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Abstract Where to locate one or several facilities on a network so as to minimize
the expected users-closest facility transportation cost is a problem well studied in the
OR literature under the name of median problem.

In the median problem users are usually identified with nodes of the network. In
many situations, however, such assumption is unrealistic, since users should be better
considered to be distributed also along the edges of the transportation network. In
this paper we address the median problem with demand distributed along edges and
nodes. This leads to a global-optimization problem, which can be solved to optimality
by means of a branch-and-bound with DC bounds. Our computational experience
shows that the problem is solved in short time even for large instances.

Keywords Network location · Median problem · Continuous demand ·
DC functions · Global optimization

1 Introduction

Location problems on networks have attracted the interest of researchers and prac-
titioners since the 60s of last century. Under the usual assumption, the demand is
concentrated at the nodes of the network, and the facilities can be located either at
the nodes or along the edges of the transportation network.
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Assuming that the demand is concentrated at the nodes is not realistic when mod-
eling so-called networks spatial phenomena, e.g. [18], that is, phenomena which do
happen in points along edges of the network, such as, for instance, traffic accidents,
or close to such edges, as happens in urban settings, where edges model the city
streets, close to the buildings where demand happens. See [18, 19] for further discus-
sion on the advantages on continuous network models against traditional approaches
(discrete or planar location models).

For this reason, several researchers have addressed location problems on networks
under the assumption that demand is not only concentrated on nodes, but also is
(continuously) distributed along the edges of the network.

Most papers consider the case in which, for each edge of the network, demand is
uniformly distributed. Nkansah and David [17] addresses the problem of minimizing
the expected distance from the users to one facility, [6, 8] consider the two-facility
case on very particular network topologies (trees), whereas [15] addresses the min-
imization of the variance of distances from the users to the facility. Assuming uni-
form demands on edges should be seen as a first step towards gaining realism of the
model, while maintaining tractability. Indeed, the resulting objective functions ad-
mits a rather simple form, as a piecewise polynomial function in one variable, whose
optimization is reduced to inspecting all critical points, namely, extreme points and
points at which the derivative of the polynomial function vanishes.

Assuming more general distributions for the demand has been advocated by sev-
eral authors. Okabe et al. [18] suggests the use of general density distributions, from
which random samples are generated, yielding a discrete approximation to the prob-
lem, which is the one which is later analyzed. Statistical kernel methods have also
been recently proposed to model the demand, [20, 23], though, as far as the authors
know, no optimization has been carried out, excepting, as said above, discretization
via simulation.

In this paper we consider a single-facility location problem, namely, the 1-median
problem: the point minimizing the expected distance from the users is sought. With
respect to the state-of-the-art, we give a further step towards realism, by assuming
arbitrary distributions for the demand along edges. Contrary to the planar 1-median
problem, known to be convex, [7], the 1-median problem on networks with continu-
ous demand poses nontrivial challenges: we have no longer a simple expression for
the objective, and its optimization calls for the use of global-optimization techniques.
In particular, it is shown that the objective function is DC, [10, 11, 21, 22] i.e., it can
be written as the difference of two convex functions, and thus its optimization can be
addressed via branch-and-bound methods customized for DC functions, [1, 4, 5].

The remainder of the paper is organized as follows. In Sect. 2 the 1-median prob-
lem with demand distributed on edges and on nodes of the network is formally in-
troduced. Properties of the objective function are discussed in Sect. 3, where it is
shown, in particular, how the function can be expressed as the difference of two con-
vex functions on each edge of the network. These properties will be the cornerstone
for a branch-and-bound algorithm, as described in Sect. 4. Our numerical experience
is reported in Sect. 5, showing that our algorithm enables us to solve problems on
large networks in reasonable time.
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2 Problem formulation

Let N = (A,E) be a connected and undirected network, with node set A =
{a1, . . . , an} and edge set E, with |E| = m. Let us denote by lij the length of each
edge eij = [ai, aj ] ∈ E and let d(x, y) be the distance between two points x, y ∈ N ,
obtained as the shortest path from x to y. In particular, the distance dij = d(ai, aj )

between each pair of nodes {ai, aj } can be worked out by using standard algorithms,
[2]. Note that for every pair of nodes ai, aj with [ai, aj ] ∈ E, it follows that dij ≤ lij ,
and equality holds if and only if the edge [ai, aj ] is the shortest path joining ai and aj .

