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Abstract The quadratically convergent algorithms for training SVM with smooth-
ing methods are discussed in this paper. By smoothing the objective function of an
SVM formulation, Lee and Mangasarian [Comput. Optim. Appl. 20(1):5-22, 2001]
presented one such algorithm called SSVM and proved that the error bound between
the new smooth problem and the original one was O( 1

p
) for large positive smooth-

ing parameter p. We derive a new method by smoothing the optimality conditions of
the SVM formulation, and we prove that the error bound is O( 1

p2 ), which is better
than Lee and Mangasarian’s result. Based on SMW identity and updating Hessian
iteratively, some boosting skills are proposed to solve Newton equation with lower
computational complexity for reduced smooth SVM algorithms. Many experimental
results show that the proposed smoothing method has the same accuracy as SSVM,
whose error bound is also tightened to O( 1

p2 ) in this paper, and the proposed boosting
skills are efficient for solving large-scale problems by RSVM.

Keywords SSVM · Smoothing algorithm · Error bound · Reduced methods

1 Introduction

Based on the Vapnik and Chervonenkis’ structural risk minimization principle [28, 29],
Support Vector Machine (SVM) has emerged as a state-of-the-art tool for classifica-
tion and regression. SVM solves a convex quadratic programming problem, and its
solution is not only explicitly defined but also sparse. SVM has been widely used in
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many application areas [28, 29], such as character identification, disease diagnoses,
time series prediction, etc.

Given a training dataset {(xi, yi)}mi=1 ⊂ R
n ×{−1,1}, SVM is to solve the follow-

ing formulation (see [3, 13] etc.):

min
w∈H,b∈R

1

2
‖w‖2 + C

σ

m∑

i=1

(
max

{
0,1 − yi

(〈w,xi〉H + b
)})σ

, (1)

or the formulation with a regularization term 1
2b2 of bias b added to the objective

function [16, 17, 22, 23]:

min
w∈H,b∈R

1

2

(‖w‖2 + b2) + C

σ

m∑

i=1

(
max

{
0,1 − yi

(〈w,xi〉H + b
)})σ

, (2)

with σ = 1 or 2, tradeoff parameter C > 0 and xi := φ(xi) ∈ H for nonlinear clas-
sification problems, where φ(·) maps xi to a high dimensional, even infinite dimen-
sional, feature space. Owing to the reproduced kernel theory, H is a reproducing
kernel Hilbert space [13, 26] associated with a kernel function k : R

n × R
n → R sat-

isfying k(xi, xj ) = 〈φ(xi),φ(xj )〉H. The learning result w can be represented by a
linear combination of the kernel functions:

w =
m∑

i=1

βik(xi, ·), (3)

and it is not needed to use the high dimensional map φ(·) explicitly. By plugging (3)
into (1) or (2), the optimal coefficients β := [β1, β2, . . . , βm]T ∈ R

m and b can be
solved and the classification surface θ(x) := ∑

i βik(xi, x) + b = 0 is obtained.
Many studies have been done on the dual of problem (1) or (2) [1, 7, 14, 22,

23, 25, 30]. For example, the well-known methods, SMO [1, 14, 25] and SVMlight

[11, 12], are decomposition methods to solve the dual of problem (1). Successive
over-relaxation (SOR) [22] and Lagrangian Support Vector Machine (LSVM) algo-
rithms [23] are simple iterative algorithms induced by the KKT conditions of the
dual of problem (2), etc. These algorithms do work efficiently in experiments, al-
though their convergence rate is low theoretically (at most linear convergence rate
[18, 19, 22, 23]).

Lee and Mangasarian [17] proposed a quadratic training algorithm called SSVM
(Smooth SVM) for linear problem, in which the objective function of problem (2)
with σ = 2 is smoothed by the exponential penalty function (Eq. (6) following), and
its nonlinear version is based on the Generalized Support Vector Machine [21] listed
as the following Eq. (5). However, SSVM cannot be used to solve large-scale nonlin-
ear classification problems because its computational complexity for solving Newton
equation is about O(m3) per iteration (SMW identity (Eq. (21)) can greatly reduce
the computing cost of the linear classification problem).

