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Abstract Based on a vectorization result in set optimization with respect to the set less
order relation, this paper shows how to relate two nonempty sets on a computer. This
result is developed for generalized convex sets and polyhedral sets in finite dimensional
spaces. Using this approach a numerical method for the determination of optimal
scenarios is presented. A new derivative-free descent method for the solution of set
optimization problems is given together with numerical results in low dimensions.
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1 Introduction

Set optimization has developed from an extension of continuous optimization to prob-
lems with set-valued maps. For early contributions see the papers published by Bor-
wein [1] in 1977 and Oettli [21] in 1980. Although most of the papers on set optimiza-
tion work with the notion of a minimizer and variants of it, nowadays one works with
a more realistic order relation for the comparison of sets which has been introduced to
optimization by Kuroiwa (e.g., see [12]; a first publication has been given by Kuroiwa
et al. [13]). Outside the optimization community this notion has been already used
by Young [27] in algebra, by Nishnianidze [20] in fixed point theory and by Chiriaev
and Walster [2] in computer science and interval analysis. Since Chiriaev and Walster
introduced the name “set less” for the comparison of sets, which is also implemented
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394 J. Jahn

in the FORTRAN compiler f95 of SUN Microsystems [24], we also use this name in
the present paper. In [10] even more realistic order relations have been discussed.

Recently, Neukel [19] has shown that there are important socio-economic appli-
cations for these order relations. Applications of set optimization to finance can be
found in a paper by Hamel and Heyde [6] among others.

This paper aims at the numerical solution of set optimization problems. The pre-
sented methods are based on a vectorization approach [8] by the author. Vectorization
is a first step to a scalarization in set optimization. Direct scalarization approaches
for set optimization problems have been introduced by Hernández and Rodríguez-
Marín [7] in 2007 and in 2012 by Gutiérrez et al. [5], Khoshkhabar-amiranloo and
Soleimani-damaneh [11] and Xiao et al. [26].

Löhne and Schrage [16] have given the first algorithm for the solution of polyhedral
set optimization problems. Based on the vectorization approach a new descent method
is now presented for generalized convex optimization problems which can also be used
for the treatment of polyhedral sets. It turns out that these nonlinear problems can only
be solved with a high numerical effort.

This paper is organized as follows. In Sect. 2, we present the basic theoretical results
together with its application to numerical methods for the comparison of two sets with
respect to the set less order relation. Using the definition of minimal elements Sect. 3
gives an algorithm for the determination of optimal scenarios. Finally, the descent
method is described in Sect. 4 and numerical results are given.

2 Basic results

In this section we investigate set optimization problems in the following setting.

Assumption 2.1 Let S be a nonempty subset of R
n , let C be a closed convex cone in

R
m with C �= R

m , and let F : S ⇒ R
m be a set-valued map with F(x) �= ∅, F(x)

compact, F(x) + C and F(x) − C convex for all x ∈ S.

Under this assumption we investigate the finite dimensional set optimization prob-
lem

min
x∈S

F(x). (1)

In this paper minimal solutions of problem (1) are defined using the set less order
relation.

Definition 2.1 Let Assumption 2.1 be satisfied.

(a) Let nonempty sets A, B ∈ R
m be given and let ≤ be a partial ordering induced

by the convex cone C . Then the set less order relation �s is defined by

A �s B :⇐⇒ (∀ a ∈ A ∃ b ∈ B : a ≤ b
)

and
(∀ b ∈ B ∃ a ∈ A : a ≤ b

)
. (2)

(b) x̄ ∈ S is called a minimal solution of the set optimization problem (1) iff F(x̄) is
a minimal element of the system of sets F(x) (with arbitrary x ∈ S), i.e.

F(x) �s F(x̄), x ∈ S 
⇒ F(x̄) �s F(x).
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Fig. 1 Illustration of the inequality A �s B, i.e. B ⊂ A + C and A ⊂ B − C

In the equivalence (2) one requires that two conditions are satisfied in order to have
some kind of symmetry in the statement. It is well-known (e.g., see [10, Proposition
3.1,(a)]) that the equivalence (2) can be replaced by

A �s B ⇐⇒ B ⊂ A + C and A ⊂ B − C.

Figure 1 illustrates these two inclusions used in the characterization of the set less
order relation �s .

Throughout this paper let C∗ denote the dual cone of C . Lower indices are used
for the components of a vector in R

n (or R
m) and different vectors in R

n (or R
m) are

distinguished by upper indices. All computations in this paper have been done with
MATLAB.

