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Abstract The interval bounded generalized trust region subproblem (GTRS) con-
sists in minimizing a general quadratic objective, q0(x) → min, subject to an upper
and lower bounded general quadratic constraint, � ≤ q1(x) ≤ u. This means that there
are no definiteness assumptions on either quadratic function. We first study charac-
terizations of optimality for this implicitly convex problem under a constraint quali-
fication and show that it can be assumed without loss of generality. We next classify
the GTRS into easy case and hard case instances, and demonstrate that the upper
and lower bounded general problem can be reduced to an equivalent equality con-
strained problem after identifying suitable generalized eigenvalues and possibly solv-
ing a sparse system. We then discuss how the Rendl-Wolkowicz algorithm proposed
in Fortin and Wolkowicz (Optim. Methods Softw. 19(1):41–67, 2004) and Rendl and
Wolkowicz (Math. Program. 77(2, Ser. B):273–299, 1997) can be extended to solve
the resulting equality constrained problem, highlighting the connection between the
GTRS and the problem of finding minimum generalized eigenvalues of a parameter-
ized matrix pencil. Finally, we present numerical results to illustrate this algorithm at
the end of the paper.
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1 Introduction

We consider the following quadratic minimization problem, which we call the inter-
val bounded generalized trust region subproblem (GTRS):

(GTRS)
p∗ := inf q0(x) := xT Ax − 2aT x

s.t. � ≤ xT Bx − 2bT x
︸ ︷︷ ︸

q1(x)

≤ u. (1.1)

Here A, B ∈ Sn, the space of real n × n symmetric matrices, a, b ∈ R
n, and −∞ <

l ≤ u < ∞. To avoid trivialities, we assume that B �= 0 and the GTRS is feasible.1

We emphasize that the quadratic constraint is two-sided, and both the objective and
constraint functions are possibly nonconvex. Thus we are essentially considering a
general nonlinear program with a quadratic objective and two quadratic constraints.

Problem (1.1) is most studied in the one-sided ball-constrained case, i.e., the spe-
cial case when B = I , b = 0, and � = 0 < u, known as the trust region subproblem
(TRS):

(TRS)
inf xT Ax − 2aT x

s.t. xT x ≤ u.
(1.2)

These problems arise in regularization or trust region methods for unconstrained and
constrained nonlinear programming; see, e.g., [7] for a comprehensive discussion.
The TRS provides a quadratic model in a trust region around the current point. The
use of scaled trust regions with a general B � 0 in the constraint (see, e.g. [15]) mo-
tivates our consideration of GTRS. In our general consideration of (1.1), our scaled
trust region is defined with a possibly indefinite B; hence, xT Bx could be a quadratic
form induced from the indefinite inner product 〈x, y〉 := xT By; see, e.g. [13]. This
together with the two-sided constraints model annular/hyperbolic type regions that
allow minimum as well as maximum steplengths. In addition, the possibly nonzero b

accounts for a shift of the center of the trust region, which allows trust regions to be
built around previous iterates.

Problem (1.2) is explicitly nonconvex, since A is not necessarily positive semidef-
inite. Nevertheless, it is implicitly convex in that necessary and sufficient optimality
conditions have been derived, see Gay [12] and Moré and Sorensen [25]. The condi-
tions are rephrased in a modern primal-dual paradigm in, for example, [7, 10, 11, 15,
29, 34]. The optimality conditions of the TRS can also be derived using the S-lemma;
see, e.g. [28]. The S-lemma, developed by Yakubovich [36] in 1971, states whether a
quadratic (in)equality is a consequence of other quadratic (in)equalities. The earliest
results of this kind date back to Finsler [9] and Hestenes and McShane [19] and we
refer the readers to [28] for a detailed account of its history and its applications. Turn-
ing to the more general problem (1.1), necessary and sufficient optimality conditions
have been studied in [24, 34], under certain constraint qualifications in the special
cases when b = 0 or u = �. The general case (1.1) was considered in [37, Sect. 2.1]

1Checking feasibility for GTRS is simple, see Theorem 2.1(i), below.
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under a dual strict feasibility assumption; see also [3, 8, 20]. Further references are
available in the online bibliography [17].

The necessary and sufficient optimality conditions for (1.2) have been the basis
for developing efficient algorithms for solving TRS. The classical algorithm [25] by
Moré and Sorensen (MS algorithm) applies Newton’s method with backtracking to
the so-called secular function, and takes a primal step to the boundary for near hard
case instances. This algorithm can be expensive since each iteration requires a full
Cholesky factorization. The MS algorithm was later incorporated into the general-
ized Lanczos trust-region (GLTR) method [15, 16]. The GLTR algorithm uses the
Lanczos procedure to obtain a sequence of TRS on low dimensional subspaces with
tridiagonal matrices as objectives. The resulting sequence of TRS is then solved ef-
ficiently by a variant of the MS algorithm; see [15, Sect. 5.2]. Another related algo-
rithm is the sequential subspace method (SSM) [18]. This algorithm constructs very
low dimensional subspaces that include a point obtained from a sequential quadratic
programming subproblem. The resulting sequence of problems are diagonalized and
solved by a Newton-secant type method. Another line of algorithms involves refor-
mulating the TRS into a parameterized eigenvalue problem. This includes, e.g., the
Rendl-Wolkowicz (RW) algorithm [11, 29], the large-scale trust-region subproblem
(LSTRS) by Rojas et al. [31, 32] and its variant [21]. These algorithms are factor-
ization free, and can take advantage of well developed eigensolvers for large, sparse
matrices. Other algorithms for TRS can be found in, e.g. [33, 35]. Despite the many
algorithms developed for TRS, there are currently no algorithms specifically designed
for the general problem (1.1); though the special case when B � 0, b = 0 and � = 0
can be solved by the GLTR method.

In this paper we present characterizations of optimality and propose an algorithm
for solving large-scale instances of GTRS (1.1). Specifically, we obtain optimality
conditions under a constraint qualification and show that it can be assumed without
loss of generality. Our results show that even though the GTRS is a problem con-
sisting of general, possibly nonconvex, quadratic functions, it has both necessary and
sufficient optimality conditions as in convex programming, and it has strong duality
results as in linear programming, in the sense that when the constraint qualification
fails, the problem can be explicitly solved. Thus, the GTRS is implicitly convex like
the classical TRS. It sits on the boundary between linear and nonlinear programming,
and on the boundary between convex, and general nonconvex programming. We also
discuss in detail the so-called easy and hard cases corresponding to (non)singularity
of the Hessian of the Lagrangian, which was previously only studied for some special
cases of (1.1) in [34]. Moreover, as in [11], we include a shift and deflate operation
that finds an explicit solution in the hard case (case 2). We then demonstrate that the
GTRS can be reduced to an equality constrained problem (i.e., an instance of GTRS
with u = �) after finding some suitable generalized eigenvalues and possibly solving
a sparse system. To solve this equality constrained problem, we generalize the ideas
in [11, 29] and transform the problem into a parameterized generalized eigenvalue
problem. The latter problem can then take advantage of specialized solvers for find-
ing generalized eigenvalues/eigenvectors, e.g., the eigifp developed in [14]. We
compare this approach with the GLTR algorithm (when B � 0) and a simple imple-
mentation of Newton’s method with the Armijo line search rule as applied to solve
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the dual problem of (1.1). Our computational results on large-scale instances show
that our approach is competitive with the Newton method and usually outperforms the
GLTR algorithm for random sparse positive definite B in both runtime and solution
accuracy. In the case when B is indefinite, our approach requires additional inputs
for initialization; see Sect. 3.3 for details. Granting such inputs, our computational
results show that our approach is competitive with the Newton method.

1.1 Outline

We complete this section with some preliminary notations in Sect. 1.2. We then
present the characterizations of optimality in Sect. 2.1. This includes a constraint
qualification that can be assumed without loss of generality in the sense that if it
fails, then an explicit solution of the GTRS (1.1) can be obtained. In Sect. 2.2, we
discuss the so-called easy and hard cases, the shift and deflation procedure to ob-
tain an explicit solution in the hard case, and the reduction to an equality constrained
problem. The algorithm for this equality constrained problem and its implementation
details are discussed in Sect. 3. We present numerical tests in Sect. 3.4 and finally
some concluding remarks in Sect. 4.

1.2 Notation

In this paper, the symbol Rn denotes the n-dimensional vector space. For v ∈R
n, ‖v‖

denotes the Euclidean norm of v. The space of n × n symmetric matrices equipped
with the trace inner-product is denoted by Sn. For C ∈ Sn, λmax(C) and λmin(C)

denote the largest and smallest eigenvalue of C, respectively. For C,D ∈ Sn, C �
D,C � D denote C − D is positive semidefinite, and positive definite, respectively.
For a (not necessarily symmetric) square matrix M , tr(M) denotes the trace of M , M†

denotes the Moore-Penrose generalized inverse of M , and Null(M) and Range(M)

denote its null and range spaces, respectively. The identity matrix is denoted by I ,
whose dimension should be clear from the context.

For an interval J on the real line, the symbol cl(J ) denotes its closure, and ri(J )

denotes its relative interior. Finally, for a subspace V of Rn, the orthogonal comple-
ment of V is denoted by V ⊥, and if a vector v ∈ R

n is orthogonal to V , we write
v⊥V .

We use a number of acronyms in this paper. TRS refers to the standard trust region
subproblem in (1.2); while GTRS refers to the generalized trust region subproblem in
(1.1). GTRS= refers to the special equality constrained GTRS in (3.1). The acronyms
D-GTRS, D�-GTRS, SDP-GTRS and DSDP-GTRS correspond to various reformu-
lations of the GTRS and are defined in the beginning of Sect. 2.1. RICQ stands for
the relative interior constraint qualification defined in (2.6). Finally, RW algorithm
stands for the Rendl-Wolkowicz algorithm studied extensively in [11, 29] and Sect. 3,
while the GLTR algorithm stands for the generalized Lanczos trust-region method
in [15, 16].
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2 Properties of GTRS

2.1 Duality and optimality conditions

In this section, we present the characterizations of optimality and duality proper-
ties for GTRS (1.1). In particular, we include assumptions that can be made without
loss of generality. These assumptions include a constraint qualification, whose failure
means that an explicit solution for GTRS can be obtained.

We start by writing down the Lagrangian dual of (1.1). The Lagrangian for (1.1)
can be written with one free Lagrange multiplier λ, or with two nonnegative Lagrange
multipliers2

λ+ := max{λ,0}, λ− := −min{λ,0}, λ = (λ+ − λ−) : (2.1)

L(x,λ+, λ−) = xT Ax − 2aT x + λ+
(

� − (

xT Bx − 2bT x
))

+ λ−
(

xT Bx − 2bT x − u
)

= xT
(

A − (λ+ − λ−)B
)

x − 2
(

a − (λ+ − λ−)b
)T

x + λ+� − λ−u

= xT (A − λB)x − 2(a − λb)T x + λ+� − λ−u.

The Lagrangian dual problem of (1.1) can then be reduced to the following problem:

(D-GTRS)
d∗ := sup h(λ) + �λ+ − uλ−

s.t. A − λB � 0,
(2.2)

where the dual functional

h(λ) = inf
x

xT (A − λB)x − 2(a − λb)T x

=

⎧

⎪
⎨

⎪
⎩

−(a − λb)T (A − λB)†(a − λb) if a − λb ∈ Range(A − λB)

and A − λB � 0,

−∞ otherwise.

Note that the objective function in D-GTRS is concave. In this paper, we will also
look at the following closely related problem formed by enforcing positive definite-
ness in (2.2) and thus reducing the size of the feasible set:

(D�-GTRS)
d∗� := sup h�(λ) + �λ+ − uλ−

s.t. A − λB � 0,
(2.3)

where

h�(λ) := −(a − λb)T (A − λB)−1(a − λb).

2Note that complementary slackness can be written with a single Lagrange multiplier λ ∈ R as follows:
(q1(x) − �)λ ≤ 0 ≤ (u − q1(x))λ.
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It is useful to study this problem since positive definiteness as in (2.3) is maintained in
the algorithm presented below. Finally, we write down the semidefinite programming
(SDP) relaxation of GTRS

(SDP-GTRS)
p∗

SDP := inf tr(AX) − 2aT x

s.t. � ≤ tr(BX) − 2bT x ≤ u,

X � xxT .

(2.4)

By a Schur complement argument, the final inequality is equivalent to the linear con-
straint

[

1 xT

x X

]� 0.

Proposition 2.1 The dual of SDP-GTRS is

(DSDP-GTRS)
d∗
DSDP := sup �λ+ − uλ− − γ

s.t.

[

γ −(a − λb)T

−(a − λb) A − λB

]

� 0,
(2.5)

where the multipliers are defined in (2.1). Moreover, (2.5) is equivalent to (2.2) with
d∗
DSDP = d∗.

Proof It is routine to show that the dual of (2.4) is given by (2.5). Furthermore, by
considering the Schur complement, for any γ , λ ∈ R, we have

[

γ −(a − λb)T

−(a − λb) A − λB

]

� 0 ⇔

⎧

⎪
⎨

⎪
⎩

γ ≥ (a − λb)T (A − λB)†(a − λb)

a − λb ∈ Range(A − λB)

A − λB � 0.

Thus, (2.5) is equivalent to (2.2). �

2.1.1 Assumptions and properties

We consider the following assumptions on the GTRS (1.1).

Assumption 2.1

1. B �= 0.
2. GTRS (1.1) is feasible.
3. The following relative interior constraint qualification holds

(RICQ) tr(BX̂) − 2bT x̂ ∈ ri
([�,u]), for some X̂ � x̂x̂T . (2.6)

4. GTRS is bounded below.
5. D-GTRS (2.2) is feasible.

Note that Assumption 2.1 together with weak duality yields

−∞ < d∗ ≤ p∗ < +∞. (2.7)
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We show in the next theorem that Assumption 2.1 is reasonable in the sense that it
can be made without loss of generality, i.e., if the assumption fails, then an explicit
solution or a simplification can easily be obtained.

Theorem 2.1 The following holds for the Items in Assumption 2.1.

(i) The Items 1, 2, 3 in Assumption 2.1 can be made in the order given, without loss
of generality, i.e., if an assumption fails then an explicit solution can easily be
obtained.

