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Abstract Nonnegative matrix factorization (NMF) is the problem of approximating
a given nonnegative matrix by the product of two nonnegative matrices. The multi-
plicative updates proposed by Lee and Seung are widely used as efficient computa-
tional methods for NMF. However, the global convergence of these updates is not
formally guaranteed because they are not defined for all pairs of nonnegative matri-
ces. In this paper, we consider slightly modified versions of the original multiplicative
updates and study their global convergence properties. The only difference between
the modified updates and the original ones is that the former do not allow variables
to take values less than a user-specified positive constant. Using Zangwill’s global
convergence theorem, we prove that any sequence of solutions generated by either of
those modified updates has at least one convergent subsequence and the limit of any
convergent subsequence is a stationary point of the corresponding optimization prob-
lem. Furthermore, we propose algorithms based on the modified updates that always
stop within a finite number of iterations.
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1 Introduction

Nonnegative matrix factorization (NMF) [16, 17] is the problem of approximating a
given large nonnegative matrix V by the product WH of two flat nonnegative ma-
trices W and H . If we consider the columns of V as data vectors, the columns of
W and those of H are interpreted as a set of nonnegative basis vectors and a set of
nonnegative coefficient vectors, respectively. Each data vector is thus reproduced ap-
proximately by a linear combination of the basis vectors with coefficients stored in
the corresponding column of H . In this sense, NMF can generate a reduced repre-
sentation of the original data. Moreover, the basis vectors often represent parts of the
object because of the nonnegativity constraints [16]. This is a significant difference
between NMF and other factorization methods such as principal component analysis.
So far, NMF has been successfully applied to various problems in machine learning,
signal processing and so on [2, 5, 7, 15, 16, 20, 22, 25].

Usually, NMF is formulated as a constrained optimization problem in which the
approximation error has to be minimized with respect to W and H subject to the
nonnegativity of these matrices. Lee and Seung [17] considered the cases where
the approximation error is measured by the Euclidean distance and the I-divergence,
and proposed iterative methods called the multiplicative updates. These updates are
widely used as simple and efficient computational methods for NMF because of the
following three advantages. First, the updates do not contain parameters like the step
size in gradient decent methods, and therefore parameter tuning is not needed. Sec-
ond, nonnegativity of the matrices Wk and Hk , the solution after k iterations, is auto-
matically satisfied if the initial matrices W 0 and H 0 are chosen to be positive. Third,
implementation is easy because the update formulae are very simple.

However, the multiplicative updates of Lee and Seung have a serious drawback
that their global convergence is not guaranteed theoretically. By global convergence,
we mean that, for any initial solution, the sequence of solutions contains at least one
convergent subsequence and the limit of any convergent subsequence is a station-
ary point of the corresponding optimization problem. The main difficulty in proving
global convergence is that the updates, which are expressed in the form of a fraction,
are not defined for all pairs of nonnegative matrices. Hence the convergence analy-
sis of the multiplicative updates and their variants is an important research issue in
NMF, and many authors have addressed this problem so far [1, 10, 12, 18]. Finesso
and Spreij [10] studied convergence properties of the multiplicative update based on
the I-divergence minimization and proved, under the assumption that Wk is normal-
ized after each update so that its Frobenius norm becomes one, that the sequences of
Wk and WkHk always converge. However, their result does not guarantee conver-
gence of the sequence of Hk . Lin [18] considered the case of the Euclidean distance
minimization and showed that some modifications to the original multiplicative up-
date can make it well-defined and globally convergent. However, since Lin’s modified
update is not multiplicative but additive in some cases, this result cannot be directly
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applied to the original update. Recently, Badeau et al. [1] studied local stability of a
generalized multiplicative update, which includes the multiplicative updates of Lee
and Seung as special cases, using Lyapunov’s stability theory and showed that the
local optimal solution of the corresponding optimization problem is asymptotically
stable if one of two matrices Wk and Hk is fixed for all k.

The objective of this paper is to show that a slight modification can guarantee
global convergence of the multiplicative updates of Lee and Seung [17]. Our at-
tention is focused on the modification proposed by Gillis and Glineur [12]. Their
update, which is a modified version of the Euclidean distance-based multiplicative
update of Lee and Seung [17], returns a user-specified positive constant if the orig-
inal update returns a value less than the constant. Note that unlike the updates of
Lin [18] and Finesso and Spreij [10], normalization procedure is not involved. Gillis
and Glineur proved that their modified multiplicative update decreases the objective
function monotonically and that if a sequence of solutions generated by the update has
a limit point then it is necessarily a stationary point of the corresponding optimization
problem [12]. However, this does not imply global convergence of the update.

In this paper, we consider not only the Euclidean distance-based multiplicative
update but also the I-divergence-based one, and prove that their global convergence
is guaranteed if they are modified as described by Gillis and Glineur [12]. Our proof
is based on Zangwill’s global convergence theorem [28, p. 91] which is a fundamen-
tal result in optimization theory and has played important roles in the convergence
analysis of many algorithms in machine learning [21, 23, 26]. We also propose two
algorithms based on the modified updates. They always stop within a finite number of
iterations after finding an approximate stationary point of the optimization problem.

There are many other approaches that attempt to solve NMF optimization prob-
lems. For example, some authors modified the multiplicative updates of Lee and Se-
ung by adding a small positive constant to the denominators so that they are defined
for all nonnegative matrices [3, 18]. Also, some authors proposed to apply different
optimization techniques to NMF optimization problems [3, 7, 19]. Furthermore, some
authors derived a variety of multiplicative updates by considering various types of di-
vergence between V and WH [1, 6, 9, 27]. Although these updates are potentially
superior in some cases, we will not consider them in this paper.

The rest of this paper is organized as follows. In Sect. 2, we introduce briefly
the NMF optimization problems and the multiplicative updates of Lee and Seung. In
Sect. 3, the modified multiplicative updates based on the idea of Gillis and Glineur
are first introduced and then convergence theorems for these updates are presented. In
addition, algorithms based on the modified multiplicative updates are proposed and
their finite termination is proved. In Sect. 4, the convergence theorems in Sect. 3 are
proved using Zangwill’s global convergence theorem. Finally, in Sect. 5, we conclude
the paper with a brief summary.

Part of this paper (Theorem 1 in Sect. 3) was presented in the authors’ conference
paper [14]. However, no rigorous proof was given there because of space limitation.
In this paper, not only Theorem 1 but also some new results (Theorems 2, 3 and 4)
are presented with their complete proofs.
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2 Nonnegative matrix factorization and multiplicative updates

Given a nonnegative matrix V ∈ R
n×m+ where R+ denotes the set of nonnegative real

numbers, and a positive integer r ≤ min(n,m), NMF is the problem of finding two
nonnegative matrices W ∈ R

n×r+ and H ∈ R
r×m+ such that V is approximately equal

to WH (see Fig. 1). Throughout this paper, we assume the following.