In [6], the kernel matrix K is precalculated and decomposed as K ≈ UUT where
U ∈ R

m×m̃ is a full column rank matrix, and a semi-smooth SVM with quadratic con-
vergence rate is proposed. Further, another semi-smooth Newton SVM is proposed
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with many better experimental results reported in [31]. These algorithms can reach
O(mm̃2) computational cost, and will be a good choice if m̃ 	 m. However, these al-
gorithms require the whole kernel matrix to fit in memory, hence they are not efficient
for large-scale problems.

Some low-rank methods without the whole kernel matrix precalculated have been
studied. In RSVM [16], a reduced set W is selected randomly from the index set
{1,2, . . . ,m} with m := |W | ≤ 0.1m and (3) is replaced by a compact representation

w =
∑

i∈W

βik(xi, ·). (4)

Although the reduced set W is a randomly selected small portion of the whole set,
many experiments in [16] show that RSVM works extremely well and the accuracy is
quite insensitive to the choice of W . Its computational complexity is about O(mm2)

per iteration without the whole kernel matrix precalculated. Lin and Lin [20] discuss
many kinds of implementations of RSVM in detail and conclude that the reduced
methods are an appealing alternate for large-scale problems with a little lower accu-
racy. Lee and Huang [15] study the RSVM by Nyström approximation theoretically
and provide a good understanding of the reduced kernel techniques.

In [13], another low-rank method is proposed to reduce the training complexity in
a primal algorithm called PSVM (primal SVM), where the subset W in (4) is well-
chosen iteratively to represent w as (4), and the resulting optimization problem is
solved by the Newton method. Its computational complexity is at most O(md2

max) per
iteration, where dmax is a specified maximum size of subset W . Compared to RSVM,
PSVM may not be a better choice for common users because it needs a complicated
sub-procedure to maintain W and the corresponding Hessian matrix iteratively.

There are also some efficient SVM solvers proposed in primal space recently.
Fletcher and Zanghirati [8] proposed a new model for SVM problem in primal with-
out introducing the penalization parameter C, and gave a new efficient SQP-like al-
gorithm. They observed that the algorithm terminated within a finite number of it-
erations, but had not proven that. LapSVM [24] is a kind of learning algorithm for
semi-supervised classification, and Pegasos [27] is designed for large datasets by
stochastic sub-gradient descent methods.

In this paper, we focus on quadratic convergence algorithms for training SVM in
primal space with the smoothing method, and the RSVM scheme is considered to
reduce the complexity for large-scale problems. We generalize the results in [16, 17]
to derive a new smoothing technique and prove that the error bound between the new
smooth problem and the original one is O( 1

p2 ), which is stronger than that of SSVM

in [17], where the error bound given is O( 1
p
). We also tighten the error bound of

SSVM to O( 1
p2 ) in this paper. Some efficient reduced techniques, such as updating

the Hessian matrix iteratively and solving Newton equation by SMW identity, are
discussed in the paper to accelerate the algorithms for large-scale problems.

The rest of the paper is organized as follows. Lee and Mangasarian’s SSVM is
restated in Sect. 2. We derive a new smoothing algorithm called NSSVM and obtain
its error bound and convergence rate in Sect. 3. We further summarize the different
kernel versions for these smoothing algorithms in Sect. 4, discuss some boosting
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techniques to reduce its computational complexity in Sect. 5, and tighten the error
bound of SSVM in Sect. 6. Experimental results are presented in Sect. 7 to illustrate
that the proposed algorithm is comparable to SSVM on generalization errors and
training times. Section 8 concludes this paper.

