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Abstract The projected Levenberg-Marquardt method for the solution of a system
of equations with convex constraints is known to converge locally quadratically to a
possibly nonisolated solution if a certain error bound condition holds. This condition
turns out to be quite strong since it implies that the solution sets of the constrained
and of the unconstrained system are locally the same.

Under a pair of more reasonable error bound conditions this paper proves R-linear
convergence of a Levenberg-Marquardt method with approximate projections. In this
way, computationally expensive projections can be avoided. The new method is also
applicable if there are nonsmooth constraints having subgradients. Moreover, the pro-
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jected Levenberg-Marquardt method is a special case of the new method and shares
its R-linear convergence.

Keywords Constrained equation · Levenberg-Marquardt method · Approximate
projection · Non-isolated solution · Error bound

1 Introduction

Let us consider the constrained system of equations

H(x) = 0, x ∈ Ω, (1)

where H : R
n → R

m is continuously differentiable with a locally Lipschitz continu-
ous Jacobian JH : R

n → R
m×n. The set Ω ⊆ R

n is closed and convex. Throughout
the paper, O := {x ∈ R

n |H(x) = 0} denotes the set of zeros of H . Moreover, the
solution set X := O ∩ Ω of problem (1) is assumed to be nonempty. For later use let
x∗ denote an arbitrary but fixed element of X.

In order to describe the aim and developments of this paper in more detail we
need to recall some basic facts and recent work on Levenberg-Marquardt methods.
The basic idea of regularizing the Gauss-Newton method goes back to Levenberg
[18] and Marquardt [19]. For the unconstrained case (Ω = R

n), in each step of a
Levenberg-Marquardt method, the subproblem

min
x∈Rn

ϕ0(x, s) (2)

has to be solved for some s ∈ R
n (current iterate), where ϕ0 : R

n × R
n → R is given

by

ϕ0(x, s) := 1

2

∥
∥H(s) + JH (s)(x − s)

∥
∥

2 + 1

2
α(s)‖x − s‖2

with a regularization parameter α(s) > 0. Here and throughout the paper, ‖·‖ denotes
the Euclidean norm. Note that (2) has a strongly convex objective, is equivalent to a
system of linear equations, and possesses a unique solution.

In 2001 Yamashita and Fukushima [21] opened a new direction of research for
Levenberg-Marquardt methods. In the unconstrained case they showed that the reg-
ularization parameter can be chosen in such a way that superlinear convergence to
nonisolated solutions is attainable. The main ingredient for obtaining this result is the
following error bound condition on a ball

B
(

x∗, δ
) := {

x ∈ R
n |∥∥x − x∗∥∥ ≤ δ

}

.

By dist[x,W ] := inf{‖x − w‖ |w ∈ W } the distance of x ∈ R
n to a nonempty set

W ⊂ R
n is denoted.

Condition 1 There exist ω > 0 and δ > 0 such that

ω dist[x,O] ≤ ‖H(x)‖ for all x ∈ B
(

x∗, δ
)

.
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This condition is significantly weaker than the classical nonsingularity assump-
tion on JH (x∗) (for m = n). In particular, Condition 1 does not imply that x∗ is an
isolated solution. If Condition 1 holds then the system H(x) = 0 is called calm at x∗.
For other and related notions see [12, 20]. If H is affine (see [16]) or if the rank
of JH (x∗) is full, then H(x) = 0 is calm at x∗. However, Condition 1 encompasses
also situations in which JH (x∗) is not full rank. For example, for the calm system
H(x1, x2) := (x2, x2 exp(x1))


 = 0, the rank of JH is 1 on the solution set and 2
otherwise. For a detailed analysis of consequences of Condition 1 see [1, 3].

In the last decade several works continued the ideas of [21]. Among them are pa-
pers on a more robust regularization [11, 12], on inexact Levenberg-Marquardt meth-
ods [4, 9, 10, 14], on applications [7, 13], and on constrained Levenberg-Marquardt
methods [2, 17, 22]. Instead of (2), the latter methods employ more complex sub-
problems. In particular,

min
x∈Ω

ϕ0(x, s) (3)

was suggested by Kanzow, Yamashita, and Fukushima [17]. They proved local
quadratic convergence by means of the following error bound condition.

Condition 2 There exist ω > 0 and δ > 0 such that

ω dist[x,X] ≤ ‖H(x)‖ for all x ∈ B
(

x∗, δ
) ∩ Ω.

This condition has the advantage that it is restricted to points in Ω only. It turned
out that this error bound condition (together with further assumptions) can be quite
useful for dealing with problem (1) if H is nonsmooth; see [6]. Since solving the
constrained subproblem (3) can be computationally challenging or, at least, is more
expensive than solving the unconstrained minimization problem (2), a projected
Levenberg-Marquardt method is suggested in [17] (see also [8, 13]). Per step, the
latter method requires the solution of the unconstrained minimization problem (2)
plus a projection onto Ω . If the projection is cheap then the computational costs per
step compare favorably to the costs of solving (3). However, in order to prove local
quadratic convergence, the following quite strong error bound condition is needed.

Condition 3 There exist ω > 0 and δ > 0 such that

ω dist[x,X] ≤ ∥
∥H(x)

∥
∥ for all x ∈ B

(

x∗, δ
)

.

Obviously, Condition 3 is much stronger than Condition 2. In particular, Condi-
tion 3 implies that

X ∩ B
(

x∗, δ
) = O ∩ B

(

x∗, δ
)

holds for some sufficiently small δ > 0, i.e., the set Ω can be disregarded in a neigh-
borhood of x∗.

The aim of this paper is to design a Levenberg-Marquardt type method that does
not need such a strong error bound condition but still employs the simple subprob-
lems (2). Instead, we will use Conditions 1 and 2 as a pair. The price we have to pay
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is that only local R-linear convergence can be shown, but still to a possibly noniso-
lated solution of problem (1). To replace the exact projections onto the set Ω the new
method allows approximate projections without losing the linear rate. Often, such ap-
proximate projections can be done in a computationally cheap way and can be applied
even if the set Ω is described by nonsmooth inequalities. Besides approximate pro-
jections the new method is able to cope with a certain level of inexactness in solving
the subproblem (2).

