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Abstract Nemirovski’s analysis (SIAM J. Optim. 15:229–251, 2005) indicates that
the extragradient method has the O(1/t) convergence rate for variational inequalities
with Lipschitz continuous monotone operators. For the same problems, in the last
decades, a class of Fejér monotone projection and contraction methods is developed.
Until now, only convergence results are available to these projection and contraction
methods, though the numerical experiments indicate that they always outperform the
extragradient method. The reason is that the former benefits from the ‘optimal’ step
size in the contraction sense. In this paper, we prove the convergence rate under a uni-
fied conceptual framework, which includes the projection and contraction methods as
special cases and thus perfects the theory of the existing projection and contraction
methods. Preliminary numerical results demonstrate that the projection and contrac-
tion methods converge twice faster than the extragradient method.
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1 Introduction

Let Ω be a closed convex subset of Rn, F be a continuous mapping from Rn to itself.
The variational inequality problem, denoted by VI(Ω,F ), is to find a vector u∗ ∈ Ω

such that

VI(Ω,F )
(
u − u∗)T

F
(
u∗) ≥ 0, ∀u ∈ Ω. (1.1)

Notice that VI(Ω,F ) is invariant when F is multiplied by a positive scalar β > 0. It
is well known ([1], p. 267) that, for any β > 0,

u∗ is a solution of VI(Ω,F ) ⇐⇒ u∗ = PΩ

[
u∗ − βF

(
u∗)], (1.2)

where PΩ(·) denotes the projection onto Ω with respect to the Euclidean norm, i.e.,

PΩ(v) = argmin
{‖u − v‖ | u ∈ Ω

}
.

Throughout this paper we assume that the mapping F is monotone and Lipschitz
continuous, i.e.,

(u − v)T
(
F(u) − F(v)

) ≥ 0, ∀u,v ∈ Rn,

and there is a constant L > 0 (not necessary to know), such that
∥∥F(u) − F(v)

∥∥ ≤ L‖u − v‖, ∀u,v ∈ Rn.

Moreover, we assume that the solution set of VI(Ω,F ), denoted by Ω∗, is nonempty.
The nonempty assumption of the solution set, together with the monotonicity assump-
tion of F , implies that Ω∗ is closed and convex (see p. 158 in [3]).

Among the algorithms for monotone variational inequalities, the extragradient
(EG) method proposed by Korpelevich [12] is one of the simple and attractive meth-
ods. In fact, each iteration of the extragradient method can be divided into two steps.
The k-th iteration of EG method begins with a given uk ∈ Ω , the first step produces
a vector ũk via a projection

ũk = PΩ

[
uk − βkF

(
uk

)]
, (1.3a)

where βk > 0 is selected to satisfy (see [13])

βk

∥∥F
(
uk

) − F
(
ũk

)∥∥ ≤ ν
∥∥uk − ũk

∥∥, ν ∈ (0,1). (1.3b)

Since ũk is not accepted as the new iterate, for designation convenience, we call it
as a predictor and βk is named the prediction step size. The second step (correction
step) of the k-th iteration updates the new iterate uk+1 by

uk+1 = PΩ

[
uk − βkF

(
ũk

)]
, (1.3c)

where βk and ũk are given in (1.3a). The sequence {uk} generated by the extragradient
method is Fejér monotone with respect to the solution set, namely,

∥∥uk+1 − u∗∥∥2 ≤ ∥∥uk − u∗∥∥2 − (
1 − ν2)∥∥uk − ũk

∥∥2
. (1.4)
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For a proof of the above contraction property, the readers may consult [3] (see
pp. 1115–1118 therein). Notice that, in the extragradient method, the step size of
the prediction (1.3a) and that of the correction (1.3c) are equal. Thus these two steps
seem like ‘symmetric’.

Because of its simple iterative forms, recently, the extragradient method has been
applied to solve some large optimization problems in the area of information science,
such as in machine learning [11, 14, 22, 23], optical network [16, 17] and speech
recognition [18], etc. In addition, Nemirovski [15] and Tseng [24] proved the O(1/t)

convergence rate of the extragradient method. Both in the theoretical and practical
aspects, the interest in the extragradient method becomes more active.

In the last decades, a class of projection and contraction (PC) methods for mono-
tone variational inequalities [5, 6, 8, 19, 20] are developed. Similarly as in the
extragradient method, each iteration of the PC methods consists of two steps. The
prediction step of PC methods produces the predictor ũk via (1.3a) just as in the
extragradient method (but the condition (1.3b) is not necessary). The PC methods
exploit a pair of geminate directions [7, 8] offered by the predictor, namely, they are

d
(
uk, ũk

) = (
uk − ũk

) − βk

(
F

(
uk

) − F
(
ũk

))
and βkF

(
ũk

)
. (1.5)

Here, both the directions are ascent directions of the unknown distance function
1
2‖u − u∗‖2 at the point uk . Based on such directions, the goal of the correction step
is to generate a new iterate which is closer to the solution set. It leads to choosing the
‘optimal’ step length

�k = (uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2
, (1.6)

and a relaxation factor γ ∈ (0,2), the second step (correction step) of the PC methods
updates the new iterate uk+1 by

uk+1 = uk − γ �kd
(
uk, ũk

)
, (1.7)

or

uk+1 = PΩ

[
uk − γ �kβkF

(
ũk

)]
. (1.8)

The PC methods (without line search) make one (or two) projection(s) on Ω at each
iteration, and the distance of the iterates to the solution set monotonically converges
to zero. According to the terminology in [2], these methods belong to the class of Fe-
jér contraction methods. In fact, the only difference between the extragradient method
and one of the PC methods is that they use different step sizes in the correction step
(see (1.3c) and (1.8)). According to our numerical experiments [6, 8], the PC methods
always outperform the extragradient methods.

Stimulated by the complexity statement of the extragradient method, this paper
shows the O(1/t) convergence rate of the projection and contraction methods for
monotone VIs. Recall that Ω∗ can be characterized as (see (2.3.2) in p. 159 of [3])

Ω∗ =
⋂

u∈Ω

{
ũ ∈ Ω : (u − ũ)T F (u) ≥ 0

}
.
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This implies that ũ ∈ Ω is an approximate solution of VI(Ω,F ) with the accuracy ε

if it satisfies

ũ ∈ Ω and inf
u∈Ω

{
(u − ũ)T F (u)

} ≥ −ε.