(ii) If Items 1, 2, 3 in Assumption 2.1 hold and b = 0, then Item 4 implies Item 5.
(iii) If Item 4 in Assumption 2.1 fails, then Item 5 fails.

Proof Let x∗ := B†b, q∗
1 := q1(x

∗). We now provide the details about how the as-
sumptions hold in the order given.

(i) • Suppose that B = 0, i.e., the constraint is linear. If A � 0, a ∈ Range(A) and
the unconstrained minimum x̄ = A†a satisfies � ≤ −2bT (A†a) ≤ u, then x̄

solves GTRS. Otherwise, the optimum, if it exists, is on one of the two bound-
aries. Therefore, we can change the linear inequality constraint to an equality,
and we can again check for an unconstrained minimum after the appropriate
substitution using the linear constraint. Therefore, the assumption that B �= 0
can be made without loss of generality.

• First, GTRS is infeasible if, and only if, the following three conditions hold:

B is semidefinite;
b ∈ Range(B) (equivalently b = Bx∗);
q∗

1 < � if B � 0; or q∗
1 > u if B � 0.

More precisely, the characterization for infeasibility follows from the fact that
q1 is bounded below with minimum at x∗ (resp. bounded above with maxi-
mum at x∗) if, and only if, b ∈ Range(B) and B � 0 (resp. B � 0). We can
verify the semidefiniteness of B by finding the largest and smallest eigenval-
ues. The range condition follows from finding the best least squares solution
of Bx = b. If the range condition holds, then the final inequalities can be
checked by evaluating q1 at x∗. Thus, we conclude that feasibility can be ver-
ified by finding λmax(B) and λmin(B) and solving a system of equations, and
hence, Assumption 2.1, Item 2, can be made without loss of generality.

• Suppose that Assumption 2.1, Items 1–2 hold, but the RICQ Assumption 2.1,
Item 3 fails. Then we can find an explicit solution for GTRS. More pre-
cisely, since the RICQ fails, we have b ∈ Range(B), and either B � 0 with
� = supxT Bx − 2bT x or B � 0 with u = infxT Bx − 2bT x. In either case,
the conditions imply that the feasible set is x∗ + Null(B). We can then use
a nullspace representation and substitute into the objective function to obtain
an explicit solution or realize that the problem is unbounded below. In con-
clusion, if RICQ fails, we can obtain an explicit solution or realize that the
problem is unbounded.

(ii) This conclusion is proved as Proposition A.1 in the Appendix.
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(iii) If Assumption 2.1, Item 5 holds, then d∗ > −∞. Combining with weak duality,
we see that p∗ ≥ d∗ > −∞, i.e., Item 4 holds.

�

Remark 2.1 From the proof of Theorem 2.1(2.1) above, it is not hard to see that if
we assume Items 1 and 2 of Assumption 2.1, then the RICQ (2.6) fails if and only if
the constraint is convex and no Slater point (strict feasibility) exists, or equivalently,
when the range of values of the quadratic q1(x) in the constraint only meets the
interval [�,u] at one point. Thus, in the case of equality constraint, i.e., when u = �,
the RICQ holds if and only if infx q1(x) < � = u < supx q1(x), which is precisely
condition (3.2) in [24].

For the rest of the paper, we assume that Assumption 2.1 holds.

2.1.2 Weak duality

We have the following weak duality result describing the relationship between the
optimal values of the above optimization problems.

Proposition 2.2 The optimal values satisfy

−∞ ≤ d∗� ≤ d∗ = d∗
DSDP ≤ p∗

SDP ≤ p∗ < +∞. (2.8)

Moreover, if d∗� > −∞, then d∗� = d∗.

Proof The proof of (2.8) follows from the feasibility Assumption 2.1, weak duality,
Proposition 2.1 and the definitions.

Now suppose that d∗� is finite and suppose to the contrary that d∗� < d∗. Then
there exists λ1 and λ2 feasible for (2.2) and (2.3), respectively, such that f (λ1) >

d∗ − d∗−d∗�
2 and f (λ2) > d∗� − d∗−d∗�

2 , where f (λ) is the common objective function

for both problems. Since f (λ) is a concave function and λ1+λ2
2 is feasible for (2.3),

we obtain that

d∗� ≥ f

(

λ1 + λ2

2

)

≥ f (λ1) + f (λ2)

2
>

d∗ + d∗�
2

− d∗ − d∗�
2

= d∗�,

a contradiction. This completes the proof. �

2.1.3 Strong duality and characterization of optimality

We show below that equality holds for four of the five finite optimal values in (2.8);
and, moreover, two of them are attained. We start with the following technical lemma
where the quadratic forms in (1.1) are linearized. Recall that a Schur complement
argument implies that the quadratic constraint X � xxT in (2.9) is equivalent to the
linear constraint

[

1 xT

x X

]� 0.
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Lemma 2.1 Let C � A and let

p∗
C,SDP := inf tr(CX) − 2aT x

s.t. � ≤ tr(BX) − 2bT x ≤ u,

X � xxT .

(2.9)

Then, the optimal value p∗
C,SDP is finite and attained.

Proof The programs (D-GTRS) and (SDP-GTRS) are dual to each other. Assumption
2.1 implies that (2.9) is feasible and that there exists λ̂ satisfying the Slater condition
C − λ̂B � A − λ̂B � 0, i.e., a Slater point exists for (D-GTRS) when A is replaced
by C. This means that the dual program (2.9) is feasible and attained. �

We next prove strong duality between (1.1) and (2.2). This technical result is used
repeatedly throughout this paper. Similarly as in [6], we make use of bounds on the
rank of the extreme points of SDP representable sets [1, 2, 27] to prove the exactness
of the SDP relaxations.

Theorem 2.2 Recall that Assumption 2.1 holds. Then the following holds for GTRS:

(i) The optimal values of GTRS and its SDP relaxation are equal,

p∗
SDP = p∗.

(ii) Strong duality holds for GTRS, i.e., p∗ = d∗ and the dual optimal value d∗ is
attained. Moreover, equality holds for four of the five optimal values in (2.8),

d∗� ≤ d∗ = d∗
DSDP = p∗

SDP = p∗. (2.10)

Furthermore, if d∗� > −∞, then all quantities in (2.10) are equal.

Proof (i) For each ε ≥ 0, let Aε := A + εI . Consider the following perturbation of
(1.1)

p∗
ε = inf

{

xT Aεx − 2aT x : � ≤ xT Bx − 2bT x ≤ u
}

,

and its SDP relaxation

v∗
ε = inf

{

tr(AεX) − 2aT x : � ≤ tr(BX) − 2bT x ≤ u,X � xxT
}

= inf

{

tr(AεX) − 2aT x : � ≤ tr(BX) − 2bT x ≤ u,U =
[

1 xT

x X

]

� 0

}

.

Then p∗
ε ≥ v∗

ε , for all ε ≥ 0.
We proceed by first showing that p∗

ε = v∗
ε for each fixed ε > 0. We start with the

case when � = u. In this case, the SDP relaxation can be written as

inf tr

([

0 −aT

−a Aε

]

U

)

s.t. tr

([

0 −bT

−b B

]

U

)

= u,

U1,1 = 1,U � 0.
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The optimal set of the above SDP is nonempty by Lemma 2.1. Since the cone of pos-
itive semidefinite matrices does not contain lines, the optimal value must be attained
at an extreme point U∗ of the feasible set. Since there are two equality constraints,
by [27, Theorem 2.2], the rank rU of the extreme point satisfies

rU (rU + 1) ≤ 4.

Since U∗ �= 0, we must have rU = 1 and hence U∗ = [ 1
x∗
][

1 x∗T
]

, for some x∗. Then
x∗ is feasible for (1.1) and we conclude that p∗

ε = v∗
ε .

Next, we consider the case when � < u. In this case, the SDP relaxation can be
written as

inf tr

([

0 −aT

−a Aε

]

U

)

s.t. tr

([

0 −bT

−b B

]

U

)

− α = l,

tr

([

0 −bT

−b B

]

U

)

+ β = u,

U1,1 = 1,U � 0, α ≥ 0, β ≥ 0.

The optimal set of the above SDP is nonempty, again by Lemma 2.1. Hence, the
optimal value must be attained at an extreme point (U∗, α∗, β∗) of the feasible set.
Since there are three equality constraints, by [27, Theorem 2.2], the ranks rU , rα and
rβ of this extreme point have to satisfy

rU (rU + 1) + rα(rα + 1) + rβ(rβ + 1) ≤ 6. (2.11)

Notice that at optimality, α∗ and β∗ cannot both be zero. This fact together with (2.11)
and the fact U∗ �= 0 shows that rU = 1 and hence U∗ = [ 1

x∗
][

1 x∗ T
]

, for some x∗.
Then x∗ is feasible for (1.1) and we again conclude that p∗

ε = v∗
ε .

Hence, we have shown that p∗
ε = v∗

ε , for all ε > 0. Now, let (x,X) be feasible for
the SDP relaxation (2.4). Then we have

v∗
0 ≤ p∗

0 ≤ lim
ε↓0

p∗
ε = lim

ε↓0
v∗
ε ≤ lim

ε↓0
tr(AεX) − 2aT x = tr(AX) − 2aT x.

Taking the infimum over the feasible set of the SDP relaxation gives the desired
equality v∗

0 = p∗
0 . This completes the proof.

(ii) Recall that the Lagrangian dual of the SDP relaxation (2.4) is given by (2.5).
Moreover, from RICQ (2.6), the generalized Slater condition for (2.4) holds with the
Slater point

[ 1 x̂T

x̂ X̂

]

. Hence p∗
0 = v∗

0 = d∗
DSDP = d∗ and the dual optimal values are

attained. This proves (2.10). The rest of the claim follows from Proposition 2.2. �

We remark that, when � < u in the above proof, the equality p∗
ε = v∗

ε , for all ε > 0,
can also be obtained as a consequence of [37, Theorem 2.3]. We are now ready to
characterize optimality for GTRS. We note that our constraint qualification (2.6) is
different from that of [34, Theorem 2.1]. In particular, we do not require � < u when
B is indefinite with the optimal solution in its kernel and b = 0. Moreover, as seen in
Theorem 2.1, Assumption 2.1 can be made without loss of generality.
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Theorem 2.3 Recall that Assumption 2.1 holds. A point x∗ is a solution to GTRS
(1.1) if, and only if, for some (Lagrange multiplier) λ∗ ∈ R, we have

(A − λ∗B)x∗ = a − λ∗b,

A − λ∗B � 0,

}

dual feasibility

� ≤ x∗T Bx∗ − 2bT x∗ ≤ u, primal feasibility
(

λ∗)
+
(

� − x∗T
Bx∗ + 2bT x∗)= 0,

(

λ∗)
−
(

x∗T
Bx∗ − 2bT x∗ − u

)= 0.

⎫

⎬

⎭

complementary slackness

(2.12)

Proof Suppose first that x∗ is a solution to (1.1). Then the third relation in (2.12)
holds. Furthermore, by Theorem 2.2, strong duality holds. Hence, there exists λ∗
such that

p∗ = x∗T
Ax∗ − 2aT x∗ = inf

�≤xT Bx−2bT x≤u
xT Ax − 2aT x (2.13)

= sup
λ

inf
x

xT Ax − 2aT x + λ+
(

� − xT Bx + 2bT x
)+ λ−

(

xT Bx − 2bT x − u
)

= inf
x

xT Ax − 2aT x + λ∗+
(

� − xT Bx + 2bT x
)+ λ∗−

(

xT Bx − 2bT x − u
)

.

(2.14)

The first two relations in (2.12) follow immediately from the optimality condition
of the unconstrained optimization problem (2.14). Moreover, from (2.14) and primal
feasibility of x∗, we have

p∗ = inf
x

xT Ax − 2aT x + λ∗+
(

� − xT Bx + 2bT x
)+ λ∗−

(

xT Bx − 2bT x − u
)

≤ x∗T
Ax∗ − 2aT x∗ + λ∗+

(

� − x∗T
Bx∗ + 2bT x∗)+ λ∗−

(

x∗T
Bx∗ − 2bT x∗ − u

)

≤ x∗T
Ax∗ − 2aT x∗.

Comparing this last relation with (2.13), we obtain the complementary slackness ex-
pressions in the last two relations of (2.12).

Next, assume that x∗ is primal feasible and that there exists λ∗ so that (2.12) holds.
Then we have the following chain of inequalities.

p∗ ≥ d∗ = sup
λ

inf
x

xT Ax − 2aT x + λ+
(

� − xT Bx + 2bT x
)

+ λ−
(

xT Bx − 2bT x − u
)

≥ inf
x

xT Ax − 2aT x + λ∗+
(

� − xT Bx + 2bT x
)+ λ∗−

(

xT Bx − 2bT x − u
)

= x∗T
Ax∗ − 2aT x∗ + λ∗+

(

� − x∗T
Bx∗ + 2bT x∗)

+ λ∗−
(

x∗T
Bx∗ − 2bT x∗ − u

)

= x∗T
Ax∗ − 2aT x∗ ≥ p∗,
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where the first equality follows from the definition of the Lagrangian dual problem,
the second equality follows from the first two relations of (2.12), the third equality
follows from the last two relations of (2.12), while the last inequality follows from
the primal feasibility of x∗. Thus, in particular, we have x∗T Ax∗ − 2aT x∗ = p∗, and
so x∗ solves (1.1). �

Remark 2.2 We note that in proving the optimality conditions (i.e., version of Theo-
rem 2.3) in [24, 34] for the special cases of GTRS (1.1), the authors did not assume
Items 4 and 5 of Assumption 2.1. Indeed, suppose we only assume Items 1 through 3
of Assumption 2.1. When b = 0, if x∗ is known to be a solution of the GTRS (1.1),
then the problem is bounded below and thus by Theorem 2.1(ii), we conclude that
Assumption 2.1 holds. On the other hand, if there exists λ∗ and x∗ such that (2.12)
holds, then we conclude from Theorem 2.1(iii) that Assumption 2.1 holds. Thus, our
result is a strict improvement of [34, Theorem 2.1], which assumes in addition b = 0,
since our RICQ (2.6) is weaker than condition (2.5) in [34, Theorem 2.1]. However,
since it is not known to us whether Item 4 implies Item 5 when b �= 0, we cannot
assert that our Theorem 2.3 reduces to [24, Theorem 3.2], even though our RICQ is
equivalent to their constraint qualifications.