For the comparison of two sets using the set less order relation we cite Theorem
2.1 in [8] in a specific form in finite dimensions.

Theorem 2.1 [8, Thm. 2.1] Under Asssumption 2.1 we have for all x1, x2 ∈ S

F(x1) �s F(x2) ⇐⇒ max
(

sup
�∈C∗\{0Rm }

(
min

y∈F(x1)
�T y − min

y∈F(x2)
�T y

)
,

sup
�∈C∗\{0Rm }

(
max

y∈F(x1)
�T y − max

y∈F(x2)
�T y

)) ≤ 0. (3)

We use this equivalence in order to decide on a computer whether F(x1) �s F(x2)

or not. Theorem 2.1 works with infinitely many vectors � in the nontrivial dual cone
and this result can be reduced to finitely many vectors � in special cases.

2.1 The nonlinear case

It is remarked in [8, Remark 2.2] that the complexity of the set C∗\{0Rm } is reduced,
if it is restricted to the subset C∗ ∩ {y ∈ R

m | ‖y‖ = 1} belonging to the unit sphere
where ‖ · ‖ is an arbitrary norm in R

m . Although this set also consists of infinitely
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Fig. 2 Discretization of C∗

0 m

C∗

many elements it can be discretized in small dimensions. Figure 2 illustrates such a
discretization for m = 2 and C∗ = R

2+.
If we replace the dual cone C∗ by such a subset of finitely many vectors �1, . . . , �s ∈

R
m for a given s ∈ N, then the equivalence (3) in Theorem 2.1 can be replaced by the

approximate equivalence

F(x1) �s F(x2) <≈> max
(

max
�∈{�1,...,�s }

(
min

y∈F(x1)
�T y − min

y∈F(x2)
�T y

)
,

max
�∈{�1,...,�s }

(
max

y∈F(x1)
�T y − max

y∈F(x2)
�T y

)) ≤ 0. (4)

For a given discretization {�1, . . . , �s} of the intersection of the unit sphere and the
dual cone the inequality in (4) can be checked on a computer. One has to solve 4s
nonlinear optimization problems. Since these optimization problems have the same
constraint sets F(x1) and F(x2) and only the linear objective functions vary, it makes
certainly sense to solve these 4s subproblems in parallel. So, the decision, whether
F(x1) �s F(x2) or not, can be made by highly parallelized computations.

In the following remark we investigate a possible error bound caused by the dis-
cretization of the set C∗ ∩ {y ∈ R

m | ‖y‖ = 1}.
Remark 2.1 For convenience we set T := C∗ ∩ {y ∈ R

m | ‖y‖ = 1}, where the norm
‖·‖ now denotes the Euclidean norm, and for an arbitrary x ∈ S we define the minimal
value function ϕx

min : T → R with

ϕx
min(�) := min

y∈F(x)
�T y for all � ∈ T .

For simplicity we investigate only one inner term in the max term in (4). For arbitrarily
given x1, x2 ∈ S we define the function ϕx1, x2 : T → R with

ϕx1, x2
(�) := ϕx1

min(�) − ϕx2

min(�) for all � ∈ T .

By Assumption 2.1 the constraint sets F(x1) and F(x2) are compact and because
the objective functions are linear, the minimal value functions ϕx1

min and ϕx2

min are

continuous (e.g., see [9, Lemma 2.1]) and, therefore, the function ϕx1, x2
is continuous

as well. Since the set T is compact, there is some �̄ ∈ T with
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sup
�∈T

(
min

y∈F(x1)
�T y − min

y∈F(x2)
�T y

) = sup
�∈T

ϕx1, x2
(�) = max

�∈T
ϕx1, x2

(�) = ϕx1, x2
(�̄).