In this paper, we show that, for given ε > 0, in O(L/ε) iterations the projection and
contraction methods can find a ũ such that

ũ ∈ Ω and sup
u∈D(ũ)

{
(ũ − u)T F (u)

} ≤ ε, (1.9)

where

D(ũ) = {
u ∈ Ω | ‖u − ũ‖ ≤ 1

}
.

As a byproduct of the complexity analysis, we find why taking a suitable relaxation
factor γ ∈ (1,2) in the correction steps (1.7) and (1.8) of the PC methods can achieve
the faster convergence.

The outline of this paper is as follows. Section 2 recalls some basic concepts in the
projection and contraction methods. In Sect. 3, we investigate the geminate descent
directions of the distance function. Section 4 shows the contraction property of the PC
methods. In Sect. 5, we carry out the complexity analysis, which results in an O(1/t)

convergence rate and suggests using the large relaxation factor in the correction step
of the PC methods. In Sect. 6, we present some numerical results to indicate the
efficiency of the PC methods in comparison with the extragradient method. Finally,
some conclusion remarks are addressed in the last section.

Throughout the paper, the following notational conventions are used. We use u∗ to
denote a fixed but arbitrary point in the solution set Ω∗. A superscript such as in uk

refers to a specific vector and usually denotes an iteration index. For any real matrix
M and vector v, we denote the transpose by MT and vT , respectively. The Euclidean
norm will be denoted by ‖ · ‖.

2 Preliminaries

In this section, we summarize the basic concepts of the projection mapping and three
fundamental inequalities for constructing the PC methods. Throughout this paper, we
assume that the projection on Ω in the Euclidean-norm has a closed form and it is
easy to be carried out. Since

PΩ(v) = argmin

{
1

2
‖u − v‖2

∣∣∣u ∈ Ω

}
,

according to the optimal solution of the convex minimization problem, we have

(
v − PΩ(v)

)T (
u − PΩ(v)

) ≤ 0, ∀v ∈ Rn,∀ u ∈ Ω. (2.1)

Consequently, for any u ∈ Ω , it follows from (2.1) that
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‖u − v‖2 = ∥∥(
u − PΩ(v)

) − (
v − PΩ(v)

)∥∥2

= ∥∥u − PΩ(v)
∥∥2 − 2

(
v − PΩ(v)

)T (
u − PΩ(v)

) + ∥∥v − PΩ(v)
∥∥2

≥ ∥∥u − PΩ(v)
∥∥2 + ∥∥v − PΩ(v)

∥∥2
.

Therefore, we have

∥∥u − PΩ(v)
∥∥2 ≤ ‖u − v‖2 − ∥∥v − PΩ(v)

∥∥2
, ∀ v ∈ Rn, ∀ u ∈ Ω. (2.2)

For given u and β > 0, let ũ = PΩ [u − βF(u)] be given via a projection. We say
that ũ is a test-vector of VI(Ω,F ) because

u = ũ ⇔ u ∈ Ω∗.

Since ũ ∈ Ω , it follows from (1.1) that

(FI-1)
(
ũ − u∗)T

βF
(
u∗) ≥ 0, ∀u∗ ∈ Ω∗. (2.3)

Setting v = u − βF(u) and u = u∗ in the inequality (2.1), we obtain

(FI-2)
(
ũ − u∗)T (

(u − ũ) − βF(u)
) ≥ 0, ∀u∗ ∈ Ω∗. (2.4)

Under the assumption that F is monotone we have

(FI-3)
(
ũ − u∗)T

β
(
F(ũ) − F

(
u∗)) ≥ 0, ∀u∗ ∈ Ω∗. (2.5)

The inequalities (2.3), (2.4) and (2.5) play an important role in the projection and
contraction methods. They were emphasized in [5] as three fundamental inequalities
in the projection and contraction methods.

Definition 2.1 (Ascent direction) For any but fixed u∗ ∈ Ω∗, a direction d is called
an ascent direction of 1

2‖u−u∗‖2 at u if and only if the inner-product (u−u∗)T d > 0.

Definition 2.2 (Predictor in projection-type methods) For given uk , ũk given by
(1.3a) is called the predictor.

Definition 2.3 (Prediction step-size condition in EG method) The condition (1.3b) is
called the prediction step-size condition in the extragradient method.

Indeed, the predictor ũk in the projection and contraction methods [5, 6, 8, 19]
is produced by (1.3a). Because the mapping F is Lipschitz continuous (even if
the constant L > 0 is unknown), without loss of generality, we can assume that
infk≥0{βk} ≥ βL > 0 and βL = O(1/L). In practical computation, we can choose
a constant ν ∈ (0,1) and make an initial guess of β = ν/L and decrease β by a con-
stant factor and repeat the procedure whenever (1.3b) is violated.
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To the direction d(uk, ũk) defined in (1.5), there is a correlative ascent direction
βkF (ũk). Notice that the projection equation (1.3a) can be written as

ũk = PΩ

{
ũk − [

βkF
(
ũk

) − d
(
uk, ũk

)]}
, (2.6)

where d(uk, ũk) is defined in (1.5). It follows from (1.2) that ũk is a solution of
VI(Ω,F ) if and only if d(uk, ũk) = 0. In [9, 10], d(uk, ũk) and βkF (ũk) in (2.6) are
called a pair of geminate directions and denoted by d1(u

k, ũk) and d2(u
k, ũk), respec-

tively. In this paper, we restrict d2(u
k, ũk) to be F(ũk) times a positive scalar βk . The

projection and contraction methods considered in this paper belong to the prox-like
contraction methods [9, 10]. Instead of the step-size condition in the extragradient
method (see (1.3b)), we use the following general step-size conditions for the projec-
tion and contraction methods.

Definition 2.4 (Prediction step-size conditions in PC methods) Let c1, c2 > 0 be
given constants. For given uk , let ũk be given by (1.3a) and d(uk, ũk) be defined
by (1.5). We say βk satisfies the prediction step-size conditions in the projection and
contraction methods, if its related direction d(uk, ũk) satisfies

(
uk − ũk

)T
d
(
uk, ũk

) ≥ c1
∥
∥uk − ũk

∥
∥2 (2.7)

and

�k := (uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2
≥ c2. (2.8)

3 The ascent directions

For any but fixed u∗ ∈ Ω∗, (u − u∗) is the gradient of the unknown distance function
1
2‖u − u∗‖2 in the Euclidean-norm1 at the point u.