Given a node ak ∈ A and a point x ∈ [ai, aj ], obtained after covering a distance
lx on the edge [ai, aj ], the distance d(x, ak) from ak to x is, as a function of x, a
piecewise linear concave function given by:

d(x, ak) = min
{
rk
ij (x), sk

ij (x)
}

(1)

where

rk
ij (x) = d(ai, ak) + lx sk

ij (x) = d(aj , ak) + (lij − lx) (2)

We assume that the demand not only occurs at nodes but also along the edges of the
network. More precisely, the demand of a node a ∈ A will be denoted by ωa ≥ 0, the
total demand of a given edge e ∈ E is pe ≥ 0, and it is distributed along e according
to a random variable with cumulative distribution function (cdf) Fe .

Under the previous assumptions, the median problem with continuous demand can
be written as follows:

min
x∈N

H(x) :=
∑

a∈A

wad(x, a) +
∑

e∈E

pe

∫

y∈e

d(x, y)dFe(y) (3)

Observe that we are making no assumption on the type of distribution followed
for the demand. In case the demand on the edges is continuously distributed along e,
i.e., when the cdf Fe has a pdf fe, (3) can be rewritten as

min
x∈N

H(x) :=
∑

a∈A

wad(x, a) +
∑

e∈E

pe

∫

y∈e

d(x, y)fe(y)dy. (4)

3 Properties

It has been noticed in [12] that the objective function of (3) is neither convex nor con-
cave as a rule. Indeed, the objective function can exhibit local optima which are not
globally optimal, as the following example shows. So the use of global optimization
techniques is required if one seeks the optimal solution.

Example 1 Let us consider the network N = (A,E) with A = {a1, a2, a3} and
E = {[a1, a2], [a1, a3], [a2, a3]}. Arc lengths, node demands and arc demands are the
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Fig. 1 Objective function
H12(x) in Example 1

following:

l12 = 1 l13 = 1 l23 = 1
w1 = 0 w2 = 0 w3 = 0
p12 = 0.35 p13 = 0.30 p23 = 0.35

We also assume that the demand along each arc e is distributed according to a beta
distribution, i.e., the probability density function fe has the form

fe(x) = Γ (αe + βe)

Γ (αe)Γ (βe)
xαe−1(1 − x)βe−1 x ∈ [0,1].

The parameters αe,βe of these probability distributions in the three edges are as
follows:

Arc e αe βe

[a1, a2] 0.6 0.5
[a1, a3] 0.4 0.8
[a2, a3] 0.5 0.5

Under these assumptions, the objective function of Problem (3) restricted to the edge
[a1, a2] takes the form

H12(x) = 0.35
∫ 1

0
|x − y|f12(y)dy + 0.30

∫ 1

0
min{x + y,3 − x − y}f13(y)dy

+ 0.35
∫ 1

0
min{2 + x − y,1 − x + y}f23(y)dy (5)

Multimodality of the function is clearly seen in Fig. 1.

The special structure of the objective function of Problem (3) will be exploited in
order to design a deterministic global optimization algorithm that allows us to find
an optimal solution to the problem. More precisely, we will show that H(x) in (3)
belongs to the broad class of DC functions, [10, 11, 21]. This key property will allow
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us to solve Problem (3) by branch-and-bound algorithms, as the one described in
Sect. 4, since lower and upper bounds can easily be obtained for DC functions as
soon as a DC decomposition is available.

