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Abstract We consider quasi-Newton methods for generalized equations in Banach
spaces under metric regularity and give a sufficient condition for q-linear conver-
gence. Then we show that the well-known Broyden update satisfies this sufficient
condition in Hilbert spaces. We also establish various modes of q-superlinear con-
vergence of the Broyden update under strong metric subregularity, metric regularity
and strong metric regularity. In particular, we show that the Broyden update applied
to a generalized equation in Hilbert spaces satisfies the Dennis–Moré condition for
q-superlinear convergence. Simple numerical examples illustrate the results.
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1 Introduction

In this paper we consider the generalized equation

f (x) + F(x) � 0, (1)

where f : X → Y is a function and F : X ⇒ Y is a set-valued mapping. Throughout,
unless stated otherwise, X and Y are (real) Banach spaces. To simplify some of the
arguments used we make the standing assumption that f is continuously Fréchet
differentiable everywhere with derivative Df and F has closed graph.

If F is the zero mapping, then (1) reduces to the equation f (x) = 0 for which the
standard Newton iteration takes the form

f (xk) + Df (xk)(xk+1 − xk) = 0.

When F is nonzero, then the Newton iteration is extended in a natural way to

f (xk) + Df (xk)(xk+1 − xk) + F(xk+1) � 0, (2)

that is, at each iteration a partially linearized inclusion is to be solved. In a path-
breaking work N.H. Josephy [16] was the first to consider a Newton iteration of the
kind (2) specialized to the case where F is the normal cone mapping in finite dimen-
sions; then (1) describes a variational inequality. Most importantly, he employed the
property of strong regularity coined by his Ph.D. advisor S.M. Robinson [21]. In this
paper, we adopt the definition given in [10]:

Definition 1.1 (Strong metric regularity) A mapping H : X ⇒ Y is said to be
strongly metrically regular at x̄ for ȳ when ȳ ∈ H(x̄) and there are neighborhoods
U of x̄ and V of ȳ such that the mapping y �→ H−1(y)∩U is a Lipschitz continuous
function on V .

The result of Josephy [16] adapted for the generalized equation (1) essentially says
that if x̄ is a solution of (1), the function f is twice continuously differentiable around
x̄ and the mapping f + F is strongly metrically regular at x̄ for 0, then there exists
a neighborhood O of x̄ such that for every starting point x0 ∈ O the iteration (2)
generates a unique sequence in O and this sequence is q-quadratically convergent
to x̄.

A linear and bounded mapping A : X → Y is strongly metrically regular (every-
where) whenever its inverse A−1 is single-valued. If the mapping A is not necessar-
ily invertible but only surjective, then it is metrically regular. Metric regularity has
played a major role in nonlinear analysis since 1960s. Its formal definition follows:
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Definition 1.2 (Metric regularity) A mapping H : X ⇒ Y is said to be metrically
regular at x̄ for ȳ when ȳ ∈ H(x̄) and there is a constant κ > 0 together with neigh-
borhoods U of x̄ and V of ȳ such that

d
(
x,H−1(y)

) ≤ κd
(
y,H(x)

)
for all (x, y) ∈ U × V. (3)

A central result in the theory of metric regularity is the Lyusternik–Graves theo-
rem which says that if a function f : X → Y is continuously Fréchet differentiable
around x̄, then it is metrically regular at x̄ (for f (x̄)) if and only if the derivative
Df (x̄) is surjective. In parallel, the standard inverse function theorem can be stated
as follows: if a function f : X → Y is continuously Fréchet differentiable around x̄

then it is strongly metrically regular at x̄ (for f (x̄)) if and only if the derivative Df (x̄)

is invertible. The inverse function theorem was extended to variational inequalities by
Robinson in his seminal paper [21]. Adapted to the generalized equation (1), it says
that the mapping f + F is (strongly) metrically regular at x̄ for 0 if and only if the
“partial linearization” f (x̄) + Df (x̄)(· − x̄) + F(·) has the same property. This gen-
eral pattern culminates in the inverse function theorem paradigm to which the recent
book [10] is dedicated.

The third author of the present paper proved in [7], see also Theorem 6C.6 in [10],
the following result which complements that of Josephy: if the derivative Df is Lip-
schitz continuous around x̄ and the mapping f + F is metrically regular at x̄ for 0,
then there exists a neighborhood O of x̄ such that for every starting point x0 ∈ O

the method (2) is executable, that is, it generates a sequence which is q-quadratically
convergent to x̄. Under strong metric regularity this sequence happens to be locally
unique, as in Josephy’s theorem. The result in [7] has opened the way to develop-
ing a broader perspective to set-valued extensions of Newton’s method. A number of
results in this direction are presented in the books [1, 10] and [19].

There is a third regularity property that plays an important role in establishing
convergence of Newton’s method.

Definition 1.3 (Strong metric subregularity) Consider a mapping H : X ⇒ Y and a
point (x̄, ȳ) ∈ X × Y . Then H is said to be strongly metrically subregular at x̄ for ȳ

when ȳ ∈ H(x̄) and there is a constant κ > 0 together with a neighborhood U of x̄

such that

‖x − x̄‖ ≤ κd
(
ȳ,H(x)

)
for all x ∈ U.

Strong metric subregularity of H at x̄ for ȳ implies that x̄ is an isolated point
in H−1(ȳ); moreover, it is equivalent to the so-called isolated calmness of the in-
verse H−1, meaning that there is a neighborhood U of x̄ such that H−1(y) ∩ U ⊂
x̄ + κ‖y − x̄‖B for all y ∈ Y . The isolated calmness was introduced independently
in [4] under the name semistability and in [6] under the name local upper Lipschitz
continuity. Every mapping H acting in finite dimensions, whose graph is the union
of finitely many convex polyhedral sets, is strongly metrically subregular at x̄ for ȳ

if and only if x̄ is an isolated point in H−1(ȳ). Most importantly, the strong metric
subregularity obeys the paradigm of the inverse function theorem in the same way as
metric regularity and strong metric regularity do. In particular, a smooth function f
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is strongly metrically subregular at x̄ if and only if its derivative mapping Df (x̄) is
injective.

Consider the Newton method (2) for the generalized equation (1) with a function
f whose derivative mapping Df is Lipschitz continuous around a reference solu-
tion x̄. If a sequence {xk} generated by (2) is convergent to x̄ then, as shown in
[4, Corollary 2.1], strong metric subregularity implies that this sequence converges
quadratically. Note that the strong metric subregularity itself does not guarantee the
existence of a Newton sequence. In order to ensure that Newton’s method (2) is ex-
ecutable, Bonnans [4] introduced a property called by him hemistability which basi-
cally postulates the existence of a Newton iteration in (2). Specifically, in our nota-
tion this property requires that for any ε > 0 there exists δ > 0 such that for any x

and M with ‖x − x̄‖ + ‖M − Df (x̄)‖ ≤ ε there exists x̂ with ‖x̂ − x̄‖ ≤ δ satisfying
f (x) + M(x̂ − x) + F(x̂). Observe that for the mapping f + F with a smooth func-
tion f hemistability is implied by metric regularity; this is a simple consequence of
the Lyusternik–Graves theorem. On the other hand the combination of semistability
and hemistability does not follow from metric regularity, since metric regularity does
not imply local uniqueness of the reference point. Also, this combination is a weaker
property than strong metric regularity but doesn’t guarantee local uniqueness of a
Newton sequence.