3.1 Geminate ascent directions

The forthcoming analysis is based on the general conditions. Note that an equivalent
expression of (2.6) is

ũk ∈ Ω,
(
u − ũk

)T {
βkF

(
ũk

) − d
(
uk, ũk

)} ≥ 0, ∀u ∈ Ω, (3.1)

and from (2.8) we have

(
uk − ũk

)T
d
(
uk, ũk

) = �k

∥∥d
(
uk, ũk

)∥∥2
. (3.2)

1For convenience, we only consider the distance function in the Euclidean-norm. All the results in this
paper are easy to extended to the contraction of the distance function in G-norm where G is a positive
definite matrix.
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The following lemmas tell us that both the direction d(uk, ũk) (for uk ∈ Rn) and
F(ũk) (for uk ∈ Ω) are ascent directions of the function 1

2‖u − u∗‖2 whenever uk is
not a solution point. The proof is similar to those in [7], for completeness sake of this
paper, we restate the short proofs.

Lemma 3.1 Let uk , ũk and d(uk, ũk) be given by (2.6) and the general conditions
(2.7) and (2.8) be satisfied. Then we have

(
uk − u∗)T

d
(
uk, ũk

) ≥ �k

∥∥d
(
uk, ũk

)∥∥2
, ∀uk ∈ Rn, u∗ ∈ Ω∗. (3.3)

Proof Note that u∗ ∈ Ω . By setting u = u∗ in (3.1) (the equivalent expression
of (2.6)), we get

(
ũk − u∗)T

d
(
uk, ũk

) ≥ (
ũk − u∗)T

βkF
(
ũk

) ≥ 0, ∀u∗ ∈ Ω∗.

The last inequality follows from the monotonicity of F and (ũk − u∗)T F (u∗) ≥ 0.
Therefore,

(
uk − u∗)T

d
(
uk, ũk

) ≥ (
uk − ũk

)T
d
(
uk, ũk

)
, ∀u∗ ∈ Ω∗.

The assertion (3.3) is followed from the above inequality and (3.2) directly. �

Lemma 3.2 Let uk, ũk and d(uk, ũk) be given by (2.6) and the general conditions
(2.7) and (2.8) be satisfied. If uk ∈ Ω , then we have

(
uk − u∗)T

βkF
(
ũk

) ≥ �k

∥∥d
(
uk, ũk

)∥∥2
, ∀u∗ ∈ Ω∗. (3.4)

Proof Since (ũk − u∗)T βkF (ũk) ≥ 0, we have

(
uk − u∗)T

βkF
(
ũk

) ≥ (
uk − ũk

)T
βkF

(
ũk

)
, ∀u∗ ∈ Ω∗.

Note that because uk ∈ Ω , by setting u = uk in (3.1), we get

(
uk − ũk

)T
βkF

(
ũk

) ≥ (
uk − ũk

)T
d
(
uk, ũk

)
.

From the above two inequalities follows that

(
uk − u∗)T

βkF
(
ũk

) ≥ (
uk − ũk

)T
d
(
uk, ũk

)
, ∀u∗ ∈ Ω∗.

The assertion (3.4) is followed from the above inequality and (3.2) directly. �

We would like to emphasize that (3.3) holds for uk ∈ Rn while (3.4) is hold only
for uk ∈ Ω .
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3.2 Ascent directions in the extragradient method

The condition (1.3b) is necessary in the prediction step of the extragradient method.
Setting u = uk , ũ = ũk and β = βk in the fundamental inequalities (2.3), (2.4) and
(2.5), and adding them, we get

(
ũk − u∗)T

d
(
uk, ũk

) ≥ 0, ∀u∗ ∈ Ω∗, (3.5)

where d(uk, ũk) defined in (1.5). It follows from (3.5) that

(
uk − u∗)T

d
(
uk, ũk

) ≥ (
uk − ũk

)T
d
(
uk, ũk

)
. (3.6)

Note that, under the condition (1.3b), it follows that

(
uk − ũk

)T
d
(
uk, ũk

) = ∥∥uk − ũk
∥∥2 − (

uk − ũk
)T

βk

(
F

(
uk

) − F
(
ũk

))

≥ (1 − ν)
∥∥uk − ũk

∥∥2
. (3.7)

This means that d(uk, ũk) is an ascent direction of the unknown distance function
1
2‖u − u∗‖2 at the point uk , and the condition (2.7) is satisfied with c1 = 1 − ν. By
using the definition of d(uk, ũk), we have

2
(
uk − ũk

)
d
(
uk, ũk

) − ∥∥d
(
uk, ũk

)∥∥2

= d
(
uk, ũk

)T {
2
(
uk − ũk

) − d
(
uk, ũk

)}

= {(
uk − ũk

) − βk

(
F

(
uk

) − F
(
ũk

))}T {(
uk − ũk

) + βk

(
F

(
uk

) − F
(
ũk

))}

= ∥∥uk − ũk
∥∥2 − β2

k

∥∥F
(
uk

) − F
(
ũk

)∥∥2

≥ (
1 − ν2)∥∥uk − ũk

∥∥2
.

From the above inequality follows that the condition (2.8) is satisfied with c2 ≥ 1
2 .

In other words, the step-size conditions in Definition 2.4 are satisfied if the condition
(1.3b) is holds. Thus, the directions d(uk, ũk) and βkF (ũk) defined in (1.5) are a
pair of geminate ascent directions. In other words, the step-size condition (1.3b) is
sufficient for the one in the projection and contraction methods.

4 Corrector and the convergence in the contraction sense

The extragradient method uses (1.3c) to update the new iterate. Based on the pair of
geminate ascent directions in (2.6), namely, d(uk, ũk) and βkF (ũk), in the projection
and contraction methods, we use the one of the following corrector forms to update
the new iterate uk+1:

(Correction of PC Method-I) uk+1
I = uk − γ �kd

(
uk, ũk

)
, (4.1)
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or

(Correction of PC Method-II) uk+1
II = PΩ

[
uk − γ �kβkF

(
ũk

)]
, (4.2)

where γ ∈ (0,2) and �k is defined in (2.8). Note that the same step size length is used
in (4.1) and (4.2) even if the search directions are different. Recall that ũk is obtained
via a projection, by using the correction form (4.2), we have to make an additional
projection on Ω in the PC methods. Replacing γ �k in (4.2) by 1 (and if the step
size condition (1.3b) is satisfied), it reduces to the update form of the extragradient
method (see (1.3c)). For any solution point u∗ ∈ Ω∗, we define

ϑI (γ ) = ∥∥uk − u∗∥∥2 − ∥∥uk+1
I − u∗∥∥2 (4.3)

and

ϑII(γ ) = ∥∥uk − u∗∥∥2 − ∥∥uk+1
II − u∗∥∥2

, (4.4)

which measure the profit in the k-th iteration. The following theorem gives a lower
bound of the profit function, the similar results were established in [6–8].