2 SSVM Algorithm

In this section, we restate the Smooth Support Vector Machine (SSVM) proposed by
Lee and Mangasarian in [17] and focus on the nonlinear classification problem. The
corresponding problem can be rewritten as follows

min
z

f (z) := 1

2
zT z + C

2

m∑

i=1

max{ri,0}2, (5)

where z := [βT , b]T , ri := 1 − Hiz with Hi := yi[Ki 1] ∈ R
m+1 for nonlin-

ear classification (Ki is the ith row of the kernel matrix K and Hi is the ith
row of matrix H ). With the solution of (5), the classification surface is θ(x) :=
[k(x1, x), k(x2, x), . . . , k(xm, x) 1]z∗ = 0.

In [17], the exponential penalty function ψp(t) := t + 1
p

log(1 + exp(−pt)),
p > 0, is applied to smooth the second part of the objective function in (5). Here
the following new equivalent form of ψp(t) is applied

ψp(t) := max{t,0} + 1

p
log

(
1 + exp

(−p|t |)), (6)

and then

ψ ′
p(t) = min{1, exp(pt)}

1 + exp(−p|t |) , ψ ′′
p(t) = p exp(−p|t |)

(1 + exp(−p|t |))2
. (7)

Notice that log(1 + exp(a)) may get an incorrect value if exp(a) is overflowing for
a large positive number a such as a > 1000. Our new equivalent form in (6) and its
derivatives in (7) can avoid such potential overflowing.

Let r := (r1, r2, . . . , rm)T ∈ R
m and ψp(r) := (ψp(r1),ψp(r2), . . . ,ψp(rm))T .

Then the smooth problem of (5) is

min
z

fp(z) := 1

2
zT z + C

2

(
ψp(r)

)T
ψp(r). (8)

SSVM using Newton algorithm to solve (8) can converge quadratically, where the
Newton equation ∇2fp(z)d = −∇fp(z) is solved per iteration with

∇2fp(z) = I + CHT Λp(z)H ∈ R(m+1)×(m+1), (9)

Λp(z) := diag
((

ψ ′
p(r1)

)2 + ψp(r1)ψ
′′
p(r1), . . . ,

(
ψ ′

p(rm)
)2 + ψp(rm)ψ ′′

p(rm)
)
.

(10)
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Its computational cost per iteration is O(m3). In Sect. 5, we illustrate that the cost can
be reduced by the SMW identity [9]. The following lemma is presented to evaluate
the approximate error bound:

Lemma 1 (Theorem 2.2 in [17]) If z̄ be the unique minimizer of the smooth function
fp(z) in (8) and z∗ be the unique minimizer the original function f (z) in (5), then
we have:

∥∥z̄ − z∗∥∥2
2 ≤ Cm log2 2

2p2
+ Cmη log 2

p
, f (z̄)−f

(
z∗) ≤ Cm log2 2

2p2
+ Cmη log 2

p
.

where η = max1≤i≤m{|1 − Hiz
∗|}.

Lemma 1 shows that the error bound between the smooth problem (8) and the
original problem (5) is O( 1

p
). In Sect. 3, we will propose a new smoothing method

with a tighter error bound O( 1
p2 ), and will enhance the error bound of SSVM to

O( 1
p2 ) in Sect. 6.

3 New proposed smoothing method and its properties

Let r+ be a vector whose ith element is max{ri,0}. The necessary and sufficient
optimality conditions of problem (5) are

∇f (z) := z − CHT r+ = 0. (11)

Newton method cannot be used to solve these piecewise linear equations directly
because ∇f (z) is non-differentiable at some points. Different from SSVM, which
smooths the objective function of problem (5), we smooth the piecewise linear equa-
tions (11) with (6), and the resulted problem is to solve the following system of
nonlinear equations:

Gp(z) := z − CHT ψp(r) = 0. (12)

It can be solved by any Newton-type method. Next we will investigate the error bound
and convergence rate of our new smoothing method.