In this paper we prove first a result parallel to the one in [7] concerning the con-
vergence of the following quasi-Newton method for solving (1): given x0 compute
xk+1 to satisfy

f (xk) + Bk(xk+1 − xk) + F(xk+1) � 0, for k = 0,1, . . . , (4)

where Bk is a sequence of linear and bounded mappings from X to Y . The specific
way Bk is constructed determines the quasi-Newton method; in the paper we focus
on Broyden’s update. In Sect. 3, Theorem 3.1 shows that if the mapping f +F of (1)
is metrically regular at x̄ for 0 and the initial mapping B0 is close to Df (x̄), then,
under certain condition on the sequence of mappings Bk , there exists a neighborhood
O of x̄ such that for every starting point x0 ∈ O there exists a sequence generated
by (4) which stays in O and either reaches a solution of (1) in O after finitely many
steps or is q-linearly convergent to x̄. If in addition the mapping f + F is strongly
metrically regular, then for every starting point x0 ∈ O there exists a unique in O

sequence generated by (4) and this sequence is q-linearly convergent to x̄.
In Sect. 4 we first prove in the Hilbert space setting that the Broyden method

satisfies the conditions of Theorem 3.1. In Theorem 4.9, under the condition that
B0 − Df (x̄) is a Hilbert–Schmidt operator, we establish q-superlinear convergence
in three cases depending on the property of the mapping f + F : (i) if f + F is
strongly metrically subregular at x̄ for 0 then every sequence generated by (4) which
converges to x̄ is actually q-superlinearly convergent; (ii) if in addition f + F is
metrically regular at x̄ for 0 then there exists a neighborhood O of x̄ such that for
every starting point x0 ∈ O there exists a sequence generated by (4) which either
reaches a solution of (1) in O in finitely many steps or is q-superlinearly convergent
to x̄; (iii) if f + F is strongly metrically regular at x̄ for 0 then for every x0 ∈ O the
iteration (4) generates a unique in O sequence and this sequence is q-superlinearly
convergent to x̄. A key step in proving this result is Theorem 4.8 where we show
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that in the case considered the Broyden update satisfies the Dennis–Moré condition,
which allows us to employ the generalization of the Dennis–Moré theorem obtained
in [8]. Theorem 4.9 sharpens, in the setting of (strong) metric (sub)regularity, and
extends to infinite dimensions the results in [4] developed for variational inequalities
in finite dimensions. Specifically, for a class of quasi-Newton methods including the
Broyden update, [4, Theorem 2.3] shows the existence of a q-superlinear convergent
sequence under hemistability and semistability of the reference solution. In this paper
we extend the latter result to infinite dimensions under the stronger condition that both
metric regularity and strong metric subregularity hold.

Section 2 contains an auxiliary result concerning perturbed metric regularity,
which is used as a tool for proving local convergence of the method (4). In Sect. 5
we present two numerical examples, the second of which is based on a model of
economic equilibrium recently developed in [11].

Throughout, any norm is denoted by ‖ · ‖ and any metric by ρ(·, ·). The distance
from a point x to a set C is denoted by d(x,C) and the excess from a set D to a set C

by e(D,C) = supx∈D d(x,C). The closed ball centered at x with radius a is denoted
by Ba(x̄) and L(X,Y ) denotes the Banach space of linear and bounded mappings
acting from X to Y .

2 Preliminaries

We utilize the following generalization of Nadler’s fixed point theorem, originally
proved in [9], for more see [10, Theorem 5E.2]:

Theorem 2.1 (Contraction mapping principle) Let (X,ρ) be a complete metric
space, and consider a set-valued mapping Φ : X ⇒ X, a point x̄ ∈ X, and posi-
tive scalars a and θ such that θ < 1, the set gphΦ ∩ (Ba(x̄) ×Ba(x̄)) is closed, and
the following conditions hold:

(i) d(x̄,Φ(x̄)) < a(1 − θ);
(ii) e(Φ(u) ∩Ba(x̄),Φ(v)) ≤ θρ(u, v) for all u,v ∈ Ba(x̄).

Then Φ has a fixed point in Ba(x̄); that is, there exists x ∈ Ba(x̄) such that x ∈ Φ(x).
In addition, if Φ is single-valued, then Φ has a unique fixed point in Ba(x̄).

Recall that a metric ρ in a linear space X is said to be shift-invariant when ρ(x+y,

x + y′) = ρ(y, y′) for all x, y, y′ ∈ X.

Theorem 2.2 (Perturbed metric regularity) Let (X,ρ) be a complete metric space
and (Y,ρ) be a linear metric space with shift-invariant metric. Consider a mapping
H : X ⇒ Y with closed graph and a point (x̄, ȳ) ∈ gphH at which H is metrically
regular, that is, there exist positive constants a, b, and κ such that

d
(
x,H−1(y)

) ≤ κd
(
y,H(x)

)
for all (x, y) ∈ Ba(x̄) ×Bb(ȳ). (5)

Let μ > 0 be such that κμ < 1 and let κ ′ > κ . Then for every positive α and β

such that

α ≤ a/2, μα + 2β ≤ b and 2κ ′β ≤ α(1 − κμ) (6)
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and for every function h : X → Y satisfying

ρ
(
h(x̄),0

) ≤ β (7)

and

ρ
(
h(x),h

(
x′)) ≤ μρ

(
x, x′) for every x, x′ ∈ Bα(x̄), (8)

the mapping h + H has the following property: for every y, y′ ∈ Bβ(ȳ) and every
x ∈ (h + H)−1(y) ∩Bα(x̄) there exists x′ ∈ (h + H)−1(y′) such that

ρ
(
x, x′) ≤ κ ′

1 − κμ
ρ
(
y, y′). (9)

In addition, if the mapping H is strongly metrically regular at x̄ for ȳ; specifically, the
mapping y �→ H−1(y) ∩ Ba(x̄) is single-valued and Lipschitz continuous on Bb(ȳ)

with a Lipschitz constant κ , then for μ, κ ′, α and β as above and any function h satis-
fying (7) and (8), the mapping y �→ (h + H)−1(y) ∩Bα(x̄) is a Lipschitz continuous
function on Bβ(ȳ) with a Lipschitz constant κ ′/(1 − κμ).

Before proving the theorem we will make some comments. If we assume h(x̄) = 0
then Theorem 2.2 simply says that if H is (strongly) metrically regular at x̄ for ȳ and
h has a sufficiently small Lipschitz constant, then the perturbed h + H is (strongly)
metrically regular at x̄ for ȳ; indeed in this case the claim involving (9) means that
(h + H)−1 has the Aubin property at ȳ for x̄ which is equivalent to metric regularity
of h + H at x̄ for ȳ, and then we obtain the (extended) Lyusternik–Graves theorem
as stated in [10, Theorem 5E.1]. For the strong regularity part we get a version of
Robinson’s theorem, see [10, Theorem 5F.1]. However, if h(x̄) �= 0 then (x̄, ȳ) may
be not in the graph of h + H and then we cannot claim that h + H is (strongly)
metrically regular at x̄ for ȳ. Of course, this could be handled by choosing a new
function h̃ with h̃(x) = h(x) − h(x̄) and then applying [10, Theorem 5F.1], but the
latter does not specify how the constants (e.g., the radii of the balls involved) depend
on the data of the problem, which is the crux of the matter in obtaining the needed
estimates. Clearly, the result in Theorem 2.2 is parallel to [10, Theorem 5F.1] and can
be recovered from the latter; but we believe that giving a complete proof would be
beneficial for the reader.