Example 2.1 We illustrate that (2.10) can fail if Assumption 2.1 is violated. More-
over, attainment for GTRS can fail. Consider

inf x1x2

s.t. x2
1 = 0.

Then clearly, the optimal value of the above optimization problem is zero. Moreover,
the optimal value of its SDP relaxation, which is given below, is also zero:

inf X12
s.t. X11 = 0, X � 0.

However, it is not hard to observe that the dual problem is infeasible and thus the dual
optimal value d∗ = −∞. Hence, we have p∗ = p∗

SDP > d∗. Indeed, Assumption 2.1
Item 3 and Item 5 are violated and thus Theorem 2.2 does not apply.

In the unconstrained case, boundedness below of q0(x) yields attainment. This is
not the case for GTRS. Consider

inf x2
2

s.t. x1x2 = 1.

The optimal value 0 is unattained. Note that λ = 0 is the unique dual feasible point.
Further results on attainment can be found in, e.g., [23].

2.2 Easy and hard cases and regular pencils

From the first two relations in (2.12), it is obvious that we have to work with A −
λI and the eigenvalues of A for TRS. Similarly, for GTRS, we have to deal with
generalized eigenvalues and the matrix pencil A − λB corresponding to the matrix
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pair (A,B). In the latter case, due to the arbitrariness of B , several singular cases
may arise, see e.g., [26]. Below are some prototypical examples.

1. Consider the case when A = B = [ 1 0
0 0

]

, where e2 = [ 0
1

]

is a common nullspace
vector. Then the corresponding generalized eigenvalues include all of R, i.e. the
determinant det(A − tB) = 0 is identically 0 in t . This case is problematic since a
small perturbation in the matrices can cause a big change in the solution set.

2. Let A = [ 0 1
1 0

]

, B = [ 1 0
0 −1

]

. The eigenpairs include complex eigenvalues. This
case is problematic as the dual problem is infeasible.

2.2.1 Regular case

To avoid the aforementioned singular matrix cases, we assume from now on that the
matrix pencil is definite. This corresponds to the so-called (positively) regular case in
[34].

Regular Pencil ̂C := A −̂λB � 0, for somêλ ∈R. (2.15)

Condition (2.15) covers most of the interesting cases. Indeed, it is shown in [34,
Lemma 2.3] that if (2.15) fails and det(A − tB) is not an identically zero polynomial
in t , then the feasible set of (2.2) is a singleton set. Condition (2.15) also guarantees
the existence of a solution to (1.1); the proof of this fact follows similarly to that
of Lemma 2.1. For convenience in the discussions below, we state this result as a
proposition.

Proposition 2.3 If condition (2.15) holds, then the GTRS problem (1.1) has an opti-
mal solution.

Proof See the proofs of Lemma 2.1 and Theorem 2.2(i). �

Under the additional regularity assumption (2.15), we would like to classify the
GTRS into the so-called easy case and hard cases analogously to the classical trust
region subproblem. To this end, we follow a similar line of arguments as in [34,
Sect. 3], which analyzes the case when � = u = 1 and b = 0. We have to make use
of the fact that under (2.15), the matrix pencil A − λB is diagonalizable by a congru-
ence, see e.g., [22, Theorem 10.1]. We include a proof in Theorem 2.4 below for the
convenience of the readers.

Theorem 2.4 Recall that the pencil is (positively) regular. Then, there exists an in-
vertible matrix S and diagonal matrices D1 and D2 such that

A = SD1S
T and B = SD2S

T .

Furthermore, A − λB � 0 if, and only if,

λ := max
{i:βi<0}

αi

βi

≤ λ ≤ min{i:βi>0}
αi

βi

=: λ, (2.16)
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where αi and βi are the ith diagonal entry of D1 and D2, respectively. Moreover,
(λ,λ) is a nonempty open interval; at least one of the end points of the interval has
to be finite; and,

|αi | + |βi | > 0, ∀i.

Proof Let ̂C be as in (2.15). Without loss of generality, we can assume ̂λ �= 0. Let
̂C = PDP T denote the spectral decomposition (orthogonal diagonalization) of ̂C.
Therefore the diagonal D satisfies 0 ≺ D = P T (A −̂λB)P and, I = D−1/2P T (A −
̂λB)PD−1/2. Let Q give the orthogonal diagonalization of D−1/2P T APD−1/2, i.e.
QT D−1/2P T APD−1/2Q = D1. Define S = PD1/2Q. Then it follows that A =
SD1S

T and B = − 1
̂λ
S(I − D1)S

T .
Since positive semidefiniteness is preserved under congruence, we see immedi-

ately that A − λB � 0 if, and only if,

D1 − λD2 � 0.

Since D1 and D2 are diagonal, we obtain further that A − λB � 0 is equivalent to

λ := max
{i:βi<0}

αi

βi

≤ λ ≤ min{i:βi>0}
αi

βi

=: λ,

where αi and βi are the ith diagonal entry of D1 and D2, respectively. Next, note that
λ ∈ (λ,λ) if, and only if, A − λB � 0. Thus, by (2.15), (λ,λ) is a nonempty open
interval. Furthermore, since B �= 0, it follows that at least one of the end points of the
interval has to be finite. Finally, we note that αi and βi cannot both be zero, because
of (2.15). �

We remark that the equivalence in (2.16) was established earlier in [24, Theo-
rem 5.3]; see also [34, Lemma 3.1]. Next, for each real λ ∈ cl(λ,λ), the closure of
the interval, we define the first order stationary point

x(λ) := (A − λB)†(a − λb), (2.17)

and the constraint evaluated at x(λ)

ψ(λ) := q1
(

x(λ)
)

= (a − λb)T (A − λB)†B(A − λB)†(a − λb)

− 2bT (A − λB)†(a − λb). (2.18)

Recall that in the TRS case where B = I and b = 0, we can orthogonally diago-
nalize A and get λ = −∞ < λ∗ ≤ λ = λmin(A). In addition, if we also have a = 0
(homogeneous case), then both x(λ) and ψ(λ) are constant functions, identically
0. This property extends to the general case as follows, whose proof can be found
in [24, p. 202].
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Lemma 2.2 Let λ ∈ (λ,λ). Then the functions x(λ) and ψ(λ) in (2.17) and (2.18),
respectively, are differentiable with derivatives given by

x′(λ) = (A − λB)−1(Bx(λ) − b
)

,

ψ ′(λ) = 2x′(λ)T (A − λB)x′(λ).

Moreover, on (λ,λ), ψ(λ) is either constant or strictly increasing with

ψ constant in (λ,λ) ⇔ x′(λ) = 0, for some λ ∈ (λ,λ)

⇔ x′(λ) = 0,∀λ ∈ (λ,λ)

⇔
(

a

b

)

∈ Range

([

A

B

])

.

(2.19)

Remark 2.3 Notice that if (2.19) holds, then (a − λb) = (A − λB)v, for some v.
Therefore, the objective in (2.2) becomes −vT (A − λB)v + �λ+ − uλ−. Thus (2.2)
reduces to a linear programming problem.

We now define the easy case and the hard cases. Unlike the case for TRS, we have
to consider separately the cases when λ or λ is infinite.

Definition 2.1 The easy case occurs if one of the following three cases holds:

1. both λ and λ are finite, and − limλ↓λ ψ(λ) = limλ↑λ ψ(λ) = +∞;

2. only λ is finite, and limλ↑λ ψ(λ) = +∞;
3. only λ is finite, and limλ↓λ ψ(λ) = −∞.

Otherwise, we have the hard case.

From the above definition and Lemma 2.2, we see immediately that in the easy
case, the function ψ has to be strictly increasing on (λ,λ). Sample shapes of the
function ψ in the easy and hard cases are shown in Figs. 1 and 2. The next lemma
and the discussion following it justify the terminology easy case.

Lemma 2.3 If λ = +∞, then limλ↑λ ψ(λ) = supxT Bx − 2bT x > �. Similarly, if

λ = −∞, then limλ↓λ ψ(λ) = infxT Bx − 2bT x < u.

Proof Suppose first that λ = +∞. Then, from the definition of λ, we see that B � 0,
is negative semidefinite. We consider two cases: b ∈ Range(B) and b /∈ Range(B).

Suppose that b ∈ Range(B). Notice first from the definition of λ and λ that A −
λB � 0, and so also B − 1

λ
A ≺ 0, for all sufficiently large λ. From this and the

definition of x(λ), for all sufficiently large λ and for any x ∈ R
n, we see that

ψ(λ) ≥ xT

(

B − 1

λ
A

)

x − 2

(

b − 1

λ
a

)T

x + 1

λ
q0
(

x(λ)
)

. (2.20)
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Fig. 1 ψ(λ) when B is indefinite. The dotted lines are λ = λ and λ = λ̄

Fig. 2 ψ(λ) when B is positive definite. The dotted line is λ = λ̄

Furthermore,

1

λ
q0
(

x(λ)
)=

n
∑

i=1

(

αi(ξi − λγi)
2

λ(αi − λβi)2
− 2ξ2

i − 2λξiγi

λ(αi − λβi)

)

,

where αi and βi are defined as above, while ξ = S−1a and γ = S−1b. Since b ∈
Range(B) means that γi = 0 whenever βi = 0, we see immediately that

lim
λ↑λ

1

λ
q0
(

x(λ)
)= 0.
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Taking limits in λ on both sides of (2.20) and then taking the supremum over all
x ∈ R

n, we obtain that limλ↑λ ψ(λ) ≥ supxT Bx − 2bT x > �, where the last strict
inequality is a consequence of RICQ (2.6). Hence, the first conclusion follows when
b ∈ Range(B).

Next, suppose b /∈ Range(B). Then by the definition of ψ(λ) = q1(x(λ)), we have

q1
(

x(λ)
)=

n
∑

i=1

(

βi(ξi − λγi)
2

(αi − λβi)2
− 2γiξi − 2λγ 2

i

(αi − λβi)

)

.

The assumption on b implies that there exists i0 such that βi0 = 0 but γi0 �= 0 (notice
that by (2.15), necessarily the corresponding αi0 > 0). Thus, limλ↑λ ψ(λ) = +∞ and
the first conclusion holds trivially in this case.

The case when λ = −∞ can be proved similarly. �

From Lemmas 2.2 and 2.3, we see that, in the easy case, ψ(λ) = s has a unique
solution in the open interval (λ,λ) for any s ∈ (infψ, supψ). We next show that
we can alternatively characterize the easy case and hard cases via the null space of
A − λB or A − λB; see also [34, Sect. 3.1] for a similar analysis on the special case
of GTRS (1.1) with u = � = 1 and b = 0.

Lemma 2.4 If λ is finite, then limλ↓λ ψ(λ) = −∞ if, and only if, a − λb /∈
Range(A − λB). Similarly, if λ is finite, then limλ↑λ ψ(λ) = +∞ if, and only if,

a − λb /∈ Range(A − λB).

Proof Suppose first that λ is finite. Then the set of indices I such that αi −λβi = 0 is
nonempty. Moreover, from the definition of λ and the fact that λ < λ, we obtain that
βi < 0 for all i ∈ I . Next, notice that for any λ ∈ (λ,λ), we have from (2.18) that

q1
(

x(λ)
) =

∑

i∈I

(

βi(ξi − λγi)
2

(αi − λβi)2
− 2γiξi − 2λγ 2

i

(αi − λβi)

)

+
∑

i /∈I

(

βi(ξi − λγi)
2

(αi − λβi)2
− 2γiξi − 2λγ 2

i

(αi − λβi)

)

,

with αi , βi defined as above and ξ = S−1a, γ = S−1b. Since a − λb /∈ Range(A −
λB) if, and only if, there exists i0 ∈ I with ξi0 − λγi0 �= 0, the first conclusion now
follows immediately. The second statement can be proved similarly. �

Using Lemma 2.4, we see that the hard and easy cases can be alternatively char-
acterized as in Table 1.

Before describing how the easy case and hard cases can be tackled, we need the
following technical lemma concerning the smallest and largest generalized eigenval-
ues λ and λ. This result was briefly discussed in [24, Sect. 5]. We include a proof
here for the convenience of the readers.
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Lemma 2.5 If λ is finite, then vT Bv > 0 for all v ∈ Null(A − λB)\{0}. Similarly, if
λ is finite, then vT Bv < 0 for all v ∈ Null(A − λB)\{0}.

Proof Suppose first that λ is finite and let v ∈ Null(A−λB)\{0}. Take any˜λ ∈ (λ,λ).
Then A −˜λB � 0 and hence we have

0 < vT (A −˜λB)v = vT (A − λB)v + (λ −˜λ)vT Bv = (λ −˜λ)vT Bv.

Since λ >˜λ, we conclude that vT Bv > 0. This proves the first part. The second
conclusion can be proved similarly. �

2.2.2 Three intervals for λ

We are now ready to describe how GTRS can be tackled. Our discussion is different
from that in the concluding remarks of [24] in several aspects. First, our approach
does not require solving two GTRS with equality constraints. Second, we include
detailed discussion about the easy case and the hard cases, with hard case, case 2,
solved explicitly. In what follows, we consider three cases dependent on where 0 is
located relative to the interval (λ,λ).

Case 1: λ < 0 < λ

• Easy case: If � ≤ ψ(0) ≤ u, then it is easy to check that the optimality conditions
of GTRS are satisfied with λ∗ = 0 and x∗ = A−1a. We have an interior solution in
this case.

Otherwise, suppose we have ψ(0) < � instead. Since ψ is strictly increasing in
(λ,λ), we observe that the optimal Lagrange multiplier λ∗ > 0, i.e., it has to be
positive. From the complementary slackness condition in (2.12), we observe fur-
ther that such a multiplier is the unique solution of ψ(λ) = �. The optimal solution
is then given by x(λ∗).

The case when ψ(0) > u can be considered similarly, where the optimal La-
grange multiplier λ∗ < 0 solves ψ(λ) = u, and the optimal solution is x(λ∗).