3.1 Error bound of the new smoothing method

In order to analyze the error bound between the solution of the smooth problem and
the original one, we introduce the following minimization problem (13), whose first-
order necessary and sufficient optimality conditions are just our smooth nonlinear
equations (12).

min
z

hp(z) := 1

2
zT z + C

m∑

k=1

ϕp(rk), (13)
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where

ϕp(t) :=
∫ t

−∞
ψp(u)du, (14)

with ψp(u) defined by (6). Comparing f (z) in (5) and hp(z) in (13), it can be ob-
served that the item 1

2 max{0, rk}2 is approximated by ϕp(rk) for k = 1,2, . . . ,m. The
difference between them is analyzed in the following lemma.

Lemma 2 For ϕp(t) as defined in (14), we have

0 ≤ ϕp(t) − 1

2
max{0, t}2 ≤ π2

6p2
. (15)

Proof First we have ϕp(t) is a monotonically increasing function because of
ψp(u) ≥ 0, and

ϕp(0) = 1

p

∫ 0

−∞
log

(
1 + exp(pu)

)
du = π2

12p2
.

If t < 0, we have

0 ≤ ϕp(t) = ϕp(t) − 1

2
max{0, t}2 ≤ ϕp(0) = π2

12p2
≤ π2

6p2
.

If t ≥ 0, then ψp(t) = t + 1
p

log(1 + exp(−pt)), and we have

ϕp(t) = ϕp(0) + ϕp(t) − ϕp(0) = π2

12p2
+

∫ t

0

(
u + 1

p
log

(
1 + exp(−pu)

))
du

= π2

12p2
+ 1

2
t2 + 1

p

∫ t

0
log

(
1 + exp(−pu)

)
du

≤ π2

12p2
+ 1

2
t2 + 1

p

∫ +∞

0
log

(
1 + exp(−pu)

)
du = π2

6p2
+ 1

2
t2.

Thus (15) holds for any p and t . �

Then we analyze the difference between hp(z) (13) and f (z) (5) in Lemma 3.

Lemma 3 The difference between the smooth problem hp(z) and the original prob-
lem f (z) is bounded by the following inequalities:

0 ≤ hp(z) − f (z) ≤ Cmπ2

6p2
.

Let z∗ be the unique solution of the original problem and ẑ be the unique solution
of the smooth problem. Using Lemma 3, we explore the error bound between z∗ and
ẑ together with the error bound between f (z∗) and f (ẑ) in Theorem 1.
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Theorem 1 If z∗ is the unique solution of problem (5) or (11), and ẑ is the unique
solution of problem (12) or (13), then the following inequalities hold:

∥∥ẑ − z∗∥∥2
2 ≤ Cmπ2

6p2
and f (ẑ) − f

(
z∗) ≤ Cmπ2

6p2
.

Proof Because the eigenvalues of the Hessian matrix of hp(z) and the eigenvalues
of any Clarke generalized Jacobian [4] of ∇f (z) are all larger than 1 and ∇f (z∗) =
∇hp(ẑ) = 0, we have

f (ẑ) − f
(
z∗) ≥ ∇f

(
z∗)T (

ẑ − z∗) + 1

2

∥∥ẑ − z∗∥∥2
2 = 1

2

∥∥ẑ − z∗∥∥2
2,

hp

(
z∗) − hp(ẑ) ≥ ∇hp(ẑ)T

(
z∗ − ẑ

) + 1

2

∥∥ẑ − z∗∥∥2
2 = 1

2

∥∥ẑ − z∗∥∥2
2.

Thus

∥∥ẑ − z∗∥∥2
2 ≤ hp

(
z∗) − f

(
z∗) − (

hp(ẑ) − f (ẑ)
) ≤ hp

(
z∗) − f

(
z∗) ≤ Cmπ2

6p2
.

The second and the last inequalities follow form Lemma 3. Similarly, we have

f (ẑ) − f
(
z∗) ≤ hp

(
z∗) − f

(
z∗) − (

hp

(
z∗) − hp(ẑ)

) ≤ hp

(
z∗) − f

(
z∗) ≤ Cmπ2

6p2
.

�

According to Theorem 1, the error bound of our smoothing method is O( 1
p2 ),

while the corresponding results of SSVM in [17] are O( 1
p
) as listed in Lemma 1. So

the error bound of our new method is better than those of SSVM.

