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Abstract In this paper, we propose a robust sequential quadratic programming (SQP)
method for nonlinear programming without using any explicit penalty function and
filter. The method embeds the modified QP subproblem proposed by Burke and Han
(Math Program 43:277–303, 1989) for the search direction, which overcomes the
common difficulty in the traditional SQP methods, namely the inconsistency of the
quadratic programming subproblems. A non-monotonic technique is employed fur-
ther in a framework in which the trial point is accepted whenever there is a sufficient
relaxed reduction of the objective function or the constraint violation function. A forc-
ing sequence possibly tending to zero is introduced to control the constraint violation
dynamically, which is able to prevent the constraint violation from over-relaxing and
plays a crucial role in global convergence and the local fast convergence as well.
We prove that the method converges globally without the Mangasarian–Fromovitz
constraint qualification (MFCQ). In particular, we show that any feasible limit point
that satisfies the relaxed constant positive linear dependence constraint qualification is
also a Karush–Kuhn–Tucker point. Under the strict MFCQ and the second order suf-
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ficient condition, furthermore, we establish the superlinear convergence. Preliminary
numerical results show the efficiency of our method.

Keywords Sequential quadratic programming method · Non-monotonicity ·
Convergence analysis · RCPLD · Strict MFCQ

Mathematics Subject Classification 90C30

1 Introduction

In this paper, we consider the general constrained optimization problem:

(NLP)

⎧
⎪⎨

⎪⎩

min
x∈Rn

f (x)

s.t. ci (x) = 0, i ∈ E
ci (x) ≤ 0, i ∈ I

where E = {1, 2, . . . , m1}, I = {m1+1, m1+2, . . . , m} and the functions f : Rn →
R and ci : Rn → R for all i ∈ E ∪ I are continuously differentiable.

Among many efficient approaches [31] for (NLP), the sequential quadratic pro-
gramming (SQP) method is one of the most important approaches that has been
widely used in practice. There are fruitful theoretical results and numerical inves-
tigations for (SQP) and the reader can refer to, e.g., [24,25,31–33,45], for general
discussion. In applying the (SQP), however, it is known that three main difficulties
may arise: Firstly, the quadratic programming (QP) subproblems could be incon-
sistent; secondly, the associated sequence of search directions could be unbounded,
and thirdly, proper values of penalty parameters involved are difficult to set. In tack-
ling these difficulties, Burke and Han [9] and Zhou [46] modified the QP subprob-
lems and overcome the former two difficulties. It is known that some other tech-
niques may also be able to overcome the inconsistency of the QP subproblems,
for instance, the elastic technique [17]. However, in general, they need to solve an
auxiliary problem with more unknowns than the original problem, and furthermore
it might be hard to determine an appropriate penalty parameter. For the third dif-
ficulty, Fletcher and Leyffer [14] proposed a trust-region SQP filter method. The
underlying principle of Fletcher and Leyffer’s method is that, instead considering
a combination of the objective value and the constraint violation, they accept the
trial point if it improves either the objective function or the constraint violation. The
method is effective, but numerically, it needs a so-called feasibility restoration phase
which may be expensive to compute. Recently, Shen et al. [35] made progress on
the filter algorithm by proposing a nonmonotone filter SQP algorithm, which con-
verges under standard assumptions. Except for the trust-region filter methods, line
search filter methods for nonlinear programming are proposed and analyzed in [41–
43].

There are also several methods without using a penalty function or a filter. For exam-
ple, Ulbrich and Ulbrich [36] introduced a nonmonotone trust-region method, which
does not involve penalty parameters and the feasibility restoration phase. Inspired
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by [36], Xue et al. [44] proposed and analyzed a nonmonotone line search method.
It is claimed that their method is comparable to the filter method with respect to
the flexibility for accepting trial steps. Bielschowsky and Gomes [4] also suggested
an algorithm, which dynamically controls infeasibility. Very recently, Gould and
Toint [18] (see also [19]) and Liu and Yuan [29] proposed new algorithms with-
out a penalty function or a filter. However, it should be pointed out that all these
mentioned methods are only designed for solving equality constrained optimiza-
tion.

Some researchers proposed second derivative SQP methods which employ the exact
Hessian of Lagrangian in the QP subproblem (e.g., [15,20,21]). In [15], the global
solution of the QP subproblem is required for proving global convergence. Gould
and Robinson [20,21] presented globally and quadratically convergent SQP methods
based on QP subproblems that need not be solved globally. An alternative proposed
by Morales et al. [30] is to add an equality quadratic programming with exact second-
order derivative at each iteration.

Other than handling general optimization problems, some of researchers are
interested in degenerate nonlinear programming problems, for which the active
constraint gradients at the solution are linearly dependent or the strict comple-
mentarity (SC) condition fails to hold (or both). Wright [37] proposed a sta-
bilized SQP algorithm and established the local quadratic convergence without
the linear independence constraint qualification (LICQ) condition. But it requires
the Mangasarian–Fromovitz constraint qualification (MFCQ), the SC condition
and the second-order sufficient condition (SOSC). In fact, if the SC condition
holds, the SOSC is equivalent to the stronger SOSC. Hager [23] proved the
locally quadratic convergence under only the stronger SOSC instead of the MFCQ
and SC conditions. Similar discussions on this topic can also be found in [38–
40].

In this paper, we propose a nonmonotone line search SQP method to solve the
general constrained optimization problems (NLP) which might be degenerate in the
sense that the MFCQ fails to hold at the solution. Different from the nonmonotone
line search approach in [44], our method employs a new rule to update the relaxed
constraint violation dynamically, which makes our method competitive with some
other approaches. In particular, we can prove the global and local convergence under
weaker conditions, such as the relaxed constant positive linear dependence (RCPLD)
condition [2] for the global convergence, and the strict MFCQ (SMFCQ) for the local
convergence. To avoid difficulties caused by degeneracy, the modified QP subprob-
lem [9] and some nonmonotone technique are incorporated in our algorithm, and we
will show that, if a feasible limit point of the iterative sequence satisfies the RCPLD
condition, then it must be a Karush–Kuhn–Tucker (KKT) point. The RCPLD con-
dition is recently proposed by Andreani et al. [2] as a new constraint qualification,
which is the extension of the constant positive linear dependence (CPLD) condition
[3,34], firstly introduced by Qi and Wei [34]. It is worth mentioning that the RCPLD
condition is weaker than the CPLD (see [2]), the LICQ and the MFCQ conditions
as well. Therefore, our global convergence conclusion that a feasible limit point is
a KKT point under the RCPLD (or CPLD) condition is stronger than that under the
LICQ condition or the MFCQ condition. For the local convergence of our method,
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on the other hand, we show it converges superlinearly under the strict MFCQ and
SOSC.

The improved convergence results of our SQP method mainly benefit from the
development of primal superlinear convergence of some Newtonian methods under
SMFCQ and SOSC (see [13]) (Based on the similar technique, Fernández et al. [13]
focused only on the local analysis). We will employ this technique to prove the fast
local convergence of a global algorithm, which allows iterates to switch from the global
phase to the local phase smoothly. In particular, we will show that the unit step-size
is accepted when the iterate is close enough to a minimizer.

To give a much clearer picture of our achievement, we summarize the main features
of our proposed algorithm as follows:

1. Our algorithm allows the non-monotonicity of the objective values and formulates
a subproblem which is always consistent.

2. Our algorithm does not introduce an explicit penalty function or a filter. No penalty
parameter needs to be chosen. Compared with the filter SQP methods, it does not
need a feasibility restoration phase which might cost numerous computational
amount.

3. We establish the global convergence of our algorithm without the CPLD, LICQ
or MFCQ assumptions, which implies that our algorithm is able to handle the
degenerate problems. As a comparison, we remark that for degenerate problems,
[23,37,38] introduce algorithms based on the stabilized QP subproblem using
exact second-order information, but only local convergence behavior is investi-
gated, and [40] proposes a globally and superlinearly convergent algorithm, which
contains a global phase and a local phase but can not switch from one phase to the
other smoothly.

4. For the local convergence, instead of LICQ, the SC condition and SOSC, our
algorithm possesses the superlinear convergence under SMFCQ and SOSC. The
global and local convergence results are stronger than some other SQP methods,
such as those proposed in [29,35,44,46]. Moreover, it is worth mentioning that
the introduced switching condition allows the algorithm to transit from the global
phase to the local phase smoothly and plays important roles in proving the local
convergence under such weaker conditions. We believe that this technical rule can
make local convergence possible for other merit-function-free algorithms under
SMFCQ and SOSC.

5. Our algorithm can be understand as a perturbed feasible SQP method in some sense.
Unlike the classical feasible SQP method, our algorithm does not always improve
the objective function. Instead, the forcing sequence in our algorithm controls the
constraint violation dynamically so that the constraint violation approaches zero
normally, with the possible decrease in the objective function (e.g., when some
switching condition is satisfied).

The remainder of this paper is organized as follows. Some preliminaries on con-
straint qualifications and optimality conditions are reviewed in Sect. 2. In Sect. 3,
we present the modified QP subproblem to avoid the inconsistency of the original
QP subproblem, and describe the non-monotone decrease conditions for the objec-
tive function and the constraint violation. The overall algorithm is stated at the end
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of Sect. 3. Under some weaker conditions, the global convergence and the fast local
convergence of the algorithm are established in Sects. 4 and 5, respectively. Some
numerical results are presented in Sect. 6. Finally, we give some concluding remarks
in Sect. 7.

Notation Throughout this paper, we make an extensive use of the symbols o(·), O(·)
and �(·). Let {ak} and {bk} be two vanishing sequences, where ak, bk ∈ R, k ∈ N. If
the sequence of ratios {ak/bk} approaches zero as k →+∞, then we write ak = o(bk).
If there exists a constant C > 0, such that |ak | ≤ C |bk | for all k sufficiently large, then
we write ak = O(bk). If both ak = O(bk) and bk = O(ak), then we write ak = �(bk).

To describe the feasibility of a point x, we define

h(x) =
∥
∥
∥
∥

(
cE (x)

max{cI(x), 0}
)∥

∥
∥
∥∞

,

and for σ > 0,

�(x, σ ) = min‖d‖∞≤σ
max

i∈E,i∈I
{|ci (x)+∇ci (x)T d|, max{ci (x)+ ∇ci (x)T d, 0}}. (1.1)

It is easy to check that (1.1) is equivalent to the following linear programming:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
d∈Rn ,γ∈R

γ

s.t. −γ ≤ ci (x)+∇ci (x)T d ≤ γ, i ∈ E
ci (x)+ ∇ci (x)T d ≤ γ, i ∈ I
‖d‖∞ ≤ σ,

γ ≥ 0,

(1.2)

whose solution with x = xk will be denoted by (dk, γ k
) and it is true that γ

k
=

�(xk, σk). With the definition of h(x), the feasible set D of the problem (NLP) can be
expressed as D = {x : ci (x) = 0, i ∈ E, ci (x) ≤ 0, i ∈ I} = {x : h(x) ≤ 0}. The
function �(xk, σk) provides a measure of inconsistency of the linearized constraints at
xk (if we ignore the effect of the trust region constraint ‖d‖∞ ≤ σk) and the following
lemma gives the relationship between �(xk, σk) and h(xk).

Lemma 1.1 For all k, �(xk, σk)−h(xk) ≤ 0 holds. Moreover, if �(xk, σk)−h(xk) =
0, then 0 ∈ ∂h(xk), which implies the stationarity of xk , where ∂h(x) denotes the
Clarke subdifferential of h evaluated at x.