Proof Choose μ and κ ′ as required and then α and β to satisfy (6). For any x ∈ Bα(x̄)

and y ∈ Bβ(ȳ), using the shift-invariance of the metric in Y , (7), (8) and the triangle
inequality, we obtain

ρ
(−h(x) + y, ȳ

) ≤ ρ
(
0, h(x̄)

) + ρ
(
h(x̄), h(x)

) + ρ(y, ȳ)

≤ β + μρ(x, x̄) + β ≤ 2β + μα ≤ b, (10)

where the last inequality follows from the second inequality in (6). Fix y′ ∈ Bβ(ȳ)

and consider the mapping

Φy′ : x �→ H−1(−h(x) + y′) for x ∈ Bα(x̄).
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Clearly, gphΦy′ is closed. Let y ∈ Bβ(ȳ), y �= y′ and let x ∈ (h + H)−1(y) ∩Bα(x̄).
We will apply Theorem 2.1 with the complete metric space X identified with the
closed ball Bα(x̄) to show that there is a fixed point x′ ∈ Φy(x

′) in the closed ball
centered at x with radius

ε := κ ′ρ(y, y′)
1 − κμ

. (11)

From the third inequality in (6), we obtain

ε ≤ κ ′(2β)

1 − κμ
≤ α.

Hence, from the first inequality in (6) we get Bε(x) ⊂ Ba(x̄). Since y ∈ h(x) + H(x)

and (x, y) satisfies (10), from the assumed metric regularity of H we get

d
(
x,Φy′(x)

) = d
(
x,H−1(−h(x) + y′)) ≤ κd

(−h(x) + y′,H(x)
)

= κd
(
y′, h(x) + H(x)

) ≤ κρ
(
y, y′)

< κ ′ρ
(
y, y′) = ε(1 − κμ).

For any u,v ∈ Bε(x), using (8), we have

e
(
Φy′(u) ∩Bε(x),Φy′(v)

) ≤ e
(
H−1(−h(u) + y′) ∩Ba(x̄),H−1(−h(v) + y′))

≤ κρ
(
h(u),h(v)

) ≤ κμρ(u, v).

Applying Theorem 2.1 to the mapping Φy′ , with x̄ identified with x and con-
stants a = ε and θ = κμ, we obtain the existence of a fixed point x′ ∈ Φy′(x′) =
H−1(−h(x′) + y′), which is equivalent to x′ ∈ (h + H)−1(y′), within distance ε

given by (11) from x.
For the second part of the theorem, suppose that y �→ s(y) := H−1(y) ∩ Ba(x̄) is

a Lipschitz continuous function on Bb(ȳ) with a Lipschitz constant κ . Choose μ, κ ′,
α and β as in the statement and let h satisfy (7) and (8). For any y ∈ Bβ(ȳ), since x̄ ∈
(h+H)−1(ȳ +h(x̄))∩Bα(x̄), from (9) we obtain that there exists x ∈ (h+H)−1(y)

such that

ρ(x, x̄) ≤ κ ′

1 − κμ
ρ
(
y, ȳ + h(x̄)

)
.

Since ρ(y, ȳ + h(x̄)) ≤ 2β , by (6) we get ρ(x, x̄) ≤ α, that is, (h + H)−1(y) ∩
Bα(x̄) �= ∅. Hence the domain of the mapping (h + H)−1 ∩Bα(x̄) contains Bβ(ȳ).

If x ∈ (h + H)−1(y) ∩ Bα(x̄), then x ∈ H−1(y − h(x)) ∩ Bα(x̄) ⊂
H−1(y − h(x)) ∩ Ba(x̄) = s(y − h(x)) since y − h(x) ∈ Bb(ȳ) according to (10).
Hence,

H−1(y − h(x)
) ∩Bα(x̄) = s

(
y − h(x)

) = x. (12)

Assume that there exist y ∈ Bβ(ȳ) and x, x′ ∈ (h+H)−1(y)∩Bα(x̄) such that x �= x′.
From (10) we have that both y − h(x) and y − h(x′) are in Bb(ȳ). Then from (12)
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we get

ρ
(
x′, x

) = ρ
(
s
(−h

(
x′) + y

)
, s

(−h(x) + y
))

≤ κρ
(−h

(
x′) + y,−h(x) + y

) = κρ
(
h
(
x′), h(x)

)

≤ κμρ
(
x′, x

)
< ρ

(
x′, x

)
,

which is a contradiction. Hence, the mapping y �→ g(y) := (h + H)−1(y) ∩Bα(x̄) is
single-valued, that is, a function, defined on Bβ(ȳ). Let y, y′ ∈ Bβ(ȳ). Utilizing the
equality g(y) = s(−h(g(y)) + y), see (12), we have

ρ
(
g(y), g

(
y′)) = ρ

(
s
(−h

(
g(y)

) + y
)
, s

(−h
(
g
(
y′)) + y′))

≤ κρ
(
h
(
g(y)

)
, h

(
g
(
y′))) + κρ

(
y, y′)

≤ κμρ
(
g(y), g

(
y′)) + κρ

(
y, y′).

Thus,

ρ
(
g(y), g

(
y′)) ≤ κ ′

1 − κμ
ρ
(
y, y′);

that is, g is Lipschitz continuous with Lipschitz constant κ ′/(1 − κμ). The proof is
complete. �

3 Convergence under metric regularity

In this section we give conditions under which the quasi-Newton iteration (4) is lo-
cally q-linearly convergent. Recall that a sequence {xk} is convergent q-linearly to x̄

when there exist a natural K and a real α ∈ [0,1) such that

‖xk+1 − x̄‖ ≤ α‖xk − x̄‖ for k = K,K + 1, . . . .

A sequence {xk} is q-superlinearly convergent to x̄ when there exist a natural K and
sequence of reals {αk} such that αk ↘ 0 and

‖xk+1 − x̄‖ ≤ αk‖xk − x̄‖ for k = K,K + 1, . . . .

Theorem 3.1 Suppose that f + F is metrically regular at x̄ for 0 with constant λ.
Then, in particular, x̄ is a solution of (1). Consider the quasi-Newton method (4) and
assume that

∥∥B0 − Df (x̄)
∥∥ < 1/(2λ). (13)

Furthermore, assume that there exist a constant c > 0 and a neighborhood U of x̄

such that, for k = 0,1, . . . , and for any Bk and any xk, xk+1 ∈ U , xk �= xk+1, all
satisfying (4), the operator Bk+1 is chosen in such a way that

∥∥Bk+1 − Df (x̄)
∥∥ ≤ ∥∥Bk − Df (x̄)

∥∥ + c
(‖xk − x̄‖ + ‖xk+1 − x̄‖). (14)
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Then there exists a neighborhood O of x̄ such that for every x0 ∈ O there exists
a sequence {xk} starting at x0 and generated by (4) which stays in O and either
reaches a solution of (1) in O after finitely many steps or converges q-linearly to x̄.
If in addition f + F is strongly metrically regular at x̄ for 0 then for every x0 ∈ O

there is a unique in O sequence {xk} starting at x0 and generated by (4), and this
sequence converges q-linearly to x̄.