3.2 New smoothing algorithm and its convergence rate

Computing the Jacobian matrix of the nonlinear equations (12), we have

∇Gp(z) = I + CHT Λ̂p(z)H, (16)

where

Λ̂p(z) := diag
(
ψ ′

p(r1),ψ
′
p(r2), . . . ,ψ

′
p(rm)

)
. (17)

Comparing Λp(z) in (10) and Λ̂p(z) in (17), it can be observed that ∇Gp(z)

in (16) is simpler than ∇2fp(z) as defined in (9) for SSVM. The new smooth problem
can be solved by the Newton-type algorithm as follows:
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Algorithm 1 New Smoothing SVM Algorithm (NSSVM)

Step 0. Input data H and parameters p, C; give an initial point z0; select ε > 0 and
σ ∈ (0,0.5). Set k := 0.

Step 1. Calculate gk = Gp(zk). If ‖gk‖ < ε, stops; otherwise go to Step 2;
Step 2. Calculate dk by solving the Newton system ∇Gp(zk)d = −gk ;
Step 3. (Armijo line search) Choose λk = max{1,2−1,2−2, . . .} such that

hp

(
zk + λkd

k
) ≤ hp

(
zk

) + σλkg
kT

dk;

Step 4. Let zk+1 := zk + λkd
k and k := k + 1. Go to Step 1.

The following lemma is necessary to prove the convergence rate of the Algo-
rithm 1.

Lemma 4 For ∇Gp(z) defined in (16), we have:

(1) dT ∇Gp(z)d ≥ ‖d‖2
2 for all d and z;

(2) ‖∇Gp(z1) − ∇Gp(z2)‖2 ≤ κ‖z1 − z2‖2 for all z1, z2 and some κ > 0.

Proof (1) It is clear because all the eigenvalues of ∇Gp(z) are larger than 1.
(2) According to (16), we have

∥∥∇Gp

(
z1) − ∇Gp

(
z2)∥∥

2

= C
∥∥HT

(
Λ̂p

(
z1) − Λ̂p

(
z2))H

∥∥
2 ≤ C‖H‖2

2

∥∥Λ̂p

(
z1) − Λ̂p

(
z2)∥∥

2

= C‖H‖2
2 max

i

{∣∣ψ ′′
p(ηi)Hi

(
z1 − z2)∣∣} ≤ C‖H‖2

2p
∥∥H

(
z1 − z2)∥∥

2

≤ Cp‖H‖3
2

∥∥z1 − z2
∥∥

2 = κ
∥∥z1 − z2

∥∥
2,

where ηi is obtained by Lagrange mean value theorem and the second inequality is
implied by ψ ′′

p(t) ≤ p for any t in (7), and κ := Cp‖H‖3
2. �

With the help of Lemma 4, the convergence rate of the new smoothing algorithm
can be obtained as in the following Theorem 2. The proof of Theorem 3.2 in [17] can
be used to prove Theorem 2 and is thus omitted here.

Theorem 2 Let {zk} be a sequence generated by Algorithm 1, and ẑ be the unique
solution of problem (12). Then {zk} converges to the unique solution ẑ quadratically.

Remark 1 In NSSVM, the objective function hp(z) is complicated to compute be-
cause it contains an integral function ϕp(t) (14), which affects the efficiency of the
algorithm in Armijo line-search procedure (Step 3). Since the error between hp(z)

and f (z) is O( 1
p2 ) for a large p, we can use f (z) in place of hp(z) in Armijo line

search procedure. Experimental results show that it is a good choice.
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4 Kernel versions extension

There are three versions to solve nonlinear classification problem, while the mapping
vector xi ∈ H is defined implicitly by the kernel function as 〈xi ,xj 〉H = k(xi, xj ). We
summarize them here.