Proof This lemma follows from [9, Lemma 2.1]. 
�

It follows from this lemma that h(xk) = 0 implies �(xk, σk) = 0, but conversely,
�(xk, σk) = 0 only requires consistency of the linearized constraints at xk rather than
h(xk) = 0.
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2 Preliminaries

We first review some useful constraint qualifications and basic optimality conditions
in this section. For a given x ∈ R

n , we define the index set of the active inequality
constraints by

A(x) = {i | ci (x) = 0, i ∈ I},

and the well-known Lagrangian is given by

L(x, λ) = f (x)+
∑

i∈E∪I
λi ci (x),

where λ = (λ1, λ2, . . . , λm)T ∈ R
m is the vector of Lagrange multiplier. A specific

constraint qualification at a local minimizer x∗, for example the (LICQ, [31]), is an
assumption so that there exists a multiplier vector λ∗ = (λ∗1, λ∗2, . . . , λ∗m)T ∈ R

m such
that

⎧
⎨

⎩

∇x L(x∗, λ∗) = 0,

ci (x∗) = 0, i ∈ E,

ci (x∗) ≤ 0, λ∗i ≥ 0, λ∗i ci (x∗) = 0, i ∈ I.

(2.1)

This is known as the KKT conditions. We denote the set of optimal Lagrange multi-
pliers λ∗ by Mλ(x∗), and the primal-dual optimal set at x∗ by S(x∗); in other words,
Mλ(x∗) = {λ∗ | λ∗ satisfies (2.3)}, and S(x∗) = {x∗} ×Mλ(x∗). We now review
some well-known constraint qualifications.

Definition 2.1 (i) A given feasible point x ∈ D is said to satisfy the MFCQ condition
(see [9]), if there exists a vector z ∈ R

n such that the following systems

∇ci (x)T z = 0, i ∈ E,

∇ci (x)T z < 0, i ∈ A(x)

are satisfied and the gradients {∇ci (x), i ∈ E} are linearly independent.
(ii) A given KKT point x ∈ D is said to satisfy the strict MFCQ (SMFCQ) condition

(see [28]), if there exists a multiplier λ ∈Mλ(x) and a vector z ∈ R
n such that

the following systems

∇ci (x)T z = 0, i ∈ E

∇ci (x)T z < 0, i ∈ A0(x)

∇ci (x)T z = 0, i ∈ A+(x)
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are satisfied and the gradients {∇ci (x), i ∈ E ∪ J (x)} are linearly independent,
where A0(x) = {i ∈ A(x)|λi = 0} and A+(x) = {i ∈ A(x)|λi > 0} are the sets
of indices of strongly and weakly active constraints at (x, λ), respectively.

Remark 2.1 It is known that if the MFCQ holds at a KKT point x , then the multiplier set
corresponding to x is bounded. The SMFCQ is a necessary and sufficient condition for
the uniqueness of KKT multipliers (see Kyparisis [28, Proposition 1.1]), and moreover
SMFCQ⇒ MFCQ.

Definition 2.2 (i) Let x ∈ D, I0 ⊂ A(x), and E0 ⊂ E . We say that
{∇ci (x)}i∈E0∪I0 is positive linearly dependent (PLD) (see [3,34]) if there exist
scalars {βi }i∈E0 , {βi }i∈I0 such thatβi ≥ 0 for all i ∈ I0,

∑
i∈E0
|βi | +∑

i∈I0
βi >

0, and

∑

i∈E0

βi∇ci (x)+
∑

i∈I0

βi∇ci (x) = 0.

Otherwise, we say that {∇ci (x)}i∈E0∪I0 is positive linearly independent.
(ii) A given feasible point x ∈ D is said to satisfy the CPLD condition (see [3,34])

if for any I0 ⊂ A(x) and E0 ⊂ E , whenever {∇ci (x)}i∈E0∪I0 is positive linearly
dependent, there exists an open neighborhood N (x) of x such that for any y ∈
N (x), {∇ci (y)}i∈E0∪I0 is linearly dependent.

It should be noted that the MFCQ condition implies the CPLD condition, but not
vice versa. A counterexample is given by Andreani et al. [3], who also proved that the
CPLD condition implies quasinormality constraint qualification [26], and is therefore
a constraint qualification. Our last constraint qualification is closely related to CPLD
and is discussed very recently in [2].

Definition 2.3 A given feasible point x ∈ D is said to satisfy the RCPLD condition
(see [2]) if there exists an open neighborhood N (x) of x such that for any y ∈ N (x),

(1) ∇cE (y) has the same rank for every y ∈ N (x), and
(2) For any I0 ⊂ A(x), whenever {∇ci (x)}i∈E0∪I0 is positive linearly dependent,

then {∇ci (y)}i∈E0∪I0 is linearly dependent, where E0 ⊂ E such that {∇ci (x)}i∈E0

is a maximal linearly independent subset of {∇ci (x)}i∈E .

We point out that the RCPLD distinguishes from the CPLD with respect to the
index set E0. Let span(V ) denote the subspace spaned by column vectors of V .
Compared to original CPLD, the RCPLD only treats the index set E0 satisfying
span({∇ci (x)}i∈E0) = span({∇ci (x)}i∈E ), without the need to impose restrictions
on all their subsets. Moreover, Andreani et al. (see [2, Theorem 1]) proved that the
RCPLD is weaker than the CPLD.

We conclude this section by introducing the second-order sufficient condition
(SOSC) which will be used in Sect. 5 for the convergence of our algorithm.

Definition 2.4 A KKT point x∗ with (x∗, λ∗) ∈Mλ(x∗) is said to satisfy the SOSC
if

dT∇xx L(x∗, λ∗)d > 0, for any d ∈ C(x∗)\{0},
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where C(x∗) is the critical cone of the problem (NLP) at x∗, that is,

C(x∗)={d ∈ R
n|∇ci (x∗)T d=0, i ∈ E; ∇ci (x∗)T d ≤ 0, i ∈ A(x∗); ∇ f (x∗)T d ≤ 0}

(see [6, (13.5)]).

We remark that the critical cone can also be written in another form (see [6, (13.6)])

C(x∗) = {d ∈ R
n|∇ci (x∗)T d = 0, i ∈ E; ∇ci (x∗)T d

= 0, i ∈ A+(x∗); ∇ci (x∗)T d ≤ 0, i ∈ A0(x∗)},

where A+(x∗) and A0(x∗) are the sets of indices of strongly and weakly active con-
straints at (x∗, λ∗), respectively (see Definition 2.1 (ii)).

3 Algorithm

Based on the framework of traditional SQP methods, in this section, we will develop
our algorithm in detail. Let xk be the current iterate, then the traditional SQP method
generates the next iterate xk+1 := xk +αkdk by selecting the step size αk ∈ (0, 1] and
by solving the QP subproblem for the direction dk

QP(xk)

⎧
⎪⎨

⎪⎩

min
d∈Rn

gT
k d + 1

2 dT Bkd

s.t. ci (xk)+∇ci (xk)
T d = 0, i ∈ E

ci (xk)+∇ci (xk)
T d ≤ 0, i ∈ I

(3.1)

where gk = ∇ f (xk), and Bk is a particular symmetric positive definite matrix. How-
ever, it is known that two possible difficulties could arise in (3.1), namely, that the
problem QP(xk) could be inconsistent and the direction dk could tend to be unbounded
in norm as k tends to infinity if the matrices {Bk} tend to singularity. In the next sub-
section, we will modify (3.1) to handle these difficulties.

3.1 The modified QP subproblem

To get around the troubles in the QP(xk) (3.1), we use the technique in [9] by defining
a modified QP subproblem

MQP(xk)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
d∈Rn

gT
k d + 1

2 dT Bkd

s.t. ∇ci (xk)
T d + ci (xk) = ri (xk, σk), i ∈ E,

∇ci (xk)
T d + ci (xk) ≤ �(xk, σk), i ∈ I

‖d‖∞ ≤ βk,

(3.2)

where βk > σk > 0, ri (xk, σk) = ∇ci (xk)
T dk + ci (xk), i ∈ E , and dk is

computed by (1.2). Since the optimal value of (1.2) γ
k
= �(xk, σk) provides
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a measure of inconsistency of the linearized constraints at xk , and the quanti-
ties ri (xk, σk), i ∈ E are bounded by �(xk, σk) as well, the modified QP sub-
problem (ignoring the trust region constraint) can be understood as a “small per-
turbation” of the QP subproblem (3.1) in the sense of inconsistency of the lin-
earized constraints. On one hand, if Q P(xk) is feasible, the quantities �(xk, σk)

and ri (xk, σk), i ∈ E vanish, and then MQP(xk) reduces to QP(xk) with a trust
region constraint. On the other hand, we note that the modified QP subproblem
MQP(xk) is well-defined as dk itself is a feasible point, and [9, Lemma 2.2] fur-
ther claims that MQP(xk) admits a unique solution, say dk , bounded by βk . Therefore,
the modified QP subproblem (3.2) overcomes the two potential difficulties in (3.1).
Moreover, we will see that the good global and local convergence are ensured by
using the search direction dk computed from (3.2), for which the KKT conditions
are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gk +∑
i∈E∪I λk,i∇ci (xk)+ Bkdk + λu

k − λl
k = 0,

λk,i (∇ci (xk)
T dk + ci (xk)−�(xk, σk)) = 0, i ∈ I,

(dk − βken)T λu
k = 0, (dk + βken)T λl

k = 0,

∇ci (xk)
T dk + ci (xk)− ri (xk, σk) = 0, i ∈ E,

∇ci (xk)
T dk + ci (xk) ≤ �(xk, σk), i ∈ I, ‖dk‖∞ ≤ βk,

λk,i ≥ 0, i ∈ I, λu
k,i ≥ 0, λl

k,i ≥ 0, i ∈ {1, 2, . . . , n},

(3.3)

where en = (1, 1, . . . , 1)T ∈ R
n , λk = (λk,1, λk,2, . . . , λk,m)T ∈ R

m , λl
k =

(λl
k,1, λ

l
k,2, . . . , λ

l
k,n)T ∈ R

n and λu
k = (λu

k,1, λ
u
k,2, . . . , λ

u
k,n)T ∈ R

n .

3.2 The nonmonotone decrease condition for the objective function

The general principle of algorithms for the constrained minimization is to min-
imize the objective function while control the constraint violation in a specific
way. This naturally leads to algorithms with monotone conditions. However, algo-
rithms with nonmonotone conditions have been proposed and demonstrated com-
petitive numerical performance recently, because nonmonotone conditions could
possibly avoid the undesired Maratos effect. In our algorithm, we adopt the non-
monotone conditions by accepting a new trial point whenever certain relaxed require-
ments on h(x) are fulfilled and some nonmonotone condition f (x) holds, if neces-
sary.

To describe more clearly our strategies, we first state the nonmonotone decrease
condition for the objective function in this subsection. Define f̂k as the maximum
value over the past few iterations. For simplicity, in this paper, we choose the past
three iterations, that is, f̂k = max

i=0,1,2
f (xk−i ) and particularly define f̂0 = f (x0) and

f̂1 = max{ f (x0), f (x1)}. Let x̂k(αk,l) := xk + pk be the next trial point, where
pk = αk,ldk , and αk,l ∈ (0, 1](l = 0, 1, 2, ...) is a decreasing sequence converging
to 0. Once x̂k(αk,l) is accepted, we set xk+1 := x̂k(αk,l) and αk := αk,l . Denote the
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relaxed reduction of f (xk) by

� f̂k = f̂k − f (xk + pk),

and the linear reduction by �lk = −gT
k dk . For a trial point x̂k(αk,l), if

�lk ≥ ξdT
k Bkdk and h(xk) ≤ ζ‖dk‖ · ‖d̃k+1‖, if FLAG=1 & αk,l = 1 (3.4a)

�lk ≥ ξdT
k Bkdk, otherwise (3.4b)

are satisfied, then the relaxed sufficient reduction condition

� f̂k ≥ αk,lσ min(�lk, τ‖dk‖ν), (3.5)

is further required to be satisfied for x̂k(αk,l) to be the accepted iterate, where the
constants σ ∈ (

0, 1
2

)
, τ > 0, ν ∈ (2, 3], ξ ∈ (

0, 1
2

)
and ζ > 0. We have several

remarks in order, to explain the conditions (3.4a–3.4b) and (3.5):

1. FLAG=1 in (3.4a) (also see Algorithm A) means that the second-order correction
(SOC) step d̃k+1 is computed (Detailed information on the SOC steps is described
in Sect. 3.4).

