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Abstract This paper is aimed to employ a modified quasi-Newton equation in the
framework of the limited memory BFGS method to solve large-scale unconstrained
optimization problems. The modified secant equation is derived by means of a forth
order tensor model to improve the curvature information of the objective function. The
global and local convergence properties of the modified LBFGS method, on uniformly
convex problems are also studied. The numerical results indicate that the proposed
limited memory method is superior to the standard LBFGS method.

Keywords Large scale nonlinear optimization ·Modified limited memory
quasi-Newton method · Curvature approximation ·Modified quasi-Newton equation ·
R-linear convergence
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1 Introduction

In this paper we describe a limited memory quasi Newton (QN) algorithm for solving
large nonlinear optimization problems. We write this problem as

min f (x),
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where f : Rn → R is a nonlinear and twice continuously differentiable function and
the number of variables n is assumed to be large.

Problems with the size of thousands can be solved efficiently, only if the storage
and computational cost of the optimization algorithm can be kept at a tolerable level.
Among the methods for solving these problems are inexact Newton methods, sparse
elimination techniques, limited memory QN methods and conjugate gradient meth-
ods [5]. In this paper the focus is directed toward the limited memory quasi-Newton
methods.

The limited memory QN methods continuously refresh the correction set of small m
positive integer vector pairs by removing and adding information at each iteration. The
resulting vector pairs contain curvature information from only the m most recent iter-
ations to construct Hessian approximation, so that the main properties of QN updates
are maintained. These methods are robust, inexpensive and easy to implement and due
to the low storage demand, they are suitable for large problems, see [5].

To improve the efficiency properties of the limited memory algorithm, one needs
to achieve more accurate Hessian approximation at lower cost in computation and
storage. As regards, the main contribution of this paper is to use a fourth order tensor
model to derive a QN equation which enables us to modify the limited memory BFGS
method.

In the following section, we describe derivation of the modified secant equation.
The global and local convergence result of the modified limited memory BFGS method
is presented in Sect. 3. In Sect. 4, we will describe the detailed algorithm of modified
limited memory BFGS, Algorithm 2, based upon two loop recursive procedure. In
Sect. 5, we compare the Dolan and Moré [2] performance profile of the new algorithm
with LBFGS by Liu and Nocedal [4]. The conclusion is finally outlined in Sect. 6.

2 Derivation of modified secant equation

In this section we derive a more efficient QN equation by taking the forth order tensor
model into account. The general idea can be delineated as follows: Recall that the
ordinary QN method generates a sequence {xk}, at iterate k, by

xk = xk−1 − αk−1 Hk−1gk−1,

where αk−1 is the stepsize, gk−1 denotes the gradient of f at xk−1, and Hk−1 is updated
at every iteration to obtain Hk that satisfies the secant equation

Hk yk−1 = sk−1, (1)

in which sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Based on the fourth order
tensor model, provided that sT

k−1 yk−1 �= 0, the secant equation can be modified in the
following form

Hk ỹk−1 = sk−1, ỹk−1 =
(

1+ φk−1

sT
k−1 yk−1

)

yk−1, (2)
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where φk−1 = 4( fk−1 − fk) + 2(gk + gk−1)
T sk−1. Furthermore, it is proved that if

f is smooth enough, and ‖sk−1‖ is sufficiently small, then

sT
k−1Gksk−1 − sT

k−1 ỹk−1 = 1

6
sT

k−1(Tksk−1)sk−1 + O(‖sk−1‖5), (3)

where Tk is three-dimensional tensor of f at xk .
We produce the steps, that lead to a new modified secant equation as below: consider

the fourth-order tensor model of the objective function about the iterate xk :

f (xk + s) = fk + gk .s + 1

2
Gk .s

2 + 1

6
Tk .s

3 + 1

24
Vk .s

4 + O(‖s‖5), (4)

where Vk is a four-dimensional tensor of f at xk , see [6]. Substituting s = −sk−1
into (4), it follows that

fk−1 = fk − gk .sk−1 + 1

2
Gk .s

2
k−1 −

1

6
Tk .s

3
k−1 +

1

24
Vk .s

4
k−1 + O(‖sk−1‖5). (5)

Differentiate (4) at s = sk−1, and multiply both sides of the outcome by−sk−1, yields

gk−1.sk−1 = gk .sk−1 − Gk .s
2
k−1 +

1

2
Tk .s

3
k−1 −

1

6
Vk .s

4
k−1 + O(‖sk−1‖5). (6)

After multiplying (5) by 4, and adding (6), the terms involving the tensor Vk is elimi-
nated, and we get

sT
k−1Gksk−1 = yT

k−1sk−1 + φk−1 + 1

6
sT

k−1(Tksk−1)sk−1 + O(‖sk−1‖5). (7)

This ensures that with respect to the expression (2), the last relation is equivalent to
(3). On the other direction, it can be readily seen that

sT
k−1Gksk−1 = sT

k−1 yk−1 + φk−1 + O(‖sk−1‖3).