(5)
If we consider a discretization {�1, . . . , �s} (with s ∈ N) of the set T , we get for some
� j with j ∈ {1, . . . , s}

max
�∈{�1,...,�s }

(
min

y∈F(x1)
�T y − min

y∈F(x2)
�T y

) = max
�∈{�1,...,�s }

ϕx1, x2
(�) = ϕx1, x2

(� j ). (6)

Let �k with k ∈ {1, . . . , s} be a point of the discrete set {�1, . . . , �s} with smallest
distance to the point �̄ and let for every � ∈ T the smallest distance to a point �1, . . . , �s

be bounded by a number d > 0 describing the fineness of discretization. If the sets
F(x1) and F(x2) are given by inequality and equality constraints, it can be shown
under strong assumptions (e.g., appropriate differentiability assumptions, the strong
second-order sufficient condition and the linear independence constraint qualification)
that the minimal value functions ϕx1

min and ϕx2

min are differentiable (for a similar result

see [9, Lemma 4.1]). If the norm of the gradients ∇ϕx1

min and ∇ϕx2

min are bounded on
the set T by some u > 0, then by the mean value theorem there is some ϑ ∈ (0, 1) so
that with the equalities (5) and (6)

∣∣∣ sup
�∈T

(
min

y∈F(x1)
�T y − min

y∈F(x2)
�T y

) − max
�∈{�1,...,�s }

(
min

y∈F(x1)
�T y − min

y∈F(x2)
�T y

)∣∣∣

= ∣∣ϕx1, x2
(�̄) − ϕx1, x2

(� j )
∣∣

≤ ∣∣ϕx1, x2
(�̄) − ϕx1, x2

(�k)
∣∣

= ∣∣∇ϕx1, x2
(�k + ϑ(�̄ − �k))T (�̄ − �k)

∣∣

= ∣∣(∇ϕx1

min(�k + ϑ(�̄ − �k)) − ∇ϕx2

min(�k + ϑ(�̄ − �k))
)T

(�̄ − �k)
∣∣

≤ (‖∇ϕx1

min(�k + ϑ(�̄ − �k)‖ + ‖∇ϕx2

min(�k + ϑ(�̄ − �k)‖)‖�̄ − �k‖
≤ 2u · d.

Recall that d is a measure of the fineness of discretization of the set T . So, the obtained
error bound decreases, if the fineness of discretization is increased.

2.2 The polyhedral case

In this subsection we restrict ourselves to polyhedral sets F(x) (with x ∈ S). In this case
the result of Theorem 2.1 can also be reduced to finitely many vectors � ∈ C∗\{0Rm }.
Theorem 2.2 Let Assumption 2.1 be satisfied. In addition, let the cone C be polyhedral
and let the set-valued map F be given with

F(x) := {y ∈ R
m | A(x) · y ≤ b(x)} for all x ∈ S

where A : S → R
(p,m) and b : S → R

p are given maps. For every x ∈ S let the set
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L1(x) := {−a1(x), . . . ,−a p(x)} ∩ (C∗\{0Rm })

and

L2 := {�1, . . . , �s}

be given where a1(x), . . . , a p(x) denote the rows of the matrix A(x) (with x ∈ S) and
�1, . . . , �s are the normed extremal points of the dual cone C∗. Then for all x1, x2 ∈ S
it holds

F(x1) �s F(x2) ⇐⇒ ∀ � ∈ L1(x1) : bt (x1) ≥ max
y∈F(x2)

−�T y (7)

(for t ∈ {1, . . . , p} with � = −at (x1))

∀ � ∈ L2 : min
y∈F(x1)

�T y ≤ min
y∈F(x2)

�T y

and

∀ � ∈ L1(x2) ∪ L2 : max
y∈F(x1)

�T y ≤ max
y∈F(x2)

�T y

⇐⇒ max
(

max
�∈L1(x1)

( − bt (x1) + max
y∈F(x2)

−�T y
)
,

max
�∈L2

(
min

y∈F(x1)
�T y − min

y∈F(x2)
�T y

)
,

max
�∈L1(x2)∪L2

(
max

y∈F(x1)
�T y − max

y∈F(x2)
�T y

)) ≤ 0 (8)

( for t ∈ {1, . . . , p} with � = −at (x1)).

Proof The proof of the second equivalence is obviuos. The proof of the first equiva-
lence consists of two parts: an introductory part and the proof of this equivalence. Let
x1, x2 ∈ S be arbitrarily chosen.

(a) For an arbitrary � ∈ L1(x1) we have with the definition of the set F(x1)

bt (x1) = max
y∈F(x1)

at (x1)T y = − min
y∈F(x1)

−at (x1)T y = − min
y∈F(x1)

�T y

(for t ∈ {1, . . . , p} with � = −at (x1)) and, therefore, the inequality (7) is equivalent
to

min
y∈F(x1)

�T y ≤ min
y∈F(x2)

�T y.

