
Comput Optim Appl (2014) 57:307–337
DOI 10.1007/s10589-013-9598-8

A random coordinate descent algorithm
for optimization problems with composite objective
function and linear coupled constraints

Ion Necoara · Andrei Patrascu

Received: 6 July 2012 / Published online: 19 September 2013
© Springer Science+Business Media New York 2013

Abstract In this paper we propose a variant of the random coordinate descent
method for solving linearly constrained convex optimization problems with com-
posite objective functions. If the smooth part of the objective function has Lipschitz
continuous gradient, then we prove that our method obtains an ε-optimal solution in
O(n2/ε) iterations, where n is the number of blocks. For the class of problems with
cheap coordinate derivatives we show that the new method is faster than methods
based on full-gradient information. Analysis for the rate of convergence in probabil-
ity is also provided. For strongly convex functions our method converges linearly.
Extensive numerical tests confirm that on very large problems, our method is much
more numerically efficient than methods based on full gradient information.

Keywords Coordinate descent · Composite objective function · Linearly coupled
constraints · Randomized algorithms · Convergence rate O(1/ε)

1 Introduction

The basic problem of interest in this paper is the following convex minimization
problem with composite objective function:

min
x∈RN

F (x)
(:= f (x) + h(x)

)

s.t.: aT x = 0,

(1)

I. Necoara (B) · A. Patrascu
Automatic Control and Systems Engineering Department, University Politehnica Bucharest,
060042 Bucharest, Romania
e-mail: ion.necoara@acse.pub.ro

A. Patrascu
e-mail: andrei.patrascu@acse.pub.ro

mailto:ion.necoara@acse.pub.ro
mailto:andrei.patrascu@acse.pub.ro

308 I. Necoara, A. Patrascu

where f : RN → R is a smooth convex function defined by a black-box oracle,
h : RN → R is a general closed convex function and a ∈ R

N . Further, we assume
that function h is coordinatewise separable and simple (by simple we mean that we
can find a closed-form solution for the minimization of h with some simple auxiliary
function). Special cases of this model include linearly constrained smooth optimiza-
tion (where h ≡ 0) which was analyzed in [16, 17, 36], support vector machines
(where h is the indicator function of some box constraint set) [10, 14] and composite
optimization (where a = 0) [25, 32–34].

Linearly constrained optimization problems with composite objective function
arise in many applications such as compressive sensing [5], image processing [6],
truss topology design [19, 26], distributed control [15], support vector machines [33],
traffic equilibrium and network flow problems [3] and many other areas. For problems
of moderate size there exist many iterative algorithms such as Newton, quasi-Newton
or projected gradient methods [8, 9, 13]. However, the problems that we consider in
this paper have the following features: the dimension of the optimization variables
is very large such that usual methods based on full gradient computations are pro-
hibitive. Moreover, the incomplete structure of information that may appear when the
data are distributed in space and time, or when there exists lack of physical mem-
ory and enormous complexity of the gradient update can also be an obstacle for full
gradient computations. In this case, it appears that a reasonable approach to solving
problem (1) is to use (block) coordinate descent methods. These methods were among
the first optimization methods studied in literature [4]. The main differences between
all variants of coordinate descent methods consist of the criterion of choosing at each
iteration the coordinate over which we minimize our objective function and the com-
plexity of this choice. Two classical criteria, used often in these algorithms, are the
cyclic and the greedy (e.g., Gauss-Southwell) coordinate search, which significantly
differ by the amount of computations required to choose the appropriate index. The
rate of convergence of cyclic coordinate search methods has been determined re-
cently in [1, 30] and for the grouped Lasso problem in [24, 35]. Also, for coordinate
descent methods based on the Gauss-Southwell rule, the convergence rate is given in
[32–34]. Another interesting approach is based on random coordinate descent, where
the coordinate search is random. Recently, convergence rate results on random co-
ordinate descent methods for smooth convex functions were obtained by Nesterov
in [22]. The methods and the corresponding convergence results in [22] have been
extended to the case of a composite function with a nonsmooth separable component
in [25], while parallel or inexact implementations have been analyzed in [18, 26, 27,
31]. However, all these papers studied optimization models where the constraint set
is decoupled (i.e., characterized by Cartesian product). Rate analysis of random coor-
dinate descent methods for linearly coupled constrained optimization problems with
smooth objective function was provided in [16, 17].

In this paper we present a random coordinate descent method suited for large
scale problems with composite objective function. Moreover, in our paper we focus
on linearly coupled constrained optimization problems (i.e., the constraint set is cou-
pled through linear equalities). Note that the model considered in this paper is more
general than the one from [16, 17], since we allow composite objective functions.

We prove for our method an expected convergence rate of order O(n2

k
), where n

A random coordinate descent algorithm for composite optimization problems 309

is number of blocks and k is the iteration counter. We show that for functions with
cheap coordinate derivatives the new method is much faster, either in worst case com-
plexity analysis, or numerical implementation, than schemes based on full gradient
information (e.g., coordinate gradient descent method developed in [34]). But our
method also offers other important advantages, e.g., due to the randomization, our
algorithm is easier to analyze and implement, it leads to more robust output and is
adequate for modern computational architectures (e.g, parallel or distributed architec-
tures). Analysis for rate of convergence in probability is also provided. For strongly
convex functions we prove that the new method converges linearly. We also provide
extensive numerical simulations and compare our algorithm against state-of-the-art
methods from the literature on three large-scale applications: support vector machine,
the Chebyshev center of a set of points and random generated optimization problems
with an �1-regularization term.

The paper is organized as follows. In order to present our main results, we in-
troduce some notations and assumptions for problem (1) in Sect. 1.1. In Sect. 2 we
present the new random coordinate descent (RCD) algorithm. The main results of
the paper can be found in Sect. 3, where we derive the rate of convergence in ex-
pectation, probability and for the strongly convex case. In Sect. 4 we generalize the
algorithm and extend the previous results to a more general model. We also analyze
its complexity and compare it with other methods from the literature, in particular
the coordinate descent method of Tseng [34] in Sect. 5. Finally, we test the practical
efficiency of our algorithm through extensive numerical experiments in Sect. 6.

1.1 Preliminaries

We work in the space R
N composed of column vectors. For x, y ∈ R

N we denote:

〈x, y〉 =
n∑

i=1

x(i)y(i).

We use the same notation 〈·, ·〉 for spaces of different dimensions. If we fix a norm
‖ · ‖ in R

N , then its dual norm is defined by:

‖y‖∗ = max
‖x‖=1

〈y, x〉.

We assume that the entire space dimension is decomposable into n blocks:

N =
n∑

i=1

ni.

We denote by Ui the blocks of the identity matrix:

IN = [U1 . . . Un],
where Ui ∈ R

N×ni . For some vector x ∈ R
N , we use the notation x(i) ∈ R

ni for the
ith block of the vector x, i.e. x(i) = UT

i x, and xi ∈ R for the ith coordinate of vector

310 I. Necoara, A. Patrascu

x. Moreover, we introduce a two-blocks nonzero vector xij ∈R
N associated to x, de-

fined as: xij = Uix(i) + Ujx(j). We also define ∇if (x) = UT
i ∇f (x) as the ith block

in the gradient of the function f at x. Similarly, ∇ij f (x) = Ui∇if (x)+Uj∇j f (x) ∈
R

N . We denote by supp(x) the set of indexes corresponding to nonzero coordinates
in x. Given a matrix A ∈ R

m×n, we denote its nullspace by Null(A). In the rest of the
paper we consider local Euclidean norms in all spaces Rni , i.e., ‖x(i)‖ = √

(x(i))T x(i)

for all x(i) ∈R
ni and i = 1, . . . , n. For model (1) we make the following assumptions:

Assumption 1 The smooth and nonsmooth parts of the objective function in opti-
mization model (1) satisfy the following properties:

(i) Function f is convex and has block-coordinate Lipschitz continuous gradient:

‖∇if (x + Uis(i)) − ∇if (x)‖∗ ≤ Li‖s(i)‖ ∀x ∈R
N, s(i) ∈R

ni , i = 1, . . . , n.

(ii) The nonsmooth function h is convex and coordinatewise separable, i.e. h(x) =∑N
i=1 hi(xi), where hi :R → R for all i = 1, . . . ,N .

Assumption 1 (i) is typical for composite optimization, see e.g., [17, 21, 22, 34].
Assumption 1 (ii) covers many applications as we further exemplify. A special case
of coordinatewise separable function that has attracted a lot of attention in the area of
signal processing and data mining is the �1-regularization [5]:

h(x) = λ‖x‖1, (2)

where λ > 0. Often, a large λ factor induces sparsity in the solution of optimization
problem (1). Note that the function h in (2) belongs to the general class of coordi-
natewise separable piecewise linear/quadratic functions with O(1) pieces. Another
special case is the box indicator function, i.e.:

h(x) = 1[l,u] =
{

0, l ≤ x ≤ u

∞, otherwise.
(3)

Adding box constraints to a quadratic objective function f in (1) leads e.g., to sup-
port vector machine (SVM) problems [7, 33]. The reader can easily find many other
examples of function h satisfying Assumption 1 (ii).

Based on Assumption 1 (i), the following inequality can be derived [20]:

f (x + Uis(i)) ≤ f (x) + 〈∇if (x), s(i)
〉 + Li

2
‖s(i)‖2 ∀x ∈R

N, s(i) ∈R
ni . (4)

In the sequel, we use the notation:

L = max
1≤i≤n

Li.