Proof Choose κ > λ such that

δ := ∥
∥B0 − Df (x̄)

∥
∥ < 1/(2κ). (15)

Let κ ′ > κ be such that

κ ′δ
1 − κδ

< 1

and then fix γ > 0 to satisfy

κ ′δ
1 − κδ

< γ < 1.

Choose ε > 0 such that

κ ′

1 − κ(δ + ε)
(ε + δ) < γ. (16)

Let

H(x) = f (x̄) + Df (x̄)(x − x̄) + F(x), (17)

for x ∈ X. From Theorem 2.2 applied to f + F and h(·) = f (x̄) + Df (x̄)( · − x̄) −
f (·) (or simply by the standard Lyusternik–Graves theorem, see, e.g., [10, Theo-
rem 5E.1]), since h(x̄) = 0, κ > λ, and (f + F) + h = H , then (9) implies metric
regularity of H at x̄ for 0 with constant κ . Thus, it follows the existence of some
positive constants a and b such that

d
(
x,H−1(y)

) ≤ κd
(
y,H(x)

)
for all x ∈ Ba(x̄), y ∈ Bb(0).

Using (16), make a smaller if necessary so that Ba(x̄) ⊂ U ,
∥∥f (u) − f (v) − Df (x̄)(u − v)

∥∥ ≤ ε‖u − v‖ for all u,v ∈ Ba(x̄),

κ

(
δ + ca

1 − γ

)
< 1,

(18)

and

κ ′

1 − κ(δ + ca
1−γ

)

(
ε + δ + ca

1 − γ

)
< γ, (19)

where c is from (14). Set

μ := δ + ca

1 − γ
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and choose positive α and β to satisfy the inequalities (6) in Theorem 2.2. Choose
τ ∈ (0, α) such that

(
ε + δ + ca

1 − γ

)
τ ≤ β. (20)

Denote O := Bτ (x̄) and choose any x0 ∈ O \ {x̄}. Consider the function

h0(x) := f (x0) + B0(x − x0) − f (x̄) − Df (x̄)(x − x̄).

Then we have

ȳ0 ∈ h0(x̄) + H(x̄) where ȳ0 := f (x0) − f (x̄) + B0(x̄ − x0). (21)

Further,

∥∥h0(x̄)
∥∥ = ∥∥f (x0) + B0(x̄ − x0) − f (x̄)

∥∥

≤ ∥∥f (x0) − f (x̄) − Df (x̄)(x0 − x̄)
∥∥ + ∥∥(

B0 − Df (x̄)
)
(x̄ − x0)

∥∥

≤ (ε + δ)τ ≤ β, (22)

where we use (20). For any x, x′ ∈ Bα(x̄) from (15) we have

∥∥h0(x) − h0
(
x′)∥∥ = ∥∥(

B0 − Df (x̄)
)(

x − x′)∥∥ ≤ δ
∥∥x − x′∥∥ ≤ μ

∥∥x − x′∥∥.

Also, observe that ȳ0 = h0(x̄), hence from (22) we get ȳ0 ∈ Bβ(0). Finally, from (21)
we have x̄ ∈ (h0 +H)−1(ȳ0). We are now ready to apply Theorem 2.2 with H defined
in (17), h = h0, κ , μ, κ ′, a, b, α, β having the values defined above, to obtain that
there exists x1 ∈ (h0 + H)−1(0), that is, x1 satisfies (4) for k = 0, and also

‖x1 − x̄‖ ≤ κ ′

1 − κμ
‖ȳ0‖ ≤ κ ′

1 − κμ
(ε + δ)‖x0 − x̄‖ ≤ γ ‖x0 − x̄‖,

where we use the estimates (19) and (22). Since γ < 1, this yields x1 ∈ O = Bτ (x̄).
By induction, suppose that there exist an integer n > 1 and points x1, . . . , xn with

xk ∈ Bτ (x̄), and

‖xk − x̄‖ ≤ γ ‖xk−1 − x̄‖ for k = 1, . . . , n. (23)

If for some k ∈ {1, . . . , n} we have xk = x̄ or xk−1 = xk then xk is a solution of (1).
Otherwise, we have xk−1 �= xk �= x̄ for all k = 1, . . . , n. From condition (14) and
taking into account that τ ≤ α ≤ a/2 we get

∥∥Df (x̄) − Bn

∥∥ ≤ ∥∥Df (x̄) − B0
∥∥ + c

n∑

k=1

(‖xk − x̄‖ + ‖x̄ − xk−1‖
)

≤ δ + c

n∑

k=1

(‖xk − x̄‖ + ‖x̄ − xk−1‖
)
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≤ δ + 2c

n∑

k=0

‖xk − x̄‖ ≤ δ + 2c

∞∑

k=0

γ k‖x0 − x̄‖ ≤ δ + ca

1 − γ
. (24)

Define

hn(x) := f (xn) + Bn(x − xn) − f (x̄) − Df (x̄)(x − x̄)

and

ȳn := f (xn) − f (x̄) + Bn(x̄ − xn).

Then, using (24), we obtain

‖ȳn‖ = ∥∥f (xn) − f (x̄) − Df (x̄)(xn − x̄)
∥∥ + ∥∥(

Bn − Df (x̄)
)
(x̄ − xn)

∥∥

≤
(

ε + δ + ca

1 − γ

)
‖xn − x̄‖ ≤

(
ε + δ + ca

1 − γ

)
‖x0 − x̄‖. (25)

Hence, by (20),

‖ȳn‖ ≤
(

ε + δ + ca

1 − γ

)
τ ≤ β. (26)

Since hn(x̄) = ȳn, we get ‖hn(x̄)‖ ≤ β . Also, for any x, x′ ∈ Bα(x̄) we obtain
∥∥hn(x) − hn

(
x′)∥∥ = ∥∥(

Bn − Df (x̄)
)(

x − x′)∥∥

≤
(

δ + ca

1 − γ

)∥∥x − x′∥∥ = μ
∥∥x − x′∥∥.

The assumptions of Theorem 2.2 are then satisfied, hence, taking into account that
x̄ ∈ (hn + H)−1(ȳn) we conclude that there exists xn+1 ∈ (hn + H)−1(0), that is,
satisfying (4) for k = n, such that

‖xn+1 − x̄‖ ≤ κ ′

1 − κμ
‖ȳn‖.

Then, utilizing (19) and (25) we obtain

‖xn+1 − x̄‖ ≤ κ ′

1 − κμ

(
ε + δ + ca

1 − γ

)
‖xn − x̄‖ ≤ γ ‖xn − x̄‖. (27)

Hence, xn+1 ∈ Bτ (x̄) and the induction step is complete. If xn+1 = x̄ or xn+1 = xn

then xn+1 is a solution of (1). Otherwise, we have an infinite sequence {xn} with
xn �= xn+1 for all n which satisfies (27). Since γ < 1, (27) yields that the sequence
{xk} converges to x̄ q-linearly.