Definition 2 Let Ω ⊂ R
n be a convex set. A function h : Ω → R is called DC in Ω

if there exist two convex functions h+ : Ω → R, h− : Ω → R such that

h(x) = h+(x) − h−(x) ∀x ∈ Ω (6)

A pair (h+, h−) satisfying (6) is called a DC decomposition of h in Ω .

An interesting property of the class of DC functions is that it is closed under
the most common operations in optimization, [3, 10, 11, 21, 22]. In particular, if
h1, . . . , hr are DC functions and λi ∈ R, i = 1, . . . , r , then

∑r
i=1 λihi , maxi=1,...,r hi ,

mini=1,...,r hi and ‖(h1, . . . , hr )‖ are also DC and their DC decompositions can be
easily obtained from the DC decompositions of hi, i = 1, . . . , r .

The following result shows that the objective function H(x) in (3) is DC on each
arc of the network.

Proposition 3 Given ē ∈ E, the function Hē : ē 	→ R defined as

Hē(x) :=
∑

a∈A

wad(x, a) +
∑

e∈E

pe

∫

y∈e

d(x, y)dFe(y)

is DC. A DC decomposition of Hē on ē is given by the pair (H+
ē ,H−

ē ), with

H+
ē (x) = pē

∫

y∈ē

|x − y|dFē(y)

H−
ē (x) = H+

ē (x) − Hē(x)

(7)

Proof Let us rewrite Hē(x) as Hē(x) = h1(x) + h2(x) + h3(x) where

h1(x) =
∑

a∈A

wad(x, a) (8)

h2(x) =
∑

e∈E,e 
=ē

pe

∫

y∈e

d(x, y)dFe(y) (9)

h3(x) = pē

∫

y∈ē

d(x, y)dFē(y) (10)

The function h1 is piecewise linear and concave (see [13] for instance), and h2 is also
concave, see [12]. In what follows it is shown that h3 is DC, and a DC decomposition
is given. Given x, y ∈ ē = [ai, aj ], the distance d(x, y) between x and y is obtained
as the minimum of the lengths of the following paths:

1. the subedge of ē with x, y as end points,
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2. the subedge of ē joining x and ai , the shortest path joining ai and aj , and then the
subedge of ē joining aj and y,

3. the subedge of ē joining x and aj , the shortest path joining aj and ai , and then the
subedge of ē joining ai and y.

In other words d(x, y) can be expressed as

d(x, y) = min
{|x − y|, x + dij + (lij − y), (lij − x) + dij + y

}
(11)

= min
{|x − y|, lij + dij − |x − y|} (12)

= |x − y| − max
{
0,2|x − y| − (lij + dij )

}
(13)

Observe that the last expression gives a DC decomposition of d on ē. Hence, h3 can
be written as

h3(x) = pē

∫

y∈ē

|x−y|dFē(y)−pē

∫

y∈ē

max
{
0,2|x−y|−(lij +dij )

}
dFē(y), (14)

which yields a DC decomposition of h3. Taking into account that Hē = h1 +h2 +h3,
with h1, h2 concave and h3 decomposed as a difference of convex functions in (14),
it follows that (7) gives a DC decomposition of Hē, as asserted. �

We end this section with further properties of the objective function He under
some assumption on the edge e. These results extend previous well-known results for
particular topologies, e.g. for networks which are chains or trees.

Corollary 4 Let ē ∈ E be an edge such that pē = 0. Then Hē is concave on ē.

Proof If pē = 0, then, by Proposition 3, (0,−Hē) is a valid DC decomposition
for Hē . �

Proposition 5 Let ē ∈ E be an edge such that E \ {ē} is a disconnected network.
Then Hē is convex on ē.

4 The algorithm

Problem (3) will be solved by using a standard branch and bound method [14, 16]
which will find out the optimal solution within a relative accuracy of ε > 0. The
bounds of the objective function required to applying the algorithm will be worked
out by taking into account its DC structure. A brief description of such an algorithm
is shown next.