For α ∈ [0,1] we introduce the following extended norm on R
N :

‖x‖α =
(

n∑

i=1

Lα
i ‖x(i)‖2

) 1
2

A random coordinate descent algorithm for composite optimization problems 311

and its dual norm

‖y‖∗
α =

(
n∑

i=1

1

Lα
i

(‖y(i)‖∗)2

) 1
2

.

Note that these norms satisfy the Cauchy-Schwartz inequality:

‖x‖α‖y‖∗
α ≥ 〈x, y〉 ∀x, y ∈R

N.

Recall that for a vector x ∈ R
N such that x = ∑n

i=1 Uix(i), we define an extended
two-blocks nonzero vector on the components (i, j) as follows: xij = Uix(i)+Ujx(j).
Based on Assumption 1 (ii) we can derive from (4) the following result:

Lemma 1 Let the function f be convex and satisfy Assumption 1. Then, f has com-
ponentwise Lipschitz continuous gradient w.r.t. every pair (i, j) with i �= j , i.e.:

‖∇ij f (x + sij) − ∇ij f (x)‖∗
α ≤ Lα

ij‖sij‖α ∀x ∈R
N, s(i) ∈R

ni , s(j) ∈ R
nj ,

where we define Lα
ij = L1−α

i + L1−α
j > 0 and sij = Uis(i) + Ujs(j) ∈R

N .

Proof Let f ∗ = minx∈RN f (x). Based on (4) we have for any pair (i, j):

f (x) − f ∗ ≥ max
l∈{1,...N}

1

2Ll

(‖∇lf (x)‖∗)2 ≥ max
l∈{i,j}

1

2Ll

(‖∇lf (x)‖∗)2

≥ 1

2(L1−α
i + L1−α

j)

(
1

Lα
i

(‖∇if (x)‖∗)2 + 1

Lα
j

(‖∇j f (x)‖∗)2
)

= 1

2Lα
ij

(‖∇ij f (x)‖∗
α

)2
,

where in the third inequality we used that αa+(1−α)b ≤ max{a, b} for all α ∈ [0,1].
Now, note that for any vector with two nonzero blocks of the form yij = Uiy(i) +
Ujy(j), the function g1(yij) = f (x + yij − xij)−f (x)−〈∇f (x), yij − xij 〉 satisfies
Assumption 1 (i). If we apply the above inequality to g1(yij) we get the following
relation:

f (x + yij − xij) ≥ f (x) + 〈∇f (x), yij − xij

〉 + 1

2Lα
ij

(‖∇ij f (x + yij − xij)

− ∇ij f (x)‖∗
α

)2
.

On the other hand, applying the same inequality to g2(xij) = f (x) − f (x + yij −
xij)+〈∇f (x + yij − xij), yij − xij 〉, which also satisfies Assumption 1 (i), we have:

f (x) ≥ f (x + yij − xij) + 〈∇f (x + yij − xij), yij − xij

〉

+ 1

2Lα
ij

(‖∇ij f (x + yij − xij) − ∇ij f (x)‖∗
α

)2
.

312 I. Necoara, A. Patrascu

Further, denoting sij = yij − xij ∈ R
N , with only two nonzero blocks s(i) ∈ R

ni and
s(j) ∈ R

nj , and adding up the resulting inequalities we get:

1

Lα
ij

(‖∇ij f (x + sij) − ∇ij f (x)‖∗
α

)2 ≤ 〈∇f (x + sij) − ∇f (x), sij
〉

=
〈[∇if (x + sij) − ∇if (x)

∇j f (x + sij) − ∇if (x)

]
,

[
s(i)
s(j)

]〉

≤ ‖∇ij f (x + sij) − ∇ij f (x)‖∗
α‖sij‖α,

for all x ∈ R
N . This relation proves the statement of this lemma. �

It is straightforward to see that we can obtain from Lemma 1 the following in-
equality [20]:

f (x + sij) ≤ f (x) + 〈∇ij f (x), sij
〉 + Lα

ij

2
‖sij‖2

α, (5)

for all α ∈ [0, 1], x ∈ R
N, sij ∈ R

N , where only blocks s(i) ∈ R
ni , s(j) ∈ R

nj of the
vector sij are nonzeros, i.e. sij = Uis(i) + Ujs(j).

2 Random coordinate descent algorithm

In this section we introduce a variant of Random Coordinate Descent (RCD) method
for solving problem (1) that performs a minimization step with respect to two block
variables at each iteration. The coupling constraint (that is, the weighted sum con-
straint aT x = 0) prevents the development of an algorithm that performs a minimiza-
tion with respect to only one variable at each iteration. We will therefore be interested
in the restriction of the objective function f on feasible directions consisting of at
least two nonzero (block) components.

Let (i, j) be a two dimensional random variable, where i, j ∈ {1, . . . , n} with i �= j

and pikjk
= Pr((i, j) = (ik, jk)) be its probability distribution. We denote with I the

set of all such possible pairs, i.e. I = {(i, j) : i, j = 1, . . . , n, i �= j}. Given a feasible
x, two blocks are chosen randomly with respect to a given probability distribution pij

and a quadratic model derived from the composite objective function is minimized
with respect to these coordinates. Our method has the following iteration: given a
feasible initial point x0, that is aT x0 = 0, then for all k ≥ 0

Algorithm 1 (RCD)

1. Choose randomly two coordinates (ik, jk) ∈ I with probability pikjk

2. Set xk+1 = xk + Uikd(ik) + Ujk
d(jk),

A random coordinate descent algorithm for composite optimization problems 313

where the directions d(ik) and d(jk) are chosen as follows: if we use for simplicity the
notation (i, j) instead of (ik, jk), the direction dij = Uid(i) + Ujd(j) is given by

dij = arg min
sij =Uis(i)+Uj s(j)

f
(
xk

) + 〈∇ij f
(
xk

)
, sij

〉 + Lα
ij

2
‖sij‖2

α + h
(
xk + sij

)

s.t.: aT
(i)s(i) + aT

(j)s(j) = 0,

(6)

where a(i) ∈ R
ni and a(j) ∈ R

nj are the ith and j th blocks of vector a, respectively.
Clearly, in our algorithm we maintain feasibility at each iteration, i.e. aT xk = 0 for
all k ≥ 0.

Remark 1

(i) Note that for the scalar case (i.e., N = n) and h given by (2) or (3), the direc-
tion dij in (6) can be computed in closed form. For the block case (i.e., ni > 1
for all i) and if h is a coordinatewise separable, strictly convex and piece-wise
linear/quadratic function with O(1) pieces (e.g., h given by (2)), there are algo-
rithms for solving the above subproblem in linear-time (i.e., O(ni + nj) oper-
ations) [34]. Also for h given by (3), there exist in the literature algorithms for
solving the subproblem (6) with overall complexity O(ni + nj) [2, 12].

(ii) In algorithm (RCD) we consider (i, j) = (j, i) and i �= j . Moreover, we know
that the complexity of choosing randomly a pair (i, j) with a uniform probability
distribution requires O(1) operations.

We assume that random variables (ik, jk)k≥0 are i.i.d. In the sequel, we use nota-
tion ηk for the entire history of random pair choices and φk for the expected value of
the objective function w.r.t. ηk , i.e.:

ηk = {
(i0, j0), . . . , (ik−1, jk−1)

}
and φk = E

[
F

(
xk

)]
.

2.1 Previous work

We briefly review some well-known methods from the literature for solving the op-
timization model (1). In [32–34] Tseng studied optimization problems in the form
(1) and developed a (block) coordinate gradient descent(CGD) method based on the
Gauss-Southwell choice rule. The main requirement for the (CGD) iteration is the
solution of the following problem: given a feasible x and a working set of indexes J ,
the update direction is defined by

dH (x;J) = arg min
s∈RN

f (x) + 〈∇f (x), s
〉 + 1

2
〈Hs, s〉 + h(x + s)

s.t.: aT s = 0, s(j) = 0 ∀j /∈ J ,

(7)

314 I. Necoara, A. Patrascu

where H ∈ R
N×N is a symmetric matrix chosen at the initial step of the algorithm.

Algorithm (CGD):
1. Choose a nonempty set of indices J k ⊂ {1, . . . , n} with respect to the

Gauss-Southwell rule

2. Solve (7) with x = xk, J = J k, H = Hk to obtain dk = dHk
(xk;J k)

3. Choose stepsize αk > 0 and set xk+1 = xk + αkdk.

In [34], the authors proved for the particular case when function h is piece-wise

linear/quadratic with O(1) pieces that an ε-optimal solution is attained in O(
NLR2

0
ε

)

iterations, where R0 denotes the Euclidean distance from the initial point to some
optimal solution. Also, in [34] the authors derive estimates of order O(N) on the
computational complexity of each iteration for this choice of h.

Furthermore, for a quadratic function f and a box indicator function h (e.g., sup-
port vector machine (SVM) applications) one of the first decomposition approaches
developed similar to (RCD) is Sequential Minimal Optimization (SMO) [23]. SMO
consists of choosing at each iteration two scalar coordinates with respect to some
heuristic rule based on KKT conditions and solving the small QP subproblem ob-
tained through the decomposition process. However, the rate of convergence is not
provided for the SMO algorithm. But the numerical experiments show that the
method is very efficient in practice due to the closed form solution of the QP subprob-
lem. List and Simon [14] proposed a variant of block coordinate descent method for

which an arithmetic complexity of order O(
N2LR2

0
ε

) is proved on a quadratic model
with a box indicator function and generalized linear constraints. Later, Hush et al.
[10] presented a more practical decomposition method which attains the same com-
plexity as the previous methods.