This result suggests that the curvature sT
k−1 ỹk−1 captures the second order curvature

sT
k−1Gksk−1 with a higher precision (lower error). This high precision can be achieved

with essentially no additional computational effort.
The modified QN Eq. (2) leads us to modify the inverse BFGS update formula,

namely MBFGS update, as follows

Hk =
(

I − sk−1 ỹT
k−1

ỹT
k−1sk−1

)

Hk−1

(

I − ỹk−1sT
k−1

ỹT
k−1sk−1

)

+ sk−1sT
k−1

ỹT
k−1sk−1

= V T
k−1 Hk−1Vk−1 + ρk−1

βk−1
sk−1sT

k−1, (8)

where ρk−1 = 1/yT
k−1sk−1, βk−1 = 1+ φk−1ρk−1 and Vk−1 = I − ρk−1 yk−1sT

k−1.
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Formula (8) maintains the positive definiteness of Hk if

sT
k−1 yk−1 > 0 and sT

k−1 ỹk−1 > 0.

The left hand side inequality is guaranteed, since the steplength αk−1 is computed
such that the following Wolfe conditions hold:

f (xk−1 + αk−1 pk−1) ≤ f (xk−1)+ c1αk−1gT
k−1 pk−1, (9)

gT (xk−1 + αk−1 pk−1)pk−1 ≥ c2gT
k−1 pk−1, (10)

where pk−1 = −Hk−1gk−1 is the QN search direction, and c1 ∈ (0, 1) and c2 ∈
(c1, 1) are some constants. Hence to assure sT

k−1 ỹk−1 > 0, it is enough in the expression
of ỹk−1 defined by (2), φk−1 is replaced by

φk−1 = (η − 1)sT
k−1 yk−1 if φk−1 < (η − 1)sT

k−1 yk−1, (11)

where η ∈ (0, 1), as suggested by Zhang and Xu [7]. This replacement yields the
following inequalities

φk−1 ≥ (η − 1)sT
k−1 yk−1;

βk−1 ≥ η;
sT

k−1 ỹk−1 ≥ ηsT
k−1 yk−1.

These relations are needed in the next section.

3 Convergence property

In this section, the global and local convergence properties of the modified limited
memory BFGS algorithm are studied. Technically, the modified LBFGS matrix Hk

is obtained by updating a bounded matrix, m times, using the MBFGS formula. For
the purposes of our analysis, we shall use the direct update Bk = H−1

k , which is
the modified Hessian approximation to the objective function, associated with the
modified Eq. (8).

Algorithm 1 (Modified limited memory BFGS)
Given an initial point x0, m > 0, 0 < c1 < c2 < 1, a symmetric positive definite
initial matrix B0 = B(0)

0 ;
k ← 1;
repeat

Compute the search direction pk−1 ←−B−1
k−1gk−1;

Choose a steplength αk−1 along the direction, to satisfy the Wolfe conditions
(9) and (10), and set

xk = xk−1 + αk−1 pk−1;
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If k > m, discard the vector pair {sk−m−1, yk−m−1} from storage;
Compute and save sk−1 = xk − xk−1 and yk−1 = gk − gk−1;
Quantify the value of φk−1 via (2) and (11);
Define βk−1 = 1+ φk−1/sT

k−1 yk−1;

Update B(0)
k−1, m times by using the pairs {si , yi }k−1

k−m as:

for l = 0 to m − 1

B(l+1)
k−1 = B(l)

k−1 −
B(l)

k−1sl+k−msT
l+k−m B(l)

k−1

sT
l+k−m B(l)

k−1sl+k−m

+ βl+k−m yl+k−m yT
l+k−m

yT
l+k−msl+k−m

; (12)

end (for)
Set Bk = B(m)

k−1;
k − 1← k;

until termination

For the purposes of this section, we make the following assumptions on the objective
function.

Assumption 1 (a) Ω = {x ∈ R
n : f (x) ≤ f (x0)} is a convex set.