Thus, the right hand side of the equivalence in the assertion can be written as

∀ � ∈ L1(x1) ∪ L2 : min
y∈F(x1)

�T y ≤ min
y∈F(x2)

�T y

and

∀ � ∈ L1(x2) ∪ L2 : max
y∈F(x1)

�T y ≤ max
y∈F(x2)

�T y.
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(b) For the actual proof of the first equivalence we notice that the implication “
⇒”
is obvious with Theorem 2.1 and part (a) of this proof. Finally, we prove the opposite
direction “⇐
”. It is well-known that the polyhedron F(x1) + C can be represented
by the intersection of certain affine halfspaces generated by facets of this polyhedron,
i.e. F(x1) + C = ∩�∈L1(x1)∪L2

H1(�) for appropriate affine halfspaces H1(�) (� ∈
L1(x1)∪ L2). Because of the assumption and the equivalent transformation in part (a)
of this proof we obtain

F(x2) ⊂ H1(�) for all � ∈ L1(x1) ∪ L2

which implies
F(x2) ⊂

⋂

�∈L1(x1)∪L2

H1(�) = F(x1) + C. (9)

With the same arguments one can consider the affine halfspaces generated by facets
of the polyhedron F(x2) − C , one can apply part (a) of this proof and then one gets

F(x1) ⊂ F(x2) − C. (10)

From the inclusions (9) and (10) it follows with Definition 2.1,(a) that F(x1) �s F(x2)

which has to be shown. ��
Remark 2.2 The result of Theorem 2.2 has an important consequence from a numerical
point of view. The decision whether F(x1) �s F(x2) can be made by solving a finite
number of linear optimization problems. The number of linear problems depends on
the number of appropriate facets of the polyhedrons F(x1) + C and F(x2) − C . So,
for problems with a less complex polyhedral structure this number is small.

The result of Theorem 2.2 can be used in an algorithm in order to evaluate whether
F(x1) �s F(x2) or F(x1) ��s F(x2).

Algorithm 2.1 (Test of F(x1) �s F(x2) for x1, x2 ∈ S)

Input: x1, x2 ∈ S, F : S ⇒ R
m

L1(x1) := {−a1(x1), . . . ,−a p(x1)} ∩ (C∗\{0Rm })
L1(x2) := {−a1(x2), . . . ,−a p(x2)} ∩ (C∗\{0Rm })
L2 := {�1, . . . , �s}
for t = 1 : 1 : #(L1(x1)) do

�t ∈ L1(x1)

α1 := max
A(x2)y≤b(x2)

−�t T y

if bt (x1) < α1 then F(x1) �s F(x2) is not true, stop
end if

end for
for t = 1 : 1 : s do

�t ∈ L2

α2 := min
A(x1)y≤b(x1)

�t T y
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α3 := min
A(x2)y≤b(x2)

�t T y

if α2 > α3 then F(x1) �s F(x2) is not true, stop
end if

end for
for t = 1 : 1 : #(L1(x2)) + s do

�t ∈ L1(x2) ∪ L2

α4 := max
A(x1)y≤b(x1)

�t T y

α5 := max
A(x2)y≤b(x2)

�t T y

if α4 > α5 then F(x1) �s F(x2) is not true, stop
end if

end for
F(x1) �s F(x2) is true, stop
Output: F(x1) �s F(x2) or F(x1) ��s F(x2)

The following corollary is a direct consequence of Theorem 2.2.

Corollary 2.1 Under the assumptions of Theorem 2.2 Algorithm 2.1 is well-defined
and makes the decision whether F(x1) �s F(x2) is true or not (for arbitrary x1, x2 ∈
S).

Example 2.1 We investigate the set-valued map F : R
2 ⇒ R

2 with

F(x) := {y ∈ R
2 | A(x) · y ≤ b(x)} ∀ x ∈ R

2

where for arbitrary x = (x1, x2) ∈ R
2

A(x) :=

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

− 1
1+|x2−x1| − 1

3+|x2−x1|
− 1

1+|x1| −x2

− 5
4 1

6
5 −1

5−|x2−x1|
7 1

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

and b(x) :=

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

−1

−1

2 + x2

41
5 − 16

25 (2x1 − x2)

9 + 2x1 − 2
35 (x1 − 3x2)

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

.

Figure 3 illustrates the sets F(1, 2) and F(3, 1). For the cone C := R
2+ we obtain with

Algorithm 2.1 the result F(1, 2) �s F(3, 1).