2. If x̂k(αk,l) is accepted as the next iterate satisfying (3.4a) or (3.4b), then either
(3.4a–3.4b)–(3.5) or (3.4b–3.5) are fulfilled, depending on the values of FLAG
and αk,l .

3. Conditions (3.4a) or (3.4b) ensures that dk is a “sufficiently” descent direction of
f (x), but it alone might result in convergence to feasible limit points instead of
KKT points, even if the problem is well-posed. Condition (3.5) is therefore further
imposed to avoid this situation.

4. The additional requirement h(xk) ≤ ζ‖dk‖ · ‖d̃k+1‖ in (3.4a) is for the local
convergence of our algorithm.

5. The right-hand sides in the second inequality of (3.4a) and (3.5) are slight mod-
ifications of those in [44], which play important roles in our local convergence
analysis.

3.3 The relaxed decrease condition for the constraint violation

Now we discuss the relaxed decrease condition for the constraint violation h(x). Since
our algorithm will not use any penalty function to measure contribution of a new iter-
ate with respect to global convergence, we handle the decrease conditions of the
constraint violation and the objective function separately. One direct idea is that we
can impose a relaxed condition on constraint violation when the objective function is
improved. To achieve this goal, we shall introduce a new quantity Rk to keep the loose
control over the constraint violation. The detailed update rules for Rk are given by
Algorithm J.
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Algorithm J (Update Rk at iteration k)

if k=0 then1

Set R0 = h(x0)+ 1;2

end3

if (3.7) does not hold then4

Set Rk = h(xk);5

else6

Set Rk = Rk−1;7

end8

return Rk ;9

It should be noticed that Algorithm J only potentially sets Rk �= Rk−1 if (3.4)
does not hold. If (3.4) is satisfied, the objective function should further fulfill the
nonmonotone sufficient reduction condition (3.5). In this case, we prefer to relax the
constraint violation rather than update by h(xk), since we try not to impose too restric-
tive constraint violation requirement when the objective function has a nonmonotone
sufficient reduction. Such strategy is also crucial for the fast local convergence under
certain weak conditions as mentioned in Sect. 1.

At each iteration, we impose the following relaxed reduction condition on the
constraint violation:

Rk − h(xk + pk) ≥ αk,lη(Rk −�(xk, σk)), (3.6)

where η ∈ (
0, 1

2

)
.

We make some remarks for condition (3.6). If �(xk, σk) = 0, then (3.6) reduces to

Rk − h(xk + pk) ≥ αk,lηRk . (3.7)

When (3.4) does not hold, this inequality becomes a normal decrease condition on
h(x) in the literature. But if (3.4) is satisfied, the quantity Rk = Rk−1 at iteration k,
and therefore a relaxed reduction on h(x) is imposed. As the QP subproblem (3.1)
might be inconsistent, we introduce a modified one (3.2) in place of (3.1) to overcome
this problem. However, in this case we cannot make the constraint violation decrease
as much as that in (3.7). Instead, a relaxed condition (3.6) is required in the case
of �(xk, σk) > 0. The quantity �(xk, σk) > 0 indicates that the QP subproblem is
inconsistent, which may be due to a small trust region or ill-conditioning.

3.4 Avoid the Maratos effect

Our last subject is to avoid the Maratos effect. It is well-known that SQP-type methods
may suffer from the Maratos effect in which a full SQP step leads to the increase both
of the objective function and of the constraint violation. Due to the step acceptance
mechanism, the Maratos effect could result in rejection of some good steps towards
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an optimal solution. Fletcher and Leyffer [14] employed the SOC step to improve
the search direction so that the improved search direction can be accepted at the end.
Many other authors have discussed the SOC technique for overcoming the Maratos
effect (see e.g., [31] and references therein). Besides, there is an alternative, namely
the watch-dog technique [11], which, in our opinion, can also be viewed as an SOC-
type technique. As our choice, we adopt an SOC technique in a similar manner of the
watch-dog technique by computing the SOC step d̃k+1 from the following subproblem

Q̃P(xk + dk)

⎧
⎨

⎩

min ∇ f (xk + dk)
T d + 1

2 dT B̃k+1d
s.t. ci (xk + dk)+∇ci (xk + dk)

T d = 0, i ∈ E,

ci (xk + dk)+∇ci (xk + dk)
T d ≤ 0, i ∈ I,

(3.8)

where B̃k+1 is updated using Bk and other information at xk + dk . One can of course
apply certain quasi-Newton formula to proceed this update.

Suppose xk is the current iterate. Starting from the trial point xk + dk (i.e., line 3.5
in Algorithm A) where dk is computed from the modified QP subproblem, MQP(xk)

given by (3.2), we describe our detailed steps for updating xk as follows:

Step 1. Check whether the trial point x̂k(αk,l) is accepted (i.e., according to the con-
dition given in line 13 in Algorithm A) or not. If it is, then we directly update
xk+1 according to the value FLAG and αk,l (i.e., lines 26–30 in Algorithm A).

Step 2. For the case that the trial point x̂k(αk,l) is not accepted, if FLAG=1 (implying
the SOC step has been computed) or αk,l < 1, then we simply shrink the trial
step size αk,l and form a new trial point x̂k(αk,l) (line 22 in Algorithm A) and
go to step 1; otherwise, we go to step 3.

Step 3. Compute B̃k+1 using Bk to form the subproblem Q̃P(xk + dk) given by (3.8)
(i.e., line 15 in Algorithm A) and go to step 4.

Step 4. If Q̃P(xk+dk) is consistent, then we compute its solution d̃k+1 and set x̂k(1) :=
xk + dk + d̃k+1 as the new trial point (i.e., line 17 in Algorithm A) and go
to step 1. Otherwise, we simply shrink the trial step size αk,l and form a new
trial point x̂k(αk,l) (line 19 in Algorithm A), and go to step 1.

3.5 The overall algorithm

Our previous discussion shows that the trial iterate x̂k(αk,l) = xk + pk is accepted if
and only if (3.6) is satisfied and

(3.8) holds or (3.7) does not hold,

where pk = αk,ldk or pk = dk + d̃k+1, depending on if the SOC step is used. Thus,
we can now present our overall nonmonotone SQP method in Algorithm A.
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Algorithm A

Given initial parameters: x0 ∈ R
n , B0 ∈ R

n×n , γ > 0, ζ > 0, τ > 0, ν ∈ (2, 3],1

σ ∈ (0, 1
2 ), ξ ∈ (0, 1

2 ), t ∈ (0, 1), 0 < σ < σ̄ < β̄, σ0 ∈ [σ , σ̄ ], β0 ∈ (σ0, β̄],
and FLAG=0;
Set k ← 0;2

while xk is not optimal do3

� Compute the search direction;4

Compute the search direction dk and the associated multiplier λk by solving5

MQP(xk);
� Check for termination;6

if the KKT condition (2.3) is satisfied, or both h(xk) = �(xk, σk) and7

�(xk, σk) > 0 then
Stop;8

end9

Calculate Rk by calling Algorithm J;10

� Perform a line search;11

Set αk,0 = 1, l ← 0, pk = αk,ldk , and x̂k(αk,l) = xk + pk ;12

while (3.9) is not satisfied or ((3.7) is satisfied and (3.8) is not satisfied) do13

if FLAG=0 and αk,l = 1 then14

Compute B̃k+1 from Bk , and set FLAG=1;15

if Q̃P(xk + dk) is consistent then16

Solve Q̃P(xk + dk) to obtain d̃k+1 and its multiplier λ̃k+1, set17

pk = dk + d̃k+1 and x̂k(αk,l) = xk + pk ;
else18

Set αk,l+1 = tαk,l , l ← l + 1, pk = αk,ldk , and x̂k(αk,l) = xk + pk ;19

end20

else21

Set αk,l+1 = tαk,l , l ← l + 1, pk = αk,ldk , and x̂k(αk,l) = xk + pk ;22

end23

end24

� Update;25

if FLAG=1 and αk,l = 1 then26

Set αk = αk,l , xk+1 = xk + dk + d̃k+1, and update Bk+1 by B̃k+1, d̃k+127

and λ̃k+1;
else28

Set αk = αk,l , xk+1 = xk + αkdk , and update Bk+1 by Bk , pk and λk ;29

end30

Choose σk+1 ∈ [σ, σ̄ ], βk+1 ∈ (σk+1, β̄];31

Set FLAG=0 and k ← k + 1;32

end33

As the algorithm looks a little involved, for clarity, we make several remarks:

1. In line 1, parameters σ and σ̄ are the lower and upper bounds of σk , respectively,
and β̄ is an upper bound of βk . An evident lower bound of βk is σ .
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2. Conditions in lines 6–9 are the stopping criteria. If (2.1) is satisfied at xk , then xk

is a KKT point. If both h(xk) = �(xk, σk) and �(xk, σk) > 0, then by Lemma
1.1, we know that xk is a locally infeasible stationary point of h.

3. FLAG is used to indicate whether the SOC step is computed (FLAG=1) or not
(FLAG=0). It should be noted that FLAG=1 does not mean the success of the SOC
correction since we do not know if the SOC step is accepted or not in advance.

4. In lines 15, 27 and 29, we might update B̃k+1 and Bk+1 by the modified BFGS
method [32].

5. We call line 13–line 24 the inner loop and line 3–line 33 the outer loop.

4 Global convergence

Now we are in a position to prove the global convergence of Algorithm A. The fol-
lowings are our assumptions that will be used in our convergence analysis.

(A1) Let {xk} be generated by Algorithm A, and {xk} and {xk + dk} be contained in
a closed and bounded set S of R

n .
(A2) All the functions f (x), ci (x), i ∈ E ∪ I are twice continuously differentiable

on S.
(A3) The matrices Bk and B̃k are uniformly bounded and uniformly positive definite

for all k.

Remark 4.1 Assumptions (A1) and (A2) are also used in [15]. Assumption (A3) are
commonly used in convergence proofs of line search SQP algorithms (see, e.g., [10]).
A consequence of Assumption (A3) is that there exist constants δ > 0 and M > 0,
independent of k, such that δ‖y‖2 ≤ yT Bk y ≤ M‖y‖2 for any y ∈ R

n . Assumptions
(A1) and (A2) imply that ∇2 f (x), ∇2ci (x), i ∈ E ∪ I are bounded on S. Without
loss of generality, we assume that ‖∇2ci (x)‖ ≤ M , ∀ i ∈ E ∪ I, ‖∇2 f (x)‖ ≤ M ,
∀ x ∈ S.

The following two lemmas show that xk (or xk +dk) is a KKT point of the problem
(NLP) if both dk = 0 and h(xk) = 0 (or d̃k+1 = 0).

Lemma 4.1 Let dk = 0 be a solution of MQP(xk) with σk ≥ σ . Then xk is a stationary
point of h. Moreover, if xk ∈ D, then xk is a KKT point of the problem (NLP).

Proof If dk = 0, it follows from (3.2) and the definition of h(x) that

h(xk) = max{|ci (xk)|, i ∈ E;max{ci (xk), 0}, i ∈ I}
≤ max{|ci (xk)+ ∇ci (xk)

T dk |, i ∈ E;�(xk, σk)}
≤ �(xk, σk),

where the last inequality follows from the definition of �(x, σ ). Using Lemma 1.1,
we have that �(xk, σk) − h(xk) = 0, and therefore xk is a stationary point of h. If
h(xk) = 0 and dk = 0, then it follows from [9, Lemma 2.2] that xk is a KKT point for
the problem (NLP). 
�
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Lemma 4.2 Let d̃k+1 = 0 be a solution of Q̃P(xk + dk). Then xk + dk is a KKT point
of the problem (NLP).

Proof The conclusion follows immediately from the KKT conditions for Q̃P(xk +
dk). 
�

The following four lemmas give preparations for well-definedness of our algorithm.