Theorem 4.1 For given uk , let the general conditions (2.7) and (2.8) be satisfied. If
the corrector is updated by (4.1) or (4.2), then for any u∗ ∈ Ω∗ and γ > 0, we have

ϑI (γ ) ≥ q(γ ), (4.5)

and

ϑII(γ ) ≥ q(γ ) + ∥∥uk+1
I − uk+1

II

∥∥2
, (4.6)

respectively, where

q(γ ) = γ (2 − γ )�2
k

∥∥d
(
uk, ũk

)∥∥2
. (4.7)

Proof Using the definition of ϑI (γ ) and uk+1
I (see (4.1)), we have

ϑI (γ ) = ∥∥uk − u∗∥∥2 − ∥∥uk − u∗ − γ �kd
(
uk, ũk

)∥∥2

= 2γ �k

(
uk − u∗)T

d
(
uk, ũk

) − γ 2�2
k

∥∥d
(
uk, ũk

)∥∥2
. (4.8)

Recalling (3.3), we obtain

2γ �k

(
uk − u∗)T

d
(
uk, ũk

) ≥ 2γ �2
k

∥∥d
(
uk, ũk

)∥∥2
.

Substituting it in (4.8) and using the definition of q(γ ), we get ϑI (γ ) ≥ q(γ ) and the
first assertion is proved. Now, we turn to show the second assertion. Because

uk+1
II = PΩ

[
uk − γ �kβkF

(
ũk

)]
,

and u∗ ∈ Ω , by setting u = u∗ and v = uk − γ �kβkF (ũk) in (2.2), we have

∥∥u∗ −uk+1
II

∥∥2 ≤ ∥∥u∗−(
uk −γ �kβkF

(
ũk

))∥∥2 −∥∥uk −γ �kβkF
(
ũk

)−uk+1
II

∥∥2
. (4.9)
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Thus,

ϑII(γ ) = ∥∥uk − u∗∥∥2 − ∥∥uk+1
II − u∗∥∥2

≥ ∥∥uk − u∗∥∥2 − ∥∥(
uk − u∗) − γ �kβkF

(
ũk

)∥∥2

+ ∥∥(
uk − uk+1

II

) − γ �kβkF
(
ũk

)∥∥2

= ∥∥uk − uk+1
II

∥∥2 + 2γ �kβk

(
uk+1

II − u∗)T
F

(
ũk

)

≥ ∥∥uk − uk+1
II

∥∥2 + 2γ �kβk

(
uk+1

II − ũk
)T

F
(
ũk

)
. (4.10)

The last inequality in (4.10) follows from (ũk − u∗)T F (ũk) ≥ 0. Since uk+1
II ∈ Ω , by

setting u = uk+1
II in (3.1), we get

(
uk+1

II − ũk
)T {

βkF
(
ũk

) − d
(
uk, ũk

)} ≥ 0,

and consequently, substituting it in the right hand side of (4.10), we obtain

ϑII(γ ) ≥ ∥∥uk − uk+1
II

∥∥2 + 2γ �k

(
uk+1

II − ũk
)T

d
(
uk, ũk

)

= ∥∥uk − uk+1
II

∥∥2 + 2γ �k

(
uk − ũk

)T
d
(
uk, ũk

)

− 2γ �k

(
uk − uk+1

II

)T
d
(
uk, ũk

)
. (4.11)

To the two crossed term in the right hand side of (4.11), we have (by using (3.2))

2γ �k

(
uk − ũk

)T
d
(
uk, ũk

) = 2γ �2
k

∥∥d
(
uk, ũk

)∥∥2
,

and

−2γ �k

(
uk − uk+1

II

)T
d
(
uk, ũk

)

= ∥∥(
uk − uk+1

II

) − γ �kd
(
uk, ũk

)∥∥2 − ∥∥uk − uk+1
II

∥∥2 − γ 2�2
k

∥∥d
(
uk, ũk

)∥∥2
,

respectively. Substituting them in the right hand side of (4.11) and using uk −
γ �kd(uk, ũk) = uk+1

I , we obtain

ϑII(γ ) ≥ γ (2 − γ )�2
k

∥∥d
(
uk, ũk

)∥∥2 + ∥∥uk+1
I − uk+1

II

∥∥2

= q(γ ) + ∥
∥uk+1

I − uk+1
II

∥
∥2

, (4.12)

and the proof is complete. �

Note that q(γ ) is a quadratic function of γ , it reaches its maximum at γ ∗ = 1.
In practice, �k is the ‘optimal’ step size in (4.1) and (4.2), γ is a relaxation factor.
Because q(γ ) is a lower bound of ϑI (γ ) (resp. ϑII(γ )), the desirable new iterate is
updated by (4.1) (resp. (4.2)) with γ ∈ [1,2) and the reason is interpreted in Fig. 1.
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Fig. 1 The interpreting of
γ ∈ [1,2) for more profit in each
iteration

From Theorem 4.1 and the definition of �k (see (2.8)), we obtain

∥∥uk+1 − u∗∥∥2 ≤ ∥∥uk − u∗∥∥2 − γ (2 − γ )�k

(
uk − ũk

)T
d
(
uk, ũk

)
. (4.13)

By using the general conditions (2.7) and (2.8), it follows from the above inequality
that

∥∥uk+1 − u∗∥∥2 ≤ ∥∥uk − u∗∥∥2 − γ (2 − γ )c1c2
∥∥uk − ũk

∥∥2
. (4.14)

Due to the property (4.14), we call the methods which use update forms (4.1) and
(4.2) PC Method-I and PC Method II, respectively. Note that the assertion (4.14)
is derived from the general conditions (2.7)–(2.8). From (4.14), the convergence re-
sult of the PC methods follows directly (just as the convergence of the extragradient
method follows from (1.4), for details, see Theorem 2.1 in [6]).