For the final statement, suppose that f + F is strongly metrically regular with
the same constant κ and neighborhoods Ba(x̄) and Bb(x̄). According to the second
part of Theorem 2.2, the point xn+1 ∈ (hn + H)−1(0) is unique in O . Furthermore,
(f +F)−1(0)∩O = {x̄} and hence the sequence must converge q-linearly to the only
solution x̄ in O . The proof is complete. �
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4 Convergence of the Broyden update

In this section X and Y are real Hilbert spaces with scalar products denoted by 〈·, ·〉.
We consider the following well-known Broyden update:

Bk+1 := Bk + (yk − Bksk)〈sk, ·〉
‖sk‖2

, (28)

where yk := f (xk+1) − f (xk) and sk := xk+1 − xk . Usually, B0 is taken as Df (x0).
There are a large number of papers dealing with quasi-Newton methods for solv-

ing the nonlinear equations in the infinite-dimensional setting, and some of them deal
with the Broyden update, see, e.g., [3, 12, 15, 18, 22, 23, 25]. An overview of the
Broyden update, together with historical remarks and recent works is given in [13].
We will apply Theorem 3.1 to the Broyden update (28) showing that it satisfies con-
dition (14) and hence is q-linearly convergent, locally.

We start with an elementary lemma.

Lemma 4.1 Let A ∈ L(X,Y ). If x ∈ X \ {0}, then

∥∥
∥∥A − 〈x, ·〉Ax

‖x‖2

∥∥
∥∥ =

{
0, if dimX = 1;
‖A‖, if dimX > 1.

(29)

Proof Let z ∈ span(x) = {λx | λ ∈ R}. Then there is some λ0 ∈ R such that z = λ0x,
from where,

∥
∥∥∥Az − 〈x, z〉Ax

‖x‖2

∥
∥∥∥ =

∥
∥∥∥λ0Ax − λ0〈x, x〉Ax

‖x‖2

∥
∥∥∥ = 0.

If dimX = 1, then X = span(x), and from the above equality we obtain (29). Other-
wise, assume that dimX > 1. For any z ∈ BX , one has

∥∥∥∥z − 〈x, z〉x
‖x‖2

∥∥∥∥

2

= ‖z‖2 − 〈x, z〉2

‖x‖2
≤ 1.

Hence,
∥∥∥∥A − 〈x, ·〉Ax

‖x‖2

∥∥∥∥ = sup
w∈BX

∥∥∥∥A

(
w − 〈x,w〉x

‖x‖2

)∥∥∥∥ ≤ ‖A‖ sup
w∈BX

∥∥∥∥w − 〈x,w〉x
‖x‖2

∥∥∥∥ ≤ ‖A‖.

For any z ∈ {x}⊥ = {w ∈ X | 〈w,x〉 = 0}, one has
∥∥∥∥Az − 〈x, z〉Ax

‖x‖2

∥∥∥∥ = ‖Az‖,

and therefore (29) follows. �

The following result is a generalization to Hilbert spaces of a statement included
in the first part of the proof of [24, Theorem 5.4.13].
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Proposition 4.2 Suppose that the Fréchet derivative mapping Df is Lipschitz contin-
uous with constant L in a convex neighborhood U of a point x̄. Given Bk ∈ L(X,Y )

and xk, xk+1 ∈ U , with xk+1 �= xk , if Bk+1 is defined as in (28), then

∥∥Bk+1 − Df (x̄)
∥∥ ≤ ∥∥Bk − Df (x̄)

∥∥ + L

2

(‖xk+1 − x̄‖ + ‖x̄ − xk‖
)
. (30)

Proof By assumption,
∥∥Df (u) − Df (v)

∥∥ ≤ L‖u − v‖ for all u,v ∈ U.

Let xk+1, xk ∈ U , xk �= xk+1 and let Bk+1 be defined as in (28). Then

Bk+1 − Df (x̄) = Bk − Df (x̄) + (yk − Bksk)〈sk, · 〉
‖sk‖2

= Bk − Df (x̄) − (Bk − Df (x̄))sk〈sk, · 〉
‖sk‖2

+ (yk − Df (x̄)sk)〈sk, · 〉
‖sk‖2

.

Thus,

∥∥Bk+1 − Df (x̄)
∥∥ ≤

∥∥∥∥
(
Bk − Df (x̄)

) − (Bk − Df (x̄))sk〈sk, · 〉
‖sk‖2

∥∥∥∥ + ‖yk − Df (x̄)sk‖
‖sk‖ .

By Lemma 4.1,
∥∥∥
∥
(
Bk − Df (x̄)

) − (Bk − Df (x̄))sk〈sk, · 〉
‖sk‖2

∥∥∥
∥ ≤ ∥∥Bk − Df (x̄)

∥∥.

Utilizing the mean value theorem, we obtain
∥∥yk − Df (x̄)sk

∥∥ = ∥∥f (xk+1) − f (xk) − Df (x̄)sk
∥∥

=
∥∥∥∥

∫ 1

0

[
Df

(
xk + t (xk+1 − xk)

)
(xk+1 − xk) − Df (x̄)sk

]
dt

∥∥∥∥

≤ ‖sk‖
∫ 1

0

∥∥Df
(
xk + t (xk+1 − xk)

) − Df (x̄)
∥∥dt

≤ L‖sk‖
∫ 1

0

(
(1 − t)‖xk − x̄‖ + t‖xk+1 − x̄‖)dt

= L

2
‖sk‖

(‖xk+1 − x̄‖ + ‖xk − x̄‖).

This yields (30). �

We apply Theorem 3.1 to obtain the following result:

Theorem 4.3 Consider the generalized equation (1) in the setting of Hilbert spaces
X and Y with a solution x̄ and suppose that the derivative mapping Df is Lipschitz
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continuous around x̄. Also, suppose that f + F is metrically regular at x̄ for 0 with
constant λ. Consider the quasi-Newton method (4) applied to (1) with the Broyden
update (28) and with B0 satisfying (13). Then there exists a neighborhood O of x̄

such that for any x0 ∈ O there exists a sequence {xk} starting from x0 and generated
by (4) which stays in O and either reaches a solution of (1) in finitely many steps or
converges q-linearly to x̄. If in addition f + F is strongly metrically regular at x̄ for
0 then for every x0 ∈ O there is a unique in O sequence {xk} starting from x0 and
generated by (4), and this sequence which converges q-linearly to x̄.

We devote the remainder of this section to the q-superlinear convergence of the
Broyden update. Recall that the Hilbert–Schmidt norm of an operator A ∈ L(X,Y )

is defined as

‖A‖HS =
√∑

i∈I

‖Aei‖2,

where {ei, i ∈ I } is an orthonormal basis of X. Denote by H(X,Y ) := {A ∈ L(X,Y ) |
‖A‖HS < +∞} the set of Hilbert–Schmidt operators. Endowed with the inner prod-
uct

〈A,B〉HS =
∑

i∈I

〈Aei,Bei〉,

H(X,Y ) becomes a Hilbert space, see [20]. In Euclidean spaces this norm coincides
with the Frobenius norm.