Assumption 1 Each row and column of V has at least one nonzero element.

Let us consider each column of V as a data vector. If the value of r is sufficiently
small, a compact expression for the original data can be obtained through NMF be-
cause the total number of elements in the factor matrices W and H is less than that of
the original matrix V . Moreover, the columns of W are regarded as a kind of basis for
the space spanned by the columns of V because each data vector can be approximated
by a linear combination of the columns of W (see Fig. 1).

Lee and Seung [17] employed the Euclidean distance and the I-divergence for
the approximation error between V and WH , and formulated NMF as two types of
optimization problems. In the former case, the problem is expressed as

minimize fE(W,H) = ‖V − WH‖2

subject to W ≥ 0, H ≥ 0,
(1)

where ‖ · ‖ represents the Frobenius norm, that is,

‖V − WH‖2 =
n∑

i=1

m∑

j=1

(
Vij − (WH)ij

)2
,

and the inequality W ≥ 0 (resp. H ≥ 0) means that all elements of the matrix W

(resp. H ) are nonnegative. In the latter case, the problem is expressed as

minimize fD(W,H) = D(V ‖WH)

subject to W ≥ 0, H ≥ 0,
(2)

Fig. 1 Nonnegative matrix factorization. A given nonnegative matrix V is approximated by the product
of two nonnegative matrices W and H . The j -th column of V is approximated by the linear combination
of the columns of W where coefficients are the elements of the j -th column of H
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where D(·‖·) is defined by

D(V ‖WH) =
n∑

i=1

m∑

j=1

{
Vij log

Vij

(WH)ij
− Vij + (WH)ij

}
.

It is difficult in both cases to find a global optimal solution because the objective
functions fE(W,H) and fD(W,H) are not convex. In fact, NP-hardness of NMF was
proved by Vavasis [24]. Therefore, we have to take the second best way, that is, we
try to find a local optimal solution instead of a global one. For this purpose, Lee and
Seung [17] proposed the update rule

Hk+1
aj = Hk

aj

((Wk)T V )aj

((Wk)T WkHk)aj
,

Wk+1
ia = Wk

ia

(V (Hk+1)T )ia

(WkHk+1(Hk+1)T )ia
,

(3)

for the optimization problem (1), and the update rule

Hk+1
aj = Hk

aj

∑n
i=1 Wk

iaVij /(W
kHk)ij∑n

i=1 Wk
ia

,

Wk+1
ia = Wk

ia

∑m
j=1 Hk+1

aj Vij /(W
kHk+1)ij

∑m
j=1 Hk+1

aj

,

(4)

for the optimization problem (2), where k represents the iteration count.1 The updates
like (3) and (4) are called the multiplicative updates because the new estimate is
given by the product of the current estimate and some factor. An advantage of these
multiplicative updates is that, unlike conventional gradient descent methods, there
are no parameters to tune. Another advantage is that positiveness of Wk and Hk

is guaranteed for all k under Assumption 1 if the initial matrices W 0 and H 0 are
chosen to be positive [19]. For these reasons, the multiplicative updates (3) and (4)
are widely used as simple and effective methods for finding local optimal solutions
of (1) and (2).

3 Modified multiplicative updates and their global convergence

The most serious drawback of the multiplicative update rules described by (3) and (4)
is that the right-hand sides are not defined for all nonnegative matrices Wk and Hk

(or Hk+1). For example, in the case of Euclidean distance, we cannot obtain Hk+1

by the update rule (3) when Hk = 0, because the denominator of the first equation
vanishes.

1Although it is not explicitly written in their original paper [17] which of Hk and Hk+1 is used for the

computation of Wk+1, we consider the latter case throughout this paper as in [18].
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As mentioned in Sect. 2, Wk and Hk are positive for all k if the initial matrices
W 0 and H 0 are chosen to be positive. Hence the updates can be performed infinitely
many times. However, even though the sequence {(Wk,Hk)}∞k=0 converges, it is not
guaranteed that both limk→∞ Wk and limk→∞ Hk are positive. This means that the
update rules may not be defined at limk→∞(Wk,Hk), which makes it difficult to
prove their global convergence using known results such as Zangwill’s global con-
vergence theorem [28, p. 91].

In this section, we introduce slightly modified versions of the update rules (3) and
(4) which are based on the idea of Gillis and Glineur [12], and present convergence
theorems. We also propose two algorithms based on the modified updates and prove
their finite termination.

3.1 Euclidean distance

In order to prevent elements of matrices Wk and Hk from vanishing, Gillis and
Glineur [12] have proposed to modify the update rule (3) as

Hk+1
aj = max

(
Hk

aj

((Wk)T V )aj

((Wk)T WkHk)aj
, ε

)
,

Wk+1
ia = max

(
Wk

ia

(V (Hk+1)T )ia

(WkHk+1(Hk+1)T )ia
, ε

)
,

(5)

where ε is any positive constant specified by the user. Each update in (5) returns the
positive constant ε if the corresponding original update in (3) returns a value less
than ε. This is the only difference between these two update rules. With the modi-
fication of the update rule from (3) to (5), we have to modify also the optimization
problem (1) as follows:

minimize fE(W,H) = ‖V − WH‖2

subject to Wia ≥ ε, Haj ≥ ε, ∀i, a, j.
(6)

The feasible region of this optimization problem is denoted by X, that is,

X = {
(W,H) | Wia ≥ ε,Haj ≥ ε,∀i, a, j

}
.

Karush–Kuhn–Tucker (KKT) conditions [4] for the problem (6) are expressed as fol-
lows:2

Wia ≥ ε, ∀i, a, (7)

Haj ≥ ε, ∀a, j, (8)
(∇WfE(W,H)

)
ia

≥ 0, ∀i, a, (9)
(∇H fE(W,H)

)
aj

≥ 0, ∀a, j, (10)

2The conditions (7)–(12) are derived by eliminating Lagrange multipliers in the original KKT conditions.
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(∇WfE(W,H)
)
ia

(ε − Wia) = 0, ∀i, a, (11)
(∇H fE(W,H)

)
aj

(ε − Haj ) = 0, ∀a, j, (12)

where

∇WfE(W,H) = 2(WH − V )HT ,

∇H fE(W,H) = 2WT (WH − V ).

Therefore, a necessary condition for a point (W,H) to be a local optimal solution
of (6) is that the conditions (7)–(12) are satisfied. Hereafter, we call a point (W,H) a
stationary point of (6) if it satisfies (7)–(12), and denote the set of all stationary points
of (6) by SE.