(i) According to GSVM [21], as mentioned above, problem (5) and its necessary
and sufficient optimality conditions (11) are considered. If the optimal solution
is z∗, then the resulting classification surface is θ(x) := [k(x1, x), k(x2, x), . . . ,

k(xm, x) 1]z∗ = 0.
(ii) Stemming from the dual problem of (2) with σ = 2, we have

min
0≤α∈Rm

1

2
αT

[
D

(
K + eeT

)
D + 1

C
I

]
α − eT α, (18)

where D = diag(y) and e = [1,1, . . . ,1]T . Decomposing the kernel matrix as
K = UUT exactly or approximately, Zhou et al. [31] prove that the problem (18)
is equivalent to solving the following unconstrained problem

min
z∈Rm+1

1

2
zT z + C

2
rT r+, (19)

with r = e − D[U e]z. If the optimal solution to (19) is z∗, then the solu-
tion to (18) is α∗ = C(e − Hz∗)+, and the classification surface is θ(x) :=∑

α∗
i >0 yiα

∗
i (k(xi, x) + 1) = 0.

(iii) Plugging (3) into (2) with σ = 2 and noting z = [βT b]T , r = e − D[K e]z, we
have

min
z∈Rm+1

1

2
zT

[
K 0
0 1

]
z + C

2
rT r+, (20)

The resulted classification surface is θ(x) := [k(x1, x), . . . , k(xm, x),1]z∗ = 0.

In all above three approaches, their optimal conditions of the corresponding pro-
gramming problems are piecewise linear equations that can be smoothed by our new
method, and our results O( 1

p2 ) on error bound between the approximate solution and
the exact optimal solution are achieved. The boost schemes mentioned in Sect. 5 also
work for them.

In Sect. 7, we implement the smoothing algorithms based on case (i).

5 Boosting techniques

In this section, we investigate some techniques to boost the performance of these
smoothing algorithms. To this end, the SMW identity is adopted to solve Newton
equation, and/or some schemes are studied to update the Hessian matrix with low
computational complexity.
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5.1 Solving Newton equation by SMW identity

If D is a diagonal matrix with smaller size, the following SMW identity [9] can be
used to calculate (I + HT DH)−1 with less computational complexity:

(
I + HT DH

)−1 = I − HT
(
D−1 + HHT

)−1
H. (21)

As soon as Λp(zk) in (9) or Λ̂p(zk) in (17) has a sparse diagonal, the cost to obtain
the corresponding Newton direction based on (21) is much less than O(m3).

Take NSSVM as an example. For a large smoothing parameter p, (Λ̂p(zk))i,i =
ψ ′

p(rk
i ) = min{1,exp(prk

i )}
1+exp(−p|rk

i |) in (17) is numerically zero or very tiny if rk
i = 1 −Hiz

k < 0,

and (Λ̂p(zk))i,i is significantly positive if rk
i ≥ 0, which corresponds to a bounded

support vector xi for the current solution zk . That is to say, the diagonal elements of
Λ̂p(zk) are commonly as sparse as the solutions of SVM (the Lagrange multipliers
corresponding to input samples xi ). Let J k = {i | (Λ̂p(zk))ii ≥ τ, i = 1,2, . . . ,m}
with an extremely tiny positive τ . Then ∇Gp(zk) can be approximately calculated as
follows:

∇Gp

(
zk

) ≈ I + CHT
Jk Λ̂J k,J kHJk . (22)

where HJk is a sub-matrix comprised by the rows of H in the index set J k and Λ̂J k,J k

is a sub-matrix of Λ̂p(zk) corresponding to the rows and columns in J k . Experimental
results show that if τ = 10−10 or less, approximation errors can be neglected.

Based on SMW identity (21) and ∇Gp(zk) in (22), Newton direction dk of
NSSVM is obtained as follows:

dk = −gk + HT
Jk

(
1

C
Λ̂−1

J k,J k + HJkH
T
Jk

)−1

HJkg
k. (23)

Let m̃k := |J k|, which approximate equals the number of support vectors. The com-
putational complexity of the algorithm can be reduced from O(m3) to O(mm̃2

k) per
iteration. Experiments show that m̃k is much smaller than m after several iterations.

The analysis for SSVM is similar as above.