We start with a lemma which echoes Lemma 4.1.

Lemma 4.4 Let A ∈ H(X,Y ). If 0 �= x ∈ X, then
∥∥∥∥A − 〈x, ·〉Ax

‖x‖2

∥∥∥∥

2

HS

= ‖A‖2
HS − ‖Ax‖2

‖x‖2
. (31)

Proof Note that
∥∥
∥∥A − 〈x, ·〉Ax

‖x‖2

∥∥
∥∥

2

HS

= ‖A‖2
HS +

∥∥
∥∥
〈x, ·〉Ax

‖x‖2

∥∥
∥∥

2

HS

− 2

〈
A,

〈x, ·〉Ax

‖x‖2

〉

HS

.

Further, by the Parseval identity,
∥
∥〈x, ·〉Ax

∥
∥2

HS
=

∑

i∈I

∥
∥〈x, ei〉Ax

∥
∥2 = ‖Ax‖2

∑

i∈I

〈x, ei〉2 = ‖Ax‖2‖x‖2,

and
〈
A, 〈x, ·〉Ax

〉
HS

=
∑

i∈I

〈
Aei, 〈x, ei〉Ax

〉 =
∑

i∈I

〈
A〈x, ei〉ei,Ax

〉 = ‖Ax‖2,

where to get the last equality we apply Remark 1.2.1(c) in [20]. This yields (31). �

Lemma 4.4 implies that the Proposition 4.2 is valid also for the Hilbert–Schmidt
norm.
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Proposition 4.5 Consider a function f : X → Y and a point x̄ ∈ X such that the
derivative mapping Df is Lipschitz continuous around x̄ with respect to the Hilbert–
Schmidt norm with constant L in a convex neighborhood U of a point x̄. Given Bk ∈
H(X,Y ) and xk, xk+1 ∈ U , with xk+1 �= xk , if Bk+1 is defined as in (28), then

∥∥Bk+1 − Df (x̄)
∥∥

HS
≤ ∥∥Bk − Df (x̄)

∥∥
HS

+ L

2

(‖xk+1 − x̄‖ + ‖x̄ − xk‖
)
. (32)

Proof This can be obtained by applying the same argument as in Proposition 4.2 but
using Lemma 4.4 instead of Lemma 4.1. �

Corollary 4.6 On the assumptions of Proposition 4.5, if B0 − Df (x̄) is a Hilbert–
Schmidt operator and Df is Lipschitz with respect to the Hilbert–Schmidt norm, then
Bk − Df (x̄) is a Hilbert–Schmidt operator, for all k ∈N.

Proof This follows from (32). �

In the remainder of this section we link the analysis presented so far with a cen-
tral result in the theory of quasi-Newton methods—the Dennis–Moré theorem. This
theorem, first published in [5], gives a characterization for the q-superlinear conver-
gence of a quasi-Newton method applied to a smooth equation f (x) = 0 with a zero
at x̄ at which the derivative mapping Df (x̄) is invertible. Namely, if a quasi-Newton
method generates a sequence {xk} which stays near x̄ and xk+1 �= xk for all k, then
{xk} is convergent q-superlinearly if and only if it is convergent and, in addition,

lim
k→∞

‖Eksk‖
‖sk‖ = 0, (33)

where Ek := Bk − Df (x̄).
It is well known that the Broyden update (28) applied to a smooth equation in fi-

nite dimensions with a nonsingular Jacobian at the reference solution x̄ satisfies con-
dition (33), see e.g. [17, Theorem 7.2.4]. Proofs of this claim in infinite-dimensional
Hilbert spaces are given in [18] and [23], both of which explicitly use the fact that
they deal with equations. We will now show that (33) holds as well by relying only
on the formula (28), without assuming that this update is to be applied for solving
an equation. This allows us to apply the Dennis–Moré theorem for generalized equa-
tions in Banach spaces proved in [8, Theorem 3]. For completeness we state next the
sufficiency part of the latter result which is used in further lines.

Theorem 4.7 Consider the generalized equation (1) with a solution x̄ and suppose
that f is Fréchet differentiable in a neighborhood U of x̄ and the derivative mapping
Df is continuous at x̄. Also, suppose that the mapping x �→ f (x̄)+Df (x̄)(x − x̄)+
F(x) is strongly metrically subregular at x̄ for 0. If a sequence {xk} generated by (4)
is convergent to x̄ and satisfies (33), then it is convergent q-superlinearly.

The following theorem gives conditions under which the Broyden update satisfies
the Dennis–Moré condition (33).
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Theorem 4.8 Consider a function f : X → Y and a point x̄ ∈ X such that the
derivative mapping Df is Lipschitz continuous around x̄ with respect to the Hilbert–
Schmidt norm. Consider also the Broyden update (28) such that B0 − Df (x̄) is a
Hilbert–Schmidt operator. If a sequence {xk} is linearly convergent to x̄, then it sat-
isfies the Dennis–Moré condition (33).

Proof We first show that

lim
k→∞‖Bk+1 − Bk‖HS = 0. (34)

The proof of (34) parallels the analysis in [14], similarly to the proof of [4, Theo-
rem 2.3]. Consider the convex set

Ck := {
A ∈ L(X,Y ) | ∥∥A − Df (x̄)

∥∥
HS

< ∞ and Ask = yk

}
,

where sk := xk+1 − xk and yk := f (xk+1) − f (xk). Observe that Ck is closed: if
An ∈ Ck converges to A ∈ L(X,Y ) (with respect to the Hilbert–Schmidt norm), then

∥∥A − Df (x̄)
∥∥

HS
≤ ‖A − An‖HS + ∥∥An − Df (x̄)

∥∥
HS

< ∞,

and

‖Ask − yk‖ = ‖Ask − Ansk‖ ≤ ‖A − An‖HS‖sk‖,
where we employ the inequality ‖A − Bk‖ ≤ ‖A − Bk‖HS (see e.g. [20, Corol-
lary 16.9]). Taking the limit when n → ∞, we get Ask = yk .

Let {ei, i ∈ I } be an orthonormal basis of X for an index set I . By Corollary 4.6,
Bk+1 ∈ Ck . Moreover, for all A ∈ Ck , one has

‖Bk+1 − Bk‖2
HS =

∥∥∥∥
(yk − Bksk)〈sk, ·〉

‖sk‖2

∥∥∥∥

2

HS

= ‖(A − Bk)sk〈sk, ·〉‖2
HS

‖sk‖4

=
∑

i∈I ‖(A − Bk)sk〈sk, ei〉‖2

‖sk‖4
=

∑
i∈I 〈sk, ei〉2‖(A − Bk)sk‖2

‖sk‖4

= ‖(A − Bk)sk‖2

‖sk‖2
≤ ‖A − Bk‖2

HS,

where we again use the inequality ‖A − Bk‖ ≤ ‖A − Bk‖HS . Then Broyden up-
date (28) is the (unique) solution to the minimization problem

min
A∈Ck

‖A − Bk‖HS.