The global convergence property of the modified update rule (5) is stated as fol-
lows.

Theorem 1 Let {(Wk,Hk)}∞k=0 be any sequence generated by the modified update
rule (5) with the initial point (W 0,H 0) ∈ X. Then (Wk,Hk) ∈ X holds for all posi-
tive integers k. Moreover, the sequence has at least one convergent subsequence and
the limit of any convergent subsequence is a stationary point of the optimization prob-
lem (6).

Proof of Theorem 1 will be given in the next section.
By making use of Theorem 1, we can immediately construct an algorithm that

terminates within a finite number of iterations. To do so, we relax the conditions
(9)–(12) as

(∇WfE(W,H)
)
ia

≥ −δ1, ∀i, a, (13)
(∇H fE(W,H)

)
aj

≥ −δ1, ∀j, a, (14)

Wia − ε ≤ δ2 if
(∇WfE(W,H)

)
ia

> δ1, ∀i, a, (15)

Haj − ε ≤ δ2 if
(∇H fE(W,H)

)
aj

> δ1, ∀a, j, (16)

where δ1 and δ2 are any positive constants specified by the user, and employ these re-
laxed conditions as a stopping criterion. Let S̄E be the set of all (W,H) ∈ X satisfying
(13)–(16). Then the proposed algorithm is described in Algorithm 1.

Algorithm 1 Modified multiplicative update algorithm with a termination criterion
for Euclidean distance-based NMF
Input: V ∈R

n×m+ , r ∈N, ε > 0, δ1 > 0, δ2 > 0
Step 1: Choose (W 0,H 0) ∈ X and set k = 0.
Step 2: Find (Wk+1,Hk+1) by the update rule (5).
Step 3: If (Wk+1,Hk+1) ∈ S̄E then return Wk+1 and Hk+1. Otherwise add 1 to k and
go to Step 2.
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Theorem 2 For any positive constants ε, δ1 and δ2, Algorithm 1 stops within a finite
number of iterations.

Proof Let {(Wkl ,Hkl )}∞l=1 be any convergent subsequence of the sequence {(Wk,

Hk)}∞k=0 generated by the modified update rule (5), and (W̄ , H̄ ) ∈ X be the limit of
the subsequence. Then, by Theorem 1, (W̄ , H̄ ) satisfies

(∇WfE(W̄ , H̄ )
)
ia

≥ 0, ∀i, a,

(∇H fE(W̄ , H̄ )
)
aj

≥ 0, ∀a, j,

(∇WfE(W̄ , H̄ )
)
ia

(ε − W̄ia) = 0, ∀i, a,

(∇H fE(W̄ , H̄ )
)
aj

(ε − H̄aj ) = 0, ∀a, j.

Recall that ∇WfE(W,H) and ∇H fE(W,H) are continuous for all (W,H) ∈ X. For
all (i, a) such that (∇WfE(W̄ , H̄ ))ia = 0, there exists a positive integer L1

ia such that

∣∣(∇WfE
(
Wkl ,Hkl

))
ia

∣∣ ≤ δ1, ∀l ≥ L1
ia.

For all (i, a) such that (∇WfE(W̄ , H̄ ))ia > 0, there exists a positive integer L1
ia such

that
(∇WfE

(
Wkl ,Hkl

))
ia

≥ −δ1 and W
kl

ia − ε ≤ δ2, ∀l ≥ L1
ia,

because W̄ia = ε holds. For all (a, j) such that (∇H fE(W̄ , H̄ ))aj = 0, there exists a
positive integer L2

aj such that

∣∣(∇WfE
(
Wkl ,Hkl

))
ia

∣∣ ≤ δ1, ∀l ≥ L2
ia.

For all (a, j) such that (∇H fE(W̄ , H̄ ))aj > 0, there exists a positive integer L2
aj such

that
(∇H fE

(
Wkl ,Hkl

))
aj

≥ −δ1 and H
kl

aj − ε ≤ δ2, ∀l ≥ L2
aj ,

because H̄aj = ε holds. From these considerations, we immediately see that there
exists a positive integer L such that the stopping criterion of Algorithm 1 is satisfied
for all (Wkl ,Hkl ) with l ≥ L. This means that Algorithm 1 always stops within a
finite number of iteration. �

3.2 I-divergence

As in the case of Euclidean distance, we modify the update rule (4) as

Hk+1
aj = max

(
Hk

aj

∑n
i=1 Wk

iaV
k
ij /(W

kHk)ij
∑n

μ=1 Wk
μa

, ε

)
,

Wk+1
ia = max

(
Wk

ia

∑m
j=1 Hk+1

aj Vij /(W
kHk+1)ij

∑m
ν=1 Hk

aν

, ε

)
,

(17)



Global convergence of modified multiplicative updates for nonnegative 425

where ε is any positive constant specified by the user. The modified update rule cor-
responds to modifying the optimization problem (2) as follows:

minimize fD(W,H) = D(V ‖WH)

subject to Wia ≥ ε, Haj ≥ ε, ∀i, a, j.
(18)

The feasible region of this optimization problem is X as in the case of (6). KKT
conditions for the problem (18) are expressed as follows:3

Wia ≥ ε, ∀i, a, (19)

Haj ≥ ε, ∀a, j, (20)
(∇WfD(W,H)

)
ia

≥ 0, ∀i, a, (21)
(∇H fD(W,H)

)
aj

≥ 0, ∀a, j, (22)
(∇WfD(W,H)

)
ia

(ε − Wia) = 0, ∀i, a, (23)
(∇H fD(W,H)

)
aj

(ε − Haj ) = 0, ∀a, j, (24)

where

(∇WfD(W,H)
)
ia

=
m∑

j=1

{
Haj − VijHaj

(WH)ij

}
,

(∇H fD(W,H)
)
aj

=
n∑

i=1

{
Wia − VijWia

(WH)ij

}
.

Therefore, a necessary condition for a point (W,H) to be a local optimal solution of
(18) is that the conditions (19)–(24) are satisfied. Hereafter, we call a point (W,H)

a stationary point of (18) if it satisfies (19)–(24), and denote the set of all stationary
points of (18) by SD.

The global convergence property of the modified update rule (17) is stated as fol-
lows.

Theorem 3 Let {(Wk,Hk)}∞k=0 be any sequence generated by the modified update
rule (17) with the initial point (W 0,H 0) ∈ X. Then (Wk,Hk) ∈ X holds for all pos-
itive integers k. Moreover, the sequence has at least one convergent subsequence and
the limit of any convergent subsequence is a stationary point of the optimization prob-
lem (18).