• Phase 1: Initialization

1. Fix the required accuracy ε > 0.
2. Set UB = +∞ (upper bound initialization).
3. Compute the all-pairs distance matrix.
4. Set the list Λ of remaining segments as empty.
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5. For each edge e ∈ E do:
(a) Consider e as a segment with its nodes as the segment vertices.
(b) Evaluate the objective function at the segment midpoint. If this value is

lower than UB, then update UB and store in xUB the midpoint as incumbent.
(c) Calculate a lower bound for the segment e, LB(e).
(d) If LB(e) < UB/(1 + ε), then insert e into Λ.

• Phase 2: Branch and Bound process
Repeat as long as no stop was reached:

1. Select from Λ the minimum lower bound segment emin and remove if from Λ.
2. If LB(emin) ≥ UB/(1+ ε), then stop the algorithm with xUB as optimal solution

and UB as optimal objective value.
3. Split emin by its midpoint into two smaller segments, e1

min and e2
min.

4. Evaluate the objective function at the midpoint of the two small segments. If
any of these values is lower than UB, then update UB.

5. Compute a lower bound of the objective function on each small segment.
6. If LB(ei

min) < UB/(1 + ε) for i = 1 or i = 2, then insert ei
min into Λ.

7. If UB has been updated in this iteration, then discard all segments from Λ whose
lower bound is greater than UB.

The algorithm uses a data structure Λ where all the segments (bits of edge) that
can contain an optimal solution are stored. The loop in Phase 1 establishes the ini-
tial composition of the data structure by selecting the edges whose lower bound is
not greater that the global upper bound of the optimal objective value. At the same
time, that upper bound is improved by evaluating each edge at its middle point and
replacing the bound with the objective value when this is smaller.

Phase 2 of the algorithm consists of an undefined loop where the segment with the
worst lower bound is processed; the algorithm finishes when the difference between
that lower bound and the global upper bound is smaller than the tolerance ε chosen in
Phase 1. If the stopping rule is not fulfilled, the selected segment is split into two equal
segments which are processed in the same way that the edges in Phase 1. Eventually,
if a change in the upper bound took place during an iteration, all the segments in the
data structure that cannot contain an optimal solution are removed.

The computation of the objective function’s lower bound on each segment requires
more attention and is going to be detailed next.

4.1 Constructing lower bounds

Given an edge ē = [ai, aj ] ∈ E, Proposition 3 provides a DC decomposition for Hē

–the restriction of the objective H to e– and this fact can be exploited in order to
obtain the lower bounds required in the previous algorithm. Starting from the DC
representation (7), a concave underestimate Lē(x) of Hē is obtained by replacing
H+

ē with an affine underestimate built in the usual way,

Lē(x) = H+
ē (x0) + ξ(x − x0) − H−

ē (x)
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where ξ is any point in ∂H+
ē (x0), the subdifferential of H+

ē at x0 ∈ ē. Since

∂H+
ē (x0) =

∫

(0,x0)

dFē(y) + [−1,1]
∫

{x0}
dFē(y) −

∫

(x0,lē)

dFē(y),

one has

2Fē(x0) − 1 ∈ ∂H+
ē (x0),

and thus, a concave underestimate Lē(x) is given by

Lē(x) = H+
ē (x0) + (

2Fē(x0) − 1
)
(x − x0) − H−

ē (x)

Due to the concavity of Lē, it is enough to evaluate this function at the extreme
points of ē to obtain its minimum on the segment, which is also a lower bound for
H+

ē . Hence,

LB(ē) = min
{
Lē(ai),Lē(aj )

}

5 Computational results

The effectiveness of the proposed algorithm was investigated with the aid of numeri-
cal cases.

The algorithm described in Sect. 4 was coded in Fortran and compiled using In-
tel©Fortran Compiler XE 12.0. Executions were carried out on an Intel Core i7 com-
puter with 8.00 Gb of RAM memory at 2.8 GHz, running Windows 7. The solutions
were found to a relative accuracy of 10−3 and the integrals were calculated by means
of the functions qdags and qdagp available at the IMSL Fortran Numerical Library.