Thus, Bk+1 is the projection of Bk onto the closed convex set Ck . The projection map-
ping onto Ck , denoted by PCk

, is firmly nonexpansive (see e.g. [2, Proposition 4.8]),
meaning in our case that for every A ∈ Ck one has

∥∥PCk
(Bk) − PCk

(A)
∥∥2

HS
+ ∥∥(I − PCk

)(Bk) − (I − PCk
)(A)

∥∥2
HS

≤ ‖Bk − A‖2
HS,
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where I denotes the identity mapping. (Firmly nonexpansive mappings can be de-
fined in several equivalent ways; here we use one of the possible definitions, see also
[2, Definition 4.1(i)].) Hence, for all A ∈ Ck ,

‖Bk+1 − A‖2
HS + ‖Bk+1 − Bk‖2

HS ≤ ‖Bk − A‖2
HS. (35)

For

Ak :=
∫ 1

0
Df

(
xk + t (xk+1 − xk)

)
dt (36)

we have

Aksk =
∫ 1

0
Df

(
xk + t (xk+1 − xk)

)
(xk+1 − xk)dt = f (xk+1) − f (xk) = yk. (37)

Furthermore, since Df is Lipschitz continuous with respect to the Hilbert–Schmidt
norm, there is a constant L ≥ 0 such that, eventually,

∥∥Ak − Df (x̄)
∥∥

HS
=

∥∥∥∥

∫ 1

0

(
Df

(
xk + t (xk+1 − xk)

) − Df (x̄)
)
dt

∥∥∥∥
HS

≤
∫ 1

0

∥∥Df
(
txk+1 + (1 − t)xk

) − Df (x̄)
∥∥

HS
dt

≤ L

∫ 1

0

∥∥t (xk+1 − x̄) + (1 − t)(xk − x̄)
∥∥dt

≤ L

2

(‖xk+1 − x̄‖ + ‖xk − x̄‖) < ∞. (38)

Thus, Ak ∈ Ck . Since xk converges to x̄, we deduce from (38) that ‖Ak − Df (x̄)‖HS

converges to zero. Moreover, (32) together with the linear convergence of xk to x̄

implies that ‖Bk − Df (x̄)‖HS is convergent. Indeed, let 0 < γ < 1 be such that

‖xk+1 − x̄‖ ≤ γ ‖xk − x̄‖ for all k = 0,1, . . . .

Then, for all m > n, one has by (32)

∥∥Bm − Df (x̄)
∥∥

HS
≤ ∥∥Bn − Df (x̄)

∥∥
HS

+ L

2

m∑

k=n+1

(‖xk − x̄‖ + ‖xk−1 − x̄‖)

≤ ∥
∥Bn − Df (x̄)

∥
∥

HS
+ L

m−1∑

k=n

‖xk − x̄‖

≤ ∥∥Bn − Df (x̄)
∥∥

HS
+ L

∞∑

k=n

γ k‖x0 − x̄‖

≤ ∥
∥Bn − Df (x̄)

∥
∥

HS
+ Lγ n

1 − γ
‖x0 − x̄‖.
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This implies that ‖Bk − Df (x̄)‖HS is a Cauchy sequence, and thus it is convergent.
Therefore, since Ak defined in (36) converges to Df (x̄), we get that ‖Bk − Ak‖HS

and ‖Bk+1 − Ak‖HS converge to the same limit. Furthermore, (35) implies

‖Bk+1 − Ak‖2
HS + ‖Bk+1 − Bk‖2

HS ≤ ‖Bk − Ak‖2
HS (39)

which in turn yields (34).
We are now ready to prove that (33) is satisfied. Since ‖Bk+1 − Bk‖ ≤

‖Bk+1 − Bk‖HS , by the triangle inequality we have

‖Eksk‖ = ∥∥(
Bk − Df (x)

)
sk

∥∥

≤ ∥∥(
Bk+1 − Df (x)

)
sk

∥∥ + ‖Bk+1 − Bk‖HS‖sk‖. (40)

The next steps mimics the proof of Proposition 4.2. Taking into account that
∥∥(

Bk+1 − Df (x)
)
sk

∥∥ = ∥∥yk − Df (x)sk
∥∥ = ∥∥f (xk+1) − f (xk) − Df (x)sk

∥∥

and

f (xk+1) − f (xk) =
∫ 1

0
Df

(
xk + t (xk+1 − xk)

)
skdt,

we get

∥∥(
Bk+1 − Df (x)

)
sk

∥∥ ≤ ‖sk‖
∫ 1

0

∥∥Df
(
xk + t (xk+1 − xk)

) − Df (x)
∥∥dt

≤ ‖sk‖
∫ 1

0

∥∥Df
(
xk + t (xk+1 − xk)

) − Df (x)
∥∥

HS
dt

≤ L‖sk‖
∫ 1

0

∥∥t (xk+1 − x) + (1 − t)(xk − x)
∥∥dt

≤ L‖sk‖
2

(‖xk+1 − x‖ + ‖xk − x‖).

Thus, from (40),

‖Eksk‖
‖sk‖ ≤ L

2

(‖xk+1 − x‖ + ‖xk − x‖) + ‖Bk+1 − Bk‖HS.

Since ‖Bk+1 − Bk‖HS → 0 by (34) and xk → x, we come to (33). �

The following theorem presents the main result of this section.

Theorem 4.9 Consider the generalized equation (1) with a solution x̄ and suppose
that the derivative mapping Df is Lipschitz continuous around x̄ with respect to the
Hilbert–Schmidt norm. Consider the quasi-Newton method (4) applied to (1) with the
Broyden update (28) such that B0 satisfies (13) and B0 −Df (x̄) is a Hilbert–Schmidt
operator.
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(i) If f + F is strongly metrically subregular at x̄ for 0, then every sequence {xk}
generated by (4) which converges to x̄ is q-superlinearly convergent;

(ii) If f +F is both strongly metrically subregular and metrically regular at x̄ for 0,
then there exists a neighborhood O of x̄ such that for every starting point x0 ∈ O

there exists a sequence {xk} generated by (4) which either reaches a solution
of (1) in finitely many steps or converges q-superlinearly to x̄;

(iii) If f + F is strongly metrically regular at x̄ for 0, then for every x0 ∈ O there
exists a unique in O sequence {xk} starting from x0 and generated by (4), and
this sequence converges q-superlinearly to x̄.

Proof To prove (i) it is sufficient to combine Theorem 4.8 with Theorem 4.7. Then
(ii) follows from (i) and Theorem 4.3. Since strong metric regularity implies strong
metric subregularity, in order to prove (iii) it is sufficient to combine (i) with the last
part of Theorem 4.3. �

We note that the condition E0 := B0 − Df (x) be a Hilbert–Schmidt operator is
used in [23, Theorem 3.5] to prove q-superlinear convergence of the Broyden method
for equations. Thus, Theorem 4.7 also extends [23, Theorem 3.5] to generalized equa-
tions.

5 Two numerical examples

Our first example is one-dimensional. Let f : R → R and F :R⇒R be given by

f (x) := 3x3 − 2x2, for x ∈ R;

F(x) :=
{ {x,−x}, x ≥ 0;

∅, x < 0.

The graph of f +F is plotted in Figure 1. The generalized equation 0 ∈ f (x)+F(x)

has two solutions: 0 and 1.