A random coordinate descent algorithm for model (1) with a = 0 and h being the
indicator function for a Cartesian product of sets was analyzed by Nesterov in [22].
The generalization of this algorithm to more general composite objective functions
has been studied in [25, 27]. However, none of these papers studied the application of
coordinate descent algorithms to linearly coupled constrained optimization models.
Similar random coordinate descent algorithms as the (RCD) method described in the
present paper, for optimization problems with smooth objective and linearly coupled
constraints, has been developed and analyzed by Necoara et al. in [16, 17]. We further
extend these results to linearly constrained composite objective function optimization
and provide in the sequel the convergence rate analysis for the previously presented
variant of the (RCD) method (see Algorithm 1 (RCD)).

3 Convergence results

In the following subsections we derive the convergence rate of Algorithm 1 (RCD) for
composite optimization model (1) in expectation, probability and for strongly convex
functions.

A random coordinate descent algorithm for composite optimization problems 315

3.1 Convergence in expectation

In this section we study the rate of convergence in expectation of algorithm (RCD).
We consider uniform probability distribution, i.e., the event of choosing a pair (i, j)

can occur with probability:

pij = 2

n(n − 1)
,

since we assume that (i, j) = (j, i) and i �= j ∈ {1, . . . , n} (see Remark 1 (ii)). In
order to provide the convergence rate of our algorithm, first we have to define the
conformal realization of a vector introduced in [28, 29].

Definition 1 Let d, d ′ ∈ R
N , then the vector d ′ is conformal to d if:

supp
(
d ′) ⊆ supp(d) and d ′

j dj ≥ 0 ∀j = 1, . . . ,N.

For a given matrix A ∈ R
m×N , with m ≤ N , we introduce the notion of elementary

vectors defined as:

Definition 2 An elementary vector of Null(A) is a vector d ∈ Null(A) for which
there is no nonzero vector d ′ ∈ Null(A) conformal to d and supp(d ′) �= supp(d).

Based on Exercise 10.6 in [29] we state the following lemma:

Lemma 2 [29] Given d ∈ Null(A), if d is an elementary vector, then |supp(d)| ≤
rank(A) + 1 ≤ m + 1. Otherwise, d has a conformal realization:

d = d1 + · · · + dq,

where q ≥ 1 and dt ∈ Null(A) are elementary vectors conformal to d for all t =
1, . . . , q .

For the scalar case, i.e., N = n and m = 1, the method provided in [34] finds a
conformal realization with dimension q ≤ |supp(d)| − 1 within O(N) operations.
We observe that elementary vectors dt in Lemma 2 for the case m = 1 (i.e., A = aT)
have at most 2 nonzero components.

Our convergence analysis is based on the following lemma, whose proof can be
found in [34, Lemma 6.1]:

Lemma 3 [34] Let h be coordinatewise separable and convex. For any y, y + d ∈
dom h, let d be expressed as d = d1 + · · · + dq for some q ≥ 1 and some nonzero
dt ∈ R

N conformal to d for t = 1, . . . , q . Then, we have:

h(y + d) − h(y) ≥
q∑

t=1

(
h
(
y + dt

) − h(y)
)
.

316 I. Necoara, A. Patrascu

For the simplicity of the analysis we introduce the following linear subspaces:

Sij = {
d ∈ R

N : d = Uid(i) + Ujd(j), aT
ij d = 0

}
and S = {

d ∈ R
N : aT d = 0

}
.

We denote by F ∗ and X∗ the optimal value and the optimal solution set for problem
(1), respectively. We also introduce the maximal residual defined in terms of the norm
‖ · ‖α :

Rα = max
x

{
max
x∗∈X∗ ‖x − x∗‖α : F(x) ≤ F

(
x0)

}
,

which measures the size of the level set of F given by x0. We assume that this distance
is finite for the initial iterate x0.

Now, we prove the main result of this section:

Theorem 1 Let F satisfy Assumption 1. Then, the random coordinate descent algo-
rithm (RCD) based on the uniform distribution generates a sequence xk satisfying
the following convergence rate for the expected values of the objective function:

φk − F ∗ ≤ n2L1−αR2
α

k + n2L1−αR2
α

F (x0)−F ∗
,

where we recall that φk = E[F(xk)].

Proof For simplicity of the exposition we use the following notation: given the cur-
rent iterate x, denote x+ = x + Uid(i) + Ujd(j) the next iterate, where directions
(d(i), d(j)) are given by (6) for some random chosen pair (i, j) w.r.t. uniform distri-
bution. For brevity, we also adapt the notation of expectation upon the entire history,
i.e. (φ,φ+, η) instead of (φk,φk+1, ηk). Based on (5) we derive:

F
(
x+) ≤ f (x) + 〈∇ij f (x), dij

〉 + Lα
ij

2
‖dij‖2

α + h(x + dij)

(6)= min
sij ∈Sij

f (x) + 〈∇ij f (x), sij
〉 + Lα

ij

2
‖sij‖2

α + h(x + sij).

We now take expectation in both sides conditioned on η and note that (i, j) is inde-
pendent on the past η, while x is fully determined by η, according to our convention.
Recalling that pij = 2

n(n−1)
, we get:

E
[
F

(
x+)|η] ≤ E

[
min

sij ∈Sij

f (x) + 〈∇ij f (x), sij
〉 + Lα

ij

2
‖sij‖2

α + h(x + sij)|η
]

≤ E

[
f (x) + 〈∇ij f (x), sij

〉 + Lα
ij

2
‖sij‖2

α + h(x + sij)|η
]

= 2

N(N − 1)

∑

(i,j)∈I

(
f (x) + 〈∇ij f (x), sij

〉 + Lα
ij

2
‖sij‖2

α + h(x + sij)

)

A random coordinate descent algorithm for composite optimization problems 317

= f (x) + 2

N(N − 1)

(〈
∇f (x),

∑

(i,j)∈I
sij

〉

+
∑

(i,j)∈I

Lα
ij

2
‖sij‖2

α +
∑

(i,j)∈I
h(x + sij)

)
, (8)

for all possible sij ∈ Sij , with (i, j) ∈ I .
Based on Lemma 2 for m = 1, it follows that any d ∈ S has a conformal realization

defined by d = ∑q

t=1 dt , where the vectors dt ∈ S are conformal to d and have only
two nonzero components. Thus, for any t = 1, . . . , q there is a pair (i, j) such that
dt ∈ Sij . Therefore, for any d ∈ S we can choose an appropriate set of pairs (i, j)

and vectors sd
ij ∈ Sij conformal to d such that d = ∑

(i,j)∈I sd
ij . As we have seen,

the above chain of relations in (8) holds for all the pairs (i, j) ∈ I and vectors sij ∈
Sij . Therefore, it also holds for the set of pairs (i, j) and vectors sd

ij such that d =
∑

(i,j)∈I sd
ij . In conclusion, we have from (8) that:

E
[
F

(
x+)|η] ≤ f (x) + 2

n(n − 1)

(〈
∇f (x),

∑

(i,j)∈I
sd
ij

〉
+

∑

(i,j)∈I

Lα
ij

2
‖sd

ij‖2
α

+
∑

(i,j)∈I
h
(
x + sd

ij

))
,

for all d ∈ S, where we set sd
ij = 0 for those pair components (i, j) ∈ I that are not in

the conformal realization of the vector d . Moreover, observing that Lα
ij ≤ 2L1−α and

applying Lemma 3 in the previous inequality for coordinatewise separable functions
‖ · ‖2

α , with y = 0, and for h(·), with y = x respectively, we obtain:

E
[
F

(
x+)|η] ≤ f (x) + 2

n(n − 1)

(〈
∇f (x),

∑

(i,j)∈I
sd
ij

〉

+
∑

(i,j)∈I

Lα
ij

2
‖sd

ij‖2
α +

∑

(i.j)∈I
h
(
x + sd

ij

))
,

Lemma 2≤ f (x) + 2

n(n − 1)

(〈
∇f (x),

∑

(i,j)∈I
sd
ij

〉

+ L1−α

∥∥∥∥
∑

(i,j)∈I
sd
ij

∥∥∥∥

2

α

+ h

(
x +

∑

(i,j)∈I
sd
ij

)

+
(

n(n − 1)

2
− 1

)
h(x)

)

d=∑
(i,j)∈I sd

ij=
(

1 − 2

n(n − 1)

)
F(x) + 2

n(n − 1)

(
f (x) + 〈∇f (x), d

〉

+ L1−α‖d‖2
α + h(x + d)

)
, (9)

318 I. Necoara, A. Patrascu

for any d ∈ S. Note that (9) holds for every d ∈ S since (8) holds for any sij ∈ Sij .
Therefore, as (9) holds for every vector from the subspace S, it also holds for the
following particular vector d̃ ∈ S defined as:

d̃ = arg min
s∈S

f (x) + 〈∇f (x), s
〉 + L1−α‖s‖2

α + h(x + s).