Proof of Theorem 3 will be given in the next section.
By making use of Theorem 3, we can easily construct an algorithm that terminates

within a finite number of iterations. To do so, we relax the conditions (21)–(24) as
(∇WfD(W,H)

)
ia

≥ −δ1, ∀i, a, (25)

3The conditions (19)–(24) are derived by eliminating Lagrange multipliers in the original KKT conditions.
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Algorithm 2 Modified multiplicative update algorithm with a termination criterion
for I-divergence-based NMF

Input: V ∈R
n×m+ , r ∈N, ε > 0, δ1 > 0, δ2 > 0

Step 1: Choose (W 0,H 0) ∈ X and set k = 0.
Step 2: Find (Wk+1,Hk+1) by the update rule (17).
Step 3: If (Wk+1,Hk+1) ∈ S̄D then return Wk+1 and Hk+1. Otherwise add 1 to k and
go to Step 2.

(∇H fD(W,H)
)
aj

≥ −δ1, ∀a, j, (26)

Wia − ε ≤ δ2 if
(∇WfD(W,H)

)
ia

> δ1, ∀i, a, (27)

Haj − ε ≤ δ2 if
(∇H fD(W,H)

)
aj

> δ1, ∀a, j, (28)

where δ1 and δ2 are any positive constants specified by the user, and employ these
relaxed conditions as a stopping criterion. Let S̄D be the set of all (W,H) ∈ X satis-
fying (25)–(28). Then the proposed algorithm is described in Algorithm 2.

Theorem 4 For any positive constants ε, δ1 and δ2, Algorithm 2 stops within a finite
number of iterations.

We omit the proof of Theorem 4 because it is almost same as the proof of Theo-
rem 2.

3.3 Related works

The modified update rule (5) was first proposed by Gillis and Glineur [12], as stated
above. They proved not only that fE(Wk,Hk) is nonincreasing under (5) but also
that if a sequence of solutions generated by (5) has a limit point then it is necessarily
a stationary point of the optimization problem (6), but these facts are not sufficient to
prove global convergence of (5). As a matter of fact, we cannot rule out, for example,
the existence of a sequence {(Wk,Hk)}∞k=0 such that fE(Wk,Hk) takes the same
value for all k and the sequence visits a finite number of distinct points periodically.
However, on the other hand, in another paper [13], they showed through numerical
experiments that (5) works better than the original update rule (3) in some cases. This
indicates that (5) is important not only from a theoretical point of view but also in
practice.

Lin [18] proposed a modified version of (3) and proved that any sequence
{(Wk,Hk)}∞k=0 generated by the modified rule has at least one convergent subse-
quence and their limits are stationary points of the optimization problem (1). How-
ever, Lin’s update rule considerably differs from the original one because of many
extra operations. In particular, in the case where (∇H fE(Wk,Hk))aj is negative and
Hk

aj is less than a user-specified small positive constant, Lin’s update rule is not mul-

tiplicative but additive. Also, the matrix Wk must be normalized after each update
in order to guarantee that the sequence {(Wk,Hk)}∞k=0 is in a bounded set. In con-
trast, the normalization is not required in the modified update rule (5). Nevertheless,
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the boundedness of the sequence {(Wk,Hk)}∞k=0 generated by (5) is guaranteed as
shown in the next section.

Finesso and Spreij [10] studied the convergence properties of the multiplicative
update (4) by interpreting it as an alternating minimization procedure [8]. Under the
assumption that the matrix Wk is normalized after each update, they proved that any
sequence {(Wk,Hk)}∞k=0 generated by (4) satisfies the following properties: (1) Wk

converges to a nonnegative matrix. (2) For each triple (i, a, j), Wk
iaH

k
aj converges to a

nonnegative number. (3) For each pair (a, j), Hk
aj converges to a nonnegative number

if limk→∞
∑n

i=1 Wk
ia > 0 [10, Theorem 6.1]. However, they said nothing about the

convergence of Hk
aj for the case where limk→∞

∑n
i=1 Wk

ia = 0.
Badeau et al. [1] studied the local stability of a generalized multiplicative update,

which includes (3) and (4) as special cases, using Lyapunov’s stability theory and
showed that the local optimal solution of the corresponding optimization problem is
asymptotically stable if one of two factor matrices W and H is fixed to a nonnegative
constant matrix.

4 Proofs of Theorems 1 and 3

We will prove Theorems 1 and 3 in this section. The first parts of these theorems
apparently follow from the update rules (5) and (17). In order to prove the second
parts, we make use of Zangwill’s global convergence theorem [28, p. 91], which is a
fundamental result in optimization theory. Let A be a point-to-point mapping4 from X

into itself and S be a subset of X. Then Zangwill’s global convergence theorem claims
the following: if the mapping A satisfies the following three conditions then, for any
initial point (W 0,H 0) ∈ X, the sequence {(Wk,Hk)}∞k=0 generated by A contains
at least one convergent subsequence and the limit of any convergent subsequence
belongs to S.

1. All points in the sequence {(Wk,Hk)}∞k=0 belong to a compact set in X.
2. There is a function z : X →R satisfying the following two conditions.

(a) If (W,H) 
∈ S then z(A(W,H)) < z(W,H).
(b) If (W,H) ∈ S then z(A(W,H)) ≤ z(W,H).

3. The mapping A is continuous in X \ S.

In the following, we will first prove Theorem 1 by showing that these conditions are
satisfied when the mapping A is defined by (5) and S is set to SE. We will next prove
Theorem 2 by showing that these conditions are satisfied when the mapping A is
defined by (17) and S is set to SD.

4.1 Proof of Theorem 1

Let us rewrite (5) as

Hk+1 = A1
(
Wk,Hk

)
,

4Although A is assumed to be a point-to-set mapping in the original version of Zangwill’s global conver-
gence theorem, we consider in this paper its special case where A is a point-to-point mapping.
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Wk+1 = A2
(
Wk,Hk+1),

or, more simply,
(
Wk+1,Hk+1) = A

(
Wk,Hk

)
,

where the mapping A is defined by

A(W,H) = (
A2

(
W,A1(W,H)

)
,A1(W,H)

)
.

Let us also set S = SE. Since the mapping A is continuous in X, the third condi-
tion of Zangwill’s global convergence theorem is satisfied. We will thus show in the
following that A also satisfies the remaining two conditions.

The following lemma guarantees that the first condition is satisfied.

Lemma 1 For any initial point (W 0,H 0) ∈ X, the sequence {(Wk,Hk)}∞k=0 gener-
ated by the mapping A belongs to a compact set in X.