5 Convergence rate of the PC methods

This section proves the convergence rate of the projection and contraction methods.
Recall that the base of the complexity proof is (see (2.3.2) in p. 159 of [3])

Ω∗ =
⋂

u∈Ω

{
ũ ∈ Ω : (u − ũ)T F (u) ≥ 0

}
. (5.1)

In the sequel, for given ε > 0 and D ⊂ Ω , we focus our attention to find a ũ such that

ũ ∈ Ω and sup
u∈D(ũ)

(ũ − u)T F (u) ≤ ε. (5.2)

Although the PC Method I uses the update form (4.1) and it does not guarantee that
{uk} belongs to Ω , the sequence {ũk} ⊂ Ω in the PC methods with different corrector
forms. Now, we prove the key inequality of the PC Method I for the complexity
analysis.
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Lemma 5.1 For given uk ∈ Rn, let ũk and d(uk, ũk) be given by (2.6) and the general
conditions (2.7) and (2.8) be satisfied. If the new iterate uk+1 is updated by (4.1) with
any γ > 0, then we have

(
u− ũk

)T
γ �kβkF

(
ũk

)+ 1

2

(∥∥u−uk
∥∥2 −∥∥u−uk+1

∥∥2) ≥ 1

2
q(γ ), ∀u ∈ Ω, (5.3)

where q(γ ) is defined in (4.7).

Proof Because (due to (3.1))

(
u − ũk

)T
βkF

(
ũk

) ≥ (
u − ũk

)T
d
(
uk, ũk

)
, ∀u ∈ Ω,

and (see (4.1))

γ �kd
(
uk, ũk

) = uk − uk+1,

we need only to show that

(
u − ũk

)T (
uk − uk+1) + 1

2

(∥∥u − uk
∥∥2 − ∥∥u − uk+1

∥∥2) ≥ 1

2
q(γ ), ∀u ∈ Ω. (5.4)

To the crossed term in the left hand side of (5.4), namely (u− ũk)T (uk −uk+1), using
an identity

(a − b)T (c − d) = 1

2

(‖a − d‖2 − ‖a − c‖2) + 1

2

(‖c − b‖2 − ‖d − b‖2),

we obtain

(
u − ũk

)T (
uk − uk+1) = 1

2

(∥∥u − uk+1
∥∥2 − ∥∥u − uk

∥∥2)

+ 1

2

(∥∥uk − ũk
∥∥2 − ∥∥uk+1 − ũk

∥∥2)
. (5.5)

By using uk+1 = uk − γ �kd(uk, ũk) and (3.2), we get

∥∥uk − ũk
∥∥2 − ∥∥uk+1 − ũk

∥∥2 = ∥∥uk − ũk
∥∥2 − ∥∥(

uk − ũk
) − γ �kd

(
uk, ũk

)∥∥2

= 2γ �k

(
uk − ũk

)T
d
(
uk, ũk

) − γ 2�2
k

∥∥d
(
uk, ũk

)∥∥2

= γ (2 − γ )�2
k

∥∥d
(
uk, ũk

)∥∥2
.

Substituting it in the right hand side of (5.5) and using the definition of q(γ ), we
obtain (5.4) and the lemma is proved. �
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The both sequences {ũk} and {uk} in the PC method II belong to Ω . In the follow-
ing lemma we prove the same assertion for PC method II as in Lemma 5.1.

Lemma 5.2 For given uk ∈ Ω , let ũk and d(uk, ũk) be given by (2.6) and the general
conditions (2.7) and (2.8) be satisfied. If the new iterate uk+1 is updated by (4.2) with
any γ > 0, then we have

(
u − ũk

)T
γ �kβkF

(
ũk

) + 1

2

(∥∥u − uk
∥∥2 − ∥∥u − uk+1

∥∥2) ≥ 1

2
q(γ ), ∀u ∈ Ω,

(5.6)

where q(γ ) is defined in (4.7).

Proof For investigating (u − ũk)T βkF (ũk), we divide it in the terms

(
uk+1 − ũk

)T
γ �kβkF

(
ũk

)
and

(
u − uk+1)T

γ �kβkF
(
ũk

)
. (5.7)

First, we deal with the term (uk+1 − ũk)T γ �kβkF (ũk). Since uk+1 ∈ Ω , substituting
u = uk+1 in (3.1) we get

(
uk+1 − ũk

)T
γ �kβkF

(
ũk

) ≥ γ �k

(
uk+1 − ũk

)T
d
(
uk, ũk

)

= γ �k

(
uk − ũk

)T
d
(
uk, ũk

)

− γ �k

(
uk − uk+1)T

d
(
uk, ũk

)
. (5.8)

To the first crossed term of the right hand side of (5.8), using (3.2), we have

γ �k

(
uk − ũk

)T
d
(
uk, ũk

) = γ �2
k

∥∥d
(
uk, ũk

)∥∥2
.

To the second crossed term of the right hand side of (5.8), using the Cauchy-Schwarz
Inequality, we get

−γ �k

(
uk − uk+1)T

d
(
uk, ũk

) ≥ −1

2

∥∥uk − uk+1
∥∥2 − 1

2
γ 2�2

k

∥∥d
(
uk, ũk

)∥∥2
.

Substituting them in the right hand side of (5.8), we obtain

(
uk+1 − ũk

)T
γ �kβkF

(
ũk

) ≥ 1

2
γ (2 − γ )�2

k

∥∥d
(
uk, ũk

)∥∥2 − 1

2

∥∥uk − uk+1
∥∥2

.

(5.9)

Now, we turn to treat of the term (u − uk+1)T γ �kβkF (ũk) in (5.7). Since uk+1 is
updated by (4.2), uk+1 is the projection of (uk − γ �kβkF (ũk)) on Ω , it follows from
(2.1) that

{(
uk − γ �kβkF

(
ũk

)) − uk+1}T (
u − uk+1) ≤ 0, ∀u ∈ Ω,
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and consequently

(
u − uk+1)T

γ �kβkF
(
ũk

) ≥ (
u − uk+1)T (

uk − uk+1), ∀u ∈ Ω.

Using the identity aT b = 1
2 {‖a‖2 − ‖a − b‖2 + ‖b‖2} to the right hand side of the

last inequality, we obtain

(
u − uk+1)T

γ �kβkF
(
ũk

)

≥ 1

2

(∥∥u − uk+1
∥
∥2 − ∥

∥u − uk
∥
∥2) + 1

2

∥
∥uk − uk+1

∥
∥2

. (5.10)

Adding (5.9) and (5.10) and using the definition of q(γ ), we get (5.6) and the proof
is complete. �

For the different projection and contraction methods, we have the same key in-
equality which is shown in Lemmas 5.1 and 5.2, respectively. By setting u = u∗ in
(5.3) and (5.6), we get

∥∥uk − u∗∥∥2 − ∥∥uk+1 − u∗∥∥2 ≥ 2γ �kβk

(
ũk − u∗)T

F
(
ũk

) + q(γ ).