• Hard case: If � ≤ ψ(0) ≤ u, then x(0) = x∗ = A−1a and we again obtain an
interior solution.

Otherwise, we take a primal step to the boundary. First, suppose we have
ψ(0) < �. Since ψ is increasing, we necessarily have λ∗ > 0. If limλ↑λ ψ(λ) > �,
then the equation ψ(λ) = � is solvable and gives the optimal Lagrange multi-
plier λ∗ < λ. The optimal solution is given by x(λ∗). On the other hand, consider
limλ↑λ ψ(λ) ≤ �. Then λ is finite by Lemma 2.3 and thus q1(x(λ)) = limλ↑λ ψ(λ).

Hence Lemma 2.5 implies that there exists v ∈ Null(A−λB) satisfying vT Bv > 0.
Scale such v so that q1(x(λ) + v) = �. Then an optimal solution is given explicitly
by x(λ) + v, with optimal Lagrange multiplier equal to λ.

Finally, suppose we have ψ(0) > u instead. Then we necessarily have λ∗ < 0.
If limλ↓λ ψ(λ) < u, then the equation ψ(λ) = u is solvable and gives the op-
timal Lagrange multiplier λ∗ > λ. The optimal solution is given by x(λ∗). On
the other hand, if limλ↓λ ψ(λ) ≥ u, then λ is finite by Lemma 2.3 and thus
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q1(x(λ)) = limλ↓λ ψ(λ). From Lemma 2.5, there exists v ∈ Null(A − λB) satisfy-
ing vT Bv < 0. Scale such v so that q1(x(λ) + v) = u. Then an optimal solution is
given explicitly by x(λ) + v, with the corresponding Lagrange multiplier being λ.

Case 2: λ ≤ 0 Notice that the optimal Lagrange multiplier has to be nonpositive
and λ has to be finite.

• Easy case: We see that the optimal Lagrange multiplier λ∗ has to be negative, and
thus, a solution of ψ(λ) = u. The optimal solution is then given by x(λ∗).

• Hard case: If limλ↓λ ψ(λ) < u < limλ↑λ ψ(λ), then ψ(λ) = u is solvable with
the optimal Lagrange multiplier λ∗ as the unique solution. The optimal solution is
again given by x(λ∗).

On the other hand, if limλ↓λ ψ(λ) ≥ u, then by Lemma 2.3, λ is finite and thus
q1(x(λ)) = limλ↓λ ψ(λ). Hence, by Lemma 2.5 there exists v ∈ Null(A − λB)

satisfying vT Bv < 0. Scale such v so that q1(x(λ) + v) = u. Then an optimal
solution is given explicitly by x(λ) + v, and λ∗ = λ < 0. Finally, if limλ↑λ ψ(λ) ≤
u, then q1(x(λ)) = limλ↑λ ψ(λ). Thus, by Lemma 2.5 there exists v ∈ Null(A −
λB) satisfying vT Bv > 0. Scale such v so that q1(x(λ) + v) = u. Then an optimal
solution is given explicitly by x(λ) + v, and λ∗ = λ ≤ 0.

Case 3: λ ≥ 0 Notice that the optimal Lagrange multiplier has to be nonnegative
and λ has to be finite.

• Easy case: Arguing similarly as in Case 2, we conclude that in the easy case, the
optimal Lagrange multiplier λ∗ is a solution of ψ(λ) = � and the optimal solution
is given by x(λ∗).

• Hard case: If limλ↓λ ψ(λ) < � < limλ↑λ ψ(λ), then the optimal Lagrange mul-
tiplier λ∗ > 0 solves ψ(λ) = � and the optimal solution is given by x(λ∗).
Furthermore, if limλ↓λ ψ(λ) ≥ �, then an optimal solution is x(λ) + v, where
v ∈ Null(A − λB) satisfies vT Bv < 0 and q1(x(λ) + v) = �, and λ∗ = λ. Finally,
if limλ↑λ ψ(λ) ≤ �, then an optimal solution is x(λ) + v, where v ∈ Null(A − λB)

satisfies vT Bv > 0 and q1(x(λ) + v) = �, and λ∗ = λ.

From the above discussion, we see immediately that, unless A � 0 and A−1a is
an interior solution, the GTRS always has a solution on the boundary of the feasible
set. Following the above procedures, we either end up solving an equality constrained
problem, or obtain a closed form solution by moving a point to the suitable bound-
ary along a suitable generalized eigenvector. In the next section, we will adapt the
Rendl-Wolkowicz (RW) algorithm for TRS in [29] to tackle the equality constrained
problem.

Before closing this section, we discuss how to compute limλ↑λ ψ(λ) and
limλ↓λ ψ(λ) efficiently, which are important for the above case analysis. We only out-
line the procedure for computing limλ↑λ ψ(λ). The one for computing limλ↓λ ψ(λ)

is similar.
Recall that A − λB is singular and positive semidefinite. Thus, a nullspace vector

of A − λB can be found by finding an eigenvector corresponding to the smallest
eigenvalue, i.e., 0.
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Procedure for computing limλ↑λ ψ(λ).

Step 1. Take v ∈ Null(A − λB)\{0},‖v‖ = 1.
If vT (a − λb) �= 0, this means (a − λb) /∈ Range(A − λB) and thus
limλ↑λ ψ(λ) = +∞; quit. Else, update/deflate A ← A + αvvT for some

α > 0. Repeat Step 1 if Null(A − λB) �= {0}.
Step 2. Solve for x̄ = (A − λB)−1(a − λb). Then limλ↑λ ψ(λ) = q1(x̄).

3 A method for solving GTRS: the extended Rendl-Wolkowicz algorithm

In this section, we discuss how the Rendl-Wolkowicz (RW) algorithm proposed in
[29] can be adapted to solve the following equality constrained problem:

(GTRS=)
q∗ = inf q0(x)

s.t. xT Bx − 2bT x = s,
(3.1)

where s ∈ R. Recall that we assume Assumption 2.1 holds and that the regularity in
(2.15) holds. Thus, by Proposition 2.3, (3.1) has an optimal solution. Following [29],
we consider the following chain of inequalities.

q∗ = inf
xT Bx−2bT xy0=s

y2
0=1

xT Ax − 2aT xy0

= sup
t

inf
xT Bx−2bT xy0=s

y2
0=1

xT Ax − 2aT xy0 + t
(

y2
0 − 1

)

≥ sup
t

inf
xT Bx−2bT xy0+y2

0=s+1
xT Ax − 2aT xy0 + t

(

y2
0 − 1

)

≥ sup
r,t

inf
x,y0

xT Ax − 2aT xy0 + t
(

y2
0 − 1

)+ r
(

xT Bx − 2bT xy0 + y2
0 − s − 1

)

= sup
r,τ

inf
x,y0

xT Ax − 2aT xy0 + τ
(

y2
0 − 1

)+ r
(

xT Bx − 2bT xy0 − s
)

= sup
r

(

sup
τ

inf
x,y0

xT Ax − 2aT xy0 + τ
(

y2
0 − 1

)+ r
(

xT Bx − 2bT xy0 − s
))

(3.2)

Let Ω denote the set of all real numbers r such that A + rB � 0 and a + rb ∈
Range(A + rB). This set is nonempty by Assumption 2.1, Item 5. Furthermore, if
r /∈ Ω , then it is easy to see that

inf
x,y0

xT Ax − 2aT xy0 + τ
(

y2
0 − 1

)+ r
(

xT Bx − 2bT xy0 − s
)

= inf
y0

inf
x

xT Ax − 2aT xy0 + τ
(

y2
0 − 1

)

+ r
(

xT Bx − 2bT xy0 − s
)= −∞, (3.3)

regardless of τ . Thus, continuing from (3.2) we have

sup
r

(

sup
τ

inf
x,y0

xT Ax − 2aT xy0 + τ
(

y2
0 − 1

)+ r
(

xT Bx − 2bT xy0 − s
)
)
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= sup
r∈Ω

(

sup
τ

inf
x,y0

xT Ax − 2aT xy0 + τ
(

y2
0 − 1

)+ r
(

xT Bx − 2bT xy0 − s
)
)

= sup
r∈Ω

inf
x,y2

0=1
xT Ax − 2aT xy0 + r

(

xT Bx − 2bT xy0 − s
)

= sup
r∈Ω

inf
x

xT Ax − 2aT x + r
(

xT Bx − 2bT x − s
)

= sup
r

inf
x

xT Ax − 2aT x + r
(

xT Bx − 2bT x − s
)

= inf
xT Bx−2bT x=s

xT Ax − 2aT x = q∗,

where: the first equality follows from the observation in (3.3); while the second equal-
ity follows from Theorem 2.2, since for any r ∈ Ω , a Schur complement argument
implies that there exists sufficiently large τ such that

[

τ −(a + rb)T

−(a + rb) A + rB

]

� 0;

the third equality follows from the homogenization; the fourth equality follows from
an observation similar to (3.3) for the inner optimization problem; while the last
equality follows from Theorem 2.2. Thus, equality holds throughout in (3.2). In par-
ticular, from the third line in (3.2), we have

q∗ = sup
t

k0(t) − t
︸ ︷︷ ︸

k(t)

,

where

k0(t) = inf
xT Bx−2bT xy0+y2

0=s+1
xT Ax − 2aT xy0 + ty2

0

= inf

{

yT

[

t −aT

−a A

]

y : yT

[

1 −bT

−b B

]

y = s + 1

}

.

The RW algorithm adapted to our context amounts to solving (3.1) via maximiz-
ing k(t).

3.1 Properties of k0(t)

In this subsection, we discuss differentiability of the function k0(t) and show that a
maximizer of k(t) := k0(t) − t necessarily exists. In addition to Assumption 2.1 and
the regularity in (2.15), we also assume that s + 1 �= 0, which can always be satisfied
by scaling B and b. Furthermore, to avoid triviality, we assume that (2.19) fails so
that ψ is strictly increasing. Indeed, in view of Remark 2.3, if (2.19) holds, (2.2) is a
simple linear programming problem and can be readily solved.

Our analysis is based on the following function:

d(λ) := λ + (a − λb)T (A − λB)†(a − λb).



The generalized trust region subproblem 295

This function reduces to the d(λ) considered in [29] for problem (1.2). Since d ′(λ) =
1 + ψ(λ) on (λ,λ) and (2.19) fails, we see that this function is strictly convex with
strictly increasing derivative on (λ,λ). With a Schur complement argument, we get
the following result.

Lemma 3.1 The following four properties hold.

(i) Suppose λ ∈ (λ,λ). Then

[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0 ⇔ t > d(λ),

[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0 ⇔ t ≥ d(λ).

(ii) Suppose limλ↓λ d(λ) is finite and λ is finite. Then

[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0 ⇔ t ≥ d(λ).

(iii) Suppose limλ↑λ d(λ) is finite and λ is finite. Then

[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0 ⇔ t ≥ d(λ).

(iv) For any s ∈ R and any t > infλ<λ<λ d(λ), we have

sup

{

(s + 1)λ :
[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0

}

= sup
{

(s + 1)λ : λ ∈ (λ,λ), t ≥ d(λ)
}

.

Proof For part (i), notice that λ ∈ (λ,λ) if, and only if, A − λB � 0. Hence the
conclusion follows immediately from an application of the Schur complement. For
part (ii), notice first that limλ↓λ d(λ) being finite implies d(λ) = limλ↓λ d(λ) and
hence d is continuous and convex on [λ,λ). Next, by taking λ ∈ (λ,λ) and r > d(λ),
we have from part (i) that

[

r −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0.

Hence, the convexity of d(·) and the continuity of d(·) at λ yields

[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0

⇔
[

(1 − ε)t + εr −aT

−a A

]

− [

(1 − ε)λ + ελ
]

[

1 −bT

−b B

]

� 0, ∀0 < ε < 1,

t ≥ d(λ) ⇔ (1 − ε)t + εr ≥ d
(

(1 − ε)λ + ελ
)

, ∀0 < ε < 1.
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Since (1 − ε)λ + ελ ∈ (λ,λ) for all 0 < ε < 1, the conclusion of part (ii) now fol-
lows immediately from the above two relations and part (i). Part (iii) can be proved
similarly. Finally, for part (iv), since t > infλ<λ<λ d(λ), the optimal value on the left

hand side is unchanged if we intersect the feasible region further with (λ,λ). The
conclusion now follows from this observation and part (i). �

We next consider three cases: B is indefinite, positive semidefinite and negative
semidefinite. We only discuss the first two cases in detail since the third case is anal-
ogous to the second case. For this purpose, we will need to consider the following
quantities:

t0 := inf
λ<λ<λ

d(λ). t := lim
λ↑λ

d(λ) if λ < ∞, or if λ = ∞
and lim

λ↑λ

d(λ) > t0.

s0 := infxT Bx − 2bT x. t := lim
λ↓λ

d(λ) if λ > −∞, or if λ = −∞
and lim

λ↓λ
d(λ) > t0.

(3.4)

Intuition behind the definitions of t and t will be described briefly after Corollary 3.3.
We remark that these four quantities are not necessarily finite. Furthermore, it follows
from weak duality that

t0 ≥ − inf
xT Bx−2bT x=−1

xT Ax − 2aT x.

Hence, t0 is finite when s0 ≤ −1.

Case 1: B is indefinite Notice that in this case, the quantities t0, λ and λ are finite.
In the next theorem, we show that k0(t) is well-defined on a closed interval, and is
differentiable in the interior of that interval, except possibly at one point.

Theorem 3.1 The function k0(t) is well-defined and continuous on t ≥ t0. More-
over:

(i) when s + 1 > 0, k0(t) is differentiable on (t0, t) ∪ (t,∞), and k0(t) = (s + 1)λ

on t > t ;
(ii) when s + 1 < 0, k0(t) is differentiable on (t0, t) ∪ (t,∞), and k0(t) = (s + 1)λ

on t > t .

Proof Suppose first that t > t0. Then from the definition of t0, there exists λ so that

λ ∈ (λ,λ), t − d(λ) > 0.

It follows from this, Lemma 3.1(i), (iv) and Theorem 2.2 that

k0(t) = inf

{

yT

[

t −aT

−a A

]

y : yT

[

1 −bT

−b B

]

y = s + 1

}

= sup

{

(s + 1)λ :
[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0

}

> −∞.

