑
i∈B |x ′

i −x ′′
i | <

0.1 for consecutive relaxation solutions x ′, x ′′, no further MIXSBC inequalities are
added.

In Table 3, we summarize computational results comparing the effect of adding
MIXSBC inequalities (11) with adding only SBC inequalities (5). The detailed per-
formance of each method on each instance is given in Table 10 (see Electronic sup-
plementary material). The MIXSBC inequalities are significantly stronger than the
SBC inequalities. On average, MIXSBC closed 17.7 % of the optimality gap at root
node, and SBC closed only 6.9 % of the gap on our test set. Despite this, MIXSBC
inequalities perform worse than SBC in terms of average number of nodes and solution
time. An explanation for this counterintuitive behavior is that the addition of the mixed
strong-branching inequalities (11) results in MINTO (and hence FilMINT) performing
“poor” updates on the pseudocost values for integer variables. That is, in subsequent
branches, the pseudocosts do not accurately reflect the true change in objective value
if a variable is branched on. Therefore, MIXSBC makes poor branching decisions,
which in turn leads to a larger search tree. For example, MIXSBC closed 62.3 %
of the gap at the root node for the instance SLay09M and SBC closed only 23.6 %.
However, 85 s and 8545 nodes are required to prove optimality when using MIXSBC,
compared to only 33 s and 4063 nodes for SBC alone.

4.6 Linearization strategies

In our computational experiments we were not able to significantly improve the perfor-
mance of strong-branching inequalities by exploiting GUB disjunctions or by mixing
them. We therefore conclude that, among the strategies for obtaining strong-branching
inequalities with minimal additional computational effort, adding linearizations from
NLP strong-branching subproblems has the most potential as a computational tech-
nique. The performance profiles in Fig. 1 indicate that linearizations are very effective
in reducing the number of nodes, but often lead to unacceptable solution times due

123

Convex mixed integer nonlinear programs 657

Table 4 Solution statistics comparing LIN versus BESTLIN

Average # of nodes Average time

Arithmetic Geometric Arithmetic Geometric

LIN 353538.5 41021.2 2319.9 640.4

BESTLIN 376940.9 41245.3 1744.2 495.5

Table 5 Solution statistics comparing strengthened SBC versus SBC

Extra gap closed (%) Average # of nodes Average time

Arithmetic Geometric Arithmetic Geometric

SBC 6.9 394689.0 54788.4 1585.6 504.9

SSBC 6.9 332509.4 51591.5 1535.4 490.9

to the large number of linearizations added to the master problem. Two simple ideas
to improve the performance of linearizations are to add only violated linearizations
and to quickly remove linearizations that are not binding in the solution of the LP
relaxation of the master problem.

In Table 4, we summarize computational results comparing our original lineariza-
tion scheme LINwith an improved version denoted by BESTLIN. In BESTLIN, only
linearization inequalities that are violated by the current relaxation solution are added,
and if the dual variable for a linearization inequality has value zero for five consecutive
relaxation solutions, the inequality is removed from the master problem. Full results
of the performance of the two methods on each instance can be found in Table 11
(see Electronic supplementary material). The results show that without degrading the
performance of LIN in terms of the number of nodes, BESTLIN can improve the
average solution time from 2319.9 to 1744.2 s.

4.7 Performance of multiplier-strengthened SBC inequalities

Initial computational experience with the multiplier-strengthened cuts SSBC (16),
introduced in Sect. 3.2 suggested that the inequalities in general were far too dense to
be effectively used in a linearization-based scheme. Very quickly, the LP relaxation
of the master problem (4) became prohibitively expensive to solve. Our remedy for
these dense cuts was to strengthen only the coefficients of integer variables. Addition-
ally, after the inequality was generated, the monoidal strengthening step described in
Sect. 3.4 was performed on the inequalities.

An experiment was done to compare the performance of using the SBC inequali-
ties against the SSBC inequalities on instances in our test set, and a summary of the
results are given in Table 5. The computational results indicate a slight improvement in
both the number of nodes and the solution time by strengthening the SBC inequalities
using multipliers of the NLP strong-branching subproblems. Full results of the perfor-

123

658 M. Kılınç et al.

mance of the two methods on each instance can be found in Table 12 (see Electronic
supplementary material).