Based on this choice we can derive the following inequalities:

f (x) + 〈∇f (x), d̃
〉 + L1−α‖d̃‖2

α + h(x + d̃)

= min
y∈S

f (x) + 〈∇f (x), y − x
〉 + L1−α‖y − x‖2

α + h(y)

≤ min
y∈S

F (y) + L1−α‖y − x‖2
α

≤ min
β∈[0,1]F

(
βx∗ + (1 − β)x

) + β2L1−α‖x − x∗‖2
α

≤ min
β∈[0,1]F(x) − β

(
F(x) − F ∗) + β2L1−αR2

α

= F(x) − (F (x) − F ∗)2

L1−αR2
α

,

where in the first inequality we used the convexity of f while in the second and third
inequalities we used basic optimization arguments. Therefore, at each iteration k the
following inequality holds:

E
[
F

(
xk+1)|ηk

] ≤
(

1 − 2

n(n − 1)

)
F

(
xk

)

+ 2

n(n − 1)

[
F

(
xk

) − (F (xk) − F ∗)2

L1−αR2
α

]
.

Taking expectation with respect to ηk and using convexity properties we get:

φk+1 − F ∗ ≤
(

1 − 2

n(n − 1)

)(
φk − F ∗) + 2

n(n − 1)

[(
φk − F ∗) − (φk − F ∗)2

L1−αR2
α

]

≤ (
φk − F ∗) − 2

n(n − 1)

[
(φk − F ∗)2

L1−αR2
α

]
. (10)

Further, if we denote 	k = φk − F ∗ and γ = n(n − 1)L1−αR2
α we get:

	k+1 ≤ 	k − (k)2

γ
.

Dividing both sides with 	k	k+1 > 0 and using the fact that 	k+1 ≤ 	k we get:

1

	k+1
≥ 1

	k
+ 1

γ
∀k ≥ 0.

A random coordinate descent algorithm for composite optimization problems 319

Finally, summing up from 0, . . . , k we easily get the above convergence rate. �

Let us analyze the convergence rate of our method for the two most common cases
of the extended norm on R

N introduced in this section: w.r.t. extended Euclidean
norm ‖ · ‖0 = ‖ · ‖ (i.e., α = 0) and norm ‖ · ‖1 (i.e., α = 1). Recall that the norm
‖ · ‖1 is defined by:

‖x‖2
1 =

n∑

i=1

Li‖x(i)‖2.

Corollary 1 Under the same assumptions of Theorem 1, the algorithm (RCD) gen-
erates a sequence xk such that the expected values of the objective function satisfy
the following convergence rates for α = 0 and α = 1:

α = 0 : φk − F ∗ ≤ n2LR2
0

k + n2LR2
0

F(x0)−F ∗

,

α = 1 : φk − F ∗ ≤ n2R2
1

k + n2R2
1

F(x0)−F ∗

.

Remark 2 We usually have R2
1 ≤ LR2

0 and this shows the advantages that the
general norm ‖ · ‖α has over the Euclidean norm. Indeed, if we denote by r2

i =
maxx{maxx∗∈X∗ ‖x(i) − x∗

(i)‖2 : F(x) ≤ F(x0)}, then we can provide upper bounds

on R2
1 ≤ ∑n

i=1 Lir
2
i and R2

0 ≤ ∑n
i=1 r2

i . Clearly, the following inequality is valid:

n∑

i=1

Lir
2
i ≤

n∑

i=1

Lr2
i ,

and the inequality holds with equality only for Li = L for all i = 1, . . . , n. We recall
that L = maxi Li . Therefore, in the majority of cases the estimate for the rate of
convergence based on norm ‖ · ‖1 is much better than that based on the Euclidean
norm ‖ · ‖0.

3.2 Convergence for strongly convex functions

Now, we assume that the objective function in (1) is σα-strongly convex with respect
to norm ‖ · ‖α , i.e.:

F(x) ≥ F(y) + 〈
F ′(y), x − y

〉 + σα

2
‖x − y‖2

α ∀x, y ∈ R
N, (11)

where F ′(y) denotes some subgradient of F at y. Note that if the function f is σ -
strongly convex w.r.t. extended Euclidean norm, then we can remark that it is also
σα-strongly convex function w.r.t. norm ‖ · ‖α and the following relation between the

320 I. Necoara, A. Patrascu

strong convexity constants holds:

σ

Lα

n∑

i=1

Lα‖x(i) − y(i)‖2 ≥ σ

Lα

n∑

i=1

Lα
i ‖x(i) − y(i)‖2 ≥ σα‖x − y‖2

α,

which leads to

σα ≤ σ

Lα
.

Taking y = x∗ in (11) and from optimality conditions 〈F ′(x∗), x − x∗〉 ≥ 0 for all
x ∈ S we obtain:

F(x) − F ∗ ≥ σα

2
‖x − x∗‖2

α. (12)

Next, we state the convergence result of our algorithm (RCD) for solving the problem
(1) with σα-strongly convex objective w.r.t. norm ‖ · ‖α .

Theorem 2 Under the assumptions of Theorem 1, let F be also σα-strongly convex
w.r.t. ‖ ·‖α . For the sequence xk generated by algorithm (RCD) we have the following
rate of convergence of the expected values of the objective function:

φk − F ∗ ≤
(

1 − 2(1 − γ)

n2

)k(
F

(
x0) − F ∗),

where γ is defined by:

γ =
⎧
⎨

⎩

1 − σα

8L1−α , if σα ≤ 4L1−α

2L1−α

σα
, otherwise.

Proof Based on relation (9) it follows that:

E
[
F

(
xk+1)|ηk

] ≤
(

1 − 2

n(n − 1)

)
F

(
xk

) + 2

n(n − 1)
min
d∈S

(
f

(
xk

) + 〈∇f
(
xk

)
, d

〉

+ L1−α‖d‖2
α + h

(
xk + d

))
.

Then, using similar derivation as in Theorem 1 we have:

min
d∈S

f
(
xk

) + 〈∇f
(
xk

)
, d

〉 + L1−α‖d‖2
α + h

(
xk + d

)

≤ min
y∈S

F (y) + L1−α‖y − xk‖2
α

≤ min
β∈[0,1]F

(
βx∗ + (1 − β)xk

) + β2L1−α‖xk − x∗‖2
α

≤ min
β∈[0,1]F

(
xk

) − β
(
F

(
xk

) − F ∗) + β2L1−α‖xk − x∗‖2
α

≤ min
β∈[0,1]F

(
xk

) + β

(
2βL1−α

σα

− 1

)(
F

(
xk

) − F ∗),

A random coordinate descent algorithm for composite optimization problems 321

where the last inequality results from (12). The statement of the theorem is obtained
by noting that β∗ = min{1, σα

4L1−α } and the following subcases:

1. If β∗ = σα

4L1−α and we take the expectation w.r.t. ηk we get:

φk+1 − F ∗ ≤
(

1 − σα

4L1−αn2

)(
φk − F ∗), (13)

2. if β∗ = 1 and we take the expectation w.r.t. ηk we get:

φk+1 − F ∗ ≤
[

1 − 2(1 − 2L1−α

σα
)

n2

](
φk − F ∗). (14)

�

3.3 Convergence in probability

Further, we establish some bounds on the required number of iterations for which
the generated sequence xk attains ε-accuracy with prespecified probability. In order
to prove this result we use Theorem 1 from [25] and for a clear understanding we
present it bellow.

Lemma 4 Let ξ0 > 0 be a constant, 0 < ε < ξ0 and consider a nonnegative nonin-
creasing sequence of (discrete) random variables {ξk}k≥0 with one of the following
properties:

(1) E[ξk+1|ξk] ≤ ξk − (ξk)2

c
for all k, where c > 0 is a constant,

(2) E[ξk+1|ξk] ≤ (1 − 1
c
)ξk for all k such that ξk ≥ ε, where c > 1 is a constant.

Then, for any confidence level ρ ∈ (0,1) we have in probability that:

Pr
(
ξK ≤ ε

) ≥ 1 − ρ,

for a number K of iterations which satisfies

K ≥ c

ε

(
1 + log

1

ρ

)
+ 2 − c

ξ0
,

if property (1) holds, or

K ≥ c log
ξ0

ερ
,

if property (2) holds.

Based on this lemma we can state the following rate of convergence in probability:

Theorem 3 Let F be a σα-strongly convex function satisfying Assumption 1 and
ρ > 0 be the confidence level. Then, the sequence xk generated by algorithm (RCD)

322 I. Necoara, A. Patrascu

using uniform distribution satisfies the following rate of convergence in probability
of the expected values of the objective function:

Pr
(
φK − F ∗ ≤ ε

) ≥ 1 − ρ,

with K satisfying

K ≥
⎧
⎨

⎩

2n2L1−αR2
α

ε
(1 + log 1

ρ
) + 2 − 2n2L1−αR2

α

F (x0)−F ∗ , σα = 0

n2

2(1−γ)
log F(x0)−F ∗

ερ
, σα > 0,

where

γ =
⎧
⎨

⎩

1 − σα

8L1−α , if σα ≤ 4L1−α

2L1−α

σα
, otherwise.

Proof Based on relation (10), we note that taking ξk as ξk = φk − F ∗, the property
(1) of Lemma 4 holds and thus we get the first part of our result. Relations (13) and
(14) in the strongly convex case are similar instances of property (2) in Theorem 4
from which we get the second part of the result. �

4 Generalization

In this section we study the optimization problem (1), but with general linearly cou-
pling constraints:

min
x∈RN

F (x)
(:= f (x) + h(x)

)

s.t.: Ax = 0,

(15)

where the functions f and h satisfy Assumption 1 and A ∈ R
m×N is a matrix with

1 < m ≤ N . There are very few attempts to solve this problem through coordinate
descent strategies and up to our knowledge the only complexity result can be found
in [34].