The paper is organized as follows. In Sect. 2 we formally introduce the Levenberg-
Marquardt algorithm with approximate projections. After presenting the assumptions,
Sect. 3 is devoted to the convergence analysis of the new algorithm. The paper is
completed by final remarks in Sect. 4. They include discussions on the sharpness of
the inexactness level and of the convergence rate, as well as a numerical example.

2 Levenberg-Marquardt algorithm with approximate projections

In this section we present a Levenberg-Marquardt method with approximate projec-
tions and a possibly inexact solution of the subproblems (2). The next two subsections
collect the necessary ingredients for defining the algorithm in Sect. 2.3.

2.1 Inexact subproblems

The Levenberg-Marquardt subproblems we are going to use enable an inexact solu-
tion and read as

min
x∈Rn

ϕ(x, s), (4)

where ϕ : R
n × R

n → R is defined by

ϕ(x, s) := 1

2

∥
∥H(s) + JH (s)(x − s)

∥
∥

2 + 1

2
α(s)‖x − s‖2 − π(s)
(x − s) (5)

with α : R
n → R given by

α(s) :=
{

‖H(s)‖ if s ∈ R
n \ O,

1 if s ∈ O.
(6)

Moreover, π : R
n → R

n denotes a function that, for some κ, η > 0, satisfies

∥
∥π(s)

∥
∥ ≤ κ

∥
∥H(s)

∥
∥2+η (7)

for all s ∈ R
n. The function π is not explicitly needed within the algorithm but is used

to describe and analyze the possible level of inexactness. With the above definition
of subproblem (4) we easily see that, for any s ∈ R

n, this subproblem has a unique
solution which we denote by x(s). If s ∈ O , the definitions of the functions α and
π imply x(s) = s. For any s ∈ R

n, the solution x(s) can be characterized by the
necessary and sufficient optimality condition ∇xϕ(x, s) = 0, i.e., by a linear system
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of n equations with n variables. With the definition of the objective ϕ0 in the exact
Levenberg-Marquardt subproblem (2), we obtain

∇xϕ0
(

x(s), s
) = π(s)

Thus, π(s) can be regarded as the residual of the optimality condition

∇xϕ0(x, s) = 0

for subproblem (2) at x = x(s).

2.2 Approximate projections

Projected Levenberg-Marquardt methods employ a projection step that maps an iter-
ate s ∈ R

n onto its nearest point in the set Ω . In order to relax this projection step,
we introduce the notion of an approximate projector.

Definition 1 Let B ⊆ R
n be a nonempty set. A function P̃Ω : B → R

n is called an
approximate projector defined on B and associated to Ω if the following properties
are satisfied:

1. There exists a number γ ∈ [0,1) such that

dist
[

P̃Ω(x),Ω
] ≤ γ dist[x,Ω] for all x ∈ B. (8)

2. For any x ∈ B , it holds that

(

x − P̃Ω(x)
)
(

y − P̃Ω(x)
) ≤ 0 for all y ∈ Ω. (9)

The vector P̃Ω(x) is called an approximate projection of x ∈ B .

Property 2 in the previous definition means that, for a point x ∈ B \ Ω , the ap-
proximate projection P̃Ω(x) is the orthogonal projection of x onto some hyperplane
hx separating x from Ω .

Of course, the orthogonal projector onto Ω , PΩ : R
n → Ω , with PΩ(x) being the

unique solution of the minimization problem

min
w∈Ω

‖x − w‖,

is an approximate projector defined on R
n associated to Ω . Indeed, for P̃Ω = PΩ ,

Property 1 in Definition 1 is satisfied with γ = 0 and Property 2 is well-known for
the orthogonal projector. For some sets Ω , calculating the orthogonal projection of
a given point x ∈ R

n is not very hard, for instance if Ω is a halfspace, or if it is
described by box constraints. However, the projection task can become computa-
tionally expensive if Ω is a more general convex set. Fortunately, determining an
approximate projection is possible with only little effort in most cases. For example,
let us consider the important case in which Ω is described by general convex in-
equalities, i.e., Ω := {x ∈ R

n |gi(x) ≤ 0, i = 1, . . . ,m}, where g1, . . . , gm : R
n → R
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are convex but not necessarily differentiable functions. Then, it is well-known that
g : R

n → R defined by g(x) := max{g1(x), . . . , gm(x)} is convex and Ω can be writ-
ten as Ω := {x ∈ R

n |g(x) ≤ 0}. Therefore, without loss of generality, only the case
m = 1 needs to be considered. The following proposition is based on [15] and pro-
vides a special approximate projector by means of subgradients of g, i.e., of elements
of the subdifferential ∂g(x) of g at x. Moreover, an explicit formula for computing
an approximate projection is given. The computational expense of this approximate
projection is low, provided that the computation of a subgradient of g is not too ex-
pensive.

Proposition 1 Suppose that g : R
n → R is a convex function and that there exists

some x̂ ∈ R
n with g(x̂) < 0 (Slater condition). Let v : R

n → R
n denote a mapping

with v(x) ∈ ∂g(x) for any x ∈ R
n. Moreover, let the mapping p̃ : R

n → R
n be defined

pointwise, with p̃(x) being the unique solution of the problem

min
p

‖p − x‖ s.t. g(x) + v(x)
(p − x) ≤ 0. (10)

Then, the following assertions hold:

(i) For any nonempty compact set B ⊂ R
n, the mapping p̃ is an approximate pro-

jector defined on B associated to the set Ω := {x ∈ R
n |g(x) ≤ 0}.

(ii) For any x ∈ R
n, the solution p̃(x) of (10) is given by

p̃(x) =
{

x − g(x)

‖v(x)‖2 v(x) if g(x) > 0,

x if g(x) ≤ 0.
(11)

Proof
(i) The existence of γ ∈ [0,1) such that dist[p̃(x),Ω] ≤ γ dist[x,Ω] for all x ∈ B

follows from [15, Lemma 4], i.e., (8) holds for P̃Ω := p̃. Furthermore, for x ∈ R
n \Ω ,

the solution p̃(x) of (10) is the orthogonal projection of x onto the hyperplane

hx := {

w ∈ R
n |g(x) + v(x)
(w − x) = 0

}

.

Since v(x) is a subgradient of g in x, this hyperplane separates x from the convex set
Ω and therefore (9) holds. Thus, the mapping p̃ is an approximate projector defined
on B associated to Ω .