Proof Let (W,H) be any point in X. Then we have

Haj

(WT V )aj

(WT WH)aj
= Haj

∑n
i=1 WiaVij∑r

l=1(W
T W)alHlj

= Haj

∑n
i=1 WiaVij∑r

l=1(
∑n

i=1 WiaWil)Hlj

= Haj

∑n
i=1 WiaVij∑n

i=1 W 2
iaHaj + ∑r

l=1,l 
=a(
∑n

i=1 WiaWil)Hlj

=
∑n

i=1 WiaVij∑n
i=1 W 2

ia + ∑r
l=1,l 
=a(

∑n
i=1 WiaWil)(Hlj /Haj )

<

∑n
i=1 WiaVij∑n

i=1 W 2
ia

=
∑n

i=1(Wia/
√∑n

μ=1 W 2
μa)Vij

√∑n
i=1 W 2

ia

≤
√∑n

i=1 V 2
ij

ε
√

n
,

from which the inequality

(
A1(W,H)

)
aj

≤ max

(
√∑n

i=1 V 2
ij

ε
√

n
, ε

)
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holds for any pair (a, j). Note that the right-hand side is a constant which depends
on neither W nor H . Similarly, we have

Wia

(V HT )ia

(WHHT )ia
<

√∑m
j=1 V 2

ij

ε
√

m
,

from which the inequality

(
A2(W,H)

)
ia

≤ max

(
√∑m

j=1 V 2
ij

ε
√

m
,ε

)

holds for any pair (i, a). Note that the right-hand side is a constant which depends on
neither W nor H . Hence A(W,H) belongs to a compact set in X. This means that,
for any initial point (W 0,H 0) ∈ X, the sequence {(Wk,Hk)}∞k=0 generated by the
mapping A belongs to a compact set in X. �

The last step is to prove that the second condition of Zangwill’s global conver-
gence theorem is also satisfied. To do this, we first need to introduce two auxiliary

functions for fE. Let (Ŵ , Ĥ ) be any point in X. Let the function gŴ
E : [ε,∞)r×m ×

[ε,∞)r×m → R be defined by

gŴ
E

(
H,H ′) = fE

(
Ŵ ,H ′) +

r∑

a=1

m∑

j=1

gŴ
Eaj

(
Haj ,H

′),

where the function gŴ
Eaj : [ε,∞) × [ε,∞)r×m → R is defined by

gŴ
Eaj

(
Haj ,H

′) = 2
(
ŴT

(
ŴH ′ − V

))
aj

(
Haj − H ′

aj

)

+ (Ŵ T ŴH ′)aj
H ′

aj

(
Haj − H ′

aj

)2
. (29)

Similarly, let the function hĤ
E : [ε,∞)n×r × [ε,∞)n×r → R be defined by

hĤ
E

(
W,W ′) = fE(W, Ĥ ) +

n∑

i=1

r∑

a=1

hĤ
Eia

(
Wia,W

′), (30)

where the function hĤ
Eia : [ε,∞) × [ε,∞)n×r →R is defined by

hĤ
Eia

(
Wia,W

′) = 2
((

W ′Ĥ − V
)
Ĥ T

)
ia

(
Wia − W ′

ia

)

+ (W ′Ĥ Ĥ T )ia

W ′
ia

(
Wia − W ′

ia

)2
.
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The functions gŴ
E and hĤ

E are essentially the same as the auxiliary functions con-
sidered by Lee and Seung [17], though mathematical expressions are slightly differ-

ent. However, note that the domains of gŴ
E and hĤ

E are restricted to [ε,∞)r×m ×
[ε,∞)r×m and [ε,∞)n×r × [ε,∞)n×r , respectively, in the present paper. This is an
important difference between our functions and theirs.

In the following, we give five lemmas which are needed to prove that the sec-
ond condition of Zangwill’s global convergence theorem is satisfied. Although some
of them can be immediately obtained from some of the results given by Lee and
Seung [17], we will provide proofs for all lemmas in order to make this paper self-
contained.

Lemma 2 For any Ŵ ∈ [ε,∞)n×r , the function gŴ
E satisfies the following two con-

ditions:

gŴ
E (H,H) = fE(Ŵ ,H), ∀H ∈ [ε,∞)r×m, (31)

gŴ
E

(
H,H ′) ≥ fE(Ŵ ,H), ∀H,H ′ ∈ [ε,∞)r×m. (32)

Also, for any Ĥ ∈ [ε,∞)r×m, the function hĤ
E satisfies the following two conditions:

hĤ
E (W,W) = fE(W, Ĥ ), ∀W ∈ [ε,∞)n×r ,

hĤ
E

(
W,W ′) ≥ fE(W, Ĥ ), ∀W,W ′ ∈ [ε,∞)n×r .

Proof We prove only the first part because the second one can be proved in the same

way. Since gŴ
Eaj (Haj ,H) = 0 holds for all H ∈ [ε,∞)r×m and indices a and j , the

first condition (31) is satisfied. To see that the second condition (32) is also satisfied,
we first rewrite fE(Ŵ ,H) using the Taylor series expansion as

fE(Ŵ ,H) = fE
(
Ŵ ,H ′) +

r∑

a=1

m∑

j=1

2
(
ŴT

(
ŴH ′ − V

))
aj

(
Haj − H ′

aj

)

+
r∑

a=1

r∑

b=1

m∑

j=1

(
ŴT Ŵ

)
ab

(
Haj − H ′

aj

)(
Hbj − H ′

bj

)
.

Then we have

gŴ
E

(
H,H ′) − fE(Ŵ ,H) =

m∑

j=1

r∑

a=1

r∑

b=1

M
(j)
ab

(
Haj − H ′

aj

H ′
aj

)(
Hbj − H ′

bj

H ′
bj

)
, (33)

where

M
(j)
ab = δab

(
ŴT ŴH ′)

aj
H ′

bj − (
ŴT Ŵ

)
ab

H ′
ajH

′
bj , (34)

and δab represents the Kronecker’s delta. We next show that the matrices M(j) =
[M(j)

ab ] (j = 1,2, . . . ,m) are positive semi-definite for all Ŵ ∈ [ε,∞)n×r and H ′ ∈
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[ε,∞)r×m. If this is true, the right-hand side of (33) is nonnegative for all H,H ′ ∈
[ε,∞)r×m. Since the right-hand side of (34) can be rewritten as

M
(j)
ab = δab

r∑

l=1

(
ŴT Ŵ

)
al

H ′
ljH

′
bj − (

ŴT Ŵ
)
ab

H ′
ajH

′
bj

=
{∑r

l=1,l 
=a(Ŵ
T Ŵ )alH

′
ljH

′
aj , if a = b

−(Ŵ T Ŵ )abH
′
ajH

′
bj , if a 
= b,

the matrix M(j) satisfies

M
(j)
aa =

r∑

l=1,l 
=a

|M(j)
al |, a = 1,2, . . . , r,

which means that M(j) is real, symmetric and diagonally dominant with positive
diagonal elements. Therefore, M(j) (j = 1,2, . . . ,m) are positive semi-definite. �

Lemma 3 Let (Ŵ , Ĥ ) be any point in X. Then gŴ
E (H, Ĥ ), which is considered as a

function of H , is strictly convex in [ε,∞)r×m. Also, hĤ
E (W, Ŵ), which is considered

as a function of W , is strictly convex in [ε,∞)n×r .