We experimented with a set of 43 test networks obtained from [9, 24]. The number
of nodes of these test problems ranges from 150 to 1000, and the number of edges
from 296 to 3083. Each problem was solved 10 times over each network using ran-
domly generated parameters: the demands of nodes were obtained from a Uniform
distribution on [0,1], as it is also the case of the overall demand of each edge. Re-
garding the demand along each edge, it was assumed to be distributed following a
Beta distribution with parameters randomly generated on the interval [0.1,5], which
provides a wide range of density functions with very different shapes.

After the resolution of each set of 10 instances, some statistical measures (mini-
mum, maximum, average and standard deviation) were calculated for the following
indicators of the algorithm performance:

• Number of iterations of the Phase 2 of the algorithm.
• Maximum size of the data structure used for storage reached during the algorithm

execution.
• CPU time.

Table 1 shows the computational results, where the number of nodes |A| and edges
|E| of the graphs are reported as well as the above-mentioned computational mea-
sures.



Solving the median problem with continuous demand on a network 731

Ta
bl

e
1

C
om

pu
ta

tio
na

lr
es

ul
ts

N
et

w
or

k
|A

|
|E

|
It

er
at

io
ns

B
&

B
lis

t
T

im
e

m
in

m
ax

m
ea

n
±

st
d

m
in

m
ax

m
ea

n
±

st
d

m
in

m
ax

m
ea

n
±

st
d

K
R

O
B

20
0G

20
0

38
6

6
18

11
.6

0
±

4.
03

11
18

13
.6

0
±

2.
46

27
.8

9
32

.7
6

30
.1

4
±

1.
63

K
R

O
B

15
0G

15
0

29
6

13
21

17
.2

0
±

2.
70

4
4

4.
00

±
0.

00
17

.6
1

20
.8

9
19

.1
9

±
1.

17

K
R

O
A

20
0G

20
0

39
2

11
17

13
.7

0
±

1.
89

8
13

9.
60

±
1.

58
30

.5
8

34
.6

0
32

.1
5

±
1.

37

U
R

13
7

98
0

17
44

10
16

12
.2

0
±

2.
04

11
11

11
.0

0
±

0.
00

49
4.

23
54

3.
32

51
1.

20
±

13
.8

0

K
R

O
A

15
0G

15
0

29
7

11
22

16
.9

0
±

4.
09

6
16

13
.2

0
±

3.
16

17
.4

6
20

.0
1

18
.5

5
±

0.
80

PR
15

2G
15

2
29

6
2

7
4.

00
±

1.
56

5
6

5.
10

±
0.

32
14

.7
7

18
.4

7
16

.3
4

±
1.

03

R
A

T
19

5G
19

5
33

6
4

11
8.

10
±

2.
18

3
6

3.
30

±
0.

95
17

.8
9

20
.3

1
18

.6
7

±
0.

89

T
S2

25
G

22
5

30
6

9
15

12
.1

0
±

1.
73

9
11

9.
40

±
0.

70
8.

94
10

.3
0

9.
85

±
0.

46

U
R

53
2

29
8

59
7

4
44

12
.0

0
±

13
.2

6
3

28
10

.1
0

±
7.

78
69

.6
9

82
.9

1
73

.3
9

±
4.

14

U
R

54
2

34
3

86
2

9
17

13
.9

0
±

2.
77

8
18

11
.9

0
±

3.
48

16
9.

28
18

2.
12

17
5.

00
±

3.
98

U
R

55
2

38
8

11
35

15
30

22
.9

0
±

4.
72

14
14

14
.0

0
±

0.
00

33
3.

14
34

7.
49

33
9.

86
±

5.
33

U
R

56
2

41
6

14
03

23
37

28
.2

0
±

3.
97

27
30

28
.6

0
±

0.
84

53
2.