(ii) This assertion can be easily verified. �

2.3 The algorithm

Let P̃Ω denote an approximate projector defined on B associated to Ω .
Since subproblem (4) has always a unique solution, Algorithm 1 is well-defined

as long as the approximate projection P̃Ω(x(xk)) is defined. The latter is the case if
x(xk) belongs to B , see Definition 1. The restriction to B is only a formal aspect. For
example let us consider the mapping p̃ defined in Proposition 1. Due to assertion (ii)
of this proposition, p̃ is well-defined on R

n and satisfies Property 2 of Definition 1.
Property 1 of this definition holds at least on compact sets B . The latter, however, is
sufficient for our local convergence analysis. Note that the iterates of a sequence {xk}
generated by Algorithm 1 do not necessarily belong to Ω .
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Algorithm 1 Levenberg-Marquardt algorithm with approximate projections (LMAP)

S1 Initialization Choose x0 ∈ R
n. Set k := 0.

S2 Levenberg-Marquardt step Compute x(xk) as solution of (4).
S3 Approximate projection Set xk+1 := P̃Ω(x(xk)).
S4 Update Set k := k + 1 and go to S2.

3 Convergence analysis

In the first subsection we state the assumptions that will be used later on in Sect. 3.2
for analyzing the local convergence properties of Algorithm 1.

3.1 Assumptions

As in Sect. 1, let x∗ ∈ X denote an arbitrary but fixed solution of (1). Moreover, let
δ ∈ (0,1] denote the arbitrary but fixed radius of the ball B(x∗, δ).

Assumption 1 The mapping H : R
n → R

m is differentiable on B(x∗, δ) and its Ja-
cobian JH : R

n → R
m×n is Lipschitz continuous on B(x∗, δ).

To avoid Condition 3 we now present the pair of reasonable error bound condi-
tions.

Assumption 2 There exists ω > 0 such that

ω dist[x,O] ≤ ∥
∥H(x)

∥
∥ for all x ∈ B

(

x∗, δ
)

(12)

and

ω dist[x,X] ≤ ∥
∥H(x)

∥
∥ for all x ∈ B

(

x∗, δ
) ∩ Ω. (13)

Roughly speaking, the error bound (12) (together with the Lipschitz continuity of
H around x∗) implies that ‖H(x)‖ grows locally like dist[x,O], while (13) does not
allow Ω to be in some sense tangent to O .

The next examples show that the error bounds (12) and (13) do not imply each
other.

Example 1 Let H : R
2 → R and Ω be given by H(x1, x2) := x2 and

Ω := {

(x1, x2)

 ∈ R

2 |g(x1, x2) ≤ 0
}

with g(x1, x2) :=
{

x2
1 − x2 if x1 ≤ 0,

−x2 if x1 > 0.

It is easy to see that the error bound (12) holds for any solution x∗ ∈ X =
{(x1,0)
 |x1 ≥ 0} and that (13) is violated for x∗ = 0.

Example 2 Let H : R
3 → R

2 and Ω be given by

H(x1, x2, x3) := (x3, x1x2)

 and Ω := {

(x1, x2, x3)

 ∈ R

3 |x3 ≥ |x2|
}

.

In this example, (13) is satisfied while (12) is violated for x∗ = 0.
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3.2 Local analysis

In order to prove our main convergence theorem, we need some auxiliary results.
Some of them are quite technical, whereas the first lemma is elementary.

Lemma 1 Let Assumption 1 be satisfied. Then, there exists L > 0 such that, for all
x, s ∈ B(x∗, δ), the following inequalities hold:

∥
∥H(x) − H(s)

∥
∥ ≤ L‖x − s‖, (14)

∥
∥H(x) − H(s) − JH (s)(x − s)

∥
∥ ≤ L‖x − s‖2. (15)

The next lemma lists some properties of an inexact unconstrained Levenberg-
Marquardt step. Recall that, for a given point s ∈ R

n, we denote by x(s) the unique
solution of subproblem (4).

Lemma 2 Let Assumptions 1 and 2 be satisfied. Then, there exist δ1 ∈ (0, δ] and
L1 > 0 so that the inequalities

∥
∥x(s) − s

∥
∥ ≤ L1 dist[s,O], (16)

dist
[

x(s),O
] ≤ L1 dist[s,O]2, (17)

and
∥
∥x(s) − x∗∥∥ ≤ δ (18)

hold for all s ∈ B(x∗, δ1). Moreover,

lim
dist[s,O]→0

‖x(s) − s‖
dist[s,O] = 1. (19)

Proof The existence of δ1 ∈ (0, δ] and L1 > 0 so that (16) and (17) hold is a
well-known fact, see for example [2, 14]. Furthermore, using (16), we obtain (18)
by

∥
∥x(s) − x∗∥∥ ≤ ∥

∥x(s) − s
∥
∥ + ∥

∥s − x∗∥∥ ≤ L1 dist[s,O] + ∥
∥s − x∗∥∥ ≤ (L1 + 1)δ1 ≤ δ

for δ1 > 0 sufficiently small. So, only (19) needs a proof. To this end, let s ∈
B(x∗, δ1) \ O be arbitrarily chosen. The set O is closed by continuity of H , and
thus there exists sO ∈ O with ‖sO − s‖ = dist[s,O]. Hence, we get

∥
∥H(s)

∥
∥
∥
∥x(s) − s

∥
∥2 ≤ 2ϕ

(

x(s), s
) + 2π(s)


(

x(s) − s
)

≤ 2ϕ(sO, s) + 2π(s)

(

x(s) − s
)

= ∥
∥H(sO) − H(s) − JH (s)(sO − s)

∥
∥2 + ∥

∥H(s)
∥
∥‖sO − s‖2

− 2π(s)
(sO − s) + 2π(s)

(

x(s) − s
)
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≤ L2‖sO − s‖4 + ∥
∥H(s)

∥
∥‖sO − s‖2 +

+ 2κ
∥
∥H(s)

∥
∥2+η(‖sO − s‖ + L1 dist[s,O])

≤ L2

ω

∥
∥H(s)

∥
∥dist[s,O]3 + ∥

∥H(s)
∥
∥dist[s,O]2

+ 2κL1+η(1 + L1)
∥
∥H(s)