4.8 Normalizations for CGLP

In Sect. 3.3, we described three different normalization constraints that are commonly
used for the CGLP (17). We performed a small experiment to compare the relative
effectiveness of each in our context. The performance profiles of Fig. 2 summarize the
results of comparing disjunctive inequalities generated by solving the CGLP (17) with
the normalization constraints (αNORM) denoted by SBCGLP-INF, (SNC) denoted by
SBCGLP-SNC, and (EN) denoted by SBCGLP-EN. The performance profiles show
that both the SNC and the EN perform significantly better than the α-normalization.
The results are consistent with the literature. The performance of (SNC) and (EN) are
comparable with each other, suggesting that the constraints of the instances in our test
suite are well-scaled. The detailed performance of methods on each instance is given
in Table 13 (see Electronic supplementary material).

4.9 CGLP without strong branching

The CGLP described in Sect. 3.1 embeds linearization information from the solution
of the two strong-branching subproblems (N L P0

i) and (N L P1
i). Specifically, the

parameters c0, c1, b0, b1, D0, D1, d0, d1 defining the polyhedra X 0
i and X 1

i in (12)
are defined in terms of the optimal solutions (η̂0, x̂0) and (η̂1, x̂1) to the NLP strong-
branching subproblems (N L P0

i) and (N L P1
i). A different strategy, that does not use

information from strong branching, is to define the polyhedra X 0
i and X 1

i using only
linearization information from the solution of the current relaxation (η̂LP, x̂LP). That
is, we could define the polyhedra using

c0 = c1 = ∇ f (x̂LP)T ,

b0 = b1 = ∇ f (x̂LP)T x̂LP − η̂LP,

D0 = D1 = ∇g(x̂LP)T , and

d0 = d1 = ∇g(x̂LP)T x̂LP − g(x̂LP).

We performed an experiment aimed at quantifying the effect of using linearization
information obtained from strong branching to create disjunctive cuts by comparing
the performance of FilMINT augmented with these two types of disjunctive cuts.

Table 14 (see Electronic supplementary material). reports the instance-specific
results of this experiment. A summary of the results of this experiment are given
in the form of two performance profiles in Fig. 3. The profiles compare the perfor-
mance of FilMINT using disjunctive cuts with linearizations from strong branch-
ing (SBCGLP-SNC) and FilMINT using disjunctive cuts with linearization from
the current relaxation only (NOSB-CGLP-SNC). The top profile of the figure mea-
sures the performance in terms of number of nodes, and we can see clearly that

123

Convex mixed integer nonlinear programs 659

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: number of nodes

SBCGLP-EN
SBCGLP-INF

SBCGLP-SNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: solution time

SBCGLP-EN
SBCGLP-INF

SBCGLP-SNC

Fig. 2 Performance profile of CGLP with different normalization constraints

123

660 M. Kılınç et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: number of nodes

SBCGLP-SNC
NOSB-CGLP-SNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: solution time

SBCGLP-SNC
NOSB-CGLP-SNC

SBCGLP-SNC-WO-SBTIME

Fig. 3 Performance profile of CGLP with and without strong branching

123

Convex mixed integer nonlinear programs 661

by this measure, there is significant benefit to including linearizations obtained
from NLP-based strong branching in the CGLP. However, obtaining these lin-
earizations by solving NLPs comes at some significant computational cost. This
conclusion can be drawn by examining the second profile of Fig. 3, where the
performance measure is CPU time. In this measure, NOSB-CGLP-SNC outper-
forms SBCGLP-SNC. However, if the CPU time taking to perform strong branch-
ing is removed from the solution time calculation for the method SBCGLP-SNC,
we obtained the results given by SBCGLP-SNC-WO-SBTIME, which dominates
NOSB-CGLP-SNC. We conclude that if a branch-and-bound based algorithm per-
forms NLP-based strong branching to determine the branching variables, then
there is is significant positive effect in using the linearization information in the
CGLP. However, one should not solve the strong-branching NLPs simply to obtain
stronger disjunctive inequalities. The computational effort required in solving the
NLPs outweighs the benefit obtained from stronger inequalities in terms of CPU
time.

4.10 Comparison of all methods

We make a final comparison of the methods introduced in the paper. In this experiment,
we compare the methods that performed best in earlier experiments with the default
version of FilMINT. The methods we compare are the following:

– FilMINT: The default version of FilMINT.
– BESTLIN: FilMINT, with the master problem augmented with linearizations from

NLP-based branching subproblems, as described in Sect. 2.1. The linearization
management strategy introduced in Sect. 4.6 is employed.

– SSBC: FilMINT, with the master problem augmented with the multiplier-
strengthened strong-branching cuts (16).

– SBCGLP-SNC: FilMINT, adding disjunctive inequalities based on solving the
CGLP (17) using the SNC.