(3.5)
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Thus, k0(t) is finite. Next, suppose t = t0. Notice that the infimum value t0 in (3.4)
has to be attained at some λ0 ∈ [λ,λ]. Thus, we have from Lemma 3.1 that

[

t0 −aT

−a A

]

− λ0

[

1 −bT

−b B

]

� 0.

Hence, from Theorem 2.2, we conclude that (3.5) holds with t = t0. Finally, since k0
is a one variable concave function, it is continuous in the interior of its domain [30,
Theorem 10.1] and is lower semicontinuous up to the boundary [30, Theorem 10.2].
Furthermore, since k0 is the infimum of a family of continuous functions

t �→ yT

[

t −aT

−a A

]

y,

it also follows that k0 has to be upper semicontinuous. Thus, k0 is continuous on
t ≥ t0.

We now turn to part (i). Since d(λ) is a strictly convex function, we deduce that

d(λ) = t (3.6)

has at most 2 solutions in (λ,λ) for any t > t0, at which d has opposite slopes.
We first consider the case when t is infinite. In this case, there must be a unique

solution μ ∈ (λ,λ) to (3.6) with d ′(μ) > 0. Since s + 1 > 0, we see from Lem-
mas 3.1(iv) and (3.5) that k0(t) = (s + 1)μ. Moreover, since d ′(μ) > 0, by the in-
verse function theorem, μ is differentiable at t and μ′(t) = 1

d ′(μ)
. This shows that k0

is differentiable at t .
We next assume that t is finite. When t0 < t < t , it still holds true that (3.6) has

a unique solution μ ∈ (λ,λ) satisfying d ′(μ) > 0 and k0(t) = (s + 1)μ as above.
Similarly, it can be shown that k0(t) is differentiable on t0 < t < t .

On the other hand, when t > t = d(λ), we see from Lemma 3.1(iii) that
[

t −aT

−a A

]

− λ

[

1 −bT

−b B

]

� 0.

Hence, from Lemmas 3.1(iv) and (3.5), we conclude that k0(t) = (s +1)λ. This com-
pletes the proof of part (i).

The cases when s + 1 < 0 in part (ii) can be proved similarly, by noting that
k0(t) = (s + 1)ν for t0 < t < t , where ν = ν(t) is the unique root of (3.6) in (λ,λ)

with d ′(ν) < 0. �

Before proceeding, we collect several facts that are readily obtained from the proof
of Theorem 3.1.

Corollary 3.1

(i) If s + 1 > 0 and t0 < t < t , then k0(t) = (s + 1)μ, where μ = μ(t) is the unique
root of (3.6) on (λ,λ) with d ′(μ) > 0; moreover, μ′(t) = 1

d ′(μ)
> 0.

(ii) If s + 1 < 0 and t0 < t < t , then k0(t) = (s + 1)ν, where ν = ν(t) is the unique
root of (3.6) on (λ,λ) with d ′(ν) < 0; moreover, ν′(t) = 1

d ′(ν)
< 0.
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Fig. 3 d(λ) when B is indefinite. The dotted lines are λ = λ and λ = λ̄

In the next proposition, we confirm that the domain of k0(t) is actually t ≥ t0,
i.e., k0(t) = −∞ whenever t < t0. This is a consequence of the more general result
from Proposition A.1.

Corollary 3.2 When t < t0, k0(t) = −∞.

Notice that k′(t) = k′
0(t) − 1 whenever t > t0 and k0 is differentiable at t . More-

over, limt↑∞ k′
0(t) = 0, in view of Corollary 3.1 and Theorem 3.1. Thus, it holds true

that a maximizer t∗ of k(t) must exist.
A plot of d(λ) is shown in Fig. 3.

Case 2: B is positive semidefinite In this case, we have λ being finite and λ = −∞.
Moreover, we have the following result concerning the behavior of d(λ) as λ goes
to −∞. See Figs. 4, 5 for plots of d(λ) in this case.

Proposition 3.1 It holds that limλ→−∞ d ′(λ) = 1 + s0. Hence

(i) If s0 < −1, then limλ→−∞ d(λ) = ∞;
(ii) If s0 = −1, then limλ→−∞ d(λ) = t0 > −∞;

(iii) If s0 > −1, then limλ→−∞ d(λ) = −∞.

Proof The fact that limλ→−∞ d ′(λ) = 1 + s0 follows from d ′(λ) = 1 + ψ(λ) and
Lemma 2.3. The rest of the conclusion then follows immediately. �

In view of the definition of s0 and Assumption 2.1, Item 3, we only need to con-
sider s > s0 in subsequent analysis. We discuss the differentiability property of k0(t)

in the next theorem.
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Fig. 4 d(λ) when B is positive definite with s0 < −1. The dotted line is λ = λ̄

Fig. 5 d(λ) when B is positive definite with s0 > −1. The dotted line is λ = λ̄

Theorem 3.2

(i) Suppose that s0 < −1. Then k0(t) is continuous and well-defined on t ≥ t0.
Furthermore, when s + 1 > 0, k0(t) is differentiable on (t0, t) ∪ (t,∞) and
k0(t) = (s + 1)λ on t > t ; when s + 1 < 0, k0(t) is differentiable on (t0,∞).

(ii) Suppose that s0 = −1. Then k0(t) is continuous and well-defined on t > t0.
Furthermore, when s + 1 > 0, k0(t) is differentiable on (t0, t) ∪ (t,∞) and
k0(t) = (s + 1)λ on t > t .

(iii) Suppose that s0 > −1. Then k0(t) is continuous and well-defined everywhere.
Furthermore, when s + 1 > 0, k0(t) is differentiable on (−∞, t) ∪ (t,∞) and
k0(t) = (s + 1)λ on t > t .
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Proof The theorem can be proved similarly as Theorem 3.1 once we show that (3.5)
holds for each case. To prove this, it suffices to show that Assumption 2.1, Item
3 is satisfied for the corresponding GTRS in (3.5) in each case. Suppose first that
s0 + 1 < 0. Then it is easy to see that

[

1 −bT

−b B

]

has to be indefinite and so Assump-
tion 2.1, Item 3 is satisfied. On the other hand, if s0 + 1 ≥ 0, then

inf
y

yT

[

1 −bT

−b B

]

y = min
{

inf
y1 �=0

yT

[

1 −bT

−b B

]

y, inf
y

yT By
}

≥ min
{

inf
y1 �=0

y2
1(s0 + 1), inf

y
yT By

}

≥ 0,

showing that
[

1 −bT

−b B

]

is positive semidefinite. Since s + 1 > s0 + 1, we see that
Assumption 2.1, Item 3 is also satisfied in this case. �

As in Corollary 3.1, we have the following relationship between k0(t) and the
roots of (3.6), which can be obtained from a detailed proof of Theorem 3.2.

Corollary 3.3

(i) If s + 1 > 0 and t0 < t < t , then k0(t) = (s + 1)μ, where μ = μ(t) is the unique
root of (3.6) on (λ,λ) with d ′(μ) > 0; moreover, μ′(t) = 1

d ′(μ)
> 0;

(ii) If s + 1 < 0 and t0 < t , then k0(t) = (s + 1)ν, where ν = ν(t) is the unique root
of (3.6) on (λ,λ) with d ′(ν) < 0; moreover, ν′(t) = 1

d ′(ν)
< 0.

Combining with Corollary 3.1, we have k0(t) = (s + 1)μ(t) for t0 < t < t and
s + 1 > 0 in both Case 1 (indefinite B) and Case 2 (positive semidefinite B). Also,
using the definition of t and Proposition 3.1, we have a symmetric statement for
s + 1 < 0 in these two cases: k0(t) = (s + 1)ν(t) for t0 < t < t . The definitions of t

and t were indeed introduced so that the above representations of k0(t) hold for any
nonzero symmetric matrix B .

The existence of a maximizer t∗ of k(t) in this case is less trivial and is obtained
as a consequence of the next theorem.

Theorem 3.3

(i) Suppose that s0 < −1. When s + 1 > 0, we have limt→∞ k′(t) = −1. When
s + 1 < 0, we have limt→∞ k′(t) = s+1

s0+1 − 1 < 0. Furthermore, in either case,
k(t) = −∞ for t < t0.

(ii) Suppose that s0 = −1. When s + 1 > 0, we have limt→∞ k′(t) = −1 and
limt↓t0 k′(t) = ∞. Furthermore, k(t) = −∞ for t ≤ t0.

(iii) Suppose that s0 > −1. When s + 1 > 0, we have limt→∞ k′(t) = −1 and
limt→−∞ k′(t) = s+1

s0+1 − 1 > 0.
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Proof First of all, in all three cases, when s + 1 > 0, the limit of k′(t) as t goes to ∞
can be found similarly as in the case when B is indefinite.

We now consider part (i). When s + 1 < 0, by Corollary 3.3, we have k′(t) =
s+1
d ′(ν)

− 1. Moreover, from Proposition 3.1, we see that limλ→−∞ d(λ) = ∞. Thus,
ν is defined for all sufficiently large t and ν → −∞ as t → ∞. We conclude from
these results and Proposition 3.1 that limt→∞ k′(t) = s+1

s0+1 − 1 < 0. The conclusion
that k(t) = −∞ for t < t0 follows from Proposition A.1.

We next turn to part (ii). Since d is strictly increasing, it follows from Proposi-
tion 3.1 that

t̄ = lim
λ↑λ

d(λ) > lim
λ→−∞d(λ) = t0.

By Corollary 3.3, we have k′(t) = s+1
d ′(μ)

− 1 for t̄ > t > t0. Furthermore, from Propo-
sition 3.1, we see that limλ→−∞ d(λ) = t0 > −∞ and hence μ → −∞ as t → t0. We
conclude from this, Proposition 3.1 and the fact that s0 +1 = 0 that limt↓t0 k′(t) = ∞.
Furthermore, since k(t) = k0(t) − t by definition, we have by Corollary 3.3 that

lim
t↓t0

k(t) = (s + 1) lim
t↓t0

μ(t) − t0 = −∞.

It then follows from concavity of k that k(t) = −∞ when t ≤ t0.
Finally, for part (iii), note that from Proposition 3.1, we have limλ→−∞ d(λ) =

−∞ and hence μ → −∞ as t → −∞. Thus, we conclude further from Proposi-
tion 3.1 that limt→−∞ k′(t) = s+1

s0+1 − 1 > 0. �

3.2 Recovering solution of GTRS from maximizing k(t)

In this subsection, we discuss how one can obtain a solution to (3.1) after obtaining
a maximizer t∗ of k(t). In addition, we will argue that such a maximizer has to be
unique.

We focus on the case when s + 1 > 0. We will briefly comment on the case when
s + 1 < 0 at the end of this subsection. Due to the definition of t , we have k0(t) =
(s+1)μ(t) for t0 < t < t , where μ is the unique root of (3.6) in (λ,λ) with d ′(μ) > 0.
Furthermore, any maximizer of k(t) has to lie in cl(t0, t). Moreover, for any t ∈ (t0, t),
we see from the definition of t0 that the maximization problem in (3.5) is strictly
feasible, and hence the infimum in (3.5) is attained. By Theorem 2.3, the infimum is
attained at some generalized eigenvector of the matrix pair

([

t −aT

−a A

]

,

[

1 −bT

−b B

])

, (3.7)

with corresponding eigenvalue μ. Let y(t) = [ y0(t)

z(t)

]

be a generalized eigenvector

attaining the infimum in (3.5). Since μ ∈ (λ,λ), it follows that the first coordinate
y0(t) of y(t) must be nonzero. Thus, we may further scale the vector so that y0(t) > 0.
Moreover, since s + 1 > 0, we can scale the vector again so that yT

[

1 −bT

−b B

]

y = 1.
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We claim that such a vector is unique. To see this, notice first that for any λ ∈
(λ,λ), we have

det

([

t −aT

−a A

]

− λ

[

1 −bT

−b B

])

= (

t − d(λ)
)

det(A − λB).

It thus follows from this, det(A − μB) > 0 and d ′(μ) > 0 that μ is a root of multi-
plicity one of the polynomial

λ �→ det

([

t − λ −(a − λb)T

−(a − λb) A − λB

])

.

Hence, the dimension of the nullspace of
[

t−μ −(a−μb)T

−(a−μb) A−μB

]

is one; i.e., any gen-
eralized eigenvector corresponding to μ differs only by a scaling. Since the scaling
is uniquely determined by the constraints yT

[

1 −bT

−b B

]

y = 1 and y0 > 0, the gener-
alized eigenvector constructed under these two restrictions is unique. Using standard
arguments and the implicit function theorem, one can show in addition that y(t) is
differentiable for t0 < t < t .

By [5, Theorem 4.13] and using the above notations, the derivative of k(t) at any
t ∈ (t0, t) is given by

k′(t) = (s + 1)y2
0(t) − 1 = (s + 1)μ′(t) − 1. (3.8)

We next analyze the following cases. Recall that we currently assume s + 1 > 0 and
that t∗ is a maximizer of k(t).

Case 1: t∗ ∈ (t0, t) In this case, k is differentiable at t∗. Hence, necessarily

y2
0

(

t∗
)= 1

s + 1
.

It follows, after a simple calculation, that x∗ := z(t∗)
y0(t

∗) satisfies x∗T Bx∗ − 2bT x∗ = s,
from which it follows by checking optimality conditions that x∗ is an optimal solution
to (3.1), with the Lagrange multiplier given by μ(t∗) ∈ (λ,λ).

Case 2: t∗ = t0 < t In this case, k′(t) ≤ 0 for all t > t0 sufficiently close to t0.
Hence

lim sup
t↓t0

y2
0(t) ≤ 1

s + 1
. (3.9)

Furthermore, since t∗ ∈ dom(k) by definition of maximizer, the assumption implies
that t0 ∈ dom(k) and thus k0 is (right) continuous at t0. Then, since k0(t) = (s +
1)μ(t) for t0 < t < t , we see that limt↓t0 μ(t) exists (and is finite). We claim that
limt↓t0 μ(t) = λ. To see this, note that if limt↓t0 μ(t) ∈ (λ,λ), then d ′(limt↓t0 μ(t)) =
0, which implies that μ′(t) = 1

d ′(μ(t))
> 0 is arbitrarily large as t ↓ t0. In view of

(3.8), this contradicts the fact that k′(t) ≤ 0 for t close to t0. On the other hand,
if limt↓t0 μ(t) = λ, then λ is finite. But by definition of μ(t), it is the unique root
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of d(λ) = t on (λ,λ) with positive slope and thus μ(t) > limt↓t0 μ(t) = λ for all
t > t > t0. But μ(t) < λ by definition, and we arrive at a contradiction. Thus, we
must have limt↓t0 μ(t) = λ. In particular, λ is finite.