For the simplicity of the exposition, we work in this section with the standard
Euclidean norm, denoted by ‖ · ‖0, on the extended space R

N . We consider the set
of all (m + 1)-tuples of the form N = (i1, . . . , im+1), where ij ∈ {1, . . . , n} for all
j = 1, . . . ,m + 1. Also, we define pN as the probability distribution associated with
(m + 1)-tuples of the form N . Given this probability distribution pN , for this gen-
eral optimization problem (15) we propose the following random coordinate descent
algorithm:

Algorithm 2 (RCD)N

1. Choose randomly a set of (m + 1)-tuple Nk = (
i1
k , . . . , im+1

k

)

with probability pNk

2. Set xk+1 = xk + dNk
,

A random coordinate descent algorithm for composite optimization problems 323

where the direction dNk
is chosen as follows:

dNk
= arg min

s∈RN

f
(
xk

) + 〈∇f
(
xk

)
, s

〉 + LNk

2
‖s‖2

0 + h
(
xk + s

)

s.t.: As = 0, s(i) = 0 ∀i /∈ Nk.

We can easily see that the linearly coupling constraints Ax = 0 prevent the devel-
opment of an algorithm that performs at each iteration a minimization with respect
to less than m + 1 coordinates. Therefore we are interested in the class of iteration
updates which restricts the objective function on feasible directions that consist of at
least m + 1 (block) components.

Further, we redefine the subspace S as S = {s ∈ R
N : As = 0} and additionally

we denote the local subspace SN = {s ∈ R
N : As = 0, s(i) = 0 ∀i /∈ N }. Note that

we still consider an ordered (m + 1)-tuple Nk = (i1
k , . . . , im+1

k) such that i
p
k �= ilk for

all p �= l. We observe that for a general matrix A, the previous subproblem does not
necessarily have a closed form solution. However, when h is coordinatewise separa-
ble, strictly convex and piece-wise linear/quadratic with O(1) pieces (e.g., h given by
(2)) there are efficient algorithms for solving the previous subproblem in linear-time
[34]. Moreover, when h is the box indicator function (i.e., h given by (3)) we have
the following: in the scalar case (i.e., N = n) the subproblem has a closed form so-
lution; for the block case (i.e., n < N) there exist linear-time algorithms for solving
the subproblem within O(

∑
i∈Nk

ni) operations [2]. Through a similar reasoning as

in Lemma 1 we can derive that given a set of indices N = (i1, . . . , iq), with q ≥ 2,
the following relation holds:

f (x + dN) ≤ f (x) + 〈∇f (x), dN
〉 + LN

2
‖dN ‖2

0, (16)

for all x ∈R
N and dN ∈R

N with nonzero entries only on the blocks i1, . . . , iq . Here,
LN = Li1 + · · · + Liq . Moreover, based on Lemma 2 it follows that any d ∈ S has a
conformal realization defined by d = ∑q

t=1 dt , where the elementary vectors dt ∈ S

are conformal to d and have at most m + 1 nonzeros. Therefore, any vector d ∈ S

can be generated by d = ∑
N sN , where the vectors sN ∈ SN have at most m + 1

nonzero blocks and are conformal to d . We now present the main convergence result
for this method.

Theorem 4 Let F satisfy Assumption 1. Then, the random coordinate descent al-
gorithm (RCD)N that chooses uniformly at each iteration m + 1 blocks generates a
sequence xk satisfying the following rate of convergence for the expected values of
the objective function:

φk − F ∗ ≤ nm+1LR2
0

k + nm+1LR2
0

F(x0)−F ∗

.

Proof The proof is similar to that of Theorem 1 and we omit it here for brevity. �

324 I. Necoara, A. Patrascu

5 Complexity analysis

In this section we analyze the total complexity (arithmetic complexity [20]) of algo-
rithm (RCD) based on extended Euclidean norm for optimization problem (1) and
compare it with other complexity estimates. Tseng presented in [34] the first com-
plexity bounds for the (CGD) method applied to our optimization problem (1). Up to
our knowledge there are no other complexity results for coordinate descent methods
on the general optimization model (1).

Note that the algorithm (RCD) has an overall complexity w.r.t. extended Euclidean
norm given by:

O
(

n2LR2
0

ε

)
O(iRCD),

where O(iRCD) is the complexity per iteration of algorithm (RCD). On the other
hand, algorithm (CGD) has the following complexity estimate:

O
(

NLR2
0

ε

)
O(iCGD),

where O(iCGD) is the iteration complexity of algorithm (CGD). Based on the par-
ticularities and computational effort of each method, we will show in the sequel that
for some optimization models arising in real-world applications the arithmetic com-
plexity of (RCD) method is lower than that of (CGD) method. For certain instances
of problem (1) we have that the computation of the coordinate directional derivative
of the smooth component of the objective function is much more simpler than the
function evaluation or directional derivative along an arbitrary direction. Note that
the iteration of algorithm (RCD) uses only a small number of coordinate directional
derivatives of the smooth part of the objective, in contrast with the (CGD) itera-
tion which requires the full gradient. Thus, we estimate the arithmetic complexity of
these two methods applied to a class of optimization problems containing instances
for which the directional derivative of objective function can be computed cheaply.
We recall that the process of choosing a uniformly random pair (i, j) in our method
requires O(1) operations.

Let us structure a general coordinate descent iteration in two phases:

Phase 1: Gather first-order information to form a quadratic approximation of the
original optimization problem.

Phase 2: Solve a quadratic optimization problem using data acquired at Phase 1 and
update the current vector.

Both algorithms (RCD) and (CGD) share this structure but, as we will see, there
is a gap between computational complexities. We analyze the following example:

f (x) = 1

2
xT ZT Zx + qT x, (17)

where Z = [z1 . . . zN] ∈ R
m×N has sparse columns, with an average p << N

nonzero entries on each column zi for all i = 1, . . . ,N . A particular case of this

A random coordinate descent algorithm for composite optimization problems 325

class of functions is f (x) = 1
2‖Zx − q‖2, which has been considered for numerical

experiments in [17, 22, 25]. The problem (1), with the aforementioned structure (17)
of the smooth part of the objective function, arises in many applications: e.g., linear
SVM [33], truss topology [19], internet (Google problem) [17, 22], Chebyshev center
problems [37], etc. The reader can easily find many other examples of optimization
problems with cheap coordinate directional derivatives.

Further, we estimate the iteration complexity of the algorithms (RCD) and (CGD).
Given a feasible x, from the expression

∇if (x) = 〈
zi,Zx

〉 + qi,

we note that if the residual r(x) = Zx is already known, then the computation of
∇if (x) requires O(p) operations. We consider that the dimension ni of each block
is of order O(N

n
). Thus, the (RCD) method updates the current point x on O(N

n
) co-

ordinates and summing up with the computation of the new residual r(x+) = Zx+,
which in this case requires O(

pN
n

) operations, we conclude that up to this stage, the

iteration of (RCD) method has numerical complexity O(
pN
n

). However, the (CGD)
method requires the computation of the full gradient for which are necessary O(Np)

operations. As a preliminary conclusion, Phase 1 has the following complexity re-
garding the two algorithms:

(RCD). Phase 1 : O
(

Np

n

)

(CGD). Phase 1 : O(Np)

Suppose now that for a given x, the blocks (∇if (x),∇j f (x)) are known for
(RCD) method or the entire gradient vector ∇f (x) is available for (CGD) method
within previous computed complexities, then the second phase requires the finding of
an update direction with respect to each method. For the general linearly constrained
model (1), evaluating the iteration complexity of both algorithms can be a difficult
task. Since in [34] Tseng provided an explicit total computational complexity for the
cases when the nonsmooth part of the objective function h is separable and piece-
wise linear/quadratic with O(1) pieces, for clarity of the comparison we also analyze
the particular setting when h is a box indicator function as given in (3). For algorithm
(RCD) with α = 0, at each iteration, we require the solution of the following problem
(see (3)):

min
sij =Uis(i)+Uj s(j)

〈∇ij f (x), sij
〉 + L0

ij

2
‖sij‖2

0

s.t.: aT
(i)s(i) + aT

(j)s(j) = 0, l − x ≤ sij ≤ u − x.

(18)

It is shown in [12] that problem (18) can be solved in O(ni + nj) operations. How-
ever, in the scalar case (i.e., N = n) problem (18) can solved in closed form. There-
fore, Phase 2 of algorithm (RCD) requires O(N

n
) operations. Finally, we estimate for

algorithm (RCD) the total arithmetic complexity in terms of the number of blocks n

326 I. Necoara, A. Patrascu

Table 1 Comparison of
arithmetic complexities for alg.
(RCD), (CGD) and [10, 14] for
m = 1

Algorithm/m = 1 h(x) Probabilities Complexity

(RCD) Separable 1
n2 O(

pNnLR2
0

ε)

(CGD) Separable Greedy O(
pN2LR2

0
ε)

Hush [10], List [14] Box indicator Greedy O(
pN2LR2

0
ε)

as:

O
(

n2LR2
0

ε

)
O

(
pN

n

)
.