5.2 Updating the reduced Hessian with boosting skills

In order to solve large-scale problems, the reduced techniques have been proposed
to accelerate SVM training algorithms. In RSVM [16], a reduced set W in (4) is
selected randomly from the index set {1,2, . . . ,m} satisfying m := |W | ≤ 0.1m. If let
K ∈ R

m×m(m = |W |) be a sub-matrix comprised by the columns of the full kernel
matrix K corresponding to the reduced set W , then the formulation of RSVM in [15,
16, 20] is

min
z∈Rm+1

1

2
zT z + C

2
rT r+, (24)



New smoothing SVM algorithm with tight error bound 609

which is very similar to (5). The differences between them are on the dimensions of
z and

ri := 1 − Hiz with Hi := yi[Ki 1], i = 1,2, . . . ,m. (25)

RSVM smooths the objective function of (24) by the exponential penalty function (6),
while our new algorithm smooths the necessary and sufficient optimality conditions
of (24). All algorithms solve Newton equation

Bkdk = −gk

to obtain direction dk , where Bk := I + CH
T
Λ

k
H ∈ R

(m+1)×(m+1) with a diagonal

matrix Λ
k ∈ Rm×m defined correspondingly as Λp(zk) in (10) for RSVM and Λ̂p(zk)

in (17) for the new algorithm, in which r and H are defined by (25).
There are three methods to further boost the performance of the algorithms:

Scheme I: Based on the sparsity of the diagonal elements of Λ
k
, we have

Bk := I + CH
T

JkΛ
k

J k,J kHJk . (26)

where J k := {i|Λk

i,i ≥ τ, i = 1, . . . ,m} with a tiny positive τ . Let m̃k := |J k|. The
total computational complexity per iteration is O(m̃km

2+m3)=O(max{m̃k,m}m2)

where O(m̃km
2) is for computing Bk and O(m3) is for solving Newton equation.

Scheme II: Bk in (26) can be updated iteratively as in [31]:

Bk = Bk−1 + CH
T
Υ kH = Bk−1 + CH

T

Jk
0
Υ k

Jk
0 ,J k

0
HJk

0
, (27)

where Υ k = Λ
k − Λ

k−1
and J k

0 = {i|Υ k
i,i �= 0, i = 1, . . . ,m}. Let m̂k := |J k

0 |. The

total computational complexity is reduced to O(m̂km
2 +m3) = O(max{m̂k,m}m2)

per iteration.
Scheme III: If SMW identity (21) is applied to solve the reduced Newton equation,

we have

dk = −gk + H
T

Jk

(
1

C

(
Λk

Jk,J k

)−1 + HJkH
T

Jk

)−1

HJkg
k. (28)

The total complexity per iteration is reduced to O(mm̃2
k +m̃3

k)=O(max{m̃k,m}m̃2
k).

Experimental results in Sect. 7 show that m̂k ≤ m̃k holds apparent after several
iterations and m̂k has a tendency to 0 while m̃k has a tendency to the number of the
support vectors. This is to say that Scheme II is better than Scheme I.

In our implements, we compound these cases to get a better one:

Optimal Scheme: If m̃k > m, Scheme II is chosen with the complexity O(m̂km
2);

Otherwise, Scheme III is chosen with the complexity O(mm̃2
k).

Its computational complexity is often less than O(mm2) given by [20] for RSVM,
and is also less than O(md2

max) given in [13] for PSVM because m̂k and m̃k are often
much smaller than m.



610 S. Zhou et al.

6 Tighter error bound for SSVM

Given the same smoothing parameter p, experimental results show that the accuracies
of our new method are always very similar to those of SSVM. This is not consistent
with the theoretical analysis that the error bound of SSVM is O( 1

p
) in [17], while the

error bound of our new method is O( 1
p2 ). In the following we present a new proof to

tighten the error bound of SSVM.
The difference between ψ2

p(t) and max{t,0}2 is analyzed in Lemma 5.