68
56

9.
67

55
1.

77
±

12
.7

5

U
R

73
2

45
2

91
5

1
15

7.
90

±
5.

00
6

11
8.

00
±

2.
21

16
4.

72
17

9.
26

17
1.

37
±

4.
72

U
R

53
5

45
8

81
2

0
4

1.
60

±
1.

78
3

3
3.

00
±

0.
00

10
2.

79
12

1.
29

11
3.

57
±

5.
78

U
R

54
5

47
6

11
04

7
20

14
.0

0
±

3.
80

15
24

19
.6

0
±

2.
67

26
4.

00
28

5.
97

27
5.

21
±

9.
58

U
R

55
5

49
0

13
05

8
22

16
.2

0
±

4.
59

25
30

26
.9

0
±

1.
79

40
1.

20
42

9.
67

41
5.

26
±

10
.3

9

U
R

53
7

49
3

86
8

8
14

11
.0

0
±

2.
05

10
13

12
.1

0
±

1.
45

11
8.

01
13

4.
64

12
4.

53
±

5.
49

U
R

56
5

49
6

15
13

15
27

21
.9

0
±

3.
60

23
28

26
.3

0
±

1.
64

57
3.

02
63

1.
32

60
4.

81
±

19
.3

2

U
R

54
7

49
8

11
12

11
19

15
.0

0
±

2.
62

9
14

11
.4

0
±

1.
35

25
9.

46
27

8.
79

26
9.

54
±

6.
59

U
R

55
7

49
8

13
10

9
21

16
.3

0
±

4.
16

10
17

11
.5

0
±

2.
42

40
4.

76
42

5.
90

41
3.

57
±

7.
60

U
R

56
7

49
9

14
26

13
20

16
.1

0
±

2.
02

5
9

6.
80

±
1.

99
51

0.
09

54
0.

01
51

9.
53

±
8.

27

U
R

74
2

53
8

13
25

9
20

15
.1

0
±

4.
09

15
18

16
.9

0
±

0.
74

39
3.

67
42

5.
37

40
6.

78
±

10
.2

2

U
R

75
2

58
0

17
35

30
54

43
.2

0
±

6.
68

25
42

29
.5

0
±

5.
60

78
7.

07
82

5.
64

79
9.

86
±

12
.2

7



732 R. Blanquero, E. Carrizosa

Ta
bl

e
1

(C
on

ti
nu

ed
)

N
et

w
or

k
|A

|
|E

|
It

er
at

io
ns

B
&

B
lis

t
T

im
e

m
in

m
ax

m
ea

n
±

st
d

m
in

m
ax

m
ea

n
±

st
d

m
in

m
ax

m
ea

n
±

st
d

U
R

76
2

59
3

20
89

31
47

39
.4

0
±

5.
13

21
22

21
.8

0
±

0.
42

11
79

.7
6

12
71

.9
5

12
29

.2
3

±
26

.5
8

U
R

13
2

60
5

11
22

12
27

21
.4

0
±

3.
92

8
8

8.
00

±
0.

00
22

4.
33

23
9.

21
23

3.
02

±
5.

58

U
R

73
5

66
2

12
00

10
15

12
.0

0
±

1.
56

8
11

10
.5

0
±

1.
08

23
4.

36
25

5.
16

24
7.

08
±

6.
57

U
R

14
2

70
9

18
15

5
12

8.
40

±
2.

32
4

4
4.

00
±

0.
00

74
8.

35
80

5.
64

77
9.

01
±

17
.7

4

U
R

74
5

71
3

16
16

6
16

10
.8

0
±

3.
74

13
14

13
.6

0
±

0.
52

53
6.

82
59

1.
37

56
1.

00
±

15
.5

8

U
R

75
5

72
4

19
66

12
21

15
.7

0
±

3.
27

19
23

20
.5

0
±

1.
84

92
6.

85
97

2.
39

94
5.