Lemma 4.3 Assume x̄ is not a stationary point of h in the sense that 0 /∈ ∂h(x̄). Then
there exists a scalar ε̄ > 0 and a neighborhood N (x̄) of x̄ , such that �(xk, σk) −
h(xk) < −ε̄ for all σk ≥ σ and all xk ∈ N (x̄).

Proof By [9, Lemma 2.1], 0 /∈ ∂h(x̄) implies �(x̄, σ )− h(x̄) < 0, where σ is from
Algorithm A. By the continuity of the function �(· , σ ) − h(·) on R

n , there exists a
neighborhood N (x̄) and a scalar ε̄ > 0 such that �(xk, σ ) − h(xk) < −ε̄ whenever
xk ∈ N (x̄). The condition σk ≥ σ together with the definition of �(xk, ·) yields
�(xk, σk) − h(xk) ≤ �(xk, σ ) − h(xk). Therefore, �(xk, σk) − h(xk) < −ε̄ holds
for all σk ≥ σ and all xk ∈ N (x̄). 
�
Remark 4.2 It can be seen that ε̄ depends on x̄ such that 0 /∈ ∂h(x̄) (i.e., ε̄ = ε̄(x̄)),
because it must satisfy �(xk, σk)− h(xk) < −ε̄.

Lemma 4.4 Let Assumptions (A1)–(A3) hold and dk be the solution of MQP(xk). Then

h(xk + αdk)− h(xk) ≤ α(�(xk, σk)−h(xk))+ 1

2
α2 M‖dk‖2, and (4.1)

| f (xk)− f (xk + αdk)− α�lk | ≤ 1

2
α2 M‖dk‖2 (4.2)

hold for all 0 < α ≤ 1.

Proof Since (dk, γ k
) is the solution of the linear program (1.2), and ri (xk, σk) =

∇ci (xk)
T dk + ci (xk) for i ∈ E , it follows from (1.1) that

|ri (xk, σk)| ≤ γ
k
= �(xk, σk). (4.3)

Using the Taylor Expansion formula, we have that, for i ∈ E and 0 < α ≤ 1,

|ci (xk + αdk)|
= |ci (xk)+ α∇ci (xk)

T dk + 1

2
α2dT

k ∇2ci (zi )dk |
≤ (1− α)|ci (xk)| + α|ri (xk, σk)|
+ 1

2
α2|dT

k ∇2ci (zi )dk | (by the fourth equation in (3.6))

≤ (1− α)h(xk)+ α�(xk, σk)

+ 1

2
α2 M‖dk‖2, (by (4.14) and Assumption (A2)) (4.4)
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where the vector zi is between xk and xk + αdk . Similarly, by the Taylor Expansion
formula, the fifth equation in (3.3) and Assumption (A2), we have that for all i ∈ I
and 0 < α ≤ 1,

ci (xk + αdk) = ci (xk)+ α∇ci (xk)
T dk + 1

2
α2dT

k ∇2ci (zi )dk

≤ (1− α)h(xk)+ α�(xk, σk)+ 1

2
α2 M‖dk‖2,

where the vector zi is between xk and xk+αdk . This together with (4.4) implies (4.1).
The result of (4.2) follows from [44, Lemma 1]. 
�
Lemma 4.5 Let Assumptions (A1)–(A3) hold and dk be the solution of (3.2). If h(xk) =
0, then ((3.4) holds.

Proof The second inequality (3.4a) is true for the sake of h(xk) = 0. In view of Lemma
1.1, h(xk) = 0 implies �(xk, σk) = 0, ci (xk) = 0 with i ∈ E and ci (xk) ≤ 0 with
i ∈ I, which together with (1.2) gives ri (xk, σk) = 0, i ∈ E . The KKT conditions for
(3.2) give

gT
k dk = −

∑

i∈E∪I
λk,i∇ci (xk)

T dk − dT
k Bkdk − (λu

k − λl
k)

T dk

=
∑

i∈E∪I
λk,i ci (xk)−

∑

i∈E
λk,i ri (xk, σk)−

∑

i∈I
λk,i�(xk, σk)

− dT
k Bkdk − βk(‖λl

k‖1 + ‖λu
k‖1)

≤ −ξdT
k Bkdk,

where the last inequality follows from that facts ci (xk) = 0 and ri (xk, σk) = 0 with
i ∈ E , ci (xk) ≤ 0 and λk,i ≥ 0 with i ∈ I, and �(xk, σk) = 0. This implies (3.4)
holds. 
�

We remark that Rk > 0 for all k. In fact, the above lemma has shown that h(xk) > 0
if (3.4) is not true at iteration k, and the mechanism of Algorithm J ensures that Rk

either takes h(xk) > 0 in the case that (3.4) is not true, or Rk = Rk−1. Even if (3.4)
is satisfied for all k, R0 is initialized as h(x0)+ 1 (see Algorithm J) which is positive,
and then Rk will remain to be R0 for all k.

Lemma 4.6 Let Assumptions (A1)–(A3) hold and dk be the solution of (3.2). Then
there exists a constant C̃ ∈ (0, 1] such that (3.5) holds for all αk,l ∈ (0, C̃].
Proof Whatever (3.4b) or (3.4a) holds, the linear reduction �lk = −gT

k dk ≥ ξdT
k Bkdk

together with Assumption (A3) yields �lk ≥ ξδ‖dk‖2. It follows from Lemma 4.4
that

∣
∣
∣
∣

f (xk)− f (xk + αk,ldk)− αk,l�lk
αk,l�lk

∣
∣
∣
∣ ≤

αk,l M

2ξδ
.
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We define C̃ := min
{

1,
2δξ(1− σ)

M

}
. If 0 < αk,l ≤ C̃ , then

∣
∣
∣
∣

f (xk)− f (xk + αk,ldk)

αk,l�lk
− 1

∣
∣
∣
∣ ≤ 1− σ,

which leads to

� f̂k ≥ f (xk)− f (xk + αk,ldk) ≥ αk,lσ�lk ≥ αk,lσ min{�lk, τ‖dk‖ν}.


�
With these preparatory results, we can show the well-definedness of Algorithm A

in the following theorem.

Theorem 4.1 Let Assumptions (A1)–(A3) hold. Then the inner loop terminates finitely,
that is, there exists an ᾱk ∈ (0, 1] such that x̂k(αk,l) = xk + αk,ldk is accepted for
0 < αk,l ≤ ᾱk .

Proof If dk = 0 is the solution of MQP(xk), then it follows from Lemma 4.1 that xk is a
KKT point of the problem (NLP), and thus Algorithm A terminates without entering the
inner loop. If xk is an infeasible stationary point of h (that is, �(xk, σk) = h(xk) > 0),
then the inner loop of Algorithm A terminates too. If xk + dk or xk + dk + d̃k+1 is
accepted, then the inner loop terminates.

In the following, we assume that dk �= 0 for some k, xk is not an infeasible stationary
point of h, and none of xk + dk and xk + dk + d̃k+1 is accepted. Our following proof
will be divided into two scenarios:

Case (i): Condition (3.4) does not hold.
In light of Algorithm J and Lemma 4.5, it follows that Rk = h(xk) > 0, and using

Lemma 4.4 yields

h(xk + αk,ldk)−Rk ≤ αk,l(�(xk, σk)−Rk)+ 1

2
α2

k,l M‖dk‖2 (4.5)

for αk,l ∈ (0, 1]. We define

Ck = min

{

1,
2(1− η)(Rk −�(xk, σk))

M‖dk‖2
}

. (4.6)

We now show that Ck > 0 under our assumptions. Since xk is not an infeasible
stationary point of h and h(xk) > 0, it follows that �(xk, σk) < h(xk) = Rk which
leads to Ck > 0. Using (4.6), it follows from (4.5) that for αk,l ∈ (0, Ck],

h(xk+αk,ldk)−Rk ≤αk,l(�(xk, σk)−Rk)+ 2(1−η)(Rk−�(xk, σk))

M‖dk‖2
αk,l

2
M‖dk‖2

= −αk,lη(�(xk, σk)−Rk),
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which means that (3.6) holds for all αk,l ∈ (0, Ck]. In this case, by the mechanism of
Algorithm A (see line 3.5 in Algorithm A), the inner loop terminates if 0 < αk,l ≤ Ck .

Case (ii): Condition (3.4) holds.
We now prove that (3.6) also holds for all αk,l ∈ (0, Ck], where Ck is defined in Case

(i). For any k satisfying (3.4), either (3.4) holds at iterations s = 0, 1, ..., k−1 or there
exists an index k− < k such that (3.4) holds at iterations s = k−+1, k−+2, ..., k and
(3.4) does not hold at iteration k−. By Algorithm J, either Rk = Rk−1 = ... = R0 > 0
or Rk = Rk−1 = ... = Rk− . By Lemma 4.4, we obtain that (4.5) is also true
for αk,l ∈ (0, 1] if Rk ≥ h(xk). In the case that Rk = Rk−1 = ... = R0 > 0,
it follows from Algorithm J and Lemma 1.1 that R0 > h(x0) ≥ �(x0, σ0) and
therefore C0 > 0 (C0 is above Ck with k = 0). Similar to the proof of Case (i),
(3.6) holds at iteration 0 for all 0 < α0,l ≤ C0. Combining it with Lemma 4.6
gives that there exists α0 ≤ min{C̃, C0} (C̃ is from Lemma 4.6) such that both (3.6)
and (3.5) hold at iteration 0, and therefore h(x1) < R0. Similarly, we can prove
that h(xs) < Rs for s = 1, 2, ..., k. As a result, Rk > h(xk) ≥ �(xk, σk) and
Ck > 0. Similar to the proof of Case (i), (3.6) holds for all αk,l ∈ (0, Ck]. In another
case that Rk = Rk−1 = ... = Rk− and (3.4) does not hold at iteration k−, by
Algorithm J and Lemma 4.5, we have that Rk− = h(xk−) > 0. It should be noted
that h(xk−) > �(xk− , σk−), otherwise xk− is an infeasible stationary point and the
proposed algorithm stops at iteration k−. Similar to the proof of Case (i), (3.6) holds
for all αk,l ∈ (0, Ck−], which together with Lemma 4.6 yields that both (3.6) and (3.5)
hold at iteration k− for some αk− > 0. This implies that h(xk−+1) < Rk− = Rk−+1.
Similarly, we can prove that h(xs) < Rs for s = k− + 1, k− + 2, ..., k. Similar to the
proof of Case (i), (3.6) holds for all αk,l ∈ (0, Ck].

Thereby, we proved that (3.6) holds for all αk,l ∈ (0, Ck] in all cases, which
together with Lemma 4.6 yields that both (3.6) and (3.5) hold for all αk,l ∈ (0, ᾱk],
where ᾱk := min{Ck, C̃}. Therefore, the inner loop terminates so long as αk,l locates
in the interval (0, ᾱk], which implies that the inner loop terminates finitely. 
�
Remark 4.3 By Algorithm A (line 13–line 24), αk is the largest scalar αk,l ∈ (0, 1]
such that (3.6) is satisfied and ((3.4) is not satisfied or (3.5) is satisfied). Theorem 4.1
implies that αk ≥ t ᾱk for all k.

Remark 4.4 Theorem 4.1 has a byproduct that Rk ≥ h(xk) for all k if all iterates are
neither KKT points nor infeasible stationary points. Actually, the proof of Case (i)
shows that Rk = h(xk) in the case that (3.4) holds at iteration k, and the proof of Case
(ii) shows that Rk > h(xk) in the case that (3.4) does not hold at iteration k.

Since the finite termination of the inner loop may not be enough to guarantee
the desired convergence results of our algorithm, as a preparation for the ultimate
convergence results, we establish the following lemma, which shows that αk is greater
than some positive constant in some situations.