We next claim that there exists a generalized eigenvector y∗ =
[

y∗
0

z∗
]

of the matrix

pair
([

t0 −aT

−a A

]

,

[

1 −bT

−b B

])

corresponding to λ such that y∗
0 �= 0 and y∗T

[

1 −bT

−b B

]

y∗ = 1.

To prove this, fix t1 ∈ (t0, t) and consider {y(t) : t0 < t < t1}. Since t1 > t0, by the
definition of t0, there exists λ̂ > λ such that

[

t1 −aT

−a A

]

− λ̂

[

1 −bT

−b B

]

� εI, (3.10)

for some ε > 0. Then, for any t0 < t < t1, we have that

0 = y(t)T
([

t −aT

−a A

]

− μ(t)

[

1 −bT

−b B

])

y(t)

= y(t)T
[

t −aT

−a A

]

y(t) − μ(t)

= y2
0(t)(t − t1) + y(t)T

[

t1 −aT

−a A

]

y(t) − μ(t)

= y2
0(t)(t − t1) + y(t)T

([

t1 −aT

−a A

]

− λ̂

[

1 −bT

−b B

])

y(t) − (

μ(t) − λ̂
)

≥ y2
0(t)(t − t1) − (

μ(t) − λ̂
)+ ε

∥

∥y(t)
∥

∥
2
,

where the last inequality follows from (3.10). Thus,

y2
0(t)(t1 − t) + (

μ(t) − λ̂
)≥ ε

∥

∥y(t)
∥

∥
2
. (3.11)

This together with (3.9) shows that {y(t) : t0 < t < t1} is bounded. Consider any
cluster point y∗ of {y(t)} as t ↓ t0. Then y∗T

[

1 −bT

−b B

]

y∗ = 1, and hence in particular

y∗ �= 0. Moreover, since μ(t) − λ̂ → λ − λ̂ < 0, we see further from (3.11) that
y∗

0 > 0. Finally, it is easy to check that y∗ is a generalized eigenvector of the matrix
pair

([

t0 −aT

−a A

]

,

[

1 −bT

−b B

])

corresponding to the eigenvalue λ.
Next, define x∗ := 1

y∗
0
z∗. Then it follows from (3.9) that x∗T Bx∗ −2bT x∗ ≥ s and

from the definition of y(t) that (A − λB)x∗ = a − λb. By Lemma 2.5, there exists
v ∈ Null(A − λB) with vT Bv < 0, and thus x∗ + αv would solve (3.1), for some
suitable α > 0.
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Case 3: t∗ = t > t0 In this case, we must have k′(t) ≥ 0 for all t0 < t < t . Hence

lim inf
t↑t

y2
0(t) ≥ 1

s + 1
. (3.12)

Furthermore, since t is finite by assumption, we must have λ finite from the def-
inition of t and thus d(λ) = limλ↑λ d(λ) = t . This, together with the definition of
μ(t) and the fact that d(λ) is strictly increasing when λ > limt↓t0 μ(t), implies that

limt↑t μ(t) = λ. We claim that there exists a generalized eigenvector y∗ = [ y∗
0

z∗
]

of
the matrix pair

([

t −aT

−a A

]

,

[

1 −bT

−b B

])

corresponding to λ such that y∗
0 �= 0 and y∗T

[

1 −bT

−b B

]

y∗ = 1.

We first show that the parameterized set of eigenvectors {y(t) : t1 ≤ t < t}
is bounded for any fixed t1 ∈ (t0, t). Since t1 ∈ (t0, t), by definition of t0 and
Lemma 3.1(i), there exists λ̂ < λ such that

[

t1 −aT

−a A

]

− λ̂

[

1 −bT

−b B

]

� εI, (3.13)

for some ε > 0. Using this and the definition of generalized eigenvector and eigen-
value, we have, for any t1 ≤ t < t , that

0 = y(t)T
([

t −aT

−a A

]

− μ(t)

[

1 −bT

−b B

])

y(t)

= y(t)T
[

t −aT

−a A

]

y(t) − μ(t)

= y2
0(t)(t − t1) + y(t)T

[

t1 −aT

−a A

]

y(t) − μ(t)

= y2
0(t)(t − t1) + y(t)T

([

t1 −aT

−a A

]

− λ̂

[

1 −bT

−b B

])

y(t) − (

μ(t) − λ̂
)

≥ −(

μ(t) − λ̂
)+ ε

∥

∥y(t)
∥

∥
2
,

where the last inequality follows from (3.13). This shows that {y(t) : t1 ≤ t < t} is
bounded. Consider any cluster point y∗ of {y(t)} as t ↑ t . Due to (3.12), the first
coordinate y∗

0 of y∗ is nonzero. It is easy to check that y∗T
[

1 −bT

−b B

]

y∗ = 1 and that
y∗ is a generalized eigenvector of the matrix pair

([

t −aT

−a A

]

,

[

1 −bT

−b B

])

corresponding to the eigenvalue λ.
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Next, define x∗ := 1
y∗

0
z∗. Then it follows from (3.12) that x∗T Bx∗ − 2bT x∗ ≤ s

and from the definition of y(t) that (A − λB)x∗ = a − λb. By Lemma 2.5, there
exists v ∈ Null(A − λB) with vT Bv > 0, and thus x∗ + αv would solve (3.1), for
some suitable α > 0.

Case 4: t∗ = t0 = t In this case, from the definitions of t0 and t , we have λ is finite
and the infimum of d is attained at the right end point of the interval (λ,λ), i.e., at
λ. From the definition of d , this implies in particular that a − λb ∈ Range(A − λB).
Furthermore,

0 ≥ d ′(λ) = 1 + ψ(λ).

Hence, using the fact that s + 1 > 0, we see that

ψ(λ) = x∗T
Bx∗ − 2bT x∗ ≤ −1 < s,

where x∗ := x(λ). Finally, recall from Lemma 2.5 that there exists v ∈ Null(A−λB)

with vT Bv > 0. Combining these few facts, we conclude that x∗ + αv solves (3.1),
for some suitable α > 0.

Remark 3.1 (Uniqueness of maximizer of k) In passing, we remark that k(t) must
have a unique maximizer. First of all, it is easy to see that the four cases analyzed
above are mutually exclusive for a maximizer t∗ ∈ cl(t0, t) of k(t). If case 4 happens,
then clearly the maximizer is unique and equals t0 = t . Otherwise, in all other three
cases, we see that for each maximizer t∗, there corresponds at least one dual solution
λ∗ of the GTRS= (3.1). Such λ∗ constructed in those cases are different for different
t∗, thanks to the strict monotonicity of μ(t) on (t0, t). Since the GTRS= (3.1) must
have a unique dual optimal solution in view of the analysis in Sect. 2.2.2 and our
assumption that ψ is strictly increasing on cl(λ,λ), we conclude that k(t) must have
a unique maximizer.

The above arguments for s +1 < 0 are completely analogous. Note that we need to
scale by

√−(s + 1) instead of
√

s + 1 in the constraint of the minimization problem
in (3.5). Hence y(t)T

[

1 −bT

−b B

]

y(t) = −1 and moreover k′(t) = −(s + 1)y2
0(t) − 1.

In this section, we just gave a complete analysis on how a solution of (3.1) can
be recovered after maximizing k(t). Comparing this with the procedures outlined in
Sect. 2.2, we see that if the problem (3.1) is obtained from those procedures, then
λ∗ ∈ (λ,λ). Thus, we must be in Case 1 and hence k(t) has to be differentiable at t∗.
On the other hand, it is easy to see that closed form solutions are obtained for the
other cases using the procedures in Sect. 2.2.

3.3 Implementation details

In this subsection, we discuss implementation details of our algorithm. For simplic-
ity, we only consider the case when B is nonsingular. In this case, by translating the
optimization variable by B−1b if necessary, we may further assume without loss of
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generality that b = 0. Moreover, we only need to consider the cases when B is posi-
tive definite or indefinite. Furthermore, we still assume Assumption 2.1, the regularity
(2.15) and s + 1 �= 0. To explicitly guarantee that (2.19) never holds, we also assume
a �= 0.

When B is positive definite, λ is negative infinity and λ is the minimum general-
ized eigenvalue of the matrix pair (A,B), which can be computed efficiently. On the
other hand, when B is indefinite, the interval (λ,λ) cannot easily be determined in
general. Thus, in this case, we consider the further subcase that A is positive definite.
Then we know that 0 ∈ (λ,λ). Observe that for any λ ∈ [λ,0), we have

A − λB = −λ

(

B − 1

λ
A

)

. (3.14)

Since λ ∈ [λ,0) if, and only if, 1
λ

∈ (−∞, 1
λ
], we conclude from (3.14) that λ = 1

ρ1
,

where ρ1 is the minimum generalized eigenvalue of the matrix pair (B,A). Similarly,
one can show that λ = − 1

ρ2
, with ρ2 being the minimum generalized eigenvalue of

the matrix pair (−B,A). The quantities ρ1 and ρ2 can both be computed efficiently.

Case check We first carry out the case check as described in Sect. 2.2.2. We obtain
an explicit solution when the GTRS (1.1) has an interior solution A−1a or when the
GTRS instance is a hard case, case 2 instance.

Shift and deflation for the hard case, case 1, when B is positive definite After the
case check, the bound side has been determined and so we focus on the equality
constrained case xT Bx = s. In the next proposition, we describe a shift and deflation
technique that transforms a GTRS= instance from hard case, case 1, to the easy case,
when B is positive definite.

Proposition 3.2 Suppose that we consider the GTRS= with the equality constraint
xT Bx = s with B � 0. Let λ be the smallest generalized eigenvalue of the matrix pair
(A,B) and suppose that a corresponding nonzero eigenvector v satisfies aT v = 0.
Furthermore, let α > 0. Then

(x∗, λ∗) solves GTRS=
if, and only if,

(x∗, λ∗) solves GTRS= with A replaced by A − λB + α(Bv)(Bv)T .

Proof First, since xT Bx = s, it is clear that (x∗, λ∗) solves GTRS= if, and only if,
(x∗, λ∗) solves GTRS= with A replaced by A−λB . Next, consider the GTRS= with

A replaced by A−λB . Let y = B
1
2 x and use the substitution x = B− 1

2 y. This results
in the following TRS:

inf yT Āy − 2āT y

s.t. yT y = s,

where Ā = B− 1
2 (A − λB)B− 1

2 and ā = B− 1
2 a.

We now apply the shift and deflate lemma in [11] stated for the above TRS and
obtain that
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(y∗, λ∗) solves TRS
if, and only if,

(y∗, λ∗) solves TRS when Ā is replaced by Ā + αwwT ,

where w = B
1
2 v is the corresponding eigenvector and hence satisfies wT ā = 0 by as-

sumption and the definition of ā. After substituting again using y = B
1
2 x, we see that

yT
(

B− 1
2 (A − λB)B− 1

2 + αwwT
)

y = xT
(

A − λB + α(Bv)(Bv)T
)

x.

The linear term and constraint follow similarly. �

Initialization After the case check and the possible shift and deflation, we proceed
to solve the equality constrained case by the RW algorithm. We discuss initialization
in this subsection.

We first consider the case when B is positive definite. In this case, k(t) is well-
defined for all t by Theorem 3.2. Let t∗ be the optimal solution of maxk(t). As in
[29], we derive an interval that contains t∗ in the next proposition for initializing the
RW algorithm.

Proposition 3.3 Suppose that λ∗ < λ. Then

λ −
√

aT B−1a

s
≤ t∗ ≤ λ +

√

s aT B−1a. (3.15)

Proof The assumption λ∗ < λ implies that we can recover a solution of GTRS= from
the maximizer of k(t). Let x∗ be the solution of GTRS= thus recovered. Then

[ 1
x∗
]

is a generalized eigenvector of the matrix pair
([

t∗ −aT

−a A

]

,

[

1 0
0 B

])

with generalized eigenvalue λ∗. Hence, in particular,

t∗ − aT x∗ = λ∗ ⇒ t∗ = λ∗ + aT x∗ ≤ λ +
√

x∗T Bx∗
√

aT B−1a

= λ +
√

s aT B−1a.

This proves the upper bound in (3.15). We next derive the lower bound. In this case,
we define δ = λ − λ∗ > 0. Then we have

A − λ∗B � δB � 0 (3.16)

and hence

t∗ − λ∗ = aT x∗ = x∗T (
A − λ∗B

)

x∗ ≥ δx∗T
Bx∗ = δs. (3.17)

In addition, from the definition of d(λ), λ∗ and (3.16), we have

t∗ − λ∗ = aT
(

A − λ∗B
)−1

a ≤ 1

δ
aT B−1a. (3.18)



308 T.K. Pong, H. Wolkowicz

Combining (3.17) and (3.18), we see that

δ ≤
√

aT B−1a

s
.

Finally, we observe from (3.18) that t∗ ≥ λ∗ and hence δ ≥ λ − t∗. The lower bound
in (3.15) now immediately follows. �

On the other hand, when B is indefinite, according to Theorem 3.1 and Corol-
lary 3.2, we conclude that t0 is finite and the function k(t) would have t0 as a left
end point of its domain. We currently do not know of any efficient way for com-
puting/estimating t0. However, if t0 and the corresponding λ0 such that d(λ0) = t0
are known, then the function value and the derivative of k at any t > t0 can be effi-
ciently computed; see the paragraph below Proposition 3.4, with μ = λ0 in (3.23).
Furthermore, for initialization, one can find an interval containing t∗ as follows:

Procedure for finding an interval containing t∗ when B is indefinite.