The monoidal strengthening step described in Sect. 3.4 was applied to the inequal-
ities generated by methods SSBC and SBCGLP-SNC. In Table 6, we list the average
number of nodes and solution time taken for the instances in our test set. The table
shows that the method SBCGLP-SNC is the best for search tree size and solution time
in the geometric mean, but the worst in both measures by the arithmetic mean. We

Table 6 Solution statistics comparing best methods and FILMINT

Average # of nodes Average time

Arithmetic Geometric Arithmetic Geometric

FILMINT 762760.6 87019.1 2378.7 712.6

BESTLIN 376940.9 41245.3 1744.2 495.5

SSBC 332509.4 51591.5 1535.4 490.9

SBCGLP-SNC 833065.8 15922.6 2595.5 294.3

123

662 M. Kılınç et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256 512

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: number of nodes

FILMINT
BESTLIN

SSBC
SBCGLP-SNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128 256

pr
op

or
tio

n
of

 p
ro

bl
em

s
so

lv
ed

not more than x-times worst than best solver

performance measure: solution time

FILMINT
BESTLIN

SSBC
SBCGLP-SNC

Fig. 4 Performance profile of best methods and FILMINT

123

Convex mixed integer nonlinear programs 663

conclude that the method SBCGLP-SNC can be a very effective method but some care
must be taken in its use. For a small number of instances in our test set, in particular o7,
Safety3, and sssd-20-8-3, the performance of SBCGLP-SNC is quite bad, requiring a
very large number of nodes and large CPU time that significantly shifts the arithmetic
mean measure.

A more holistic view is given by the performance profiles in Fig. 4. These profiles
show that in general creating disjunctive inequalities by solving the CGLP (17) with
the standard normalization condition significantly outperforms the other methods.
Creating disjunctive inequalities by an extra solve of (17) pays dividends both in
terms of number of nodes and solution time. We experienced similar positive effects
with other normalization constraints introduced in Sect. 3.3 as well. The profiles also
indicate that both linearizations and SSBC inequalities improve the performance of
default FilMINT substantially. The detailed performance of methods on each instance
is given in Table 15 and 16 (see Electronic supplementary material).

5 Conclusions

In this work, we demonstrate how to use “discarded” information generated from
NLP-based strong branching to strengthen relaxations of MINLP problems. We first
introduced SBCs, and we demonstrated the relation of SBCs we derive with other
well-known disjunctive inequalities in the literature. We improved these basic cuts
by using Lagrange multipliers and the integrality of variables. We combined SBCs
via mixing. We demonstrated that simple disjunctive inequalities can be improved by
additional linearizations generated from strong-branching subproblems. Finally, the
methods explained in this paper significantly improve the performance of FilMINT,
justifying the use of strong branching based on nonlinear subproblems for solving
convex MINLP problems.

Acknowledgments The authors would like to thank two anonymous referees for their useful comments
and patience. This research was supported in part by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy under Grant DE-FG02-08ER25861 and by the U.S. National
Science Foundation under Grant CCF-0830153.

References

1. Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: an outer-approximation-based solver for nonlinear
mixed integer programs. INFORMS J. Comput. 22, 555–567 (2010)

2. Achterberg, T.: Constraint Integer Programming. Ph.D. Thesis, Technischen Universtät Berlin (2007)
3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2004)
4. Applegate, D., Bixby, R., Cook, W., Chvátal, V.: The Traveling Salesman Problem, A Computational

Study. Princeton University Press, Princeton (2006)
5. Atamtürk, A., Nemhauser, G., Savelsbergh, M.W.P.: Conflict graphs in solving integer programming

problems. Eur. J. Oper. Res. 121, 40–55 (2000)
6. Balas, E.: A modified lift-and-project procedure. Math. Program. 79, 19–31 (1997)
7. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discr. Appl. Math.

89(1–3), 3–44 (1998)
8. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs.

Math. Program. 58, 295–324 (1993)

123

664 M. Kılınç et al.

9. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut
framework. Manag. Sci. 42, 1229–1246 (1996)

10. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234
(1980)

11. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear
optimization. Acta Numer. 22, 1–131 (2013)

12. Bonami, P., Kılınç, M., Linderoth, J.: Algorithms and software for solving convex mixed integer
nonlinear programs. IMA Vol. Math. Appl. 54, 1–40 (2012)

13. Bonami, P., Lee, J., Leyffer, S., Wächter, A.: More branch-and-bound experiments in convex nonlinear
integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics
and Computer Science Division, September (2011)