∥
∥dist[s,O]2+η, (20)

using (5) in the first inequality and the first equality, (15), (7) and (16) in the third
inequality, and finally (12) and (14) in the fourth one. Dividing (20) by ‖H(s)‖ and
extracting the square root, we obtain on the one hand

∥
∥x(s) − s

∥
∥ ≤

√

L2

ω
dist[s,O] + 1 + 2κL1+η(1 + L1)dist[s,O]η dist[s,O]. (21)

On the other hand, the triangle inequality and (17) yield

dist[s,O] ≤ ∥
∥s − x(s)

∥
∥ + dist

[

x(s),O
] ≤ ∥

∥x(s) − s
∥
∥ + L1 dist[s,O]2,

which leads to

dist[s,O] − L1 dist[s,O]2 ≤ ∥
∥x(s) − s

∥
∥. (22)

Now, dividing the inequalities (21) and (22) by dist[s,O], and taking the limit with
dist[s,O] → 0, (19) follows. �

In order to formulate the following results, we introduce the set-valued map PX :
R

n ⇒ X, defined as:

PX(s) := {

x ∈ X | ‖x − s‖ = dist[s,X]}.

Lemma 3 Let Assumptions 1 and 2 be satisfied. Then, for any c ∈ (0,1), there exists
δ(c) > 0 such that, for any s ∈ B(x∗, δ(c)),

c
∥
∥x(s) − sX

∥
∥ ≤ ‖s − sX‖ for all sX ∈ PX(s).

Proof Let us assume the contrary. Then there exist c1 ∈ (0,1) and sequences {sk} ⊂
R

n and {sk
X} with sk

X ∈ PX(sk) for all k ∈ N such that {sk} converges to x∗ and

∥
∥sk − sk

X

∥
∥ < c1

∥
∥x

(

sk
) − sk

X

∥
∥ for all k ∈ N. (23)

Without loss of generality we assume that, for some κ ∈ (0, δ1],
∥
∥sk − x∗∥∥ ≤ κ for all k ∈ N. (24)

Later on, κ will be restricted further. Obviously, (23) implies

∥
∥x

(

sk
) − sk

X

∥
∥ > 0 for all k ∈ N. (25)
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For later use, we define

c2 := 1 + c1

2
and c3 :=

√

1 −
(

1 − c2

c2

)2

.

Since c1 ∈ (0,1), we easily obtain

max

{

c1,
1

2

}

< c2 < 1 <
c2

c1
and 0 < c3 < 1 <

1 + c3

2c3
. (26)

Therefore, (19) in Lemma 2 implies, for κ > 0 sufficiently small,

∥
∥sk − x

(

sk
)∥
∥ ≤ min

{
c2

c1
,

1 + c3

2c3

}

dist
[

sk,O
]

for all k ∈ N. (27)

For the sake of simplicity, we now fix k ∈ N and omit this index. Then, from (27) and
(23), we obtain

∥
∥s − x(s)

∥
∥ ≤ c2

c1
dist[s,O] ≤ c2

c1
dist[s,X] <

c2

c1
c1

∥
∥x(s) − sX

∥
∥ = c2

∥
∥x(s) − sX

∥
∥.

Thus, by (23) and the fact that c1 < c2, established in (26), we have

‖s − sX‖ < c2
∥
∥x(s) − sX

∥
∥ and

∥
∥s − x(s)

∥
∥ < c2

∥
∥x(s) − sX

∥
∥. (28)

Now, taking into account (25),

L(s) := {

x(s) + λ
(

sX − x(s)
) |λ ∈ R

}

,

defines a straight line. With z(s) denoting the orthogonal projection of s onto this
line, we have that

(

s − z(s)
)
(

x(s) − sX
) = 0 (29)

is valid. Since (s, z(s), sX) and (s, x(s), z(s)), respectively, are vertices of a right
triangle with the right angle at z(s),

∥
∥z(s) − sX

∥
∥ ≤ ‖s − sX‖ and

∥
∥z(s) − x(s)

∥
∥ ≤ ∥

∥s − x(s)
∥
∥ (30)

follow. We conclude from (30) and (28) that the inequalities

∥
∥z(s) − sX

∥
∥ < c2

∥
∥x(s) − sX

∥
∥ and

∥
∥z(s) − x(s)

∥
∥ < c2

∥
∥x(s) − sX

∥
∥ (31)

are satisfied. With λ(s) ∈ R given by

z(s) = x(s) + λ(s)
(

sX − x(s)
)

, (32)

(31) implies

λ(s) ∈ (1 − c2, c2) ⊂ (0,1), (33)
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i.e., z(s) lies on the line L(s) between x(s) and sX . Therefore,

∥
∥x(s) − z(s)

∥
∥ > (1 − c2)

∥
∥x(s) − sX

∥
∥

follows and we get, using (28),

∥
∥x(s) − z(s)

∥
∥ >

1 − c2

c2

∥
∥s − x(s)

∥
∥. (34)

Moreover, since z(s) belongs to the line L(s) we have, as in (29), that

(

s − z(s)
)
(

x(s) − z(s)
) = 0

holds. This and (34) yield

∥
∥s −z(s)

∥
∥2 = ∥

∥s −x(s)
∥
∥2 −∥

∥x(s)−z(s)
∥
∥2

<
∥
∥s −x(s)

∥
∥2 −

(
1 − c2

c2

)2
∥
∥s −x(s)

∥
∥

2
.

With the above definition of c3, we have

∥
∥s − z(s)

∥
∥ < c3

∥
∥s − x(s)

∥
∥. (35)

From (27), we get

∥
∥s − x(s)

∥
∥ ≤ 1 + c3

2c3
dist[s,O],

which implies, in view of (35),

∥
∥s − z(s)

∥
∥ < c3

1 + c3

2c3
dist[s,O] = c3 + 1

2
dist[s,O]. (36)

The triangle inequality and (36) lead to

dist[s,O] ≤ ∥
∥s − z(s)

∥
∥ + dist

[

z(s),O
]

<
c3 + 1

2
dist[s,O] + dist

[

z(s),O
]

. (37)

Since (36) implies dist[s,O] > 0, dividing (37) by dist[s,O], we obtain

1 <
c3 + 1

2
+ dist[z(s),O]

dist[s,O] . (38)

Due to (c3 + 1)/2 < 1 we would get the desired contradiction if the second term on
the right hand side of (38) is sufficiently close to 0. We proceed to prove this fact. By
(24), we have

∥
∥sX − x∗∥∥ ≤ ‖sX − s‖ + ∥

∥s − x∗∥∥ ≤ 2κ.