Fig. 1 The graph of f + F in
the first example
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Table 1 Numerical results for the first example with x0 = 0.1 (left) and x0 = 0.3 (right)

Iteration ‖ek‖ ‖ek+1‖
‖ek‖

‖Eksk‖
‖sk‖ ‖ek‖ ‖ek+1‖

‖ek‖
‖Eksk‖
‖sk‖

1 0.02028986 0.20289855 0.31000000 0.02950820 0.09836066 0.39000000

2 0.00417421 0.20572906 0.20325772 0.01398735 0.47401564 0.35984682

3 0.00017129 0.04103511 0.04738675 0.00084106 0.06012992 0.08255372

4 0.00000143 0.00836626 0.00863650 0.00002369 0.02817032 0.02903246

5 0.00000000 0.00034261 0.00034536 0.00000004 0.00168284 0.00172732

6 0.00000000 0.00000287 0.00000287 0.00000000 0.00004739 0.00004746

Observe that the mapping f + F is strongly regular at any point of its graph, and
particularly at 0 for 0 and at 1 for 0. Hence the assumptions of Theorem 4.9 are sat-
isfied, and the quasi-Newton method (4) with the Broyden update (28) generates a
locally unique q-superlinearly convergent sequence when started within a neighbor-
hood of each of the solutions. The numerical results with B0 := Df (x0) are shown
in Table 1 for two starting points: x0 = 0.1 (left) and x0 = 0.3 (right). The absolute
error at the kth iteration is denoted by ‖ek‖. Note that the obtained convergence is
actually q-superlinear in each case.

In the paper [11] the following model of economic equilibrium was introduced.
Consider a group of r agents, each of which starts with a vector x0

i ∈ R
n of goods

and trades them for another goods vectors xi ∈ R
n. Each good has a price to be

determined by the market and the price vector is p ∈ R
n+. Agent i has an initial

amount of money m0
i ∈ R+ and ends up, after trading, with an amount of money

mi ∈ R+. Agent i aims at maximizing a utility function ui(mi, xi) over a set R+ ×Ui

subject to the budget constraint

mi − m0
i + 〈

p,xi − x0
i

〉 ≤ 0, (41)

where the sets Ui ⊂ R
n are nonempty, closed and convex and the functions ui are

continuously differentiable, concave and nondecreasing over R+ × Ui . In addition
to the budget constraints (41) there are supply-demand requirements for money and
goods, of the form

r∑

i=1

[
mi − m0

i

] ≤ 0,

r∑

i=1

[
xi − x0

i

] ≤ 0. (42)

The problem is to find an equilibrium value of the vector variable (p,m,x) such
that each utility function attains its maximum subject to the budget and the supply-
demand constraints. It is shown in [11, Theorem 1] that under some mild condi-
tions that are satisfied in the example displayed below an equilibrium always exists,
moreover it satisfies a first-order optimality condition for each agent involving the
Lagrange functions

Li(p,mi, xi, λi) = −u(mi, xi) + λi

(
mi − m0

i + 〈
p,xi − x0

i

〉)

with a Lagrange multiplier λi ≥ 0, i = 1, . . . , r , associated with the budget con-
straint (41). Adding the supply-demand constraints (42) written as complemen-
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tarity conditions, we obtain a variational inequality for the vectors p ∈ R
n+,

m = (m1, . . . ,mr)
T ∈ R

r+, x = (x1, . . . , xr )
T ∈ U1 × U2 × · · · × Ur , and λ =

(λ0, . . . , λr)
T ∈ R

r+ of the form

−g
(
p,m,x,λ,m0, x0) ∈ NC(p,m,x,λ), (43)

where

C = R
n+ ×R

r+ × U1 × · · · × Ur ×R
r+, (44)

and

g
(
p,m,x,λ,m0, x0) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑r
i=1[x0

i − xi]
. . .

λi − ∇mi
ui(mi, xi)

. . .

λip − ∇xi
ui(mi, xi)

. . .

m0
i − mi + 〈p,x0

i − xi〉
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (45)

The initial endowments are represented by the vectors m0 = (m0
1, . . . ,m

0
r )

T ∈ R
r+

and x0 = (x0
1 , . . . , x0

r )T ∈ U1 ×U2 ×· · ·×Ur . In [11, Theorem 3] it is shown that the
equilibrium mapping associated with (43) is strongly regular provided that for each
agent i the initial goods x0

i are sufficiently close to the equilibrium vector x̄i ; in other
words, when the trade starts with amounts of goods not too far from the equilibrium.
Note that the first inequality in (42) does not appear in (43) since at equilibrium that
automatically becomes an equality.

We consider a specific example where there are two agents with utility functions

ui(mi, xi) = αi ln(mi) + βi ln(xi), i = 1,2,

and a single good subject to the constraints

xi ∈ Ui = [ξi, ηi], i = 1,2

for some positive ξi and ηi . The variational inequality (43) for the vector (p,m1,m2,

x1, x2, λ1, λ2) has the following specific form:

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

∑2
i=1[x0

i − xi]
λ1 − α1

m1

λ2 − α2
m2

λ1p − β1
x1

λ2p − β2
x2

m0
1 − m1 + 〈p,x0

1 − x1〉
m0

2 − m2 + 〈p,x0
2 − x2〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

∈

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

NR+(p)

NR+(m1)

NR+(m2)

NU1(x1)

NU2(x2)

NR+(λ1)

NR+(λ2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

.
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Table 2 Numerical results for
the second example Iteration ‖ek‖ ‖ek+1‖

‖ek‖
‖Eksk‖
‖sk‖

1 0.26457513 0.20651049 0.03359845

2 0.05463754 0.54349707 0.00097674

3 0.02969534 0.00930219 0.00039065

4 0.00027623 0.03250097 0.00000396

5 0.00000898 0.01002655 0.00000021

6 0.00000009 0.01152241 0.00000000

The numerical implementation of Broyden’s update (43) for this variational in-
equality has been done in Matlab. Each step of the method reduces to solving lin-
ear complementarity problems (LCP). The matlab function LCP by Yuval available
at http://www.mathworks.com/matlabcentral/fileexchange/20952 has been used for
solving these problems. The computations are done for the following data. For the
parameters αi = βi = 0.1 we consider the first agents with endowment of good
0.9 and money 1.3 and the second agent with unit endowments: x0 = (0.9,1)T,
m0 = (1.3,1)T. The survival interval of consumption for each agent is [0.94,1.08].
Then the solution is: p = 1.2745, m = (1.2235,1.0765)T, x = (0.96,0.94)T, λ =
(0.0817,0.0929)T.

We did numerical testing with various starting points and starting updates, and
obtained rather similar results. The result of one of these tests is presented below
for the starting point of the algorithm equal p0 = 1.3745, m0 = (1.3235,1.1765)T,
x0 = (1.06,1.04)T, λ0 = (0.1817,0.1929)T and initial update B0 equal the value of
the Jacobian at the starting point. The results of computations are given in Table 2.
We have q-superlinear convergence also for this case, as proved theoretically.

Acknowledgement The authors wish to thank the anonymous referees for their valuable comments and
suggestions.
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