Step 1. Take ε > 0 and compute k′(t0 + ε).
Step 2. If k′(t0 + ε) > 0, set t+ = t0 + ε. Otherwise, set t− = t0 + ε and i = 1.
Step 3. While k′(t−) < 0, update t+ ← t− and t− ← t0 + ζ iε for some fixed ζ ∈

(0,1). Update i ← i + 1. Repeat this step.
Step 4. While k′(t+) > 0, update t− ← t+ and t+ ← κ(t+ − λ0) + λ0 for some fixed

κ > 1. Repeat this step.
Step 5. By construction, k′(t−) > 0 and k′(t+) < 0. Thus, t∗ ∈ (t−, t+).

Computing k0(t) and k′
0(t) We next discuss how k0(t) and k′

0(t) for t > t0, when
they exist, can be computed efficiently. Recall from the definition of k0(t) and (3.8)
that

k0(t) = inf

{

uT

[

t −aT

−a A

]

u : uT

[

1 0
0 B

]

u = s + 1

}

, k′
0(t) = u2

0(t),

where u0(t) ≥ 0 is the first coordinate of a vector u(t) attaining the infimum defin-
ing k0(t). In the case when B is positive definite, k0(t) can be computed from the
minimum generalized eigenvalue of the matrix pair

([

t −aT

−a A

]

,

[

1 0
0 B

])

,

and u0(t) is obtained from the corresponding eigenvector. However, when B is not
positive definite, k0(t) and its derivative cannot be obtained directly from an extremal
generalized eigenpair. We now discuss how to compute k0 and its derivative in this
case.

To this end, we first consider a closely related problem. Let C and D be symmetric
matrices. Consider the following program.

val := inf xT Cx

s.t. xT Dx = 1.
(3.19)



The generalized trust region subproblem 309

Then we have the following result.

Proposition 3.4 Suppose that (3.19) is feasible and that there exists λ so that C −
λD � 0. Suppose further that val �= 0.

(i) If val > 0 and if x∗ is a solution to (3.19), then 1√
val

x∗ is a solution to the follow-

ing optimization problem, whose optimal value is − 1
val :

inf −xT Dx

s.t. xT Cx = 1.
(3.20)

(ii) If val < 0 and if x∗ is a solution to (3.19), then 1√−val
x∗ is a solution to the

following optimization problem, whose optimal value is − 1
val :

inf xT Dx

s.t. −xT Cx = 1.
(3.21)

Proof By Theorem 2.3, we see that x∗ is an optimal solution to (3.19) if, and only if,
there exists λ∗ such that

(

C − λ∗D
)

x∗ = 0,

C − λ∗D � 0,

x∗T
Dx∗ = 1.

(3.22)

Using the first and third relations of (3.22), we see that

val = x∗T
Cx∗ = λ∗x∗T

Dx∗ = λ∗.

Since val �= 0, we obtain that λ∗ = val �= 0. For part (i), we have λ∗ > 0. From (3.22)
and the relation val = x∗T Cx∗, we see that

(

1

λ∗ C − D

)

x∗
√

λ∗ = 0,

1

λ∗ C − D � 0,

(

x∗
√

λ∗

)T

C

(

x∗
√

λ∗

)

= val

λ∗ = 1.

Hence, x∗√
λ∗ = x∗√

val
solves (3.20). On the other hand, for part (ii), λ∗ < 0. Hence, we

have
(

− 1

λ∗ C + D

)

x∗
√−λ∗ = 0,

− 1

λ∗ C + D � 0,
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(

x∗
√−λ∗

)T

C

(

x∗
√−λ∗

)

= val

−λ∗ = −1.

Thus, x∗√−λ∗ = x∗√−val
solves (3.21). �

We now complete our discussion on efficient computation of k0(t) and its deriva-
tive when B is indefinite. Suppose that we know a μ such that

[

t −aT

−a A

]

− μ

[

1 0
0 B

]

� 0. (3.23)

Since
[ 1 0

0 B

]

is indefinite, we see immediately that

inf

{

−sign(s + 1)yT

[

1 0
0 B

]

y : yT

([

t −aT

−a A

]

− μ

[

1 0
0 B

])

y = 1

}

< 0.

(3.24)
Thus, in view of Proposition 3.4, we see that k0(t) and k′

0(t), upon scaling, can be
computed by considering the optimization problem (3.24). Since the quadratic objec-
tive in the constraint of (3.24) is positive definite, the optimal value and solution of
(3.24) can be obtained from an extremal generalized eigenpair.

Techniques for maximizing k(t) These techniques are adapted from the original
Rendl-Wolkowicz algorithm [11] for solving TRS (1.2).

Vertical cut
Suppose there exist tg with k′(tg) < 0 and tb with k′(tb) > 0. Suppose further that

k(tg) < k(tb). Then we can use the so-called vertical cut to reduce the interval that
contains t∗. More precisely, we obtain our new approximation t+ by intersecting the
tangent line of k at tg with the horizontal line k = k(tb). Theoretically, we always
get t+ ∈ [tb, tg] and that k′(t+) < 0. However, approximate evaluation of slopes and
function values of k can cause t+ /∈ [tb, tg]. When this happens, the vertical cut fails.
The case when k(tg) > k(tb) can be treated similarly.

Triangle interpolation
Suppose there exist tg with k′(tg) < 0 and tb with k′(tb) > 0. We then intersect

the tangent lines of k(t) at tg and tb to obtain a new estimate t+. Theoretically, we
always get t+ ∈ [tb, tg]. However, since we only compute the slope and the function
value of k approximately, it can happen that t+ /∈ [tb, tg]. When this happens, the
triangle interpolation fails.

Inverse linear interpolation
Notice that k′(t) = |s + 1|y2

0(t) − 1, with y0(t) defined as in Sect. 3.2. Thus,
k′(t) = 0 is equivalent to

φ(t) :=√|s + 1| − 1

y0(t)
= 0.

We consider approximating the inverse function of φ(t) by a linear function, i.e.,

t (φ) = aφ + b,
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for some real numbers a, b, and then set our next approximation as t+ = t (0) if
t (0) ∈ [tb, tg]. This technique is different from the previous techniques in the sense
that it can also operate on two points whose slopes have the same sign.

Primal step to feasibility As in the RW algorithm for solving TRS, we keep track of
the point x(t) := 1

y0(t)
z(t), where y(t) = [ y0(t)

z(t)

]

is defined as in Sect. 3.2. In the easy
case/hard case, case 1, y0(t) is nonzero as the algorithm proceeds and one can show
that x(t) converges to the optimal solution of GTRS (1.1) as t converges to t∗. Notice
that if there exist tg with k′(tg) < 0 and tb with k′(tb) > 0, then (x(tg)

T Bx(tg) −
s)(x(tb)

T Bx(tb) − s) < 0. Thus, by choosing a suitable α, the point αx(tg) + (1 −
α)x(tb) will be primal feasible. Furthermore, the resulting sequence is still convergent
to x(t∗).

Before closing this section, we summarize our algorithm in the following
flowchart.

Flowchart for the extended RW algorithm

• Check for the hard cases/interior solution; shift and deflate; find initial interval
containing t∗.

• Main loop: iterate until a termination criterion is met:

1. update t .
(a) Set t to be the midpoint of the interval of uncertainty for t .
(b) If points at which k has positive and negative slope, respectively, are

known:
(i) Do vertical cut; reduce the interval of uncertainty for t if possible. Up-

date t if vertical cut is successful.
(ii) Do triangle interpolation. Update t if triangle interpolation is success-

ful.
(c) Do inverse linear interpolation. Update t if inverse linear interpolation is

successful.
2. At the new t , compute k(t) and k′(t) using techniques discussed above and

eigifp [14].3 Take a primal step to satisfy feasibility if iterates at which k has
positive and negative slopes are available.

• End loop.

3.4 Numerical experiments with new RW algorithm

In this section, we study the numerical performance of our new RW algorithm for
GTRS. We compute limλ↑λ ψ(λ) and limλ↓λ ψ(λ) as described in Sect. 2.2.2 with

α = ‖A‖2√
n

, where ‖A‖2 is the (approximate) spectral norm found using the MATLAB

command normest(A,1). In particular, we check for |aT v|
‖a‖ < 1e − 8 for every

3EIGIFP is implemented in MATLAB and finds the minimum generalized eigenvalue and eigenvector of
the matrix pair (A,B) for positive definite B . It does not involve factorization of the matrices A or B .
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vector v from an orthonormal basis of the nullspaces Null(A−λB) or Null(A−λB).
If the instance is not a hard case, case 2, instance, we perform shift and deflation as
described in Proposition 3.2 using these vectors v and the same α as above, when
B � 0. We then initialize the RW algorithm (for the equivalent equality constrained
problem) as discussed in the previous section, and terminate the algorithm when

max

{ |k′(t)|2
|s + 1|2 ,

|q0(x) − k(t)|
|q0

best| + 1
,
|q1(x) − s|

|s| + 1
,

‖Ax − λBx − a‖2

(‖A‖2 + ‖a‖ + 1)2

}

< 10−13,

or
|high − low|
|high| + |low| < 10−15,

(3.25)

or when the number of iterations hits 30; here x is recovered from a generalized
eigenvector and then shifted to become approximately feasible, ‖A‖2 is the (approxi-
mate) spectral norm found using the MATLAB command normest(A,1), qbest

0 is
the smallest primal objective value up to the current iteration. Our code is written in
MATLAB. All numerical experiments are performed on an SGI XE340 system, with
two 2.4 GHz quad-core Intel E5620 Xeon 64-bit CPUs and 48 GB RAM, equipped
with SUSE Linux Enterprise server 11 SP1 and MATLAB 7.14 (R2012a). All rou-
tines are timed using the tic-toc function in MATLAB.

3.4.1 B is positive definite

In this subsection, we consider GTRS (1.1) with a positive definite B . For simplicity,
we also assume without loss of generality that b = 0. We consider two cases: A is not
positive semidefinite or A is positive definite.

A is not positive semidefinite In this case, the GTRS is equivalent to (3.1) with
s = u, which is also equivalent to (1.1) with l = 0. We compare three algorithms:

• The RW algorithm for solving (1.1);
• The GLTR algorithm [15], an algorithm in the Galahad package (Version 2.50000

pre-release), to solve (1.1) with l = 0. The GLTR algorithm is written in Fortran
and implemented as a MATLAB mex file;

• The Newton’s method with (Armijo) line search for maximizing the dual objective
function to solve (3.1) with s = u. We code this in MATLAB.

For the GLTR algorithm, we use its default settings in our experiments. For the New-
ton’s method, we initialize at λ0 = λ − 1 and terminate when

max

{ |q0(x) − d(λ)|
|q0(x)| + 1

,
|q1(x) − s|

|s| + 1
,

‖Ax − λBx − a‖2

(‖A‖2 + ‖a‖ + 1)2

}

< 10−12,

or when the stepsize falls below 1e − 10 or the number of iterations hits 10; here x

is generated from λ via x = (A − λB)−1a. The Newton direction in the Newton’s
method is computed via the MATLAB built-in function pcg, with termination toler-
ance 1e − 14 and iteration bound 1000.

In our tests, we generate both easy and hard case instances, for dimensions n =
10000, 15000 and 20000.
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To generate an easy case instance, we first generate randomly a sparse symmetric
matrix A and a sparse positive definite matrix B via A = sprandsym(n,1e-
2) and B = sprandsym(n,1e-2,0.1,2). We then compute λ, the minimum
generalized eigenvalue of the matrix pair (A,B). We next generate x0 with Gaussian
entries of mean 0 and standard deviation 0.1 and set a = (A − λ̃B)x0, s = xT

0 Bx0,
where λ̃ = λ − r for some r chosen uniformly from [5,10]. Finally, we set u = 1.2s

and l = 0.8s. From the optimality conditions and the fact that r > 0, we see that the
above construction likely gives an easy case instance.

To generate a hard case instance, we follow the same procedure as above to obtain
A, B , x0, λ and s but we set a = (A − λB)x0 instead. If we take u = 0.6s and
l = 0.6u, then we likely end up with a hard case, case 1 instance. On the other hand,
by setting u = 1.2s, l = 1.1s, we likely end up with a hard case, case 2 instance.

For each n, we generate 10 easy, 10 hard case, case 1 and 10 hard case, case
2 instances as described above. The computational results are reported in Table 2,
where we report the number of iterations (iter), CPU time in seconds (cpu), primal
objective value (fval) at termination and also the primal infeasibility for the equivalent
equality constrained problem measured by |xT Bx − u| (feaseq),4 averaged over the
10 random instances. We observe the RW algorithm is faster than Newton+Armijo
on easy case instances, but is slower on hard case, case 1 instances because of the
extra time taken for preprocessing. The preprocessing is justified by the observation
that, the simple Newton+Armijo strategy fails to obtain even two digits of accuracy
for hard case, case 2 instances. We also note that the GLTR algorithm is the slowest
algorithm mainly because of the cost for factorizing the matrix B , whose Cholesky
factorization has a high percentage fill-in.5

A is positive definite In this case, it is not certain whether the GTRS (1.1) is equiv-
alent to (3.1) with s = u or s = l, or the GTRS may have an interior solution. Hence,
for comparison, we first solve the GTRS using the RW algorithm, from which we
can determine whether the GTRS has a boundary solution. If the GTRS is equivalent
to an instance of (3.1), we solve this instance of (3.1) using the Newton’s method
that maximizes its dual. Furthermore, if the GTRS is equivalent to (3.1) with s = u,
then the GLTR algorithm can be applied directly to solve the instance. On the other
hand, even if the GTRS turns out to be equivalent to (3.1) with s = l instead, it is
not hard to see that the instance can be solved by applying the GLTR algorithm with
A ← A− (λ+1)B , u ← l and l ← 0. We initialize and terminate all three algorithms
as in the previous test.

In our tests, similarly as above, we generate both easy and hard case instances,
for dimensions n = 10000, 15000 and 20000. We follow the same procedure as in
the previous case, except that instead of a random sparse symmetric A, we generate

4Comparing with |xT Bx − max{min{xT Bx,u}, l}|, feaseq is less sensitive to the quantity |u − l|, the
thickness of the feasible region.
5Indeed, when B is structured, say, block diagonal with small blocks (size 100 by 100), the GLTR algo-
rithm tends to terminate within 1 second for the easy case and hard case 1 instances, with high accuracy;
and within a couple seconds (2 to 10) for hard case 2 instances, with moderate accuracy. In contrast, the
other two codes are at most 50 % faster than the time reported in Table 2 for such B .
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another matrix C similarly as we generated B , and then set A = C + 10B so that
the resulting GTRS (1.1) likely has a solution on the lower boundary of the feasible
region.