Lemma 4.7 Let Assumptions (A1)–(A3) hold. Suppose that Rk −�(xk, σk) ≥ ε for
k ∈ K, where ε > 0 is a scalar and K is an infinite index set. Then there exists a
scalar αmin > 0, such that αk ≥ αmin for all k ∈ K.
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Proof Let C = 2(1− η)ε

M β̄2 and αmin = t min{C̃, C}, where β̄ and t are from Algorithm

A and C̃ is from Lemma 4.6. Since Rk − �(xk, σk) ≥ ε for k ∈ K, we obtain from
the definition of C , (4.6), and Remark 4.1 that C ≤ Ck for all k ∈ K. It therefore
follows that xk + αk,ldk is accepted for all αk,l ≤ 1

t αmin. From Remark 4.3, we have
that αk ≥ αmin for all k ∈ K. 
�

Next, we prove that, under some conditions, the iteration sequence generated by
Algorithm A converges to feasible stationary points of h or there exists some accu-
mulation point of the iteration sequence being an infeasible stationary point of h.

Lemma 4.8 Let Assumptions (A1)–(A3) hold. If there exist infinite iterations such
that (3.4) does not hold and the outer loop of Algorithm A cannot terminate finitely,
then either there exists an accumulation point of {xk} which is an infeasible stationary
point of h, or

lim
k→+∞ h(xk) = 0. (4.7)

Proof If there exists some accumulation point of {xk} being an infeasible stationary
point, the conclusion follows. In the following, we suppose that none of the accumula-
tion points of {xk} is an infeasible stationary point. Assume that the subsequence {xki }
of {xk} consists of all iterates such that (3.4) does not hold at all ki . Algorithm J implies
that h(xki ) = Rki for all ki , and Rs = Rki for any index s satisfying ki < s < ki+1
(if s exists). It follows with Remark 4.4 that (4.7) is equivalent to limki→+∞Rki = 0.
Noting line 3.5 in Algorithm A, condition (3.6) is required at each iteration. Hence,
for each ki ,

Rki+1 −Rki ≤ αki+1−1η
(
�(xki+1−1, σki+1−1)−Rki

)
. (4.8)

Remark 4.4 and Lemma 1.1 guarantee the positive right-hand side of (4.8), which
concludes that {Rki } is a decreasing sequence and so is {h(xki )}. If (4.7) is not true,
then there exist some scalar ε > 0 such that

Rki ≥ ε (4.9)

for all ki . By Lemma 1.1, �(xki+1−1, σki+1−1) ≤ h(xki+1−1). If h(xki+1−1) → 0 as
ki →∞, it follows that �(xki+1−1, σki+1−1)→ 0 as ki →∞ and therefore

�(xki+1−1, σki+1−1)−Rki < −ε

2
(4.10)

for all sufficiently large ki . Otherwise, there exists some accumulation point x̄ of
{xki+1−1} such that h(x̄) > 0. Without loss of generality, we assume that {xki+1−1}
converges to x̄ . Since x̄ is not supposed to be an infeasible stationary point, there exists
a scalar ε̄ > 0 such that �(xki+1−1, σki+1−1) − h(xki+1−1) < −ε̄ for all sufficiently
large ki . This together with Remark 4.4 yields that

�(xki+1−1, σki+1−1)−Rki < −ε̄ (4.11)
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for all sufficiently large ki . In view of (4.10) and (4.11), and applying Lemma 4.7, we
have that αki+1−1 ≥ αmin > 0 for all sufficiently large ki . Substituting this into (4.8)
and combining with (4.10) and (4.11), we obtain that

Rki+1 −Rki ≤ −αminηε0, (4.12)

holds for all sufficiently large ki , where ε0 is ε
2 or ε̄. Due to monotonicity and bound-

edness of the sequence {Rki }, it is convergent, and therefore the left-hand side (4.12)
tends to zero as ki →∞, which contradicts the right-hand side of (4.12). Hence, the
claim of this lemma is true. 
�

Now we are ready to prove our main conclusion in this section.

Theorem 4.2 Let Assumptions (A1)–(A3) hold. Assume the sequence {xk} is generated
by Algorithm A. Then there exists an accumulation point that is either a KKT point, a
feasible point at which the RCPLD condition fails to hold or a stationary point of h
that is infeasible for the problem (NLP).

Proof Since Theorem 4.1 implies that the inner loop terminates finitely, we only need
consider the case when the outer loop is infinite. For this purpose, we define an index
set

H = {k|(3.4) does not hold at iteration k}.

There are two cases to be considered.
Case (i): H is an infinite set.
By Lemma 4.8, either there exists some accumulation point of {xk} being an infea-

sible stationary point or {h(xk)} converges to zero. If the accumulation point is an
infeasible stationary point for the problem (NLP), then the conclusion has already
followed. In the following, we take into account the case that h(xk)→ 0 as k →∞.
Since {xk}k∈H ⊂ S is bounded, there exists an infinite subset H1 ⊆ H, such that
xk → x̄ for k ∈ H1 as k → +∞. As h(xk)→ 0, it follows that x̄ is a feasible point.
If the the RCPLD condition fails to hold at x̄ , the conclusion of this theorem follows.
Otherwise, we assume that x̄ is a feasible point at which the RCPLD condition holds.
We need to prove that x̄ is a KKT point for the problem (NLP).

Suppose E0 is a subset of E such that {∇ci (x̄)}i∈E0 is a maximal linearly independent
subset of {∇ci (x̄)}i∈E . The RCPLD implies that ∇cE (x̄) has constant row rank in a
small neighborhood of x̄ . Hence, {∇ci (xk)}i∈E0 is also a maximal linearly indepent
subset of {∇ci (xk)}i∈E for all sufficiently large k. It follows that there exists λ̃k,i ∈ R,
i ∈ E0 such that

∑

i∈E
λk,i∇ci (xk) =

∑

i∈E0

λ̃k,i∇ci (xk) (4.13)

for all sufficiently large k, where the left-hand side is from the first equality of (3.3).
By [2, Lemma 1], for any k ∈ H1, there exists an index set Ik

0 ⊆ I and 0 ≤ λ̃k,i ∈
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R, i ∈ Ik
0 , such that λk,i �= 0 for all i ∈ Ik

0 , the vectors ∇ci (xk), i ∈ E0 ∪ Ik
0 are

linearly independent and

∑

i∈E0

λ̃k,i∇ci (xk)+
∑

i∈I
λk,i∇ci (xk) =

∑

i∈E0∪Ik
0

λ̃k,i∇ci (xk), (4.14)

where the second term in the left-hand side is from (3.3). Since I is a finite set, there
exists an infinite set Hc ⊆ H1 such that Ik

0 ≡ I0 for all k ∈ Hc, where I0 is a
constant subset of I. Without loss of generality, we assume that Hc = H1. Then,
∇ci (xk), i ∈ E0 ∪ I0 are linearly independent, and substituting (4.13) into (4.14)
gives ∑

i∈E∪I
λk,i∇ci (xk) =

∑

i∈E0∪I0

λ̃k,i∇ci (xk) (4.15)

for all sufficiently large k ∈ H1. Now we prove that {λ̃k}k∈H1 is a bounded sequence.
If it is not true, without loss of generality, we may assume that

lim
k→+∞,k∈H1

‖λ̃k‖ = +∞, lim
k→+∞,k∈H1

λ̃k

‖λ̃k‖
= μ,

lim
k→+∞,k∈H1

λu
k − λl

k

‖λ̃k‖
= ν, lim

k→+∞,k∈H1

dk = d̄,

lim
k→+∞,k∈H1

σk = σH , lim
k→+∞,k∈H1

βk = βH ,

and ‖μ‖ = 1 and μi ≥ 0, i ∈ I0. With the help of λ̃k , E0 and I0, the KKT conditions
for the problem (3.2) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gk +∑
i∈E0∪I0

λ̃k,i∇ci (xk)+ Bkdk + λu
k − λl

k = 0,

λ̃k,i (∇ci (xk)
T dk + ci (xk)−�(xk, σk)) = 0, i ∈ I0,

(dk − βken)T λu
k = 0, (dk + βken)T λl

k = 0,

∇ci (xk)
T dk + ci (xk)− ri (xk, σk) = 0, i ∈ E,

∇ci (xk)
T dk + ci (xk) ≤ �(xk, σk), i ∈ I, ‖dk‖∞ ≤ βk,

λ̃k,i ≥ 0, i ∈ I0, λu
k,i ≥ 0, λl

k,i ≥ 0, i ∈ {1, 2, . . . , n},

(4.16)

where the first equation follows from (4.15), and the second equation follows from the
fact λk,i �= 0 for all k ∈ I0. Dividing the first equation in (4.16) by ‖λ̃k‖ and letting
k →+∞, k ∈ H1, we have

∑

i∈E0∪I0

μi∇ci (x̄)+ ν = 0. (4.17)

Since x̄ is feasible for the problem (NLP), it follows that ci (x̄) = 0 with i ∈ E ,
ci (x̄) ≤ 0 with i ∈ I, r(x̄, σH ) = 0 and �(x̄, σH ) = 0. By dividing the second and
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fourth equations in (4.16) by ‖λ̃k‖, it follows with the third equation in (4.16) that

μi∇ci (x̄)T d̄ = −μi ci (x̄), i ∈ I0, ∇ci (x̄)T d̄ = 0, i ∈ E0, (4.18)

and

νT d̄ = lim
k→+∞,k∈H1

βH eT
n (λu

k + λl
k)

‖λ̃k‖
≥ 0. (4.19)

Then multiplying (4.17) by d̄T and using (4.18), we have νT d̄ =∑
i∈I0

μi ci (x̄) ≤ 0.
This together with the right-hand side of (4.19) and the definition of ν implies ν = 0.

Therefore, equation (4.17) reduces to
∑

i∈E0∪I0
μi∇ci (x̄) = 0, which implies that

{∇ci (x̄)}i∈E0∪I0 is positive linearly dependent. By the assumptions that the RCPLD
condition holds at x̄ and xk → x̄ , we have that {∇ci (xk)}i∈E0∪I0 is linearly dependent
for all sufficiently large k. This contradicts the fact that {∇ci (xk)}i∈E0∪I0 is linearly
independent for all k ∈ H1.

Consequently, the sequence {λ̃k}k∈H1 is bounded. We assume that ‖λ̃k‖1 ≤ M for
some scalar M > 0 and all k ∈ H1. Since h(xk) → 0 as k → +∞, it follows that
�(xk, σk) → 0 as k → +∞. If there exists a scalar ε > 0, such that ‖dk‖ > ε and
‖d̃k+1‖ > ε for all k ∈ H1, combining with Assumption (A3), it follows that there
exists an integer j0 > 0, such that for all k > j0, k ∈ H1,

�(xk, σk)+ h(xk) ≤ min

{
(1− ξ)dT

k Bkdk

M
, ζ‖dk‖ · ‖d̃k+1‖

}

, (4.20)

where ξ and ζ are from (3.4). It follows with (4.16) and boundedness of {λ̃k}k∈H1 that
for all k > j0 and k ∈ H1,

gT
k dk = −

∑

i∈E0∪I0

λ̃k,i∇ci (xk)
T dk − dT

k Bkdk − βk(‖λl
k‖1 + ‖λu

k‖1)

=
∑

i∈E0∪I0

λ̃k,i ci (xk)−
∑

i∈E0

λ̃k,i ri (xk, σk)−
∑

i∈I0

λ̃k,i�(xk, σk)− dT
k Bkdk

−βk(‖λl
k‖1 + ‖λu

k‖1)
≤ M(h(xk)+�(xk, σk))− dT

k Bkdk,

≤ −ξdT
k Bkdk,

which together with (4.20) contradicts the definition of H. Thereby, there exists some
infinite subset H2 ⊂ H1 such that

lim
k∈H2,k→+∞

‖dk‖ = 0 or lim
k∈H2,k→+∞

‖d̃k+1‖ = 0.