(b) f is twice continuously differentiable.
(c) f is uniformly convex function, i.e. there exist positive constants M1 and M2 such

that

M1‖z‖2 ≤ zT G(x)z ≤ M2‖z‖2, (13)

for all z ∈ R
n and all x ∈ Ω.

In the sequal we show that the new algorithm is globally convergent, and its conver-
gence rate is R-linear. The proof of Theorem 1 is an extension to that of [4].

Theorem 1 Let x0 be a starting point, for which f satisfies Assumptions 1, and sup-
pose matrices B(0)

k are symmetric positive definite initial matrices, for which {‖B(0)
k ‖}

and {‖B(0)
k

−1‖} are bounded. Then, the sequence {xk} generated by Algorithm 1 con-
verges to the unique x∗ on Ω , and the convergence rate is R-linear, that is, there is a
constant 0 ≤ r < 1, such that

f (xk)− f (x∗) ≤ rk( f (x0)− f (x∗)). (14)

Proof Using the definition of Ḡk−1 =
∫ 1

0 G(xk−1 + τ sk−1)dτ , we have

yk−1 = Ḡk−1sk−1. (15)

Then Eqs. (13) and (15) give

M1‖sk−1‖2 ≤ yT
k−1sk−1 ≤ M2‖sk−1‖2, (16)
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and

‖yk−1‖2
yT

k−1sk−1
= sT

k−1Ḡ2
k−1sk−1

sT
k−1Ḡk−1sk−1

≤ M2. (17)

Moreover, because of the second order Taylor expansion, we have

|φk−1| = |4( f (xk−1)− f (xk))+ 2(gk−1 + gk)
T sk−1|

≤ 2|sT
k−1G(xk−1 + tsk−1)sk−1 + (gk − gk−1)

T sk−1|. (18)

Now, from (18), (16) and (13), we obtain

|φk−1| ≤ 4M2‖sk−1‖2. (19)

Since the strategy (11) implies φk−1 ≥ (η−1)sT
k−1 yk−1, from (16) and inequality (19),

we have

η ≤ |βk−1| =
∣

∣

∣

∣

∣

1+ φk−1

sT
k−1 yk−1

∣

∣

∣

∣

∣

≤ 1+ 4M2

M1
. (20)

Subsequently, let B(0)
k = (H (0)

k )−1, and using the arguments in [5], the following
inequality holds.

trace
(

B( j)
k−1

)

≤ trace
(

B( j−1)
k−1

)

+
(

1+ 4M2

M1

)

M2, j = 1, 2, · · · , m.

Since B(0)
k−1 is bounded, we obtain

trace(Bk) = trace
(

B(m)
k−1

)

≤ trace
(

B(0)
k−1

)

+ m

(

1+ 4M2

M1

)

M2 ≤ M3, (21)

for some positive constant M3. Analogically, we can also have a simple expression
for the determinant as well, see [4].

det (Bk) = det (B(m)
k−1) = det (B(0)

k−1)

m
∏

l=1

ỹT
l sl

sT
l B(l)

k−1sl

= det (B(0)
k−1)

m
∏

l=1

ỹT
l sl

sT
l sl

sT
l sl

sT
l B(l)

k−1sl

= det (B(0)
k−1)

m
∏

l=1

βl
yT

l sl

sT
l sl

sT
l sl

sT
l B(l)

k−1sl

.
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Since by (21), the largest eigenvalue of B(l)
k−1 is also less than M3, using the left

hand side of (16), the boundedness of ‖(B(0)
k−1)

−1‖, and inequality (20), we have

det (Bk) ≥ det
(

B(0)
k−1

)

∣

∣

∣

∣

∣

m
∏

l=1

βl

∣

∣

∣

∣

∣

(

M1

M3

)m

≥ M4, (22)

for some positive constant M4.
Hence, by (21) and (22), there is a constant δ > 0 such that

cos θk−1 =
sT

k−1 Bk−1sk−1

‖sk−1‖‖Bk−1sk−1‖ ≥ δ. (23)

Moreover, the Wolfe conditions (9, 10) and Zoutendijk [6] theorem imply that

∞
∑

k=1

cos2 θk−1‖gk−1‖2 <∞. (24)

Since cos θk−1 is bounded away from zero for all k ≥ 1, then the sequence {xk}
converges to x∗ in the sense that

lim
k→∞‖gk−1‖ = 0. (25)

Now, because of the Wolfe conditions (9) and (10), and Assumptions 1, it can be
shown (see [4] for details) that there is a constant c > 0, in which

f (xk)− f (x∗) ≤ (1− c cos2 θk−1)( f (xk−1)− f (x∗)). (26)

Applying (23) to the last inequality, gives rise to the conclusion (14).
Moreover, using (13) and Taylor expansion we have

1

2
M1‖xk − x∗‖2 ≤ f (xk)− f (x∗), (27)

which together with (14) gives ‖xk − x∗‖ ≤ rk/2[2( f (x0)− f (x∗)/M1]1/2, implying
that the convergence rate is R-linear.