On the other hand, due to the Gauss-Southwell rule, the (CGD) method requires
at each iteration the solution of a quadratic knapsack problem of dimension N . It is
argued in [12] that for solving the quadratic knapsack problem we need O(N) op-
erations. In conclusion, the Gauss-Southwell procedure in algorithm (CGD) requires
the conformal realization of the solution of a continuous knapsack problem and the
selection of a “good” set of blocks J . This last process has a different cost depending
on m. Overall, we estimate the total complexity of algorithm (CGD) for one equality
constraint, m = 1, as:

O
(

NLR2
0

ε

)
O(pN)

First, we note that in the case m = 1 and n << N (i.e., the block case) algorithm
(RCD) has better arithmetic complexity than algorithm (CGD) and previously men-
tioned block-coordinate methods [10, 14] (see Table 1). When m = 1 and N = n (i.e.,
the scalar case), by substitution in the above expressions from Table 1, we have a total
complexity for algorithm (RCD) comparable to the complexity of algorithm (CGD)
and the algorithms from [10, 14].

On the other hand, the complexity of choosing a random pair (i, j) in algorithm
(RCD) is very low, i.e., we need O(1) operations. Thus, choosing the working pair
(i, j) in our algorithm (RCD) is much simpler than choosing the working set J
within the Gauss-Southwell rule for algorithm (CGD) which assumes the following
steps: first, compute the projected gradient direction and second, find the conformal
realization of computed direction; the overall complexity of these two steps being
O(N). In conclusion, the algorithm (RCD) has a very simple implementation due
to simplicity of the random choice for the working pair and a low complexity per
iteration.

For the case m = 2 the algorithm (RCD) needs in Phase 1 to compute coordinate
directional derivatives with complexity O(

pN
n

) and in Phase 2 to find the solution of
a 3-block dimensional problem of the same structure as (18) with complexity O(N

n
).

Therefore, the iteration complexity of the (RCD) method in this case is still O(
pN
n

).
On the other hand, the iteration complexity of the algorithm (CGD) for m = 2 is given
by O(pN + N logN) [34].

A random coordinate descent algorithm for composite optimization problems 327

Table 2 Comparison of
arithmetic complexities for
algorithms (RCD) and (CGD)
for m ≥ 2

Algorithm m = 2 m > 2

(RCD)
pn2NLR2

0
ε

(p+m)nmNLR2
0

ε

(CGD)
(p+logN)N2LR2

0
ε

m3N3LR2
0

ε

For m > 2, the complexity of Phase 1 at each iteration of our method still requires
O(

pN
n

) operations and the complexity of Phase 2 is O(mN
n

), while in the (CGD)
method the iteration complexity is O(m3N2) [34].

For the case m > 1, a comparison between arithmetic complexities of algorithms
(RCD) and (CGD) is provided in Table 2. We see from this table that depending on
the values of n,m and N , the arithmetic complexity of (RCD) method can be better
or worse than that of the (CGD) method.

We conclude from the rate of convergence and the previous complexity analysis
that algorithm (RCD) is easier to be implemented and analyzed due to the randomiza-
tion and the typically very simple iteration. Moreover, on certain classes of problems
with sparsity structure, that appear frequently in many large-scale real applications,
the arithmetic complexity of (RCD) method is better than that of some well-known
methods from the literature. All these arguments make the algorithm (RCD) to be
competitive in the composite optimization framework. Moreover, the (RCD) method
is suited for recently developed computational architectures (e.g., distributed or par-
allel architectures).

6 Numerical experiments

In this section we present extensive numerical simulations, where we compare our al-
gorithm (RCD) with some recently developed state-of-the-art algorithms from the lit-
erature for solving the optimization problem (1): coordinate gradient descent (CGD)
[34], projected gradient method for composite optimization (GM) [21] and LIBSVM
[7]. We tested the four methods on large-scale optimization problems ranging from
N = 103 to N = 107 arising in various applications such as: support vector machine
(SVM) (Sect. 6.1), the Chebyshev center of a set of points (Sect. 6.2) and random
generated problems with an �1-regularization term (Sect. 6.3). Firstly, for the SVM
application, we compare algorithm (RCD) against (CGD) and LIBSVM and we re-
mark that our algorithm has the best performance on large-scale problem instances
with sparse data. Secondly, we also observe a more robust behavior for algorithm
(RCD) in comparison with algorithms (CGD) and (GM) when using different initial
points on Chebyshev center problem instances. Lastly, we tested our algorithm on
randomly generated problems, where the nonsmooth part of the objective function
contains an �1-norm term, i.e., λ

∑N
i=1 |xi | for some λ > 0, and we compared our

method with algorithms (CGD) and (GM).
We have implemented all the algorithms in C-code and the experiments were run

on a PC with an Intel Xeon E5410 CPU and 8 GB RAM memory. In all algorithms we
considered the scalar case, i.e., N = n and we worked with the extended Euclidean

328 I. Necoara, A. Patrascu

norm (α = 0). In our applications the smooth part f of the composite objective func-
tion is of the form (17). The coordinate directional derivative at the current point
for algorithm (RCD) is ∇if (x) = 〈zi,Zx〉 + qi , where zi is the ith column of the
matrix Z. The component ∇if (x) is computed efficiently by knowing at each it-
eration the residual r(x) = Zx. For the (CGD) method, the working set is chosen
accordingly to Sect. 6 in [33]. Therefore, the entire gradient at the current point,
∇f (x) = ZT Zx + q , is required, which is computed efficiently using the resid-
ual r(x) = Zx. For gradient and residual computations we used an efficient sparse
matrix-vector multiplication procedure. We coded the standard (CGD) method pre-
sented in [34] and we have not used any heuristics recommended by Tseng in [33],
e.g., the “3-pair” heuristic technique. The direction dij at the current point from sub-
problem (6) for algorithm (RCD) is computed in closed form for all three applications
considered in this section. For computing the direction dH (x;J) at the current point
from subproblem (7) in the (CGD) method for the first two applications we coded
the algorithm from [12] for solving quadratic knapsack problems of the form (18)
that has linear time complexity. For the second application, the direction at the cur-
rent point for algorithm (GM) is computed using a linear time simplex projection
algorithm introduced in [11]. For the third application, we used the equivalent formu-
lation of the subproblem (7) given in [34], obtaining for both algorithms (CGD) and
(GM) an iteration which requires the solution of some double size quadratic knapsack
problem of the form (18).

In the following tables we present for each algorithm the final objective function
value (obj), the number of iterations (iter) and the necessary CPU time for our com-
puter to execute all the iterations. As the algorithms (CGD), LIBSVM and (GM) use
the whole gradient information to obtain the working set and to find the direction
at the current point, we also report for the algorithm (RCD) the equivalent number
of full-iterations which means the total number of iterations divided by N

2 (i.e., the
number of iterations groups x0, xN/2, . . . , xkN/2).

6.1 Support vector machine

In order to better understand the practical performance of our method, we have tested
the algorithms (RCD), (CGD) and LIBSVM on two-class data classification problems
with linear kernel, which is a well-known real-world application that can be posed as
a large-scale optimization problem in the form (1) with a sparsity structure. In this
section, we describe our implementation of algorithms (RCD), (CGD) [33] and LIB-
SVM [7] and report the numerical results on different test problems. Note that linear
SVM is a technique mainly used for text classification, which can be formulated as
the following optimization problem:

min
x∈RN

1

2
xT ZT Zx − eT x + 1[0,C](x)

s.t.: aT x = 0,

(19)

where 1[0,C] is the indicator function for the box constraint set [0,C]N , Z ∈ R
m×N

is the instance matrix with an average sparsity degree p (i.e., on average, Z has

A random coordinate descent algorithm for composite optimization problems 329

Table 3 Comparison of algorithms (RCD), (CGD) and library LIBSVM on SVM problems

Data set N/m (RCD) (CGD) LIBSVM

Full-iter/obj/time (min) Iter/obj/time (min) Iter/obj/time (min)

a7a 16100/122
(p = 14)

11242/−5698.02/2.5 23800/−5698.25/21.5 63889/−5699.25/0.46

a8a 22696/123
(p = 14)

22278/−8061.9/18.1 37428/−8061.9/27.8 94877/−8062.4/1.42

a9a 32561/123
(p = 14)

15355/−11431.47/7.01 45000/−11431.58/89 78244/−11433.0/2.33

w8a 49749/300
(p = 12)

15380/−1486.3/26.3 19421/−1486.3/27.2 130294/−1486.8/42.9

ijcnn1 49990/22
(p = 13)

7601/−8589.05/6.01 9000/−8589.52/16.5 15696/−8590.15/1.0

web 350000/254
(p = 85)

1428/−69471.21/29.95 13600/−27200.68/748 59760/−69449.56/467

covtyp 581012/54
(p = 12)

1722/−337798.34/38.5 12000/−24000/480 466209/−337953.02/566.5

test1 2.2 · 106/106

(p = 50)

228/−1654.72/51 4600/−473.93/568 *

test2 107/5 · 103

(p = 10)

350/−508.06/112.65 502/−507.59/516.66 *

p nonzero entries on each column), a ∈ R
N is the label vector of instances, C is

the penalty parameter and e = [1 . . .1]T ∈ R
N . Clearly, this model fits the afore-

mentioned class of functions (17). We set the primal penalty parameter C = 1 in
all SVM test problems. As in [33], we initialize all the algorithms with x0 = 0.
The stopping criterion used in the algorithm (RCD) is: f (xk−j) − f (xk−j+1) ≤ ε,
where j = 0, . . . ,10, while for the algorithm (CGD) we use the stopping criterion
f (xk) − f (xk+1) ≤ ε, where ε = 10−5.