Moreover, since s ∈ B(x∗, δ1), (16) in Lemma 2 yields

∥
∥x(s) − x∗∥∥ ≤ ∥

∥x(s) − s
∥
∥ + ∥

∥s − x∗∥∥ ≤ L1 dist[s,O] + κ ≤ (L1 + 1)κ.
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It follows from (36) and the fact that c3 < 1, resulting from (26), that

∥
∥z(s) − x∗∥∥ ≤ ∥

∥z(s) − s
∥
∥ + ∥

∥s − x∗∥∥ <
c3 + 1

2
dist[s,O] + κ < 2κ.

Therefore, for κ ∈ (0, δ1] sufficiently small, we have

s, sX, x(s), z(s) ∈ B
(

x∗, δ1
)

. (39)

Now, (16) in Lemma 2 and (28) imply that
∥
∥x(s) − sX

∥
∥ ≤ ∥

∥x(s) − s
∥
∥ + ‖s − sX‖ < L1 dist[s,O] + c2

∥
∥x(s) − sX

∥
∥

and, using c2 < 1 from (26), we obtain

∥
∥x(s) − sX

∥
∥ <

L1

1 − c2
dist[s,O]. (40)

Taking into account (39), we get

ω dist
[

z(s),O
] ≤ ∥

∥H
(

z(s)
)∥
∥

= ∥
∥H

(

z(s)
) − H(sX)

∥
∥

≤ ∥
∥JH (sX)

(

z(s) − sX
)∥
∥ + L

∥
∥z(s) − sX

∥
∥

2

= (

1 − λ(s)
)∥
∥JH (sX)

(

x(s) − sX
)∥
∥

+ (

1 − λ(s)
)2

L
∥
∥x(s) − sX

∥
∥

2

≤ ∥
∥H

(

x(s)
) − H(sX)

∥
∥ + 2L

∥
∥x(s) − sX

∥
∥

2

≤ Ldist
[

x(s),O
] + 2L

∥
∥x(s) − sX

∥
∥

2

<

(

LL1 + 2LL2
1

(1 − c2)2

)

dist[s,O]2, (41)

using the error bound (12) in Assumption 2 in the first inequality, (15) in Lemma 1 in
the second one, (32) and (33) in the second equality, (15) again in the third inequality,
(14) in the fourth one, and (17) in Lemma 2, together with (40), in the fifth one.
Dividing (41) by ω dist[s,O], we have

dist[z(s),O]
dist[s,O] <

(
LL1

ω
+ 2LL2

1

ω(1 − c2)2

)

dist[s,O].

Hence, without loss of generality, we can assume that κ in (24) is sufficiently small so
that the right hand side of the previous inequality becomes strictly less than (1−c3)/2
and, thus, (38) yields a contradiction. �

The following lemma provides the key result for proving local linear convergence
of Algorithm 1 since it shows that locally one step of this algorithm provides a linear
decrease w.r.t. the distance to the solution set X.
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Lemma 4 Let Assumptions 1 and 2 be satisfied and suppose that P̃Ω is an approxi-
mate projector defined on B ⊇ B(x∗,1). Then, there exist δ2 ∈ (0, δ1] and τ ∈ [0,1)

such that

x(s) ∈ B and dist
[

P̃Ω

(

x(s)
)

,X
] ≤ τ dist[s,X]

hold for all s ∈ B(x∗, δ2).

Proof Due to (18), we have x(s) ∈ B(x∗,1) ⊆ B for all s ∈ B(x∗, δ1). This implies
that P̃Ω(x(s)) is well-defined. By the definitions of x(s) and P̃Ω , we get

x(s) = s and P̃Ω

(

x(s)
) = P̃Ω(s) = s for all s ∈ X.

Therefore, the asserted inequality holds for all s ∈ X for any τ ≥ 0. In order to prove
this inequality for s /∈ X let us now proceed by contradiction, assuming that there
exists a sequence {sk} ⊂ R

n \ X, converging to x∗, such that

lim inf
k→∞

dist[P̃Ω(x(sk)),X]
dist[sk,X] ≥ 1. (42)

Without loss of generality we assume that, for some δ2 ∈ (0, δ1],
∥
∥sk − x∗∥∥ ≤ δ2 for all k ∈ N. (43)

Later, δ2 will be further restricted. In order to obtain the desired contradiction, the
remainder of the proof will be divided in two parts.

(a) In this part we will show that there exists ρ ∈ [0,1) such that

∥
∥sk

X − P̃Ω

(

x
(

sk
))∥

∥ ≤ ρ
∥
∥x

(

sk
) − sk

X

∥
∥ for all k ∈ N, (44)

where sk
X denotes an arbitrary element of PX(sk). For simplicity, we now fix k ∈ N

and omit the index k. In order to show (44), we first prove that

x(s) /∈ Ω if δ2 ∈ (0, δ1] is sufficiently small. (45)

Let us assume that (45) does not hold. It follows from (43) and (18), that s ∈ B(x∗, δ1)

and x(s) ∈ B(x∗, δ). Therefore, we can apply the error bound (13), (14), and (17) and
obtain, for x(s) ∈ Ω ,

ω dist
[

P̃Ω

(

x(s)
)

,X
] ≤ ∥

∥H
(

x(s)
)∥
∥

≤ Ldist
[

x(s),O
]

≤ LL1 dist[s,O]2

≤ LL1 dist[s,X]2,

which contradicts (42) for δ2 > 0 sufficiently small. Thus, (45) holds.
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Now, we continue with the proof of (44). From the definition of the approximate
projector P̃Ω we have

(

x(s) − P̃Ω

(

x(s)
))
(

sX − P̃Ω

(

x(s)
)) ≤ 0,

i.e., the angle at the vertex P̃Ω(x(s)) of the triangle (x(s), sX, P̃Ω(x(s))) is obtuse.
Therefore, it follows from the cosine rule that