3 Determination of optimal scenarios

In concrete applications, like socio-economic applications discussed by Neukel in
[19], the constraint set S only consists of some few points {x1, . . . , xk} ⊂ R

n (with
k ∈ N). Every set F(xi ) (with i ∈ {1, . . . , k}) describes a certain scenario and it is the
aim to find optimal scenarios. This means mathematically that one has to determine
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F(1,2)

F(3,1)

Fig. 3 Illustration of the sets F(1, 2) and F(3, 1) in Example 2.1

minimal elements of the system of sets F(xi ) with i ∈ {1, . . . , k}, if they exist. Based
on the definition of minimal solutions the following algorithm determines optimal
scenarios.

Algorithm 3.1 (Determination of minimal solutions)

Input: S := {x1, . . . , xk}, F : S ⇒ R
m

for i = 1 : 1 : k do
for j = 1 : 1 : k with j �= i do

if F(x j ) �s F(xi ) then
if F(xi ) ��s F(x j ) then xi is not a minimal solution
and continue with “for 1”
end if

end if
end for 2
xi minimal solution

end for 1
Output: mimimal solutions, if they exist

Proposition 3.1 Let Assumption 2.1 be satisfied. Algorithm 3.1 is well-defined and
determines all minimal solutions, if there exists at least one minimal solution.

Proof The proof is obvious because the algorithm works according to the definition
of minimal solutions. ��

Recently, Löhne [15] has proved by induction that every finite set S has at least
one minimal solution so that the corresponding assumption in Proposition 3.1 can be
dropped.
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Fig. 4 Illustration of the sets F(1, 1), F(1, 2), F(2.5, 1), F(2.5, 1.2) and F(3, 1) in Example 3.1

Remark 3.1 In the nonlinear case the inequality in the approximate equivalence (4)
can be used for the comparison of sets in Algorithm 3.1. In the polyhedral case one
works with Algorithm 2.1 for the comparisons in the “if” parts of Algorithm 3.1.

As a simple example we consider a problem of finding an optimal scenario among
given scenarios.

Example 3.1 For the set-valued map F : R
2 ⇒ R

2 defined in Example 2.1 we
consider the sets F(1, 1), F(1, 2), F(2.5, 1), F(2.5, 1.2) and F(3, 1). These sets are
illustrated in Fig. 4. It is obvious from this figure that for the natural order cone there is
only one minimal scenario among these 5 scenarios. In other words, for C = R

2+ and
S := {(1, 1), (1, 2), (2.5, 1), (2.5, 1.2), (3, 1)} the point (1, 1) is a minimal solution
of problem (1). This result is obtained with Algorithm 3.1.

4 A descent method

Until now we have investigated set optimization problems with a constraint set con-
sisting of a finite number of points. In this section we now consider unconstraint
set optimization problems, i.e. in Assumption 2.1 with have S = R

n . We present a
derivative-free descent method which works with a cluster of points. For instance, the
well-known Nelder–Mead method (see [14,17,18]) is a classical method in nonlin-
ear optimization which works with a cluster of points. In general, the Nelder–Mead
method does not work in set optimization because n + 1 points in a cluster in R

n are
too less for comparisons of sets and it does not make sense to drop undesirable points
since many sets are not comparable with respect to the set less order relation. Using
a cluster of points we now construct a descent direction together with an appropriate
step length.
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Fig. 5 Illustration of an
iteration step of the descent
method

xi

x̃

xi+1

Remark 4.1 Let xi ∈ R
2 be an arbitrary iteration point. As indicated in Fig. 5 eight

equally distributed points with equal small �∞ distance to xi are considered and for
each point x of this cluster it is checked using the approximate equivalence (4) or the
equivalence (8) whether F(x) �s F(xi ) or not. Among all cluster points satisfying
this inequality one chooses the point for which the exact or approximated max term
in (4) or (8) has the smallest value. For such a point x̃ the difference h := x̃ − xi

gives the descent direction of this iteration. For the determination of the step length
one considers the point xi +2h. If F(xi +2h) ��s F(x̃), then one stops and xi+1 := x̃
is the new iteration point. Otherwise one considers the point xi + 3h and so on. This
technique is implemented in Algorithm 4.1.

We now present an algorithm for the improvement of feasible points.