Because (ũk − u∗)T F (ũk) ≥ (ũk − u∗)T F (u∗) ≥ 0 and q(γ ) = γ (2 − γ )�2
k ×

‖d(uk, ũk)‖2, it follows from the last inequality that

∥∥uk+1 − u∗∥∥2 ≤ ∥∥uk − u∗∥∥2 − γ (2 − γ )�2
k

∥∥d
(
uk, ũk

)∥∥2
.

This is just the form (4.13) in Sect. 4. In other words, the contraction property (4.13)
of PC methods is the consequent result of Lemmas 5.1 and 5.2, respectively.

For the convergence rate proof, we allow γ ∈ (0,2]. In this case, we still have
q(γ ) ≥ 0. By using the monotonicity of F , from (5.3) and (5.6) we get

(
u − ũk

)T
�kβkF (u) + 1

2γ

∥∥u − uk
∥∥2 ≥ 1

2γ

∥∥u − uk+1
∥∥2

, ∀u ∈ Ω. (5.11)

This inequality is essential for the convergence rate proofs.

Theorem 5.1 For any integer t > 0, we have a ũt ∈ Ω which satisfies

(ũt − u)T F (u) ≤ 1

2γΥt

∥∥u − u0
∥∥2

, ∀u ∈ Ω, (5.12)

where

ũt = 1

Υt

t∑

k=0

�kβkũ
k and Υt =

t∑

k=0

�kβk. (5.13)
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Proof Summing the inequality (5.11) over k = 0, . . . , t , we obtain

((
t∑

k=0

�kβk

)

u −
t∑

k=0

�kβkũ
k

)T

F (u) + 1

2γ

∥∥u − u0
∥∥2 ≥ 0, ∀u ∈ Ω.

Using the notations of Υt and ũt in the above inequality, we derive

(ũt − u)T F (u) ≤ ‖u − u0‖2

2γΥt

, ∀u ∈ Ω.

Indeed, ũt ∈ Ω because it is a convex combination of ũ0, ũ1, . . . , ũt . The proof is
complete. �

If the step-size sequence {βk} in (1.3a) is low-bounded away from zero, i.e.

inf
k≥0

{βk} ≥ βL > 0, (5.14)

then it follows from (2.8) and (5.13) that

Υt ≥ (t + 1)c2βL,

and thus the PC methods have O(1/t) convergence rate. For any substantial set
D ⊂ Ω , the PC methods reach

(ũt − u)T F (u) ≤ ε, ∀u ∈D, in at most t =
⌈

D2

2γ c2βLε

⌉

iterations, where ũt is defined in (5.13) and D = sup{‖u − u0‖ | u ∈ D}. This con-
vergence rate is in the ergodic sense, the statement (5.12) suggests us to take a larger
parameter γ ∈ (0,2] in the correction steps of the PC methods. To use the O(1/t)

convergence rate, we need only to check that the sequence {βk} is low-bound away
from zero and the general conditions in Definition 2.4 are satisfied.

6 Numerical experiments

This section is devoted to test the efficiency of the PC methods in comparison with
the extragradient method [12]. In particular, we use (1.3a), (1.3b), (1.3c) as the recur-
sion form of the extragradient method. All codes are written in Matlab and run on a
Lenovo X200 Computer with 2.53 GHz.

6.1 Test examples of minimizing a sum of distances

The first part of the test examples is a min-max problem which can be formulated as
a monotone linear variational inequality with skew-symmetric matrix. The problem
is to find the shortest network in a given full Steiner topology (see Example 1 in
[25]). The points-edges connections of the network are depicted in Fig. 2, where
P = {b[1], . . . , b[10]} are given points in R2 (called regular points) and x[1], . . . , x[8]
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Fig. 2 Original graph of the problem

Table 1 The coordinates of the 10 regular points

x-coordinate y-coordinate x-coordinate y-coordinate

b[1] 7.436490 7.683284 b[6] 1.685912 1.231672

b[2] 3.926097 7.008798 b[7] 4.110855 0.821114

b[3] 2.309469 9.208211 b[8] 4.757506 3.753666

b[4] 0.577367 6.480938 b[9] 7.598152 0.615836

b[5] 0.808314 3.519062 b[10] 8.568129 3.079179

are the locations of the additional points (called Steiner points). The coordinates of
the 10 regular points are given in Table 1. The mathematical form of the shortest sum
of the distance under p-norm is

min
x[j ]∈R2

{

‖x[1] − b[1]‖p +
8∑

j=1

‖x[j ] − b[j+1]‖p + ‖x[8] − b[10]‖p

+
7∑

j=1

‖x[j ] − x[j+1]‖p

}

. (6.1)

Mainly, we are interested in p = 1,2 and ∞. For any d ∈ R2 and p = 1,2 and ∞,
we have

‖d‖p = max
ξ∈Bq

ξT d, (6.2)
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where

Bq = {
ξ ∈ R2 | ‖ξ‖q ≤ 1

}
and q =

⎧
⎨

⎩

∞ if p = 1,

2 if p = 2,

1 if p = ∞.

Formulating the problem to a linear variational inequality The problem (6.1) is
equivalent to the following min-max problem

min
x[j ]∈R2

max
z[i]∈B

{

zT[1](x[1] − b[1]) +
8∑

j=1

zT[j+1](x[j ] − b[j+1])

+ zT[10](x[8] − b[10]) +
7∑

j=1

zT[j+10](x[j ] − x[j+1])
}

, (6.3)

where z[i], i = 1, . . . ,17 are vectors in R2. In fact, z[i] is the dual variable ordered to
edge ei . The compact form of (6.3) is

min
x∈R

max
z∈B

zT (Ax − b) (6.4)

where

xT = (
xT[1], . . . , xT[8]

)T
, zT = (

zT[1], . . . , zT[17]
)T

,

R = R2 × · · · × R2, B = Bq × · · · × Bq,

(6.5)

A is block matrix which has form

A =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I2
I2

. . .

. . .

I2
I2

I2 −I2
. . .

. . .

I2 −I2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and b =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b[1]
b[2]
...
...

b[9]
b[10]

0
...

0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (6.6)

Let (x∗, z∗) ∈ R×B be any solution of (6.4), it follows that

zT
(
Ax∗ − b

) ≤ z∗T (
Ax∗ − b

) ≤ z∗T
(Ax − b), ∀x ∈ R, z ∈ B.