Proof The second-order partial derivatives of gŴ
E (H, Ĥ ) are given by

∂2gŴ
E (H, Ĥ )

∂Haj ∂Ha′j ′
=

{
(Ŵ T Ŵ Ĥ )aj

Ĥaj

, if (a, j) = (a′, j ′)
0, otherwise,

where (a, j), (a′, j ′) ∈ {1,2, . . . , r}×{1,2, . . . ,m}. Since (Ŵ T Ŵ Ĥ )aj /Ĥaj is a pos-

itive constant, gŴ
E (H, Ĥ ) is strictly convex in [ε,∞)r×m. The second part can be

proved in the same way. �

Lemma 4 Let (Ŵ , Ĥ ) be any point in X. The optimization problem

minimize gŴ
E (H, Ĥ )

subject to Haj ≥ ε, ∀a, j
(35)

has a unique optimal solution which is given by A1(Ŵ , Ĥ ). Also, the optimization
problem

minimize hĤ
E (W, Ŵ )

subject to Wia ≥ ε, ∀i, a
(36)

has a unique optimal solution which is given by A2(Ŵ , Ĥ ).
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Proof It suffices for us to show that for any pair (a, j), the optimization problem

minimize gŴ
Eaj (Haj , Ĥ )

subject to Haj ≥ ε

(37)

has a unique optimal solution which is given by (A1(Ŵ , Ĥ ))aj and that for any pair
(i, a), the optimization problem

minimize hĤ
Eia(Wia, Ŵ )

subject to Wia ≥ ε
(38)

has a unique optimal solution which is given by (A2(Ŵ , Ĥ ))aj . In the following, we
consider only the first part because the second part can be proved similarly. Since

gŴ
Eaj (Haj , Ĥ ) is strictly convex in [ε,∞), the equation dgŴ

Eaj (Haj , Ĥ )/dHaj = 0 has
at most one solution in [ε,∞). By solving this equation, we have

Haj = Ĥaj

(Ŵ T V )aj

(Ŵ T Ŵ Ĥ )aj
.

Let the right-side hand be denoted by H ∗
aj which is a nonnegative number. If H ∗

aj ≥ ε

then H ∗
aj is apparently the optimal solution of (37). If H ∗

aj < ε then ε is the opti-

mal solution of (37) because gŴ
Eaj (Haj , Ĥ ) is strictly monotone increasing in [ε,∞).

Therefore the optimal solution of (37) is identical with (A1(Ŵ , Ĥ ))aj . �

Lemma 5 The inequality fE(A(Ŵ , Ĥ )) ≤ fE(Ŵ , Ĥ ) holds for all (Ŵ , Ĥ ) ∈ X.

Proof By Lemmas 2 and 4, we have

fE
(
Ŵ ,A1(Ŵ , Ĥ )

) ≤ gŴ
E

(
A1(Ŵ , Ĥ ), Ĥ

) ≤ gŴ
E (Ĥ , Ĥ )

= fE(Ŵ , Ĥ ), ∀(Ŵ , Ĥ ) ∈ X

and

fE
(
A2(Ŵ , Ĥ ), Ĥ

) ≤ hĤ
E

(
A2(Ŵ , Ĥ ), Ŵ

) ≤ hĤ
E (Ŵ , Ŵ )

= fE(Ŵ , Ĥ ), ∀(Ŵ , Ĥ ) ∈ X.

From these two inequalities, we have

fE
(
A(Ŵ , Ĥ )

) = fE
(
A2

(
Ŵ ,A1(Ŵ , Ĥ )

)
,A1(Ŵ , Ĥ )

)

≤ fE
(
Ŵ ,A1(Ŵ , Ĥ )

) ≤ fE(Ŵ , Ĥ ) (39)

which completes the proof. �
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Lemma 6 (Ŵ , Ĥ ) ∈ SE if and only if Ĥ and Ŵ are the optimal solutions of (35)
and (36), respectively.

Proof It suffices for us to show that (Ŵ , Ĥ ) ∈ SE if and only if Ĥaj is the optimal
solution of (37) for any pair (a, j) and Ŵia is the optimal solution of (38) for any

pair (i, a). By the definition (29) of gŴ
Eaj (Haj , Ĥ ), we have

∂gŴ
Eaj (Haj , Ĥ )

∂Haj

∣∣∣∣
Haj =Ĥaj

= (∇H fE(Ŵ , Ĥ )
)
aj

.

Since gŴ
Eaj (Haj , Ĥ ) is strictly convex in [ε,∞), the necessary and sufficient condi-

tion for Ĥaj to be the optimal solution of (37) is given by

(∇H fE(Ŵ , Ĥ )
)
aj

{= 0, if Ĥaj > ε

≥ 0, if Ĥaj = ε,

which is equivalent to the set of conditions (8) and (10). By the definition (30) of

hĤ
Eia(Wia, Ŵ ), we have

∂hĤ
Eia(Wia, Ŵ )

∂Wia

∣∣∣∣
Wia=Ŵia

= (∇WfE(Ŵ , Ĥ )
)
ia

, ∀i, a.

Hence the necessary and sufficient condition for Ŵ to be the optimal solution of (36)
is given by

(∇WfE(Ŵ , Ĥ )
)
ia

{= 0, if Ŵia > ε

≥ 0, if Ŵia = ε
∀i, a,

which is equivalent to the set of conditions (7) and (9). �

From Lemmas 4–6, we derive the following lemma which claims that the second
condition of Zangwill’s global convergence theorem is satisfied by setting z = fE.

Lemma 7 Let (Ŵ , Ĥ ) be any point in X. If (Ŵ , Ĥ ) ∈ SE then A(Ŵ , Ĥ ) = (Ŵ , Ĥ ).
Otherwise fE(A(Ŵ , Ĥ )) < fE(Ŵ , Ĥ ). That is, SE is identical with the set of fixed
points of the mapping A.