Algorithm 4.1 (descent method)

Input: F : R
n ⇒ R

m , starting point x0 ∈ R
n , maximal number imax of iterations,

maximal number jmax of iterations for the determination of a step length, number
k ∈ N of points in the cluster, radius ε > 0 of a small ball, discretization multiplier
d ∈ N with d > 1.
% initialization
choose k points x̃1, . . . , x̃ k on the sphere around 0Rn with radius ε

choose d · k points x̂1, . . . , x̂d·k on the sphere around 0Rn with radius ε
d

i := 0
% iteration loop
while i ≤ imax do

check F(xi + x̃ j ) �s F(xi ) for all j ∈ {1, . . . , k} by calculating the max term
in (3) (using the approximation (4) in the nonlinear case or the term (8) in the
polyhedral case) and determine the point x̃ ∈ {x̃1, . . . , x̃ k} with the smallest max
term maxmin
if maxmin ≤ 0 then

hi := x̃ − xi % descent direction
xi+1 := xi + hi % new iteration point with step length 1
j := 1
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404 J. Jahn

while F(xi + ( j + 1)hi ) �s F(xi + jhi ) and j ≤ jmax do
j := j + 1
λi := j % step length
xi+1 := xi + λi hi % new iteration point

end while
else

check F(xi + x̂ j ) �s F(xi ) for all j ∈ {1, . . . , d ·k} by calculating the max
term in (3) (using the approximation (4) in the nonlinear case or the term
(8) in the polyhedral case) and determine the point x̂ ∈ {x̂1, . . . , x̂d·k} with
the smallest max term maxmin
if maxmin ≤ 0 then

xi+1 := xi + x̂
else

stop
end if

end if
i := i + 1

end while
Output: xi

It should be noted that in the “else” part of the “if” statement of the preceding
algorithm, more than only one refinement of the grid should be implemented in order
to have a better chance to find a new iteration point.

Theorem 4.1 Let Assumption 2.1 with S = R
n be satisfied.

(a) Algorithm 4.1 is well-defined for arbitrary input parameters.
(b) For an arbitrary starting point x0 ∈ R

n let x1, x2, . . . ∈ R
n denote the iteration

points generated by Algorithm 4.1.
(i) In the polyhedral case we have

F(xi+1) �s F(xi ) for all i = 0, 1, 2, . . . . (11)

This inequality is also satisfied in the nonlinear case, if one works with all
� ∈ C∗\{0Rm }.

(ii) If x ′ ∈ R
n denotes the output vector, then we obtain in the polyhedral case

F(x ′) �s F(x0).

This inequality is also satisfied in the nonlinear case, if one works with all
� ∈ C∗\{0Rm }.

(c) For arbitrary input parameters where imax and jmax are sufficiently large, let
S(0Rm , ε

d ) denote the sphere around 0Rm with radius ε
d . If one works with the

whole sphere S(0Rm , ε
d ) in Algorithm 4.1 (and not only with a cluster of points),

then in the polyhedral case the output vector x ′ ∈ R
n is minimal with respect to

the set S(x ′, ε
d ) ∪ {x ′}. This assertion is also true in the nonlinear case, if one

works with all � ∈ C∗\{0Rm }.
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Proof (a) This part of the proof is obvious.
(b),(i) For an arbitrary iteration point xi ∈ R

n Algorithm 4.1 determines a new itera-
tion point xi+1, if the corresponding max term is nonpositive. In the polyhedral
case we then get F(xi+1) �s F(xi ) by Theorem 2.2. In the nonlinear case
we get the assertion using Theorem 2.1.

(b),(ii) This assertion immediately follows from part (i) because the set less order
relation �s is transitive.

(c) If Algorithm 4.1 stops at an iteration point x ′ ∈ R
n , then the method could

not find any x ∈ S(x ′, ε
d ) with the property F(x) �s F(x ′). So, by Definition

2.1,(b) x ′ is a minimal solution with respect to the set S(x ′, ε
d ) ∪ {x ′}.

��
Remark 4.2

(a) Because of the inequality (11) we use the concept descent method for Algorithm
4.1.

(b) The assertion (c) in Theorem 4.1 says that the output vector x ′ is some kind of
minimal solution. Since ε > 0 is small and d > 1, this means some kind of local
minimality. At the best, the vector x ′ is a local minimal solution.

(c) In practice, Algorithm 4.1 does not produce locally minimal solutions because
various discretizations are included in this method. In the nonlinear case only
finitely many vectors are chosen in C∗\{0Rm } and in both cases Algorithm 4.1
works only with finitely many vectors in the spheres S(0Rm , ε) and S(0Rm , ε

d ). If
these discretizations are not fine enough, it may be that descent directions cannot
be found. The radius ε > 0 should be small enough in order to obtain local descent
directions.