Thus, (x∗, z∗) is a solution of the following variational inequality:

x∗ ∈ R, z∗ ∈ B2,

{
(x − x∗)T (AT z∗) ≥ 0, ∀x ∈ R,

(z − z∗)T (−Ax∗ + b) ≥ 0, ∀z ∈ B.
(6.7)
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The compact form of (6.7) is the following linear variational inequality:

LVI(Ω,M,q) u∗ ∈ Ω,
(
u − u∗)T (

Mu∗ + q
) ≥ 0, ∀u ∈ Ω, (6.8)

where

u =
(

x

z

)
, M =

(
0 AT

−A 0

)
, q =

(
0
b

)
and Ω = R×B. (6.9)

Note that M is skew-symmetric and thus the linear variational inequality is monotone.

Solving the LVI by the extragradient method By using the extragradient method
(see (1.3a)–(1.3c)), for given uk , to produce ũk by (1.3a), the condition (1.3b) should
be satisfied. Note that the mapping F(u) = Mu + q in LVI(Ω,M,q) is Lipschitz
continuous. For this example, one can calculate ‖M‖ ≈ 2.2089. In order to en-
sure the condition (1.3b) to be satisfied, we should to take β ∈ (0,1/‖M‖). Since
1/‖M‖ ≈ 0.4527, we use the extragradient method to solve the problem (6.8)–(6.9)
with different β = 0.30,0.35,0.40 and 0.45, respectively. The start point is u0 = 0
and the iteration is stopped as soon as

∥∥uk − ũk
∥∥ ≤ 10−10.

The optimal networks are depicted in Figs. 3, 4. The iteration numbers for the
shortest distance problems under different norms are reported in Table 2. It seems

Fig. 3 Optimal solution, l2-norm
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Fig. 4 Optimal solution, l1-norm

Table 2 Iteration numbers of
EG method by using different
β’s

Different norms β = 0.30 β = 0.35 β = 0.40 β = 0.45

l1 550 418 333 275

l2 500 380 303 250

l∞ 535 407 325 269

that, for fast convergence, the constant parameter β ∈ (0,1/‖M‖) should be closed
to 1/‖M‖.

Solving the LVI by the PC methods By using the PC methods, the condition (1.3b)
is not necessary. We need only to ensure the general conditions in Definition 2.4 to
be satisfied. Thus, we can take βk ≡ 1 in (1.3a) and the predictor ũk is given by

ũk = PΩ

[
uk − (

Muk + q
)]

.

Because MT = −M , the above projection mapping can be rewritten as

ũk = PΩ

{
ũk − [(

Muk + q
) − (

uk − ũk
)]}

= PΩ

{
ũk − [(

Mũk + q
) − (

I + MT
)(

uk − ũk
)]}

.

This is the form (2.6) with

βk ≡ 1, F
(
ũk

) = (
Mũk + q

)
and d

(
uk, ũk

) = (
I + MT

)(
uk − ũk

)
.
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Fig. 5 Optimal solution, l∞-norm

Table 3 Numerical results of PC methods and comparison with the extragradient method

Different
norms

PC method I PC method II Extragradient method Optimal objective value
of the network (6.1)No. It CPU sec No. It CPU sec No. It CPU sec

l1 156 0.021 81 0.011 275 0.048 28.665858000

l2 188 0.033 106 0.022 250 0.050 25.356067793

l∞ 144 0.021 84 0.013 269 0.058 21.112913500

For this d(uk, ũk), we have

(
uk − ũk

)T
d
(
uk, ũk

) = ∥
∥uk − ũk

∥
∥2

, (due to MT = −M)

and

�k = (uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2
= ‖uk − ũk‖2

‖(I + MT )(uk − ũk)‖2
≥ 1

‖I + MT ‖2
.

Thus the general conditions in Definition 2.4 are satisfied with c1 = 1 and c2 =
1/‖I + MT ‖2. We use the PC Method-I (see (1.7)) or PC Method II (see (1.8)) to
update the new iterate. The iteration numbers and the CPU times are listed in Table 3.
For comparison, we also report the CPU times by using the extragradient method
with β = 0.45 (the fastest case in Table 2) and the shortest distance of the network in
different norms.
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It is observed that

Computational load of PC Method II

Computational load of the extragradient method
< 40 %.

Both the PC Methods converge much faster than the Extragradient method.

6.2 Test examples of nonlinear complementarity problems

We take the nonlinear complementarity problems

(NCP) u ≥ 0, F (u) ≥ 0, uT F (u) = 0,

as the second part of the test examples. Complementarity problem is a variational
inequality VI(Ω,F ) with Ω = Rn+, the non-negative orthant in Rn. In this case,
PΩ(v) = max(v,0).

Constructing the test problems The mapping F(u) in the tested NCP is given by

F(u) = D(u) + Mu + q, (6.10)

where D(u) : Rn → Rn is the nonlinear part, M is an n × n matrix, and q ∈ Rn is a
vector.

• In D(u), the nonlinear part of F(u), the components are

Dj(u) = dj · arctan(aj · uj ),

where a and d are random vectors2 whose elements are in (0,1).
• The matrix M in the linear part is given by M = AT A + B . A is an n × n ma-

trix whose entries are randomly generated in the interval (−5,+5), and B is an
n × n skew-symmetric random matrix (BT = −B) whose entries3 are in the inter-
val (−5,+5).

It is clear that the mapping composed in this way is monotone. We construct the
following 3 sets of test examples by choosing different vector q in (6.10).

1. In the first set of the test examples, the elements of vector q is generated from a
uniform distribution in the interval (−500,500).

2. The second set4 of the test examples is similar to the first set. Instead of q ∈
(−500,500), the vector q is generated from a uniform distribution in the interval
(−500,0).

2A similar type of (small) problems was tested in [21] where the components of the nonlinear mapping
D(u) are Dj (u) = c · arctan(uj ).
3In the paper by Harker and Pang [4], the matrix M = AT A+B +D, where A and B are the same matrices
as what we use here, and D is a diagonal matrix with uniformly distributed random entries djj ∈ (0.0,0.3).
4In [4], the similar problems in the first set are called easy problems while the 2-nd set problems are called
hard problems.
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3. The third set of test examples has a known solution u∗ ∈ Rn+. Let vector p be
generated from a uniform distribution in the interval (−10,10) and

u∗ = max(p,0). (6.11)

By setting

v = max(−p,0) and q = v − (
D

(
u∗) + Mu∗),

we have F(u∗) = D(u∗) + Mu∗ + q = v = max(−p,0). Thus,

(
u∗)T

F
(
u∗) = (

max(p,0)
)T (

max(−p,0)
) = 0.

In this way we constructed a test NCP with a known solution u∗ described in
(6.11).