We report in Table 3 the results for algorithms (RCD), (CGD) and LIBSVM im-
plemented in the scalar case, i.e., N = n. The data used for the experiments can
be found on the LIBSVM webpage (http://www.csie.ntu.edu.tw/cjlin/libsvmtools/
datasets/). For problems with very large dimensions, we generated the data randomly
(see “test1” and “test2”) such that the nonzero elements of Z fit into the available
memory of our computer. For each algorithm we present the final objective func-
tion value (obj), the number of iterations (iter) and the necessary CPU time (in min-
utes) for our computer to execute all the iterations. For the algorithm (RCD) we re-
port the equivalent number of full-iterations, that is the number of iterations groups
x0, xN/2, . . . , xkN/2. On small test problems we observe that LIBSVM outperforms
algorithms (RCD) and (CGD), but we still have that the CPU time for algorithm
(RCD) does not exceed 30 min, while algorithm (CGD) performs much worse. On
the other hand, on large-scale problems the algorithm (RCD) has the best behavior
among the three tested algorithms (within a factor of 10). For very large problems
(N ≥ 106), LIBSVM has not returned any result within 10 hours.

For the block case (i.e., n ≤ N), we have plotted in Fig. 1 for algorithm (RCD) on
the test problem “a7a” the CPU time and total time (in minutes) to solve knapsack

http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/

330 I. Necoara, A. Patrascu

Fig. 1 Performance of algorithm (RCD) for different block dimensions

problems (top) and the number of full-iterations (bottom) for different dimensions
of the blocks ni . We see that the number of iterations decreases with the increasing
dimension of the blocks, while the CPU time increases w.r.t. the scalar case due to
the fact that for ni > 1 the direction dij cannot be computed in closed form as in
the scalar case (i.e., ni = 1), but requires solving a quadratic knapsack problem (18)
whose solution can be computed in O(ni + nj) operations [12].

A random coordinate descent algorithm for composite optimization problems 331

6.2 Chebyshev center of a set of points

Many real applications such as location planning of shared facilities, pattern recogni-
tion, protein analysis, mechanical engineering and computer graphics (see e.g., [37]
for more details and appropriate references) can be formulated as finding the Cheby-
shev center of a given set of points. The Chebyshev center problem involves the fol-
lowing: given a set of points z1, . . . , zN ∈ R

m, find the center zc and radius r of the
smallest enclosing ball of the given points. This geometric problem can be formulated
as the following optimization problem:

min
r,zc

r

s.t.: ‖zi − zc‖2 ≤ r ∀i = 1, . . . ,N,

where r is the radius and zc is the center of the enclosing ball. It can be immediately
seen that the dual formulation of this problem is a particular case of our linearly
constrained optimization model (1):

min
x∈RN

‖Zx‖2 −
N∑

i=1

‖zi‖2xi + 1[0,∞)(x)

s.t.: eT x = 1,

(20)

where Z is the matrix containing the given points zi as columns. Once an optimal
solution x∗ for the dual formulation is found, a primal solution can be recovered as
follows:

r∗ =
(

−‖Zx∗‖2 +
N∑

i=1

‖zi‖2x∗
i

)1/2

, z∗
c = Zx∗. (21)

The direction dij at the current point in the algorithm (RCD) is computed in closed
form. For computing the direction in the (CGD) method we need to solve a quadratic
knapsack problem that has linear time complexity [12]. The direction at the current
point for algorithm (GM) is computed using a linear time simplex projection algo-
rithm introduced in [11]. We compare algorithms (RCD), (CGD) and (GM) for a set
of large-scale problem instances generated randomly with a uniform distribution. We
recover a suboptimal radius and Chebyshev center using the same set of relations (21)
evaluated at the final iteration point xk for all three algorithms.

In Fig. 2 we present the performance of the three algorithms (RCD), (GM) and
(CGD) on a randomly generated matrix Z ∈ R

2×1000 for 50 full-iterations with two
different initial points: x0 = e1 (the vector with the first entry 1 and the rest of the
entries zeros) and x0 = e

N
. Note that for the initial point x0 = e1, the algorithm (GM)

is outperformed by the other two methods: (RCD) and (CGD). Also, if all three algo-
rithms are initialized with x0 = e

N
, the algorithm (CGD) has the worst performance

among all three. We observe that our algorithm (RCD) is very robust against the
initial point choice.

332 I. Necoara, A. Patrascu

F
ig

.2
Pe

rf
or

m
an

ce
of

al
go

ri
th

m
s

(R
C

D
),

(G
M

)
an

d
(C

G
D

)
fo

r
50

fu
ll-

ite
ra

tio
ns

an
d

in
iti

al
po

in
te

1
(t

op
)

an
d

e N
(b

ot
to

m
)

on
a

ra
nd

om
ly

ge
ne

ra
te

d
m

at
ri

x
Z

∈R
2×

10
00

A random coordinate descent algorithm for composite optimization problems 333

Fig. 3 Time performance of algorithms (RCD), (GM) and (CGD) for initial point e
N

(left) and e1 (right)

on a randomly generated matrix Z ∈ R
30×1000

334 I. Necoara, A. Patrascu

Table 4 Comparison of algorithms (RCD), (CGD) and (GM) on Chebyshev center problems

x0 N
m (RCD) (CGD) GM

Full-iter/obj/time (sec) Iter/obj/time (sec) Iter/obj/time (sec)

e
N

5 · 103

10
2064/−79.80/0.76 4620/−79.80/5.3 17156/−79.82/5.6

104

10
6370/−84.71/4.75 9604/−84.7/23.2 42495/−84.71/28.01

3 · 104

10
13213/−87.12/31.15 27287/−86.09/206.52 55499/−86.09/111.81

5 · 103

30
4269/−205.94/2.75 823/−132.08/0.6 19610/−204.94/13.94

104

30
5684/−211.95/7.51 9552/−211.94/33.42 28102/−210.94/40.18

3 · 104

30
23744/−215.66/150.86 156929/−214.66/1729.1 126272/−214.66/937.33

e1 5 · 103

10
2392/−79.81/0.88 611/−80.8/0.77 29374/−79.8/9.6

104

10
9429/−84.71/7.05 350/−85.2/0.86 60777/−84.7/40.1

3 · 104

10
13007/−87.1/30.64 615/−88.09/6.20 129221/−86.09/258.88

5 · 103

30
2682/−205.94/1.73 806/−206.94/1.13 35777/−204.94/25.29

104

30
4382/−211.94/5.77 594/−212.94/2.14 59825/−210.94/85.52

3 · 104

30
16601/−215.67/102.11 707/−216.66/8.02 191303/−214.66/1421

In Fig. 3 we plot the objective function evaluation over time (in seconds) for the
three algorithms (RCD), (GM) and (CGD) on a matrix Z ∈ R

30×1000. We observe
that the algorithm (RCD) has a comparable performance with algorithm (GM) and a
much better performance than (CGD) when the initial point is taken e

N
. On the other

hand, the algorithm (GM) has the worst behavior among all three methods when
sparse initializations are used. However, the behavior of our algorithm (RCD) is not
dependent on the sparsity of the initial point.

In Table 4, for a number of N = 5 · 103,104 and 3 · 104 points generated randomly
using uniform distribution in R

10 and R
30, we compared all three algorithms (RCD),

(CGD) and (GM) with two different initial points: x0 = e1 and x0 = e
N

. Firstly, we
computed f ∗ with the algorithm (CGD) using x0 = e1 and imposed the termination
criterion f (xk)−f (xk+1) ≤ ε, where ε = 10−5. Secondly, we used the precomputed
optimal value f ∗ to test the other algorithms with termination criterion f (xk)−f ∗ ≤
1 or 2. We clearly see that our algorithm (RCD) has superior performance over the
(GM) method and is comparable with (CGD) method when we start from x0 = e1.
When we start from x0 = e

N
our algorithm provides better performance in terms of

objective function and CPU time (in seconds) than the (CGD) and (GM) methods

A random coordinate descent algorithm for composite optimization problems 335

Table 5 Comparison of algorithms (RCD), (CGD) and (GM) on �1-regularization problems

x0 λ N (RCD) (CGD) (GM)

full-iter/obj/time(sec) iter/obj/time(sec) iter/obj/time(sec)

e
N

0.1 104 905/−6.66/0.87 10/−6.67/0.11 9044/−6.66/122.42

5 ·104 1561/−0.79/12.32 8/−0.80/0.686 4242/−0.75/373.99

105 513/−4.12/10.45 58/−4.22/7.55 253/−4.12/45.06

5 ·105 245/−2.40/29.03 13/−2.45/9.20 785/−2.35/714.93

2 ·106 101/−10.42/61.27 6/−10.43/22.79 1906/−9.43/6582.5

107 29/−2.32/108.58 7/−2.33/140.4 138/−2.21/2471.2

10 104 316/11.51/0.29 5858/11.51/35.67 22863/11.60/150.61

5 ·104 296/23.31/17.65 1261/23.31/256.6 1261/23.40/154.6

105 169/22.43/12.18 46/22.34/15.99 1467/22.43/423.4

5 · 105 411/21.06/50.82 37/21.02/22.46 849/22.01/702.73

2 · 106 592/11.84/334.30 74/11.55/182.44 664/12.04/2293.1

107 296/20.9/5270.2 76/20.42/1071.5 1646/20.91/29289.1

e1 0.1 104 536/−6.66/0.51 4/−6.68/0.05 3408/−6.66/35.26

5 · 104 475/−0.79/24.30 84564/−0.70/7251.4 54325/−0.70/4970.7

105 1158/−4.07/21.43 118/−4.17/24.83 6699/−3.97/1718.2

5 · 105 226/−2.25/28.81 24/−2.35/29.03 2047/−2.25/2907.5

2 · 106 70/−10.42/40.4 166/−10.41/632 428/−10.33/1728.3

107 30/−2.32/100.1 * 376/−2.22/6731

10 104 1110/11.51/1.03 17/11.52/0.14 184655/11.52/1416.8

5 · 104 237/23.39/1.22 21001/23.41/4263.5 44392/23.1/5421.4

105 29/22.33/2.47 * *

5 · 105 29/21.01/3.1 * *

2 · 106 9/11.56/5.85 * *

107 7/20.42/14.51 * *

(at least 6 times faster). We also observe that our algorithm is not sensitive w.r.t. the
initial point.