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥ ≤ ∥

∥x(s) − sX
∥
∥,

∥
∥sX − P̃Ω

(

x(s)
)∥
∥ ≤ ∥

∥x(s) − sX
∥
∥, (46)

and
∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥2 + ∥

∥sX − P̃Ω

(

x(s)
)∥
∥2 ≤ ∥

∥x(s) − sX
∥
∥2 (47)

hold. Since, by (45), x(s) does not belong to Ω for δ2 > 0 small enough, we have

∥
∥x(s) − sX

∥
∥ > 0. (48)

Thus, dividing (47) by ‖x(s) − sX‖2 yields

‖x(s) − P̃Ω(x(s))‖2

‖x(s) − sX‖2
+ ‖sX − P̃Ω(x(s))‖2

‖x(s) − sX‖2
≤ 1. (49)

From the definition of P̃Ω , we have, for some γ ∈ (0,1),

dist
[

P̃Ω

(

x(s)
)

,Ω
] ≤ γ dist

[

x(s),Ω
]

≤ γ
(∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥ + dist

[

P̃Ω

(

x(s)
)

,Ω
])

.

Thus, defining w(s) := PΩ(P̃Ω(x(s))), it holds that

dist
[

P̃Ω

(

x(s)
)

,Ω
] = ∥

∥P̃Ω

(

x(s)
) − w(s)

∥
∥ ≤ γ

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥. (50)

In view of Lemma 3, we may assume that

1

2

∥
∥x(s) − sX

∥
∥ ≤ dist[s,X] (51)

is valid for δ2 > 0 sufficiently small. From (51), (42), and (50) we conclude that, for
δ2 > 0 sufficiently small,

1

4

∥
∥x(s) − sX

∥
∥ ≤ 1

2
dist[s,X]

≤ dist
[

P̃Ω

(

x(s)
)

,X
]

≤ dist
[

w(s),X
] + ∥

∥P̃Ω

(

x(s)
) − w(s)

∥
∥

≤ dist
[

w(s),X
] + γ

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥. (52)
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The next estimate provides an upper bound for dist[w(s),O]. For δ2 > 0 sufficiently
small, the triangle inequality, (17), (50), (42), and (46) yield

dist
[

w(s),O
] ≤ dist

[

x(s),O
] + ∥

∥x(s) − P̃Ω

(

x(s)
)∥
∥ + ∥

∥P̃Ω

(

x(s)
) − w(s)

∥
∥

≤ L1 dist[s,O]2 + ∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥ + γ

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥

≤ L1 dist[s,X]2 + 1

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥

≤ 2L1 dist
[

P̃Ω

(

x(s)
)

,X
]2 + 1

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥

≤ 2L1
∥
∥P̃Ω

(

x(s)
) − sX

∥
∥

2 + 1

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥

≤ 2L1
∥
∥x(s) − sX

∥
∥

2 + 1

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥. (53)

Using (46) and (16), we can easily deduce that s ∈ B(x∗, δ2) implies w(s) ∈ B(x∗, δ)
for δ2 > 0 small enough. Thus, since w(s) ∈ Ω by definition, we get from the error
bound (13) and from (14)

ω dist
[

w(s),X
] ≤ ∥

∥H
(

w(s)
)∥
∥ ≤ Ldist

[

w(s),O
]

. (54)

Combining (52), (54), and (53), we obtain

1

4
ω

∥
∥x(s) − sX

∥
∥ ≤ Ldist

[

w(s),O
] + ωγ

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥

≤ 2LL1
∥
∥x(s) − sX

∥
∥

2 + L + ωγ

1 − γ

∥
∥x(s) − P̃Ω

(

x(s)
)∥
∥. (55)

In view of (48), we can divide (55) by ‖x(s) − sX‖, yielding

0 <
1

4
ω ≤ 2LL1

∥
∥x(s) − sX

∥
∥ + L + ωγ

1 − γ

‖x(s) − P̃Ω(x(s))‖
‖x(s) − sX‖ . (56)

Choosing δ2 ≤ (32LL1)
−1ω and taking into account (51), we get

2LL1
∥
∥x(s) − sX

∥
∥ ≤ 4LL1 dist[s,X] ≤ 4LL1δ2 ≤ 1

8
ω.

Hence, by (56), it follows that

‖x(s) − P̃Ω(x(s))‖
‖x(s) − sX‖ ≥ σ := min

{
1

2
,

ω(1 − γ )

8(L + ωγ )

}

∈ (0,1).

Therefore, (49) implies (44) with ρ := √
1 − σ 2 completing the proof of (a).
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(b) We complete now the proof of the lemma. It follows from (44) that, for δ2 > 0
sufficiently small,

dist
[

P̃Ω

(

x
(

sk
))

,X
] ≤ ∥

∥P̃Ω

(

x
(

sk
)) − sk

X

∥
∥ ≤ ρ

∥
∥x

(

sk
) − sk

X

∥
∥.

With c := 2ρ/(1 + ρ), Lemma 3 implies

dist
[

P̃Ω

(

x
(

sk
))

,X
] ≤ ρ

c

∥
∥sk − sk

X

∥
∥ = 1 + ρ

2
dist

[

sk,X
]

for δ2 > 0 sufficiently small. Since (1 + ρ)/2 < 1, we have a contradiction
to (42). �

We show next that Lemma 4 need not hold if the error bound on Ω , given by (13),
is violated.

Example 3 Let H : R
2 → R and Ω be defined as in Example 1, where we have

already noted that the error bound (12) is satisfied for any solution, while the error
bound (13) on Ω is violated for x∗ = (0,0)
. Now, let us consider the point s =
(−t,0)
 ∈ R

2 with t ∈ (0,1] arbitrary but fixed. Since s belongs to O , it follows that
x(s) = s. Since g (see Example 1) is continuously differentiable, its only subgradient
is its gradient, i.e., v(s) = ∇g(s) = (−2t,−1)
. The approximate projection p̃(s) on
B(0,1) associated to Ω is given by (11) and, since g(s) = t2 > 0, we obtain

p̃(s) =
(

2t3

4t2 + 1
− t,

t2

4t2 + 1

)

.

This and dist[s,X] = t imply

dist[p̃(s),X]2

dist[s,X]2
= ( 2t3

4t2+1
− t)2 + ( t2

4t2+1
)2

t2
t→0−→ 1.