Implementation details For given uk , we use (1.3a) to produce ũk which satisfies
condition in (1.3b) with ν = 0.95. Note that in this case the general conditions (2.7)
and (2.8) are satisfied with c1 = (1 − ν) and c2 = 1/2.

We use a modified Armijo rule for choosing the parameter βk . It should be men-
tioned, in practical computation, if rk := βk‖F(uk)−F(ũk)‖/‖uk − ũk‖ is too small,
it will lead slow convergence. Therefore, if rk ≤ μ = 0.4, the trial parameter βk will
be enlarged for the next iteration. In the case that F is Lipschitz continuous with
constant L > 0, by using the above mentioned strategies for choosing βk , we still
have inf{βk} ≥ βL = O(1/L). These ‘refined’ strategies are necessary for fast con-
vergence. Algorithm 1 is the implementation details.

Algorithm 1
Step 0. Set β0 = 1, u0 ∈ Ω and k = 0.
Step 1. ũk = PΩ [uk − βkF (uk)],

rk := βk‖F(uk) − F(ũk)‖
‖uk − ũk‖ ,

while rk > ν

βk := 0.7 ∗ βk ∗ min{1, 1
rk

}, ũk = PΩ [uk − βkF (uk)]
end(while)
Use different forms ((1.3c), (4.1) or (4.2)) to update uk+1.
If rk ≤ μ then βk := βk ∗ ν ∗ 0.9/rk , end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.

The iterations begin with u0 = 0, β0 = 1 and stop as soon as

‖uk − PΩ [uk − F(uk)]‖∞
‖u0 − PΩ [u0 − F(u0)]‖∞

≤ 10−6. (6.12)

Since both F(uk) and F(ũk) are involved in those methods recursions, each itera-
tion of the test methods needs at least 2 times of evaluations of the mapping F . We
use No. It and No. F to denote the numbers of iterations and the evaluations of the
mapping F , respectively. The size of the tested problems is from 500 to 2000.
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Table 4 Numerical results of the first set examples

Problem
size n

Extra-gradient method
uk+1 = PΩ [uk − βkF (ũk)]

PC method I (γ = 1.9)
uk+1 = uk − γ �kd(uk, ũk)

PC method II (γ = 1.9)
uk+1 = PΩ [uk − γ �kβkF (ũk)]

No. It No. F CPU sec No. It No. F CPU sec No. It No. F CPU sec

500 705 1448 0.27 449 943 0.15 372 791 0.13

1000 728 1495 2.48 477 999 1.66 412 857 1.43

2000 795 1633 10.68 512 1074 6.96 417 889 5.79

3000 763 1565 21.47 491 1029 14.13 431 882 12.17

4000 797 1635 40.05 509 1068 26.16 433 903 22.08

5000 825 1694 64.71 537 1125 42.98 436 988 35.49

Table 5 Numerical results of the second set examples

Problem
size n

Extra-gradient method
uk+1 = PΩ [uk − βkF (ũk)]

PC method I (γ = 1.9)
uk+1 = uk − γ �kd(uk, ũk)

PC method II (γ = 1.9)
uk+1 = PΩ [uk − γ �kβkF (ũk)]

No. It No. F CPU sec No. It No. F CPU sec No. It No. F CPU sec

500 1511 3102 0.57 910 1916 0.31 809 791 0.28

1000 1604 3296 5.55 968 2053 3.45 852 857 3.06

2000 1858 3817 24.13 981 2091 13.30 981 889 13.30

3000 1782 3655 50.87 1067 2253 31.36 977 882 28.55

4000 1771 3636 88.64 1060 2237 54.58 943 903 49.02

5000 1717 3526 134.76 1027 2167 83.49 907 988 74.67

Table 6 Numerical results of the third set examples

Problem
size n

Extra-gradient method
uk+1 = PΩ [uk − βkF (ũk)]

PC method I (γ = 1.9)
uk+1 = uk − γ �kd(uk, ũk)

PC method II (γ = 1.9)
uk+1 = PΩ [uk − γ �kβkF (ũk)]

No. It No. F CPU sec No. It No. F CPU sec No. It No. F CPU sec

500 1169 2398 0.42 715 1505 0.25 621 1319 0.22

1000 1551 3181 5.34 941 1981 3.33 827 1760 2.97

2000 1426 2931 18.59 853 1800 11.48 751 1597 10.17

3000 1685 3451 48.03 1005 2115 29.59 893 1908 26.27

4000 1604 3290 80.92 962 2022 49.68 849 1805 44.38

5000 1724 3656 135.12 1037 2187 83.45 918 1942 74.15

Comparison between the extragradient method and the PC method II In the case
that the condition (1.3b) is satisfied, replacing γ �k in (4.2) by 1, the PC method II
becomes the extragradient method. According to the assertion in Theorems 4.1 and
5.1, we take the relaxation factor γ = 1.9 in the PC methods. The test results for the
3 sets of NCP are given in Tables 4, 5 and 6, respectively.

In the third test examples, as the stop criterion is satisfied, we have ‖uk −u∗‖∞ ≈
2 × 10−4 by using the all three test methods. The PC method II and the extragradi-
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ent method use the same direction but different step size in the correction step. The
numerical results show that the PC method II is much efficient than the extragradient
method. Even if the PC methods need to calculate the step size �k in each iteration,
while the computational load required by the additional effort is significantly less
than the dominating task (the evaluations of F(uk) and F(ũk)). It is observed that

Computational load of PC Method II

Computational load of the extragradient method
≤ 55 %.

The different PC methods use the one of the geminate directions but the same step
size in their correction forms. Between the PC methods, PC method II needs fewer it-
erations than PC method I, this evidence coincides with the assertions in Theorem 4.1
(see (4.5) and (4.6)). Thus, we suggest to use PC method II when the projection on
Ω is easy to be carried out. Otherwise (when the projection is the dominating task in
the iteration), we use PC method I because its update form (4.1) does not contain the
projection.

7 Conclusions

In a unified framework, we proved the O(1/t) convergence rate of the projection and
contraction methods for monotone variational inequalities. The convergence rate is
the same as that for the extragradient method. In fact, our convergence rate include
the extragradient method as a special case. The complexity analysis in this paper is
based on the general conditions defined in Definition 2.4 and thus can be extended to
a broaden class of similar contraction methods. Preliminary numerical results indicate
that the PC methods do outperform the extragradient method.

Acknowledgements The authors thank X.-L. Fu, M. Li, M. Tao and X.-M. Yuan for the discussion and
valuable suggestions.
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