4 The algorithm

In this section, we give a description of our ”Modified Limited memory BFGS
”, (MLBFGS) method. It is well known that the ordinary limited memory BFGS,
(LBFGS) method, proposed by Liu and Nocedal [4], is adopted from the BFGS method
to solve large scale problems. Very often, the QN methods can employ a scaled iden-
tity as an initial approximation to speed up the convergence. For this purpose, Liu and
Nocedal [4] suggested the use of H (0)

k−1 = γk−1 I , where γk−1 = yT
k−1sk−1/‖yk−1‖2.
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To explain the strategy of the limited memory BFGS method, we first assume that m is
a given small positive integer. The LBFGS method keeps the m most recent correction
pairs, {si , yi }k−2

i=k−m−1, to update m times, the matrix H (0)
k−1, and computes the product

Hk−1gk−1 efficiently via performing two-loop recursion procedure, see [4,5]. To mod-
ify ordinary limited memory BFGS method, we require to redefine yi via multiplying
it by βi for i = k − m − 1, . . . , k − 2. Therefore, our two loop recursion procedure
of the MLBFGS method, for computing the product Hk−1gk−1, is given as follows:

Algorithm 2 (MLBFGS two loop recursion)
q ← gk−1;
For i = k − 2, k − 3, · · · , k − m − 1

Compute ρ̃i = 1
βi yT

i si
;

αi ← ρ̃i sT
i q;

q ← q − αi yi ;
end(for)
r ← H (0)

k−1q;
For i = k − m − 1, k − m − 2, · · · , k − 2

χ ← ρ̃i yT
i r ;

r ← r + si (αi − χ);
end(for)
Stop with result r = Hk−1gk−1.

5 Numerical experiments

This section evaluates the performance of the MLBFGS algorithm in comparison
with the standard LBFGS algorithm of Liu and Nocedal [4]. Both codes are written
in Fortran 77 in double precision. A line search routine is used based on the quadratic
and cubic interpolations that satisfies the strong Wolfe conditions (9) and

|gT (xk−1 + αk−1 pk−1)pk−1| ≤ c2|gT
k−1 pk−1|, (28)

with c1 = .01 and c2 = .9, see for example Fletcher [3].
we considered fifty large-scale unconstrained optimization test problems with the

standard starting points selected from [1]. For each test problem, ten numerical experi-
ments with dimension ranging from 1000 to 50,000 were performed. Extensive numer-
ical testing of the methods are carried out by selecting three values for m, i.e. 3, 5
and 7. As compared with the results of these values of m in the two limited memory
BFGS algorithms, it is observed that the choice of the parameter m=5 gives the best
result. To maintain positive definiteness of the curvature approximation, strategy (11) is
employed whitin MLBFGS algorithm with η = 10−4. All runs were terminated when

‖gk‖ ≤ 10−5max{1, ‖xk‖}.

In the numerical comparisons we selected to use the performance profiles of Dolan
and Moré [2] to present the results of the numerical experiments. The performance pro-

123



Limited memory BFGS method 421

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(τ

)

LBFGS

MLBFGS

Fig. 1 performance profiles based on function and gradient evaluations

files correspond to the number of function–gradient evaluations metric. It is observed
from Fig. 1 that the MLBFGS is always the top performer for all values of τ .

We observe that the amount of additional storage and arithmetics of MLBFGS
algorithm are insignificant in comparison with those of the LBFGS method. The
numerical result obtained reveals that a higher order accuracy in approximating the
inverse Hessian matrix of the objective function takes place for the modified LBFGS
method which enables it to outperforms the ordonary LBFGS method.

6 Conclusion

In this paper, we have explored a fourth order tensor model of the objective function
to modify QN equation with the aim of attaining more accurate Hessian estimate.
This enables us to design a more effective limited memory BFGS method to solve
large-scale function minimization.

The major advantages of proposed algorithm are that it preserves the convergence
properties of the LBFGS method, while allowing to obtain an overall computational
saving, and it can be built very inexpensively.

Our experiments in the frame of LBFGS algorithm, showed that the MLBFGS is
superior to the LBFGS algorithm.
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