Algorithm 4.1 fits into the class of pattern search methods with one essential dif-
ference that we do not minimize an objective function but we work with a function
ϕ : R

n × R
n → R with

ϕ(x̄, x̃) = max
(

sup
�∈C∗\{0Rm }

(
min

y∈F(x̄)
�T y − min

y∈F(x̃)
�T y

)
,

sup
�∈C∗\{0Rm }

(
max

y∈F(x̄)
�T y − max

y∈F(x̃)
�T y

))
for all x̄, x̃ ∈ R

n

which has a special meaning in this setting. In fact, we want to obtain negative func-
tion values which should finally tend to zero. Torczon [25] has developed a general
convergence theory for pattern search algorithms which can be adapted to the special
problem in this paper (see also [3])).

In order to obtain such a convergence result we have to extend Algorithm 4.1 with
two additional specifications (in the following we set N0 = N ∪ {0}):
(A) Assume that the pattern contains at least one direction of descent whenever a set

F(xi ) (i ∈ N0) can be improved.
(B) Let some β ∈ (0, 1) and an arbitrary null sequence (εi )i∈N0 with εi < 0 for all i ∈

N0 be given. While ϕ(xi + λhi , xi ) ≤ εi < 0 set λ := βqλ0 for q := 0, 1, 2, . . .

(λ0 and hi denote the initial step length and the descent direction at an iteration
point xi , respectively).
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If an arbitrary point xi (i ∈ N0) is a non-final iteration point, then there exists a (strict)
descent direction and an x̄ ∈ R

n with ϕ(x̄, xi ) < 0. Since the function ϕ is continuous,
there exists a ball B(x̄, δ) around x̄ with radius δ > 0 so that

ϕ(x, xi ) < 0 for all x ∈ B(x̄, δ).

So, it is obvious that a refinement of the grid leads to a descent direction so that the
specification (A) is satisfied.

Specification (B) defines a step length control where various forms are possible. It
should be ensured that the step lengths tend to zero. Since the function ϕ is continuous,
it is always possible to give some finite q ∈ N so that for λ := βqλ0 the inequality
0 ≥ ϕ(xi + λhi , xi ) > εi holds (if ϕ(xi + λhi , xi ) ≤ 0 for all λ ∈ [0, 1]), i.e. the
while loop in specification (B) can be carried out in finitely many steps.

With these two specifications we now formulate a convergence result.

Theorem 4.2 Let Assumption 2.1 be satisfied, let Algorithm 4.1 with the additional
specifications (A) and (B) generate an iteration sequence (xi )i∈N0 and let the level set

Lx0 :=
{

x ∈ R
n | F(x) �s F(x0)

}

be compact. Then it follows

lim sup
i→∞

ϕ(xi+1, xi ) = 0.

Proof Since Algorithm 4.1 is a descent method, we have xi ∈ Lx0 for all i ∈ N0.
Because of the compactness of the level set Lx0 and the continuity of the function
ϕ (compare Remark 2.1), the function values ϕ(xi+1, xi ) with i ∈ N0 are bounded.
Consequently, the limit superior exists.

Assume that lim sup
i→∞

ϕ(xi+1, xi ) �= 0. Then there exists a subsequence (xir )r∈N

with lim
r→∞ ϕ(xir +1, xir ) := α �= 0. With the specification (A) we have F(xi+1) �s

F(xi ) for all i ∈ N0 and then we get by Theorem 2.1

ϕ(xi+1, xi ) ≤ 0 for all i ∈ N0.

Consequently, we have α < 0. Then there is some N1 ∈ N with the property

ϕ(xir +1, xir ) ≤ α

2
< 0 for all r ≥ N1.

Since (εi )i∈N0 is a null sequence, there is some N2 ∈ N with

α

2
≤ εir < 0 for all r ≥ N2.
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Then we obtain

ϕ(xir +1, xir ) ≤ α

2
≤ εir for all r ≥ N := max{N1, N2},

but this contradicts the specification (B). ��
In the following Algorithm 4.1 is applied to various examples in R

2.