14. Boorstyn, R.R., Frank, H.: Large-scale network topological optimization. IEEE Trans. Commun. 25,
29–47 (1997)

15. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib - a collection of test models for mixed-integer
nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

16. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout deisgn problems
with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng.
30, 54–69 (2005)

17. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
91, 201–213 (2002)

18. Duran, M.A., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Math. Program. 36, 307–339 (1986)

19. Elhedhli, S.: Service system design with immobile servers, stochastic demand, and congestion. Manuf.
Serv. Oper. Manag. 8(1), 92–97 (2006)

20. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Programm. 128,
205–230 (2011)

21. Fletcher, R., Leyffer, S.: User manual for filterSQP. University of Dundee Numerical Analysis Report
NA-181 (1998)

22. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim.
Eng. 3, 227–252 (2002)

23. Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separaable convex quadratic
transportation-cost ufl. Technical Report RC24213 (W0703–042), IBM Research Division, March
(2007)

24. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001)
25. Harjunkoski, I., Pörn, R., Westerlund, T.: MINLP: Trim-loss problem. In: Floudas, Christodoulos A.,

Pardalos, Panos M. (eds.) Encyclopedia of Optimization, pp. 2190–2198. Springer, New York (2009)
26. Kılınç, M.: Disjunctive Cutting Planes and Algorithms for Convex Mixed Integer Nonlinear Program-

ming. Ph.D. Thesis, University of Wisconsin-Madison (2011)
27. Leyffer, S.: MacMINLP: Test Problems for Mixed Integer Nonlinear Programming, (2003). http://

www.mcs.anl.gov/~leyffer/macminlp
28. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies in mixed integer

programming. INFORMS J. Comput. 11, 173–187 (1999)
29. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a Mixed INTeger Optimizer. Oper.

Res. Lett. 15, 47–58 (1994)
30. Pochet, Y., Wolsey, L.: Lot sizing with constant batches: formulation and valid inequalities. Math.

Oper. Res. 18, 767–785 (1993)
31. Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP

optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)
32. Ravemark, D.E., Rippin, D.W.T.: Optimal design of a multi-product batch plant. Comput. Chem. Eng.

22(1–2), 177–183 (1998)
33. Sawaya, N.: Reformulations, relaxations and cutting planes for generalized disjunctive programming.

Ph.D. Thesis, Chemical Engineering Department, Carnegie Mellon University (2006)
34. Sawaya, N., Laird, C.D., Biegler, L.T., Bonami, P., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Lee,

J., Lodi, A., Margot, F., Wächter, A.: CMU-IBM open source MINLP project test set, (2006). http://
egon.cheme.cmu.edu/ibm/page.htm

35. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically con-
strained programs: extended formulations. Math. Program. Ser. B 124, 383–411 (2010)

123

http://www.mcs.anl.gov/~leyffer/macminlp
http://www.mcs.anl.gov/~leyffer/macminlp
http://egon.cheme.cmu.edu/ibm/page.htm
http://egon.cheme.cmu.edu/ibm/page.htm

Convex mixed integer nonlinear programs 665

36. Stubbs, R., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Pro-
gram. 86, 515–532 (1999)

37. Türkay, M., Grossmann, I.E.: Logic-based MINLP algorithms for the optimal synthesis of process
networks. Comput. Chem. Eng. 20(8), 959–978 (1996)

38. Vecchietti, A., Grossmann, I.E.: LOGMIP: a disjunctive 0–1 non-linear optimizer for process system
models. Comput. Chem. Eng. 23(4–5), 555–565 (1999)

123

	Strong-branching inequalities for convex mixed integer nonlinear programs
	Abstract
	1 Introduction
	2 Simple strong-branching inequalities
	2.1 Linearizations
	2.2 Simple disjunctive inequalities
	2.3 Mixing strong-branching cuts

	3 Strengthened strong-branching inequalities
	3.1 SBC and disjunctive inequalities
	3.2 Multiplier strengthening
	3.3 Strong-branching CGLP
	3.4 Monoidal strengthening
	3.5 Lifting

	4 Computational experience
	4.1 FilMINT
	4.2 Computational setup
	4.3 Performance of SBC inequalities and linearizations
	4.4 Performance of GUB-SBC inequalities
	4.5 Performance of mixing strong-branching inequalities
	4.6 Linearization strategies
	4.7 Performance of multiplier-strengthened SBC inequalities
	4.8 Normalizations for CGLP
	4.9 CGLP without strong branching
	4.10 Comparison of all methods

	5 Conclusions
	Acknowledgments
	References