Thus, the assertion of Lemma 4 is not satisfied in any neighborhood of x∗ = (0,0)
.

Now we are in the position to state and prove the main theorem of this paper.

Theorem 1 Let Assumptions 1 and 2 be satisfied and suppose that Algorithm 1 uses
an approximate projector P̃Ω defined on B ⊇ B(x∗,1). Then, there exists ε ∈ (0, δ2]
such that Algorithm 1 generates a well-defined sequence {xk} for any starting point
x0 ∈ B(x∗, ε). This sequence converges R-linearly to a solution x̂ ∈ X of problem (1).

Proof Let us first choose ε according to

0 < ε ≤
(

1 + 2L1 + 1

1 − τ

)−1

δ2 (57)

with τ ∈ (0,1) from Lemma 4 and L1 > 0 from Lemma 2. We first show by induction
that Algorithm 1 generates a well-defined sequence {xk} ⊂ B(x∗, δ2) if x0 ∈ B(x∗, ε).
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To this end we assume that, for some k ∈ N, x0, x1, . . . , xk were generated by Algo-
rithm 1 and

∥
∥xν − x∗∥∥ ≤ δ2 for ν = 0,1, . . . , k. (58)

Using the triangle inequality, we obtain

∥
∥xk+1 − x∗∥∥ ≤ ∥

∥x0 − x∗∥∥ +
k

∑

ν=0

∥
∥xν+1 − xν

∥
∥. (59)

In order to find an upper bound for the second term in the right hand side of (59) note
first that xν+1 = P̃Ω(x(xν)) is well-defined for ν = 0,1, . . . , k − 1 since x0, . . . , xk

were successfully generated by Algorithm 1. Moreover, by (58) for ν = k, Lemma 4
with s := xk implies x(xk) ∈ B . Thus, xk+1 = P̃Ω(x(xk)) is also well-defined and
we obtain, for ν = 0, . . . , k,

∥
∥xν+1 − xν

∥
∥ ≤ ∥

∥P̃Ω

(

x
(

xν
)) − x

(

xν
)∥
∥ + ∥

∥x
(

xν
) − xν

∥
∥.

Moreover, Property 1 of an approximate projector (see Definition 1) and (16) of
Lemma 2 applied to s := xν yield for ν = 0, . . . , k

∥
∥xν+1 − xν

∥
∥ ≤ γ dist

[

x
(

xν
)

,Ω
] + ∥

∥x
(

xν
) − xν

∥
∥

≤ 2
∥
∥x

(

xν
) − xν

∥
∥ + dist

[

xν,Ω
]

≤ 2L1 dist
[

xν,O
] + dist

[

xν,Ω
]

≤ (2L1 + 1)dist
[

xν,X
]

. (60)

Therefore, (59) leads to

∥
∥xk+1 − x∗∥∥ ≤ ∥

∥x0 − x∗∥∥ + (2L1 + 1)

k
∑

ν=0

dist
[

xν,X
]

.

In view of (58), Lemma 4 gives

∥
∥xk+1 − x∗∥∥ ≤ ∥

∥x0 − x∗∥∥ + (2L1 + 1)dist
[

x0,X
]

k
∑

ν=0

τ ν

≤
(

1 + 2L1 + 1

1 − τ

)
∥
∥x0 − x∗∥∥.

Since x0 ∈ B(x∗, ε), we have from (57) that xk+1 belongs to B(x∗, δ2). Hence, it
follows by induction that, for any starting point x0 ∈ B(x∗, ε), Algorithm 1 generates
a well-defined infinite sequence {xk} ⊂ B(x∗, δ2).

Next, it will be shown that the sequence {xk} is a Cauchy-sequence. Take i, k ∈ N

with k < i. Then, as in (60), we obtain

∥
∥xi − xk

∥
∥ ≤

i−1
∑

ν=k

∥
∥xν+1 − xν

∥
∥ ≤ (2L1 + 1)

i−1
∑

ν=k

dist
[

xν,X
]
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and Lemma 4 yields

∥
∥xi − xk

∥
∥ ≤ τ k(2L1 + 1)dist

[

x0,X
]

i−k−1
∑

ν=0

τ ν ≤ τ k 2L1 + 1

1 − τ
ε. (61)

Hence, for k → ∞ the right hand side of (61) tends to 0. Thus, {xk} is a
Cauchy-sequence and converges to some x̂ ∈ B(x∗, δ2). From Lemma 4, we have
dist[xk+1,X] ≤ τ dist[xk,X] for all k ∈ N and, thus, limk→∞ dist[xk,X] = 0 holds.
Since X is a closed set we conclude that x̂ belongs to X. Finally, let us consider (61)
and take the limit for i → ∞. This yields

∥
∥x̂ − xk

∥
∥ ≤ τ k 2L1 + 1

τ − 1
for all k ∈ N.

Hence, if x0 ∈ B(x∗, ε) then {xk} converges R-linearly to x̂ ∈ X. �

4 Final remarks

We have shown that the Levenberg-Marquardt algorithm with approximate projec-
tions (LMAP) is locally R-linearly convergent under a pair of reasonable error bound
conditions. A special case of this algorithm is the projected Levenberg-Marquardt
method [17]. Note that in the existing literature local convergence is known only
under the very restrictive Condition 3 which we could avoid. Although the Algo-
rithm 1 has no superlinear convergence in general, the approach presented in this
paper has some advantages. One is that it allows computationally cheap approximate
projections instead of exact ones. This might be helpful when dealing with more com-
plex convex sets Ω , in particular if Ω is described by nonlinear or even nonsmooth
functions. A second advantage lies in the fact that the unconstrained Levenberg-
Marquardt subproblems of Algorithm 1 are linear systems of equations, in contrast
to constrained Levenberg-Marquardt methods (see [2, 17]), where constrained con-
vex programs are used (even if the latter guarantee quadratic convergence). A more
hidden benefit of using unconstrained Levenberg-Marquardt subproblems instead of
constrained ones is that one can easily control the inexactness of their solution. This
is of importance to ensure a certain convergence rate of the whole method. For ex-
ample, if the linear system of equations of an unconstrained Levenberg-Marquardt
subproblem is solved iteratively, then the residual of the corresponding approximate
solution is π(s), and so the norm of this residual may be directly used to stop the
iterative solver, see [14]. In contrast to this, an appropriate stopping of an iterative
solver for constrained Levenberg-Marquardt subproblems seems more difficult.