Proof We first consider the case where (Ŵ , Ĥ ) ∈ SE. By Lemma 6, Ĥ and Ŵ are
unique optimal solutions of (35) and (36), respectively. By Lemma 4, this implies
A1(Ŵ , Ĥ ) = Ĥ and A2(Ŵ , Ĥ ) = Ŵ . Therefore, we have

A(Ŵ , Ĥ ) = (
A2

(
Ŵ ,A1(Ŵ , Ĥ )

)
,A1(Ŵ , Ĥ )

) = (
A2(Ŵ , Ĥ ), Ĥ

) = (Ŵ , Ĥ ).

We next consider the case where (Ŵ , Ĥ ) 
∈ SE. In this case, by Lemma 6, at least
one of the following statements must be false: (1) Ĥ is the unique optimal solution
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of (35). (2) Ŵ is the unique optimal solution of (36). Suppose that the statement

(1) does not hold true. Then, by Lemma 4, we have gŴ
E (A1(Ŵ , Ĥ ), Ĥ ) < gŴ

E (Ĥ , Ĥ )

which implies that the second inequality of (39) holds as a strict inequality. There-
fore, fE(A(Ŵ , Ĥ )) is strictly less than fE(Ŵ , Ĥ ). Suppose next that the statement
(1) holds true but (2) does not. Then, by Lemma 4, we have A1(Ŵ , Ĥ ) = Ĥ and

hĤ
E (A2(Ŵ , Ĥ ), Ŵ ) < hĤ

E (Ŵ , Ŵ ). From these facts and (39), we have

fE
(
A(Ŵ , Ĥ )

) = fE
(
A2

(
Ŵ ,A1(Ŵ , Ĥ )

)
,A1(Ŵ , Ĥ )

)

= fE
(
A2(Ŵ , Ĥ ), Ĥ

)
< fE(Ŵ , Ĥ ).

Therefore, fE(A(Ŵ , Ĥ )) is strictly less than fE(Ŵ , Ĥ ). �

4.2 Proof of Theorem 3

As in the proof of Theorem 1, let us rewrite (17) as

Hk+1 = A1
(
Wk,Hk

)
,

Wk+1 = A2
(
Wk,Hk+1),

or, more simply,
(
Wk+1,Hk+1) = A

(
Wk,Hk

)
,

where the mapping A is defined by

A(W,H) = (
A2

(
W,A1(W,H)

)
,A1(W,H)

)
.

Let us also set S = SD. Since the mapping A is continuous in X, the third condi-
tion of Zangwill’s global convergence theorem is satisfied. We will thus show in the
following that A also satisfies the remaining two conditions.

The following lemma guarantees that the first condition is satisfied.

Lemma 8 For any initial point (W 0,H 0) ∈ X, the sequence {(Wk,Hk)}∞k=0 gener-
ated by the mapping A belongs to a compact set in X.

Proof Let (W,H) be any point in X. Then we have

Haj

∑n
i=1 WiaVij /(WH)ij∑n

i=1 Wia

= Haj

n∑

i=1

WiaVij∑n
μ=1 Wμa

∑r
l=1 WilHlj

= Haj

n∑

i=1

WiaVij∑n
μ=1 Wμa(WiaHaj + ∑r

l=1,l 
=a WilHlj )

=
n∑

i=1

WiaVij∑n
μ=1 Wμa{Wia + ∑r

l=1,l 
=a Wil(Hlj /Haj )}
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<

n∑

i=1

WiaVij

(
∑n

μ=1 Wμa)Wia

=
n∑

i=1

Vij∑n
μ=1 Wμa

≤
∑n

i=1 Vij

εn
,

from which the inequality

(
A1(W,H)

)
aj

≤ max

(∑n
i=1 Vij

εn
, ε

)

holds for any pair (a, j). Note that the right-hand side is a constant which depends
on neither W nor H . Similarly, we have

Wia

∑m
j=1 HajVij /(WH)ij∑m

j=1 Haj

<

∑m
j=1 Vij

εm
,

from which the inequality

(
A2(W,H)

)
ia

≤ max

(∑m
j=1 Vij

εm
, ε

)

holds for any pair (i, a). Note that the right-hand side is a constant which depends on
neither W nor H . Hence A(W,H) belongs to a compact set in X. This means that,
for any initial point (W 0,H 0) ∈ X, the sequence {(Wk,Hk)}∞k=0 generated by the
mapping A belongs to a compact set in X. �

The last step is to prove that the second condition of Zangwill’s global convergence
theorem is also satisfied. To do this, we first need to introduce two auxiliary functions

fD. Let (Ŵ , Ĥ ) be any point in X. Let the function gŴ
D : [ε,∞)r×m × [ε,∞)r×m →

R be defined by

gŴ
D

(
H,H ′) =

n∑

i=1

m∑

j=1

{
Vij logVij − Vij + Vij

(ŴH ′)ij

r∑

a=1

ŴiaH
′
aj log

ŴiaH
′
aj

(ŴH ′)ij

}

+
r∑

a=1

m∑

j=1

gŴ
Daj

(
Haj ,H

′),

where the function gŴ
Daj : [ε,∞) × [ε,∞)r×m is defined by

gŴ
Daj

(
Haj ,H

′) = Haj

n∑

i=1

Ŵia − H ′
aj

n∑

i=1

{
ŴiaVij

(ŴH ′)ij
log(ŴiaHaj )

}
.
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Similarly, let the function gĤ
D : [ε,∞)n×r × [ε,∞)n×r →R be defined by

hĤ
D

(
W,W ′) =

n∑

i=1

m∑

j=1

{
Vij logVij − Vij + Vij

(W ′Ĥ )ij

r∑

a=1

W ′
iaĤaj log

W ′
iaĤaj

(W ′Ĥ )ij

}

+
n∑

i=1

r∑

a=1

hĤ
Dia

(
Wia,W

′),

where the function hĤ
Dia : [ε,∞) × [ε,∞)n×r →R is defined by

hĤ
Dia

(
Wia,W

′) =
m∑

j=1

{
WiaĤaj − Vij

W ′
iaĤaj

(W ′Ĥ )ij
log(WiaĤaj )

}
.

The functions gŴ
D and hĤ

D are essentially the same as the auxiliary functions con-
sidered by Lee and Seung [17], though mathematical expressions are slightly differ-
ent. In the following, we give five lemmas which are needed to prove that the second
condition of Zangwill’s global convergence theorem is satisfied. Although Lemmas 9
and 10 below can be immediately obtained from some of the results given by Lee and
Seung [17], we will provide proofs for these lemmas in order to make this paper self-
contained. On the other hand, as for Lemmas 11, 12 and 13, we omit proofs because
they are similar to those for Lemmas 4, 5 and 6.