Example 4.1 We investigate the set-valued map F : R
2 ⇒ R

2 with

F(x) := {y ∈ R
2 | A(x) · y ≤ b(x)} ∀ x ∈ R

2

where for arbitrary x = (x1, x2) ∈ R
2

A(x) :=

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

− 1
1+|x2| − 1

3+|x1|
− 1

1+|x1| −x2

− 5
4 1

6
5 −1

5−|x2|
7 1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

and b(x) :=

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

−1

−1

2 + x2

41
5 − 16

25 (2x1 − x2)

9 + 2x1 − 2
35 (x1 − 3x2)

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

.

The matrix function A is slightly different from the one in Example 2.1. Figure 6
illustrates the iteration process for C := R

2+. The chosen starting point is x0 :=
(3, 2.5), the radius is ε := 0.01 and k := 8 cluster points are selected as indicated
in Fig. 5. Algorithm 4.1 then determines the iteration points x1 := (1.34, 0.84),
x2 := (0.71, 0.84) and x3 := (0.18, 0.31). Using a discretization multiplier d := 2
the point (0.175, 0.3075) cannot be improved. For this example totally 4,566 linear
optimization problems have to be solved. Figure 7 illustrates the sets F(x0) and F(x3).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

starting point

x
1

x 2

Fig. 6 Illustration of the iteration points in Example 4.1
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15

F(3,2.5)

F(0.18,0.31)

y
1

y 2

Fig. 7 Illustration of the sets F(3, 2.5) and F(0.18, 0.31) in Example 4.1
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−1

−0.5

0

0.5
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2

2.5

3

3.5

4

starting point

x1

x 2

Fig. 8 Illustration of the iteration points in Example 4.2

Example 4.2 We investigate the set-valued map F : R
2 ⇒ R

2 with

F(x1, x2) :=
{
(y1, y2) ∈ R

2 | (y1−2x2
1 )2+(y2−2x2

2 )2 ≤(1+x2
2 )2

}
∀ (x1, x2) ∈ R

2.

Here we choose the starting point x0 := (2.99, 1.01), the radius ε := 0.1, the
discretization parameter d := 2 and the number s := 10 of vectors in the dual
cone C∗ generated by the convex hull of the two points (0.1111, 0.8889) and
(1.1111,−0.1111). Figure 8 illustrates the iteration process and Table 1 gives the
iteration points obtained by Algorithm 4.1. The iteration point x9 cannot be improved.
For this example totally 3,340 convex optimization problems have to be solved.
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Table 1 Iteration points in
Example 4.2 x1 = (1.79,−0.19)

x2 = (1.49, 0.11)

x3 = (1.29,−0.09)

x4 = (1.09, 0.11)

x5 = (0.89,−0.09)

x6 = (0.69, 0.11)

x7 = (0.49,−0.09)

x8 = (0.39, 0.01)

x9 = (−0.01, 0.01)

0 5 10 15

−6

−4

−2

0

2

4

6

8

y
1

y 2

Fig. 9 Illustration of the sets F(x0),…,F(x9) in Example 4.2 (F(x0) is the set on the right and F(x9) is
the left circle)

The solution of these convex optimization problems has been done using the fmincon
tool in MATLAB. Figure 9 illustrates the sets F(xi ) for i = 0, 1, . . . , 9.

Example 4.3 Again we consider the problem in Example 4.2; but now we work with
C := R

2+ and a higher discretization in the dual cone. Here we choose s := 100 vectors
in C∗ = R

2+. For the starting point x0 := (1, 1.2) we get with the parameter ε := 0.1
the iteration point x1 := (0.1, 0.3) which cannot be improved in this setting. Figure
10 illustrates the sets F(x0) and F(x1). With the multiplier d := 2 one obtains the
slightly changed point (1.9429 · 10−16, 0.25) which cannot be improved. Because of
the high discretization totally 21,000 convex optimization problems have to be solved.
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Fig. 10 Illustration of the sets F(x0) and F(x1) in Example 4.3

5 Conclusion

The presented descent method in Algorithm 4.1 does not generally produce optimal
solutions. But the conception may lead to better feasible points with respect to the
set less order relation. In practice, the iteration process is very time-consuming. Since
many comparisons can be done in parallel, the descent method can use parallel com-
putation tools. Moreover, adaptive techniques can be applied for the step size control
and the refinement of the cluster.

Using nonlinear scalarization results given by Rubinov [23], Tammer (Gerstewitz)
[4] and Pascoletti and Serafini [22] in vector optimization and by Hernández and
Rodríguez-Marín [7] in set optimization, one then gets other types of min problems
which can be solved on a computer. Then even nonconvex set optimization problems
should be solvable.
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