In the next subsection we show that, in general, the results on the level of inex-
actness and on the convergence rate cannot be improved. Finally, the last subsection
provides numerical results for a test example.

4.1 Sharpness of results

The relation of the regularization parameter α(s) and the inexactness ‖π(s)‖ within
Levenberg-Marquardt subproblems and their influence on the convergence rate were
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investigated in [4, 9, 14] and in [2], where the most general results can be found.
In particular, if the regularization parameter α(s) in subproblem (4) is ‖H(s)‖, then
a level of inexactness of order O(‖H(s)‖2), i.e., ‖π(s)‖ ∼ ‖H(s)‖2, still maintains
the local quadratic convergence of unconstrained or constrained exact Levenberg-
Marquardt methods.

In Algorithm 1 we allow only a slightly lower level of inexactness, namely
‖π(s)‖ ∼ ‖H(s)‖2+η with some η > 0. Interestingly, the following example shows
that, for η = 0, the algorithm may fail to converge at all.

Example 4 Let H : R
2 → R and Ω ⊂ R

2 be given by

H(x1, x2) := x2 and Ω := {

x ∈ R
2 |x1 + x2 ≥ 0

}

.

Assumptions 1 and 2 are satisfied at any solution of problem (1). In particular, the
error bounds given by (12) and (13) hold since H is affine and Ω a polyhedron. For
some t ∈ (0,1] let us define

s := (−t, t)
 ∈ Ω and π(s) :=
( −t2

t + 1
,0

)

.

Obviously, we have ‖π(s)‖ ≤ t2 = ‖H(s)‖2. For the solution of the Levenberg-
Marquardt subproblem (4) we get

x(s) =
(

−t − t

t + 1
, t − t

t + 1

)

.

It is easy to verify that PΩ(x(s)) = (−t, t)
 = s, where PΩ is the orthogonal pro-
jector on Ω . Thus, the Algorithm 1 is trapped at s = (−t, t)
. No matter how close
a starting point is to the solution x∗ := (0,0)
, allowing an inexactness of order
O(‖H(s)‖2), may make Algorithm 1 generate a nonconvergent sequence.

In general, under Assumptions 1 and 2, the convergence rate of Algorithm 1 we
can expect even for exact projections is not better than linear. In order to see this, let
us again consider the problem in Example 4. For t ∈ (0,1] define s := (−t, t)
 and
π(s) := 0. Then, we obtain

x(s) =
(

−t, t − t

1 + t

)

and PΩ

(

x(s)
) =

(

−t + t

2 + 2t
, t − t

2 + 2t

)

.

Then,

dist[s,X] = √
2t and dist

[

PΩ

(

x(s)
)

,X
] = √

2t

(

1 − 1

2 + 2t

)

follow. Hence, in general, Algorithm 1 does not generate a superlinearly convergent
sequence.
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4.2 A test example

Although the focus of this paper is theoretical, we would like to illustrate how the
Levenberg-Marquardt algorithm with approximate projections works to provide a
feeling of its behavior.

Example 5 Let H : R
2 → R and Ω ⊂ R

2 be defined as

H(x) := x2 − x1

and

Ω := {

x ∈ R
2 |gi(x) ≤ 0, i = 1, . . . ,4

}

,

with functions gi : R
2 → R given by

g1(x) := −x1,

g2(x) := −x2,

g3(x) := x2
1 + x2

2 − 1

and

g4(x) :=
{ 2

2x1+1 − x2 − 3
2 if x1 ≥ 0,

−x2 + 1
2 if x1 < 0.

One can easily check that Ω is a convex set. Moreover, Ω can be rewritten as

Ω = {

x ∈ R
2 |g(x) ≤ 0

}

with

g(x) := max
{

g1(x), g2(x), g3(x), g4(x)
}

.

With H and Ω defined above, the solution set of problem (1) is

X =
{

(t, t)
 ∈ R
2 |

√
5 − 2

2
≤ t ≤ 1

2

√
2

}

.

Furthermore, it can be shown that Assumptions 1 and 2 are satisfied at any solution.
Algorithm 1 is run with the approximate projector given by (11) and starting point
x0 = (−1,1)
. The results are shown in Table 1.

If the constrained Levenberg-Marquardt method is used to find a solution of this
problem, the subproblems are optimization problems with a convex quadratic ob-
jective and the inequality constraints gi(x) ≤ 0 for i = 1, . . . ,4. Thus, solving the
subproblems might be computationally a harder task. One option for avoiding this
situation consists of introducing slack variables y1, . . . , y4 for the inequalities. More
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Table 1 Numerical results for
Example 5 k dist[xk,X] dist[xk,X]/dist[xk−1,X]

0 1.4240e+00 –

1 7.2654e−01 0.51020

2 1.5282e−01 0.21034

3 1.2117e−02 0.07929

4 3.4422e−03 0.28408

5 6.0794e−04 0.17661

6 1.0242e−04 0.16847

7 1.7102e−05 0.16698

precisely, problem (1) could be reformulated as follows

H̃ (x, y) :=

⎛

⎜
⎜
⎝

x2 − x1
g1(x) + y1

. . .

g4(x) + y4

⎞

⎟
⎟
⎠

= 0 s.t. (x, y) ∈ Ω̃ := R
2 × R

4+.

If, regardless of the nondifferentiability of g4, the constrained Levenberg-Marquardt
method is applied to this reformulation, the subproblems become quadratic optimiza-
tion problems with box constraints. However, the number of variables increases and,
with it, the cost of solving a subproblem.

Experiments with large scale examples are going to be part of our future research.
In this direction, one can consider a differentiable reformulation of Karush-Kuhn-
Tucker systems which arise from generalized Nash equilibrium problems as in [5].
In this context, that paper provides a sufficient condition for the pair of error bounds
(12) and (13) to hold. Moreover, a hybrid algorithm is described in [5] whose lo-
cal phase consists of a method with quadratic convergence behavior. Replacing the
latter method by Algorithm 1 would lead to local R-linear convergence only, but to
significantly less expensive subproblems.
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