Lemma 9 Let (Ŵ , Ĥ ) be any point in X. The function gŴ
D satisfies the following two

conditions:

gŴ
D (H,H) = fD(Ŵ ,H), ∀H ∈ [ε,∞)r×m, (40)

gŴ
D

(
H,H ′) ≥ fD(Ŵ ,H), ∀H,H ′ ∈ [ε,∞)r×m. (41)

Also, the function hĤ
D satisfies the following two conditions:

hĤ
D (W,W) = fD(W, Ĥ ), ∀W ∈ [ε,∞)n×r ,

hĤ
D

(
W,W ′) ≥ fD(W, Ĥ ), ∀W,W ′ ∈ [ε,∞)n×r .

Proof We prove only the first part because the second part can be proved in the same

way. For any Ŵ ∈ [ε,∞)n×r and H ∈ [ε,∞)r×m, gŴ
D (H,H) can be transformed as

gŴ
D (H,H) =

n∑

i=1

m∑

j=1

{
Vij logVij − Vij + Vij

(ŴH)ij

r∑

a=1

ŴiaHaj log
ŴiaHaj

(ŴH)ij

}

+
r∑

a=1

m∑

j=1

{
Haj

n∑

i=1

Ŵia − Haj

n∑

i=1

ŴiaVij

(ŴH)ij
log(ŴiaHaj )

}
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=
n∑

i=1

m∑

j=1

(Vij logVij − Vij ) −
n∑

i=1

m∑

j=1

Vij log(ŴH)ij +
n∑

i=1

m∑

j=1

(ŴH)ij

=
n∑

i=1

m∑

j=1

{
Vij log

Vij

(ŴH)ij
− Vij + (ŴH)ij

}

= fD(Ŵ ,H).

Thus the condition (40) holds true. In order to show (41), we consider

gŴ
D

(
H,H ′) − fD(Ŵ ,H)

=
n∑

i=1

m∑

j=1

Vij

{
log(ŴH)ij − log

Haj

H ′
aj

− ŴiaH
′
aj

(ŴH ′)ij
log

(
ŴH ′)

ij

}
. (42)

From the concavity of the log function,

log(ŴH)ij = log

(
r∑

a=1

ŴiaHaj

)
≥

r∑

a=1

μa log

(
ŴiaHaj

μa

)
(43)

for any H ∈ [ε,∞)r×m and any set of positive numbers μ1,μ2, . . . ,μr such that∑r
a=1 μa = 1. By substituting μa = (ŴiaH

′
aj )/(ŴH ′)ij for a = 1,2, . . . , r into (43),

we have

log(ŴH)ij = log

(
r∑

a=1

ŴiaHaj

)

≥
r∑

a=1

ŴiaH
′
aj

(ŴH ′)ij
log

(
ŴiaHaj · (ŴH ′)ij

ŴiaH
′
aj

)

≥
r∑

a=1

ŴiaH
′
aj

(ŴH ′)ij

{
log

(
ŴH ′)

ij
+ log

Haj

H ′
aj

}
,

which implies that the right-hand side of (42) is nonnegative for all H,H ′ ∈
[ε,∞)r×m. �

Lemma 10 Let (Ŵ , Ĥ ) be any point in X. Then gŴ
D (H, Ĥ ), which is considered as a

function of H , is strictly convex in [ε,∞)r×m. Also, hĤ
D (W, Ŵ), which is considered

as a function of W , is strictly convex in [ε,∞)n×r .

Proof The second-order partial derivatives of gŴ
D (H, Ĥ ) are given by

∂2gŴ
D (H, Ĥ )

∂Haj ∂Ha′j ′
=

⎧
⎨

⎩

Ĥaj

H 2
aj

∑n
i=1

ŴiaVij

(Ŵ Ĥ )ij
, if (a, j) = (a′, j ′)

0, otherwise,
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where (a, j), (a′, j ′) ∈ {1,2, . . . , r} × {1,2, . . . ,m}. Note here that (Ĥaj /H
2
aj ) ×

∑n
i=1(ŴiaVij /(Ŵ Ĥ )ij ) is positive for all Haj ∈ [ε,∞) because of Assumption 1.

Therefore, gŴ
D (H, Ĥ ) is strictly convex in [ε,∞)r×m. The second part can be proved

in the same way. �

Lemma 11 Let (Ŵ , Ĥ ) be any point in X. The optimization problem

minimize gŴ
D (H, Ĥ )

subject to Haj ≥ ε, ∀a, j
(44)

has a unique optimal solution which is given by A1(Ŵ , Ĥ ). Also, the optimization
problem

minimize hĤ
D (W, Ŵ )

subject to Wia ≥ ε, ∀i, a
(45)

has a unique optimal solution which is given by A2(Ŵ , Ĥ ).

Lemma 12 The inequality fD(A(Ŵ , Ĥ )) ≤ fD(Ŵ , Ĥ ) holds for all (Ŵ , Ĥ ) ∈ X.

Lemma 13 (Ŵ , Ĥ ) ∈ SD if and only if Ĥ and Ŵ are the optimal solutions of (44)
and (45), respectively.

From Lemmas 11–13, we derive the following lemma which claims that the
second condition of Zangwill’s global convergence theorem is satisfied by setting
z = fD. The proof is omitted because it is similar to that for Lemma 7.

Lemma 14 Let (Ŵ , Ĥ ) be any point in X. If (Ŵ , Ĥ ) ∈ SD then A(Ŵ , Ĥ ) = (Ŵ , Ĥ ).
Otherwise fD(A(Ŵ , Ĥ )) < fD(Ŵ , Ĥ ). That is, SD is identical with the set of fixed
points of the mapping A.

5 Conclusion

We have shown that the global convergence of the multiplicative updates proposed by
Lee and Seung is established if they are slightly modified as discussed by Gillis and
Glineur. Their idea is just to prevent each variable from becoming smaller than a user-
specified positive constant ε, but this slight modification guarantees the boundedness
of solutions without normalization. Using Zangwill’s global convergence theorem,
we have proved that any sequence of solutions generated by the modified updates has
at least one convergent subsequence and the limit of any convergent subsequence is
a stationary point of the corresponding optimization problem. Furthermore, we have
developed two algorithms based on the modified updates which always stop within a
finite number of iterations after finding an approximate stationary point.
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One may be concerned with the fact that matrices obtained by the modified updates
are always dense. However, when sparse matrices are preferable, we only have to
replace all ε in the obtained matrices with zero. If ε is set to a small positive number,
this replacement will not affect the results significantly. It is in fact proved that setting
the entries of W and H equal to ε to zero gives a solution which is O(ε) close to a
stationary point of the original problem, and that the objective function is affected by
an additive factor of at most O(ε) [11].

The approach presented in this paper may be applied to various multiplicative
algorithms for NMF or other optimization problems. Developing a unified framework
for the global convergence analysis of multiplicative updates is a topic for future
research.
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