Without loss of generality, we assume that H2 = H1. According to Algorithm A, βk

is bounded away from zero for all k ∈ H1, and the trust region constraint ‖dk‖∞ ≤ βk

123



Global and local convergence of a nonmonotone SQP method 457

must be inactive for all sufficiently large k ∈ H1. By (4.16), we have

⎧
⎪⎪⎨

⎪⎪⎩

gk +∑
i∈E0∪I0

λ̃k,i∇ci (xk)+ Bkdk = 0,

λ̃k,i (∇ci (xk)
T dk + ci (xk)−�(xk, σk)) = 0, λ̃k,i ≥ 0, i ∈ I0,

∇ci (xk)
T dk + ci (xk)− ri (xk, σk) = 0, i ∈ E,

∇ci (xk)
T dk + ci (xk) ≤ �(xk, σk), i ∈ I,

(4.21)

for all sufficiently large k ∈ H1. Since {λ̃k}k∈H1 and {Bk} are bounded in norm, both
of them have convergent subsequences. We assume, without loss of generality, that

lim
k∈H1,k→∞

λ̃k = λ̃, lim
k∈H1,k→∞

Bk = B̄.

Using xk → x̄ , ‖dk‖ → 0, h(xk)→ 0, and �(xk, σk)→ 0 as k →∞ and k ∈ H1,
we obtain from (4.21) and Assumption (A2) that

⎧
⎪⎪⎨

⎪⎪⎩

∇ f (x̄)+∑
i∈E0∪I0

λ̃i∇ci (x̄) = 0,

λ̃i ci (x̄) = 0, λ̃i ≥ 0, i ∈ I0,

ci (x̄) = 0, i ∈ E,

ci (x̄) ≤ 0, i ∈ I

holds for all sufficiently large k ∈ H1. Setting λ̄i =
{

λ̃i , i ∈ I0
0, i ∈ I\I0

yields that the

KKT conditions are satisfied at (x̄, λ̄). That is, x̄ is a KKT point.
Case (ii): H is a finite set.

In this case, there exists an integer j0 > 0 such that (3.4) holds for all k > j0. By
the mechanism of Algorithm A, the relaxed reduction condition (3.5) on f is required
to be satisfied for all k > j0. It therefore follows with Remark 4.1 that

f̂k− f (xk+1) ≥ αkσ min(ξdT
k Bkdk, τ‖dk‖ν) ≥ αkσ min(ξδ‖dk‖2, τ‖dk‖ν). (4.22)

Without loss of generality, we assume that (4.22) is true for all k. Similarly to the
proof of [22, Theorem], we obtain that αk‖dk‖ → 0 as k →+∞.

The mechanism of Algorithm J implies that Rk = Rk−1 = R j0(> 0) for all k > j0
since (3.4) holds for k > j0. Without loss of generality, we assume that

Rk = ε0 > 0 (4.23)

for all sufficiently large k, where ε0 > 0 is a scalar.
Since {xk} ⊂ S is bounded, there exists a subsequence {xk}k∈G → x̄ where G is an

infinite index set. If h(x̄) > 0 and 0 ∈ ∂h(x̄), we then have from Lemma 1.1 that x̄ is
an infeasible stationary point of h, which indicates that the conclusion of this theorem
follows. If h(x̄) > 0 and 0 /∈ ∂h(x̄), it follows from Lemma 4.3 that there exists a
scalar ε1 > 0, such that for all sufficiently large k ∈ G,

Rk −�(xk, σk) ≥ h(xk)−�(xk, σk) > ε1,
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where the first inequality follows from Remark 4.4. If h(x̄) = 0, then

�(xk, σk)→ 0

as k → +∞ and k ∈ G. Hence, by (4.23) we also have Rk − �(xk, σk) > ε2 for
some ε2 > 0 and all sufficiently large k ∈ G.

According to Lemma 4.7, we obtain that there exists a scalar αmin > 0, such that
αk ≥ αmin for all sufficiently large k ∈ G. Hence, ‖dk‖ → 0 as k →+∞ and k ∈ G,
which is a contradiction.

From the above two cases, the proof is complete. 
�

5 Local convergence

In this section, we prove the local convergence of Algorithm A under the conditions
of the strict MFCQ and the SOSC. To our knowledge, previous primal superlinear
convergence results for SQP methods requires the assumptions of the LICQ, the SC
and the SOSC. Very recently, Fernández, Izmailov and Solodov [13] proved sharp
primal superlinear convergence results for some Newtonian methods for constrained
optimization. However, they did not give local convergence analysis for some specific
SQP-type methods. Our algorithm based on some natural globalization procedure
instead of hybrid strategies allows iterates to switch from the global phase to the local
phase smoothly. In this section, we establish the local convergence of our algorithm
under such weaker conditions.

Let x∗ be an accumulation point of {xk} generated by Algorithm A, which is a
KKT point of the problem (NLP) (the existence of a KKT point has been proven by
Theorem 4.2 in Sect. 4). Let λ∗ = (λ∗1, . . . , λ∗m)T be the corresponding multiplier
vector. It is well-known that the SMFCQ and the SOSC ensure the isolatedness of x∗
and the uniqueness of λ∗ corresponding to x∗. The following additional assumptions
are needed to ensure the fast local convergence of the proposed algorithm.

(A4) The SMFCQ holds at x∗.
(A5) The SOSC holds at (x∗, λ∗) .
(A6) The condition

lim
k→+∞

‖PC∗
(
(Bk −∇2

xx L(x∗, λ∗))dk

)
‖

‖dk‖ = 0

holds, where C∗ is the critical cone at x∗, and PG(y) denotes the Euclidean
projection of y ∈ R

n onto the closed convex set G ⊂ R
n .

Remark 5.1 By Assumption (A4) and Lemma 5.2, QP(xk) and Q̃P(xk) are consistent
for all sufficiently large k. This implies �(xk, σk) = 0 for all sufficiently large k.
Lemma 5.2 and the boundedness of {σk} yield that the constraint ‖d‖∞ ≤ σk is
inactive and λl

k = λu
k = 0 for all sufficiently large k. Consequently, MQP(xk) reduces

to QP(xk). Correspondingly, the KKT conditions (3.3) reduce to those for QP(xk);
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that is, the system (3.3) changes to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gk +∑
i∈E∪I λk,i∇ci (xk)+ Bkdk = 0,

∇ci (xk)
T dk + ci (xk) = 0, i ∈ E,

∇ci (xk)
T dk + ci (xk) ≤ 0, i ∈ I,

λk,i (∇ci (xk)
T dk + ci (xk)) = 0, i ∈ I,

λk,i ≥ 0, i ∈ I,

(5.1)

where λk = (λk,1, λk,2, . . . , λk,m)T ∈ R
m .

Remark 5.2 As we mentioned before, Assumption (A4) implies that the multiplier
vector λ∗ is unique and bounded. Assumptions (A4) and (A5) imply that x∗ is a strict
local minimizer.

Remark 5.3 Assumption (A6) is required to prove the primal superlinear convergence
(see [13]). If LICQ holds at x∗, then ∇cA∗(x∗) is full row rank, and the Euclidean
projection of y onto C∗ equals P∗y, where

P∗ := I −∇cA∗(x∗)T [∇cA∗(x∗)∇cA∗(x∗)T ]−1∇cA∗(x∗).

In practice, we point out that even in this situation, it is still not easy to find Bk practi-
cally to fulfill Assumption (A6). Analogous difficulty arises in the assumption used in
[7, Theorem 3.1]. In theory, however, we remark that all these technical assumptions
are important for proving the fast local convergence.

In what follows, we focus on iterations satisfying above conclusions with all suf-
ficiently large k. The following lemma shows that the whole primal-dual sequence
(xk, λk) converges to (x∗, λ∗).

Lemma 5.1 Let Assumptions (A1)–(A6) hold. Then (xk , λk)→ (x∗, λ∗)as k →+∞.

Proof It follows from [35, Lemma 4.2] with slight modification. 
�
We remark that [35, Lemmas 4.1 and 4.2] can also be proved under Assumptions
(A1)–(A6) used here.

The following Lemma shows that dk → 0 as k →∞.

Lemma 5.2 Let Assumption (A1)–(A6) hold and dk be the solution of QP(xk). Then

lim
k→+∞‖dk‖ = 0.

Proof Premultiplying the first equation of (5.1) by B−1
k , we obtain that

dk = −B−1
k

(

gk +
∑

E∪I
λk,i∇c(xk)

)

. (5.2)
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Since x∗ is a KKT point of the problem (NLP), by Lemma 5.1, (5.2) and Assumptions
(A2)–(A3) we have

lim
k→+∞‖dk‖ = 0.


�
Next, we shows that the full SQP step dk provides superlinear convergence.

Theorem 5.1 Let Assumptions (A1)–(A6) hold. Then

lim
k→+∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0. (5.3)

Moreover, ‖dk‖ = �(‖xk − x∗‖).
Proof From [13, Theorem 4.1] and Assumptions (A1)–(A6), we have that (5.3) is
true. It then follows

‖xk + dk − x∗‖
‖xk − x∗‖ ≥

∣
∣
∣
∣
‖dk‖

‖xk − x∗‖ − 1

∣
∣
∣
∣→ 0, as k →+∞.

Therefore,

‖dk‖
‖xk − x∗‖ → 1, as k →+∞,

which implies ‖dk‖ = �(‖xk − x∗‖). 
�
It follows from Theorem 5.1 that our algorithm has the rate of superlinear conver-

gence if the full SQP steps are accepted for all sufficiently large k. Next, we establish
some preliminary result for proving acceptance of dk for all sufficiently large k.

Lemma 5.3 Let Assumptions (A1)–(A6) hold. Then it follows that

‖d̃k+1‖ = o(‖dk‖), and (5.4)

h(xk + dk + d̃k+1) = O(‖d̃k+1‖2). (5.5)

Proof By the mechanism of Algorithm A, the SOC step d̃k+1 is actually the full SQP
step dk+1. The only difference between d̃k+1 and dk+1 is that we do not know in advance
if d̃k+1 is accepted by the acceptance conditions of Algorithm A. However, it does not
interfere with the conclusion of Theorem 5.1. The reason is that d̃k+1 is calculated at
xk + dk where dk is also a full SQP step. Therefore, the equation ‖d̃k+1‖ = o(‖dk‖)
follows from Theorem 5.1. As for (5.5), we can prove it by applying Taylor Expansion
formula directly. For any i ∈ E ∪ I, Taylor Expansion formula gives

ci (xk + dk + d̃k+1) = ci (xk + dk)+ ∇ci (xk + dk)
T d̃k+1 +O(‖d̃k+1‖2),

which together with Q̃P(xk + dk) and the definition of h(x) yields (5.5). 
�
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In order to prove the local convergence of Algorithm A, we introduce the penalty
function

�ρ(x) = f (x)+ ρh(x)

which is used just for the proof. Here ρ > ‖λ∗‖∞ is the penalty parameter. The
following lemma is from [1, Lemma 2.2], whose proof can also be inferred from [8].

Lemma 5.4 Let Assumptions (A2) and (A5) hold. The MFCQ holds at x∗. Then there
exists a sufficiently large ρ and some constant C̄ > 0 such that

f (x)+ ρh(x) ≥ f (x∗)+ C̄‖x − x∗‖2 (5.6)

for all x in a neighborhood of x∗.

Since Assumption (A4) implies the MFCQ, we still have the conclusion of Lemma
5.4 if the MFCQ condition in Lemma 5.4 is replaced by the SMFCQ condition.

The following several lemmas give preparations for the acceptance of the full SQP
steps ultimately.

Lemma 5.5 Let Assumptions (A1)–(A6) hold. Then there exists an integer K1 > 0,
such that if (3.4) holds for some k ≥ K1, then the sufficient reduction condition (3.5)
holds for pk = dk + d̃k+1.