Test results are reported in Table 3, averaged over 10 random instances.6 We note
that the CPU time for GLTR+shift includes both the GLTR algorithm run time and
the time taken to find λ for the transformation A ← A − (λ + 1)B , with the latter
time also reported separately in parenthesis. We again observe that the RW algo-
rithm is faster than Newton+Armijo on easy case instances, and is slower on hard
case, case 1 instances due to the extra preprocessing time. The failure of the simple
Newton+Armijo strategy on hard case, case 2 instances again justifies the use of pre-
processing. We also note that the GLTR algorithm is the slowest due to the cost for
factorizing B .

3.4.2 B is indefinite

In this subsection, we consider GTRS (1.1) with an indefinite (and nonsingular) B .
For simplicity, we also assume without loss of generality that b = 0. Furthermore,
in order that the interval (λ,λ) can be located efficiently, we restrict our attention to
the case when A is positive definite; see Sect. 3.3. There are currently no algorithms
in the literature specialized at solving such GTRS instances. Thus, we only compare
our algorithm with the Newton’s method. Specifically, we first use our algorithm to
determine whether the GTRS is equivalent to an instance of (3.1) with s = u or s = l.
We then solve this instance of (3.1) using the Newton’s method that maximizes its
dual.

For simplicity, we only generate easy case and hard case, case 2, instances in our
numerical experiments. For dimensions n = 10000, 15000 and 20000, we first gener-
ate sparse symmetric matrices B1 and A1 via the commands
A_1 = sprandsym(n,1e-2,0.1,2) and B_1 = sprandsym(n,1e-2).
We then locate the interval (λ,λ) for the matrix pair (A1,B1).

To generate an easy case instance, we first set λ̃ = λ+λ

2 . We next generate x0 with
Gaussian entries of mean 0 and standard deviation 0.1, and set a = (A1 − λ̃B1)x0 and
s1 = xT

0 B1x0. We now further modify A1 and B1 so that we obtain an instance with
explicit knowledge of t0 and the corresponding λ0 ∈ (λ,λ) with d(λ0) = t0. To this
end, define B := B1/(−|s1|) and A := A1. Then by construction, we have

inf
xT Bx=−1

xT Ax − 2aT x = xT
0 Ax0 − 2aT x0 = −d(λ0),

where λ0 = −|s1|λ̃. Finally, with the above A, a and B , setting s = α · √n and l =
u − 1 = s, where α follows standard Gaussian distribution, we likely obtain an easy
case instance with explicitly known t0 = d(λ0). The t0 can be used for initialization
of the RW algorithm, and λ0 is used as in (3.23) in place of μ. In particular, we find
t− and t+ as described in Sect. 3.3 with ε = 1, ζ = 0.2 and κ = 1.2. We note that

6For consistency, we regenerate the problem instance to make sure that the instances considered in this
subsection have minimizer on the lower boundary.
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Table 4 Computational results for positive definite A and indefinite B

n RW
iter/cpu/fval/feaseq

Newton+Armijo
iter/cpu/fval/feaseq

Easy Case 10000 6/9.75/−2.034919097e+03/1.1e−14 6/9.79/−2.034919097e+03/1.7e−08

15000 7/24.17/−3.385643481e+03/1.4e−14 6/24.40/−3.385643481e+03/8.9e−12

20000 7/47.29/−7.195068138e+03/1.1e−14 6/50.18/−7.195068132e+03/1.7e−07

Hard Case 2 10000 0/13.34/−6.405913926e+02/1.7e−14 10/41.62/−2.270662258e+03/1.4e+02

15000 0/30.71/−4.882640374e+02/2.3e−14 10/97.86/−4.974215533e+03/1.8e+02

20000 0/63.55/−9.857960694e+02/2.6e−14 10/213.46/−8.637983865e+03/1.8e+02

computation of k′(t−) outlined in Sect. 3.3 can become inefficient when t− gets too
close to t0. 7

Generating a hard case, case 2 instance with known t0 is a bit more complicated.
We first describe how to generate such an instance so that the optimal solution x∗
satisfies xT∗ Bx∗ = l. To this end, we set λ̃ = λ. We then generate x0 with Gaussian
entries of mean 0 and standard deviation 0.1, and set a = (A1 − λ̃B1)x0 and s1 =
xT

0 B1x0. We now further modify A1 and B1 as in the previous paragraph to obtain A,
B , t0 and λ0. Finally, with these A, a and B , setting s = α · √n and l = u − 1 = s,
where α is uniformly chosen from [1,2], we likely obtain a hard case, case 2 instance
with optimal solution x∗ satisfies xT∗ Bx∗ = l. Next, to obtain a hard case, case 2
instance with optimal solution x∗ satisfies xT∗ Bx∗ = u, we follow the same procedure
as above except that we set λ̃ = λ and choose α uniformly from [−2,−1].

Test results are reported in Table 4, averaged over 10 random instances.8 We ob-
serve that the RW algorithm is slightly faster than Newton+Armijo on easy case
instances, and it produces a solution with better quality in terms of feasibility (of
the equivalent equality constrained GTRS). Furthermore, we again observe that the
simple Newton+Armijo strategy fails on hard case, case 2 instances.

4 Conclusion

We have presented optimality conditions for GTRS (1.1) that hold under a constraint
qualification, the RICQ (2.6). Furthermore, if the RICQ fails, we showed how the
GTRS can be explicitly solved. In this sense, GTRS has strong duality results as in
linear programming. We also demonstrated that the GTRS can be classified into easy
and hard cases as the classical TRS, and the problem can be preprocessed to identify
explicit solution in hard case/interior solution and reduce the instance into an equality
constrained GTRS (3.1). We then discussed in detail how the Rendl-Wolkowicz algo-
rithm in [29] can be extended to solve such instances, which involved transforming
the instance into a parameterized generalized eigenvalue problem. We also illustrated

7In all our test instances below, they all turned out to have a valid left end point t− lying in [t0 +(0.2)3, t0 +
1].
8We regenerate another instance if A−1b is an interior solution.
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our algorithm numerically in various cases, including cases when B is indefinite.
When B is a random sparse positive definite matrix, our algorithm is competitive
with a simple Newton’s method implementation, and is faster than the GLTR algo-
rithm. On the other hand, when B is indefinite, our algorithm requires additional
inputs for initialization. Given such inputs, our algorithm is also competitive with the
Newton’s method.

Acknowledgements The first author would like to thank Nicholas I.M. Gould for his help concerning
the GLTR algorithm and for providing the pre-release version of the software.

Appendix: Proof of Theorem 2.1(ii)

Proposition A.1 Suppose that b = 0 and Items 1, 2 and 3 of Assumption 2.1 are
satisfied. If GTRS (1.1) is bounded below, then D-GTRS (2.2) is feasible.

Proof We first consider the case when B is positive semidefinite. Then there exists
an invertible matrix P such that

B = P

[

0 0
0 I

]

P T .

Thus, after a change of variables y = P T x, GTRS (1.1) can be equivalently written
as

inf q0(y) :=
[

y1
y2

]T [

Ā1 ĀT
2

Ā2 Ā3

][

y1
y2

]

− 2

[

ā1
ā2

]T [

y1
y2

]

s.t. � ≤ ‖y2‖2 ≤ u,

(A.1)

where

y =
[

y1
y2

]

, Ā =
[

Ā1 ĀT
2

Ā2 Ā3

]

= P −1AP −T , ā =
[

ā1
ā2

]

= P −1a. (A.2)

By our assumptions, the program (A.1) is bounded below. Since

q0(y) = yT
1 Ā1y1 + 2yT

2 Ā2y1 + yT
2 Ā3y2 − 2āT

1 y1 − 2āT
2 y2,

and the constraint does not involve y1, we must have

Ā1 � 0, ĀT
2 y2 − ā1 ∈ Range(Ā1), ∀ � ≤ ‖y2‖2 ≤ u. (A.3)

Notice that u > 0 since the RICQ (2.6) holds. Hence, the second relation in (A.3)
implies

Range
(

ĀT
2

)⊆ Range(Ā1) and ā1 ∈ Range(Ā1). (A.4)

By (A.3), (A.4) and a consideration of the Schur complement, we conclude that for
all sufficiently large λ > 0, Ā3 + λI � 0 and

Ā + λ

[

0 0
0 I

]

=
[

Ā1 ĀT
2

Ā2 Ā3 + λI

]

� 0. (A.5)
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Moreover, from (A.4), we see that, for all sufficiently large λ > 0,

Range
(

Ā1 − ĀT
2 [Ā3 + λI ]−1Ā2

)= Range(Ā1),

and hence ā1 ∈ Range(Ā1 − ĀT
2 [Ā3 + λI ]−1Ā2). Thus, for sufficiently large λ > 0,

the system of equations

[

Ā1 − ĀT
2 [Ā3 + λI ]−1Ā2 0

0 Ā3 + λI

][

w1
w2

]

=
[

ā1 − ĀT
2 [Ā3 + λI ]−1ā2

ā2

]

(A.6)

is consistent. Since
[

Ā1 ĀT
2

Ā2 Ā3 + λI

]

=
[

I ĀT
2 [Ā3 +λI ]−1

0 I

][

Ā1 − ĀT
2 [Ā3 +λI ]−1Ā2 0

0 Ā3 +λI

][

I 0
[Ā3 +λI ]−1Ā2 I

]

,

and

[

I ĀT
2 [Ā3 + λI ]−1

0 I

]−1 [
ā1
ā2

]

=
[

I −ĀT
2 [Ā3 + λI ]−1

0 I

][

ā1
ā2

]

=
[

ā1 − ĀT
2 [Ā3 + λI ]−1ā2

ā2

]

,

we see from the consistency of (A.6) that ā ∈ Range(Ā + λ
[ 0 0

0 I

]

) for sufficiently

large λ > 0. From the definition of ā and Ā in (A.2), we obtain immediately that
a ∈ Range(A + λB) for sufficiently large λ > 0. This together with (A.5) proves that
D-GTRS is feasible.

The case when B is negative semidefinite can be tackled similarly.
Next, we consider the case when B is indefinite. Suppose to the contrary that D-

GTRS is infeasible. Then either A−λB is not positive semidefinite for any λ ∈ R, or
there exists λ with A − λB � 0 but all such λ satisfy a /∈ Range(A − λB).

Case 1: A − λB is not positive semidefinite for all λ ∈ R. By [24, Theorem 2.3],
there exists u∗ satisfying u∗T Au∗ < 0 and u∗T Bu∗ = 0.

Fix any s ∈ [�,u]. For the above u∗ and each t > 0, we would like to find a solution
xt of (x + tu∗)T B(x + tu∗) = s that is uniformly bounded in t . For s = 0, we just
take xt = 0. In the case when s > 0, the x we seek has to satisfy

xT Bx + 2txT Bu∗ = s.

Let B = PDP T for some orthogonal matrix P and diagonal matrix D, and let βi

denote the ith diagonal entry of D. Also, let ũ∗ denote P T u∗. Since B is indefinite,
there exists an index i0 such that βi0 > 0. Consider the quadratic equation

βi0r
2 + 2tβi0 ũ

∗
i0
r − s = 0.
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It is clear that the solutions of the above quadratic equation are

r1
t =

−2tβi0 ũ
∗
i0

+
√

(2tβi0 ũ
∗
i0
)2 + 4sβi0

2βi0

= 2s

2tβi0 ũ
∗
i0

+
√

(2tβi0 ũ
∗
i0
)2 + 4sβi0

,

r2
t =

−2tβi0 ũ
∗
i0

−
√

(2tβi0 ũ
∗
i0
)2 + 4sβi0

2βi0

= 2s

2tβi0 ũ
∗
i0

−
√

(2tβi0 ũ
∗
i )

2 + 4sβi0

.

Moreover, it is easy to see that r1
t is uniformly bounded for t > 0 when ũ∗

i0
≥ 0, while

r2
t is uniformly bounded for t > 0 when ũ∗

i0
≤ 0. Define

xt =
{

r1
t P ei0 if ũ∗

i0
≥ 0,

r2
t P ei0 otherwise,

where ei0 is the vector which is one at the i0th entry and is zero otherwise. Then {xt }
is uniformly bounded in t > 0 and satisfies xT

t Bxt + 2txT
t Bu∗ = s. The case when

s < 0 can be considered similarly, by picking the index such that βi < 0.
Next, since {xt } is bounded for t > 0 and u∗T Au∗ < 0, we see that

(

xt + tu∗)T A
(

xt + tu∗)− 2aT
(

xt + tu∗)

= xT
t Axt + 2txT

t Au∗ + t2u∗T
Au∗ − 2aT

(

xt + tu∗)→ −∞
as t → ∞. This together with the feasibility of xt + tu∗ for all t > 0 contradicts the
boundedness of GTRS.

Case 2: There exists λ with A − λB � 0 but all such λ satisfy a /∈ Range(A − λB).
In this case, we apply [4, Theorem A.2] to derive a contradiction. To this end, let
s ∈ [�,u] be such that the set {x : xT Bx = s} is nonempty. Then, by assumption, we
see that the equality constrained GTRS (3.1), with this s, is bounded below. Thus,
f2(x) := xT Ax − 2aT x − L is nonnegative on the set {x : f1(x) = 0}, where L is
a lower bound of the optimal value of the equality constrained GTRS, and f1(x) :=
xT Bx − s. Furthermore, since B is indefinite, there exist x1, x2 such that

f1(x1) > 0 and f1(x2) < 0. (A.7)

Using these and invoking [4, Theorem A.2], we conclude that there exists μ such that
(−L + μs −aT

−a A − μB

)

� 0.

From Schur complement, this implies that A − μB � 0 and a ∈ Range(A − μB).
Thus, D-GTRS is feasible, a contradiction to our assumption.

Combining Cases 1 and 2, we conclude that D-GTRS is also feasible when B is
indefinite. �
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