6.3 Random generated problems with �1-regularization term

In this section we compare algorithm (RCD) with the methods (CGD) and (GM) on
problems with composite objective function, where nonsmooth part contains an �1-
regularization term λ

∑N
i=1 |xi |. Many applications from signal processing and data

mining can be formulated into the following optimization problem [5, 24]:

min
x∈RN

1

2
xT ZT Zx + qT x +

(

λ

N∑

i=1

|xi | + 1[l,u](x)

)

s.t.: aT x = b,

(22)

336 I. Necoara, A. Patrascu

where Z ∈R
m×N and the penalty parameter λ > 0. Further, the rest of the parameters

are chosen as follows: a = e, b = 1 and −l = u = 1. The direction dij at the current
point in the algorithm (RCD) is computed in closed form. For computing the direction
in the (CGD) and (GM) methods we need to solve a double size quadratic knapsack
problem of the form (18) that has linear time complexity [12].

In Table 5, for dimensions ranging from N = 104 to N = 107 and for m = 10, we
generated randomly the matrix Z ∈ R

m×N and q ∈ R
N using uniform distribution.

We compared all three algorithms (RCD), (CGD) and (GM) with two different initial
points x0 = e1 and x0 = e

N
and two different values of the penalty parameter λ = 0.1

and λ = 10. Firstly, we computed f ∗ with the algorithm (CGD) using x0 = e
N

and
imposed the termination criterion f (xk) − f (xk+1) ≤ ε, where ε = 10−5. Secondly,
we used the precomputed optimal value f ∗ to test the other algorithms with termi-
nation criterion f (xk) − f ∗ ≤ 0.1 or 1. For the penalty parameter λ = 10 and initial
point e1 the algorithms (CGD) and (GM) have not returned any result within 5 hours.
It can be clearly seen from Table 5 that for most of the tests with the initialization
x0 = e1 our algorithm (RCD) performs up to 100 times faster than the other two
methods. Also, note that when we start from x0 = e

N
our algorithm provides a com-

parable performance, in terms of objective function and CPU time (in seconds), with
algorithm (CGD). Finally, we observe that algorithm (RCD) is the most robust w.r.t.
the initial point among all three tested methods.

Acknowledgements The research leading to these results has received funding from: the European
Union (FP7/2007–2013) under grant agreement no 248940; CNCS (project TE-231, 19/11.08.2010);
ANCS (project PN II, 80EU/2010); POSDRU/89/1.5/S/62557.

The authors thank Y. Nesterov and F. Glineur for inspiring discussions and the two anonymous review-
ers for their valuable comments.

References

1. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. Tecnical
report, Technion (2012)

2. Berman, P., Kovoor, N., Pardalos, P.M.: Algorithms for least distance problem. In: Pardalos, P.M. (ed.)
Complexity in Numerical Optimization, pp. 33–56. World Scientific, Singapore (1993)

3. Bertsekas, D.P.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Nashua
(2003)

4. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Nashua (1999)
5. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from

highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)
6. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Rev. 43, 129–159

(2001)
7. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.

Technol. 27, 1–27 (2011)
8. Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to

lower and upper bounds. Math. Program. 106(3), 403–421 (2006)
9. Ferris, M.C., Munson, T.S.: Interior-point methods for massive support vector machines. SIAM J.

Optim. 13(3), 783–804 (2003)
10. Hush, D., Kelly, P., Scovel, C., Steinwart, I.: QP algorithms with guaranteed accuracy and run time

for support vector machines. J. Mach. Learn. Res. 7, 733–769 (2006)
11. Judice, J., Raydan, M., Rosa, S., Santos, S.: On the solution of the symmetric eigenvalue complemen-

tarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)

A random coordinate descent algorithm for composite optimization problems 337

12. Kiwiel, K.C.: On linear-time algorithms for the continuous quadratic Knapsack problem. J. Optim.
Theory Appl. 134, 549–554 (2007)

13. Lin, C.J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A decomposition algorithm model for singly
linearly constrained problems subject to lower and upper bounds. J. Optim. Theory Appl. 141, 107–
126 (2009)

14. List, N., Simon, H.U.: General Polynomial Time Decomposition Algorithms. Lecture Notes in Com-
puter Science, vol. 3559, pp. 308–322. Springer, Berlin (2005)

15. Necoara, I., Nedelcu, V., Dumitrache, I.: Parallel and distributed optimization methods for estimation
and control in networks. J. Process Control 21(5), 756–766 (2011)

16. Necoara, I., Nesterov, Y., Glineur, F.: A random coordinate descent method on large optimiza-
tion problems with linear constraints. Technical report, University Politehnica Bucharest (2011)
http://acse.pub.ro/person/ion-necoara

17. Necoara, I.: Random coordinate descent algorithms for multi-agent convex optimization over net-
works. IEEE Trans. Autom. Control 58(7), 1–12 (2013)

18. Necoara, I., Clipici, D.: Efficient parallel coordinate descent algorithm for convex optimization prob-
lems with separable constraints: application to distributed MPC. J. Process Control 23(3), 243–253
(2013)

19. Nesterov, Y., Shpirko, S.: Primal-dual subgradient method for huge-scale linear conic problems
(2012). http://www.optimization-online.org/DB_FILE/2012/08/3590.pdf

20. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic,
Norwell (2004)

21. Nesterov, Y.: Gradient methods for minimizing composite objective functions. Core discussion paper,
76/2007, Universite Catholique de Louvain (2007)

22. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim. 22(2), 341–362 (2012)

23. Platt, J.C.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Ad-
vances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)

24. Qin, Z., Scheinberg, K., Goldfarb, D.: Efficient block-coordinate descent algorithms for the group
Lasso (2010), submitted

25. Richtarik, P., Takac, M.: Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Math. Program., Ser. A (2012). doi:10.1007/s10107-012-0614-z

26. Richtarik, P., Takac, M.: Efficient serial and parallel coordinate descent methods for huge-scale truss
topology design. Oper. Res. Proc., 27–32 (2012)

27. Richtarik, P., Takac, M.: Parallel coordinate descent methods for big data optimization. Technical
report (2012). arXiv:1212.0873

28. Rockafellar, R.T.: The elementary vectors of a subspace in R
N . In: Bose, R.C., Downling, T.A. (eds.)

Proceedings of the Chapel Hill Conference 1967. Combinatorial Mathematics and Its Applications,
pp. 104–127. University of North Carolina Press, Chapel Hill (1969)

29. Rockafellar, R.T.: Network Flows and Monotropic Optimization. Wiley-Interscience, New York
(1984)

30. Saha, A., Tewari, A.: On the finite time convergence of cyclic coordinate descent methods. SIAM J.
Optim. 23(1), 576–601 (2013)

31. Tappenden, R., Richtarik, P., Gondzio, J.: Inexact coordinate descent: complexity and preconditioning
(2013). arXiv:1304.5530

32. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization.
Math. Program. 117, 387–423 (2009)

33. Tseng, P., Yun, S.: A coordinate gradient descent method for linearly constrained smooth optimization
and support vector machines training. Comput. Optim. Appl. 47, 179–206 (2010)

34. Tseng, P., Yun, S.: A block-coordinate gradient descent method for linearly constrained nonsmooth
separable optimization. J. Optim. Theory Appl. 140, 513–535 (2009)

35. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat.
Soc. B 68(1), 49–67 (2006)

36. Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim.
Theory Appl. 129(3), 469–488 (2006)

37. Xu, S., Freund, M., Sun, J.: Solution methodologies for the smallest enclosing circle problem. Com-
put. Optim. Appl. 25(1–3), 283–292 (2003)

http://acse.pub.ro/person/ion-necoara
http://www.optimization-online.org/DB_FILE/2012/08/3590.pdf
http://dx.doi.org/10.1007/s10107-012-0614-z
http://arxiv.org/abs/arXiv:1212.0873
http://arxiv.org/abs/arXiv:1304.5530

	A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints
	Abstract
	Introduction
	Preliminaries

	Random coordinate descent algorithm
	Previous work

	Convergence results
	Convergence in expectation
	Convergence for strongly convex functions
	Convergence in probability

	Generalization
	Complexity analysis
	Numerical experiments
	Support vector machine
	Chebyshev center of a set of points
	Random generated problems with l1-regularization term

	Acknowledgements
	References