Proof We only need to show that if (3.4) holds for some sufficiently large iteration
number k, then

f (xk + dk + d̃k+1)+ στ‖dk‖ν ≤ f (xk), (5.7)

where ν ∈ (2, 3] is from Algorithm A. Since f (x) and ci (x), i ∈ E ∪ I are twice
continuously differentiable, using Taylor Expansion formula, we have

f (xk + dk + d̃k+1)+ λ∗T c(xk + dk + d̃k+1)− f (x∗)
= L(xk + dk + d̃k+1, λ

∗)− L(x∗, λ∗)
= ∇x L(x∗, λ∗)T (xk + dk + d̃k+1 − x∗)+O(‖xk + dk + d̃k+1 − x∗‖2)
= O(‖xk + dk + d̃k+1 − x∗‖2),

where the last equality follows from ∇x L(x∗, λ∗) = 0. We then have

f (xk + dk + d̃k+1)+ στ‖dk‖ν
= f (x∗)− λ∗T c(xk + dk + d̃k+1)+ στ‖dk‖ν +O(‖xk + dk + d̃k+1 − x∗‖2)
= f (x∗)− λ∗T c(xk + dk + d̃k+1)+O(‖dk‖ν)+O(‖xk + dk + d̃k+1 − x∗‖2)
= f (x∗)− λ∗T c(xk + dk + d̃k+1)+ o(‖xk − x∗‖2). (by (5.4) and Theorem 5.1)

(5.8)

Similar to the proof of Lemma 5.1, we readily prove that λ̃k+1 → λ∗ as k → ∞,
where λ̃k+1 is the multiplier vector corresponding to Q̃P(xk+dk). Hence, we conclude
that λ̃k,i > 0 for sufficiently large k and for any i ∈ A+(x∗), where A+(x∗) is
the set of indice of strongly active constraints at x∗ which is defined at the end of
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Sect. 2. It follows from the complementarity condition for Q̃ P(xk + dk) that ci (xk +
dk)+ ∇ci (xk + dk)

T d̃k+1 = 0, i ∈ A+(x∗) for all sufficiently large k. Using Taylor
Expansion formula, we have that

ci (xk + dk + d̃k+1)

= ci (xk + dk)+∇ci (xk + dk)
T d̃k+1 +O(‖d̃k+1‖2)

= O(‖d̃k+1‖2) = o(‖xk − x∗‖2) ( by (5.4) and Theorem 5.1)

for all i ∈ E∪A+(x∗), which leads to λ∗T c(xk+dk+d̃k+1) =∑
i∈E∪A+(x∗) λ∗i ci (xk+

dk+ d̃k+1) = o(‖xk−x∗‖2), where the first equality follows from the fact λ∗i = 0, i ∈
I\A+(x∗). Substituting this into (5.8) yields

f (xk + dk + d̃k+1)+ στ‖dk‖ν
= f (x∗)+ o(‖xk − x∗‖2). (5.9)

Since the MFCQ implies the SMFCQ, it follows from Assumptions (A2), (A4), (A5)
and Lemma 5.4 that (5.6) holds when x is close to x∗ sufficiently. Then it follows that

f (xk) ≥ f (x∗)− ρh(xk)+ C̄‖xk − x∗‖2
= f (x∗)+O(‖dk‖ · ‖d̃k+1‖)+ C̄‖xk − x∗‖2 (by 3.4a) )

≥ f (x∗)+ C̄

2
‖xk − x∗‖2. (by (5.4) and Theorem 5.1)

Thus, combining with (5.9), we obtain that there exists an integer K1 > 0 such that
(5.7) claims if (3.4) holds for some k ≥ K1. 
�

Lemma 5.6 Let Assumptions (A1)–(A6) hold. Suppose d̃k+1 is computed (That is,
FLAG=1). Then there exists a scalar Q > 0 and an integer K2(≥ K1) (K1 is from
Lemma 5.5) such that the following statement is true: if (3.4) does not hold for any
k ≥ K2,

h(xk) ≥ Q‖dk‖ · ‖d̃k+1‖. (5.10)

Proof Lemma 5.1 has showed that λk → λ∗ and therefore {λk} is bounded. Without
loss of generality, we assume that ‖λk‖1 ≤ M for all k, where M is from Remark 4.1.
Since −gT

k dk < ξdT
k Bkdk implies

−ξdT
k Bkdk < gT

k dk

= −dT∇c(xk)λk − dT
k Bkdk, (by (5.1))

= λT
k c(xk)− dT

k Bkdk, (by (5.1))

≤ Mh(xk)− dT
k Bkdk, (by‖λk‖1 ≤ M),
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it follows that h(xk) ≥ (1−ξ)dT
k Bk dk

M . If (3.4) does not hold for some sufficiently large
k, we then have

h(xk) ≥ min

{

ζ‖dk‖ · ‖d̃k+1‖, (1− ξ)dT
k Bkdk

M

}

= Q‖dk‖ · ‖d̃k+1‖,

where Q := ζ , and the equality holds because of Assumption (A3) and Lemma 5.3.
Hence, there exists an integer K2(≥ K1) such that if (3.4) fails to hold for any k ≥ K2
the inequality (5.10) is satisfied. 
�
Lemma 5.7 Let Assumptions (A1)–(A6) hold. Suppose d̃k+1 is computed (That is,
FLAG=1). Then there exists an integer K3(≥ K2) (K2 is from Lemma 5.6) such that
the following statement is true: if

Rk ≥ Q‖dk‖ · ‖d̃k+1‖ (5.11)

for any k ≥ K3,
h(xk + dk + d̃k+1) ≤ (1− η)Rk . (5.12)

Proof The conclusion follows from Lemma 5.3. 
�
We are now able to show the acceptance of the full SQP steps for all sufficiently

large k.

Theorem 5.2 Let Assumptions (A1)–(A6) hold. Then there exists an integer K4(≥ K3)

(K3 is from Lemma 5.7) such that the trial point xk +dk or xk +dk + d̃k+1 is accepted
for all k ≥ K4.

Proof If xk+dk is accepted for all sufficiently large k, then the claim follows trivially.
Otherwise, the SOC step d̃k+1 need to be computed. Due to the SMFCQ at x∗, Q̃P(xk+
dk) is consistent as xk approaches x∗. Therefore, d̃k+1 can be computed successfully. In
the following, we only need to prove that xk+dk+ d̃k+1 is accepted for all sufficiently
large k. Suppose both xk and xk + dk are not KKT points of the problem (NLP). This
means that dk �= 0 and d̃k+1 �= 0. If there exists only finite iterations such that (3.4)
does not hold, it follows from Algorithm J that Rk will be fixed at some positive
constant (say Rk0 > 0) for all sufficiently large k. By Lemmas 5.2 and 5.3, there exists
some K4(≥ K3) such that (5.11) holds for all k ≥ K4, and therefore (5.12) is satisfied
for all k ≥ K4. Without loss of generality, we assume that (3.7) holds for all k ≥ K4.
It follows from Lemma 5.5 that (3.5) holds. Thereby, for all k ≥ K4, xk + dk + d̃k+1
is accepted as a new iterate according to Algorithm A.

Next, we consider the case that there exists infinite iterations such that (3.4) does
not hold. Let K4(≥ K3) be an integer such that (3.4) does not hold at iteration K4, and

K := {k ≥ K4|(3.7)does not hold at iteration k}

and

Kc := {k ≥ K4|(3.7)holds at iteration k}.
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In this case, K must be an infinite set. A fact from Algorithm J is that Rk = h(xk) for
all k ∈ K. Combining it with Lemmas 5.6 and 5.7, we have that (5.12) for all k ∈ K,
which means that xk + dk + d̃k+1 is accepted for all k ∈ K. If Kc is a finite set, then
the conclusion of this theorem follows immediately. In the following, we assume that
Kc is an infinite set. We only need to prove that xk + dk + d̃k+1 is also accepted for
all k ∈ Kc. Due to Lemma 5.5, the sufficient reduction condition (3.5) holds for all
k ∈ Kc. The left task is to prove that (5.12) is satisfied for all k ∈ Kc.

Let us start from k = K4 ∈ K. If k + 1 ∈ Kc, then set k+ = k + 1; otherwise
increase k := k + 1 until we find k ∈ K and its successor k+ := k + 1 ∈ Kc. Since
xk+1 = xk + dk or xk + dk + d̃k+1 for this k, we have from (5.4) and Theorem 5.1 that
‖dk+1‖ = o(‖dk‖) is true. Without loss of generality, we may assume

Q‖dk+‖ · ‖d̃k++1‖ = Q‖dk+1‖ · ‖d̃k+2‖ ≤ Q‖dk‖ · ‖d̃k+1‖ ≤ h(xk) = Rk+ , (5.13)

where the second inequality follows from Lemma 5.6, and the last equality follows
from the update rules of Rk (see Algorithm J). Applying Lemma 5.7, (5.12) is satisfied
and therefore xk++1 = xk+ + dk+ or xk+ + dk+ + d̃k++1 is accepted. In fact, for all
successive indices of k+ in Kc (say k+ = k+ 2, ..., kmax ∈ Kc, where kmax+ 1 ∈ K),
Rk+ = h(xk) for all k+ = k + 2, ..., kmax ∈ Kc. Since xk+2 = xk+1 + dk+1 or
xk+1+ dk+1+ d̃k+2, without loss of generality, we may assume Q‖dk+‖ · ‖d̃k++1‖ ≤
Q‖dk+1‖ · ‖d̃k+2‖, which together with (5.13) leads to

Q‖dk+‖ · ‖d̃k++1‖ ≤ Rk+ , (5.14)

for k+ = k + 2. Again using Lemma 5.7, we have that xk++1 = xk+ + dk+ or
xk+ + dk+ + d̃k++1 is accepted for k+ = k + 2. Similarly, we can prove that xk++1 =
xk+ + dk+ or xk+ + dk+ + d̃k++1 is accepted for all k+ = k + 3, ..., kmax ∈ Kc

step by step. We now set k = kmax + 1 ∈ K, and increase k until find k ∈ K and
k+ := k + 1 ∈ Kc. Repeating above process, we have that xk++1 = xk+ + dk+ or
xk+ + dk+ + d̃k++1 is accepted for k+ and its successive indices in Kc. By induction,
we have that the trial point xk + dk or xk + dk + d̃k+1 is accepted for all k ≥ K4. The
proof is complete. 
�

Therefore, by Theorem 5.2 the trial point xk+1 = xk + dk or xk + dk + d̃k+1 is
accepted as a new iterate for all sufficiently large k. According to Theorem 5.1, we
have the following convergence result.

Theorem 5.3 Let Assumptions (A1)–(A6) hold. Then the sequence {xk} generated by
Algorithm A converges to x∗ superlinearly.

6 Numerical results

In this section, we will evaluate the performance of our algorithm on a set of CUTEr
test problems [5] and provide our preliminary numerical experiments. Our algorithm,
Algorithm A, is coded in Matlab 7.9 and run on a PC under OpenSUSE 12.1 system
with 2G memory. At each iteration, we use Matlab routinesquadprog andlinprog
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to solve (3.2) and (1.2), respectively. In our implementation, we choose ε = 10−6 as
the tolerance of termination for infeasibility, complementarity and optimality. In other
words, we terminate Algorithm A if

h(xk) ≤ ε, min{−cI(xk), (λk)I} ≤ ε,

and
∥
∥
∥
∥
∥
∇ f (xk)+

∑

i∈E∪I
λk,i∇ci (xk)

∥
∥
∥
∥
∥
∞
≤ ε.

For the symmetric positive matrix Bk involved in the subproblem MQP(xk), we employ
the quasi-Newton (BFGS) formula with Powell’s modifications [32] to update Bk with
B0 = In , which turns out to be a good choice in most cases. Similarly, the quasi-Newton
formula is also applied to update B̃k+1 in Q̃P(xk+dk). Other parameters in Algorithms
J and A are as follows: η = 0.01, σ = 0.1, ξ = 0.05, τ = 0.1, ζ = 1, ν = 3, t = 0.5,
γ = 0.01, R0 = h(x0)+ 1, σk = 0.9 and βk = 99 for all k.