26
±

13
.3

9

U
R

76
5

74
1

22
78

6
18

11
.9

0
±

3.
93

13
18

14
.2

0
±

1.
40

13
16

.0
4

13
66

.7
9

13
41

.4
4

±
16

.7
3

U
R

73
7

74
4

13
15

6
14

10
.9

0
±

2.
42

4
4

4.
00

±
0.

00
27

3.
45

32
0.

83
29

0.
30

±
12

.7
5

U
R

74
7

74
5

16
59

9
20

14
.1

0
±

3.
31

11
13

11
.9

0
±

0.
57

57
4.

32
60

9.
25

58
6.

98
±

12
.0

7

U
R

75
7

74
8

19
69

12
23

16
.7

0
±

3.
30

19
21

19
.9

0
±

0.
74

89
1.

87
96

7.
30

92
9.

94
±

21
.3

3

U
R

76
7

74
9

23
14

14
22

17
.0

0
±

2.
58

24
53

36
.6

0
±

9.
81

13
69

.4
9

14
27

.3
9

13
90

.2
1

±
17

.9
2

U
R

15
2

76
6

23
90

17
33

24
.7

0
±

4.
74

16
18

17
.1

0
±

0.
88

14
55

.8
0

15
64

.5
5

14
91

.4
2

±
30

.8
8

U
R

16
2

80
2

28
97

30
47

37
.8

0
±

5.
33

23
34

31
.0

0
±

2.
98

23
21

.4
7

24
19

.8
4

23
66

.3
2

±
32

.8
1

U
R

13
5

89
2

16
19

0
7

3.
40

±
2.

50
4

6
5.

50
±

0.
85

43
0.

73
46

5.
54

44
7.

52
±

11
.1

7

U
R

14
5

92
9

21
17

12
25

20
.4

0
±

4.
03

16
36

28
.9

0
±

5.
72

95
3.

42
10

11
.9

2
97

5.
20

±
18

.7
8

U
R

15
5

97
5

26
80

8
22

14
.9

0
±

3.
78

10
10

10
.0

0
±

0.
00

17
01

.1
6

18
16

.3
7

17
55

.8
1

±
32

.0
0

U
R

16
5

98
0

30
68

12
18

15
.1

0
±

1.
97

20
29

24
.1

0
±

2.
47

23
68

.2
2

24
53

.9
6

24
25

.7
5

±
27

.6
4

U
R

14
7

99
6

22
54

10
21

14
.6

0
±

3.
20

5
9

6.
90

±
1.

66
10

37
.2

4
11

13
.2

2
10

81
.6

1
±

23
.2

6

U
R

15
7

10
00

26
90

11
26

18
.8

0
±

5.
35

34
38

36
.7

0
±

1.
42

16
71

.5
4

17
79

.6
3

17
26

.3
1

±
30

.2
9

U
R

16
7

10
00

30
83

14
25

18
.2

0
±

3.
26

17
34

25
.7

0
±

7.
15

24
08

.4
5

24
95

.4
2

24
51

.2
4

±
31

.0
0



Solving the median problem with continuous demand on a network 733

The number of iterations and the maximum size of the branch-and-bound list re-
main low in all the executions. However, the CPU time results are quite high mainly
due to the computation of the integrals in Phase 1 (steps 5-b and 5-c) and Phase 2
(steps 4 and 5). One can see that the CPU time required to solve different instances
of the same problem shows a great stability.

We summarize the findings of this paper. We have addressed the problem of locat-
ing one facility on a network with demand distributed on nodes and edges, following
arbitrary distributions. The problem is shown to be multimodal, calling for the use of
global optimization techniques. The objective function on each edge has been shown
to be DC, and a DC decomposition is given. This enables us to obtain concave un-
derestimates of the objective, which are used in a branch and bound procedure. Our
numerical tests show that problems of large size are solved rather quickly. Extensions
of our techniques to the multifacility case are now under study.
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