6.1 Test for small-size problems from CUTEr

Since our current version is coded on Matlab platform where some sophisticated SQP-
techniques are not available, we only test some small-size problems with n ≤ 100. As
our algorithm is designed to deal with optimization problems with general constraints,
we select minimization problems with nonlinear constrained functions from CUTEr
test problem collection. The options for our selection are listed in the following table:

Objective function type : ∗
Constraints type : Q O
Regularity : R
Degree of available derivatives : ∗
Problem interest : ∗
Explicit internal variables : ∗
Number of variables : in [ 0, 100 ]
Number of constraints : ∗

where∗= everything goes, Q and O = quadratic or other type (nonlinear, non-constant,
etc), and R = the problems’ functions are smooth.

With these settings, we conducted on CUTEr test environment, and as a result, a
set, say P , of 235 problems are selected. We compare Algorithm A with two state
of the art NLP solvers: SNOPT [17] and filterSD (1.0 version) [16]. SNOPT solver
is an implementation of a reduced-Hessian SQP algorithm based on a quasi-Newton
approximation. The solver filterSD uses a sequential linear constraint programming
method which is based on a trust region filter scheme, and moreover, it updates approx-
imate Hessian or reduced Hessian matrices and therefore second-order derivatives are
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not required. All experiments for SNOPT and filterSD are conducted in default options
(the default tolerance of termination is 10−6).

For comparison purposes, the solvers were compared by using the performance
profile suggested by Dolan and Moré [12]. In particular, for a given solver s, we have
the value

log2

(
#iter(s, p)

best iter(p)

)

, for each problem p ∈ P,

where the �iter(s, p) denotes the number of iterations (labelled as NIT in the fol-
lowing) that the solver s uses for solving the problem p ∈ P , and the “best iter(p)′′
means the smallest number of iterations, among the three solvers, required to fulfill
the termination criterion. We remark that, for a given solver s and a given problem

p ∈ P , if ι = log2

(
#iter(s, p)
best iter(p)

)
, we can roughly say that the solver s is at worse 2ι

times slower than the best. In a similar manner, we evaluated the numbers of evalua-
tions of the (linear or nonlinear) objective function (labelled as NF) and its gradients
(labelled as NG) as well. Finally, counting the evaluations of both linear and nonlinear
functions, since the numbers of evaluations of constraint functions and their Jacobian
are almost equal to those for the objective function and its gradients, respectively, we
did not report these numerical results redundantly.

According to the way for evaluating a set of solvers on a set of tested problems
proposed by Dolan and Moré [12], Figs. 1, 2, and 3 show the numerical performance
of the tested solvers in terms of NIT, NF and NG, respectively. Here, taking Fig. 1 for
example (see more details in [12]), a point (x, y) for a specific solver s is defined by

Fig. 1 Performance profile on P for NIT
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Fig. 2 Performance profile on P for NF

Fig. 3 Performance profile on P for NG

y = 1

235
size

{

p ∈ P : log2

(
#iter(s, p)

best iter(p)

)

≤ x

}

.

According to this definition, what we are primarily interested in is the behavior for x
close to zero, and we observed that
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• In terms of NIT, Algorithm A, filterSD and SNOPT perform the best among roughly
40, 45 and 26 % of P, respectively (We remark that the total of the three percentiles
is greater than one because more than one solver receive the same NIT as the best
on some problems. Similar phenomenons occur for NF and NG in the following),
• In terms of NF, Algorithm A, filterSD and SNOPT perform the best among roughly

61, 21 and 31 % of P, respectively, and
• In terms of NG, Algorithm A, filterSD and SNOPT perform the best among roughly

63, 19 and 30 % of P, respectively.

It can be seen then that Algorithm A are of better performance than SNOPT in
the set of test problems. We observed also that, in terms of NIT, filterSD performs a
little bit better than Algorithm A, which is partially attributed to the fact that the inner
subproblem inside the filterSD is a minimization of a nonlinear objective function
subject to linear constraint, which possibly could approximate the original problem
better than the quadratic approximation (e.g., Algorithm A). However, on the other
hand, although filterSD generally requires less outer iterations, the computational costs
in the inner subproblem used in filterSD might be more expensive, as more evaluations
of the objective function, its gradients, constraints and their Jacobian matrices are
needed. This partially is revealed by Figs. 2 and 3. Overall, our numerical experiment
shows the robustness and efficiency of our approach.

6.2 Test for a degenerate problem

In order to verify the performance of our algorithm in the case that the RCPLD con-
dition holds while the MFCQ condition does not, we construct a new test example by
adding a constraint into the constraints of problem hs074.

hs074 (selected from [27])

min f (x1, x2, x3, x4) = 3x1 + 10−6x3
1 + 2x2 + 2

3000000
x3

2

s.t. c1(x1, x2, x3, x4) = 1000 sin(−x3 − 0.25)+ 1000 sin(−x4 − 0.25)

+ 894.8− x1 = 0;
c2(x1, x2, x3, x4) = 1000 sin(x3 − 0.25)+ 1000 sin(x3 − x4 − 0.25)

+ 894.8− x2 = 0;
c3(x1, x2, x3, x4) = 1000 sin(x4 − 0.25)+ 1000 sin(x4 − x3 − 0.25)

+ 1294.8 = 0;
c4(x1, x2, x3, x4) = −x4 + x3 − 0.55 ≤ 0;
c5(x1, x2, x3, x4) = −x3 + x4 − 0.55 ≤ 0;
c6(x1, x2, x3, x4) = −x1 ≤ 0;
c7(x1, x2, x3, x4) = x1 − 1200 ≤ 0;
c8(x1, x2, x3, x4) = −x2 ≤ 0;
c9(x1, x2, x3, x4) = x2 − 1200 ≤ 0;

c10(x1, x2, x3, x4) = −0.55− x3 ≤ 0;
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c11(x1, x2, x3, x4) = −0.55+ x3 ≤ 0;
c12(x1, x2, x3, x4) = −0.55− x4 ≤ 0;
c13(x1, x2, x3, x4) = −0.55+ x4 ≤ 0.

Modified hs074

min f (x1, x2, x3, x4)

s.t. c0(x1, x2, x3, x4) = ac2(x1, x2, x3, x4)+ bc3(x1, x2, x3, x4) = 0;
ci (x1, x2, x3, x4) = 0, i = 1, . . . , 3;
c4(x1, x2, x3, x4) ≤ 0, i = 4, . . . , 13.

(6.1)

We observed that the added constraint in modified hs074 is a combination of the 2nd
and 3rd constraints of hs074. So they have the same solutions. Let a = 300, b = 1000.
By computation, we obtain that the active index set of hs074 is {1, 2, 3} and the active
index set of modified hs074 is {0, 1, 2, 3}. By the construction of modified hs074, we
easily know that it has unbounded multipliers because the first active constraint is a
combination of the 2nd and 3rd active constraints of hs074. By direct calculation, we
have

⎛

⎜
⎜
⎝

∇c0(x∗)T

∇c1(x∗)T

∇c2(x∗)T

∇c3(x∗)T

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−1.0000e + 003 −3.0000e + 002 −3.4579e + 005 −1.2788e + 006
0 0 −7.2131e + 002 1.5197e + 003
0 −1.0000e + 000 1.9565e + 003 −9.6506e + 002

−1.0000e + 000 0 −9.3273e + 002 −9.8933e + 002

⎞

⎟
⎟
⎠

and its row rank is 3, where

x∗ = (6.7995e + 002, 1.0261e + 003, 1.1888e − 001,−3.9623e − 001)T

is the optimal point computed by our algorithm. Obviously, ∇c0(x∗) = a∇c2(x∗)+
b∇c3(x∗). Because of this combination, the row rank deficiency of above matrix is
1. Therefore, the RCPLD condition holds at x∗ while the MFCQ condition is vio-
lated. Calling Algorithm A, we find the optimal point (6.7995e + 002, 1.0261e +
003, 1.1888e−001,−3.9623e−001)T of hs074 which is the same as x∗. Hence, for
hs074, the gradients of active constraints at x∗ are linearly independent, i.e., the row
rank of

⎛

⎝
∇c1(x∗)T

∇c2(x∗)T

∇c3(x∗)T

⎞

⎠

is 3. So, for hs074, the multiplier is unique. From Table 1, one can see that there
is no difference between hs074 and modified hs074 with respect to NIT, NF, NG
and Fopt. For hs074, the Lagrange multipliers corresponding to the active set at the

123



470 C. Shen et al.

Table 1 Numerical results

Problem NIT NF NG Fopt

hs074 12 13 13 5.1265e+003
Modified hs074 12 13 13 5.1265e+003

Table 2 Information on hs074

k KKT error Infeasibility error Complementarity error

1 1.3642e−12 8.2566e+00 8.2566e+00

2 1.3642e−12 5.9930e+00 5.9930e+00

3 2.2737e−12 4.7086e+00 4.7086e+00

4 5.2427e+02 2.2387e+00 2.2387e+00

5 1.8520e+01 9.9339e−02 9.9339e−02

6 7.6770e+01 2.6273e−04 2.6273e−04

7 6.7290e+01 1.6795e−05 1.6795e−05

8 1.9627e+02 4.1125e−04 4.1125e−04

9 1.3907e+02 9.1835e−03 9.1835e−03

10 1.6849e+00 4.8833e−03 4.8833e−03

11 1.7736e−02 3.7848e−07 3.7848e−07

12 3.2973e−04 1.2730e−10 1.2730e−10

13 1.0687e−10 3.2854e−14 3.2854e−14

Table 3 Information on modified hs074

k KKT error Infeasibility error Complementarity error

1 1.3642e−12 1.1171e+01 1.1171e+01

2 2.2737e−12 7.4710e+00 7.4710e+00

3 2.7285e−12 5.8364e+00 5.8364e+00

4 4.3240e+02 2.7722e+00 2.7722e+00

5 6.4729e+00 6.2214e−02 6.2214e−02

6 3.1479e+01 8.5421e−05 8.5421e−05

7 8.4390e+01 4.1526e−05 4.1526e−05

8 2.9027e+02 9.5573e−04 9.5573e−04

9 3.5025e+01 1.8405e−02 1.8405e−02

10 7.5391e−02 3.1893e−04 3.1893e−04

11 8.8307e−04 8.8294e−10 8.8294e−10

12 1.4623e−05 2.7222e−13 2.7222e−13

13 1.8190e−12 2.8271e−15 2.8271e−15

optimal point are

(λ1, λ2, λ3) = (−2.1253e + 02− 3.9780e + 025.2934e + 02),
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and for the modified hs074, the Lagrange multipliers are

(λ0, λ1, λ2, λ3) = (4.4994e + 02− 2.1253e + 02− 2.3900e + 020.0000e + 00).

We noticed that the norm of the multipliers for modified hs074 is clearly larger than
that for hs074. However, our algorithm still works well on the modified hs074, which
is mainly attributed to the property that the implied multipliers (see λ̃k in (4.15))
for modified hs074 is bounded. To reveal the iteration process in solving hs074 and
modified hs074 much clearer, we present the following two tables (Tables 2, 3), from
which one can see that iterations generated by Algorithm A for both cases converge
quickly to some local minimizer. All these show that our algorithm is efficient in
solving some degenerate problems for which the MFCQ condition fails to hold at the
local solutions.

7 Conclusion

In this paper, we proposed a robust SQP algorithm for general constrained optimiza-
tion problems. Our method mainly employs a modified QP subproblem to generate
search directions and adopts a specific nonmonotone line search technique to detect
appropriate step-size. It should be emphasized that our algorithm does not introduce
any penalty function or filter. Compared with the filter-based SQP methods, our algo-
rithm does not involve a feasibility restoration phase which might be computationally
expensive. Another appealing feature of our algorithm is that it can deal with some
degenerate optimization problem, for which the Mangasarian–Fromovitz constraint
qualification (MFCQ) or strict complementarity (SC) fails to hold at a solution. This
is demonstrated preliminarily in our numerical testing. Under the RCPLD, which is
weaker than the CPLD and the MFCQ, the global convergence is proved, and the local
fast convergence is also established under some weaker conditions (the SMFCQ and
the SOSC). Preliminary numerical experiments show the effectivity of our algorithm.
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