Lemma 5 If ψp(t) be defined in (6), then the following inequalities holds:

0 ≤ ψ2
p(t) − max{t,0}2 ≤ 1

p2
. (29)

Proof The left inequality is obvious and the right inequality is proven as follows.
If t ≤ 0,

ψ2
p(t) − max{t,0}2 = ψ2

p(t) = 1

p2
log2(1 + exp

(−p|t |)) ≤ log2 2

p2
≤ 1

p2
.

If t > 0,

ψ2
p(t) − max{t,0}2 = 1

p2
log2(1 + exp(−pt)

) + 2

p
t log

(
1 + exp(−pt)

)

≤ 1

p2
exp(−2pt) + 2

p
t exp(−pt) ≤ 1

p2
.

The first inequality holds because log(1 + a) ≤ a for a ≥ 0, and the last inequality
holds because φ(t) := 1

p2 exp(−2pt) + 2
p
t exp(−pt) is a monotonically decreasing

function for t ≥ 0 (since φ′(t) = 2
p

exp(−pt)(1 − pt − exp(−pt)) ≤ 0). �

A tighter error bound for SSVM can be proven using the same method as Theo-
rem 1.

Theorem 3 If z∗ be the unique solution of problem (5) or (11), and z̄ be the unique
solution of problem (8), then the following inequalities hold:

∥∥z̄ − z∗∥∥2
2 ≤ Cm

2p2
and f (z̄) − f (z∗) ≤ Cm

2p2
.

By Theorem 3, the error bound of SSVM is also O( 1
p2 ).

7 Experimental results

In this section, we perform some experiments to compare the new algorithm
(NSSVM) with SSVM [17] as well as PSVM [13] and also to show the performance
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of the proposed boosting techniques, and the reported results in [27] are also cited
here for comparison. All the experiments are run on a Personal Computer with a Intel
Core i3 2100 CPU and a maximum of 4 Gbytes of memory available for all processes.
The computer runs Windows 7 with Matlab 7.10. Some Matlab codes of our algo-
rithms are available on the webpage http://web.xidian.edu.cn/sszhou/en/paper.html

7.1 Compare NSSVM and SSVM on checkerboard dataset

This set of experiments is on a non-linearly separable example called “tried and true”
checkerboard dataset, first given in [10], which is widely used to show the effec-
tiveness of nonlinear kernel methods [16, 17, 22, 23, 31]. The data is generated
by uniformly discretizing the regions [0,199] × [0,199] to 2002 = 40,000 points,
and labeling two classes spaced by 4 × 4 grids (See [16, 17, 22, 23, 31] for the
plots of the dataset). The training set is randomly sampled from the 40,000 data
points with different training sizes, and the remainders of the points are left as the
testing set. The chosen kernel function is the Gaussian kernel function K(xi, xj ) =
exp(−0.001‖xi − xj‖2). We set ε = 10−4 to stop the algorithms and τ = 10−10 to
prune the diagonal elements of Hessian matrices, and let C = 104, p = 108.

Some plots are given in Fig. 1 to show the average changing per iteration of m̃k =
|J k| in (26) and m̂k = |J k

0 | in (27). We take the new algorithm as an example, and
the results obtained by SSVM are similar. In Fig. 1(a), the plots are obtained on an
8,000 training dataset with the reduced size m = 800, and the results are the average
values of the first 55 iterations on 20 random trials. In Fig. 1(b), the plots are obtained
on a 15,000 training dataset with the reduced size m = 1000, and the results are the
average values of the first 65 iterations on 20 random trials. Semi-log plots with
logarithmic (base 10) scale for the Y-axis are used.

Fig. 1 Average tendency of m̃k and m̂k per iteration on 20 random trials. Logarithmic (base 10) scale for
the Y-axis is used. The figures show that our optimal scheme is efficient: The computational complexity is
O(m̂km2) for the first 5 (or 6) iterations (over the reduced size level) and is O(mm̃2

k
) for the rest, which

is much less than O(mm2) for RSVM in [16, 20] and O(md2
max) for PSVM in [13]

http://web.xidian.edu.cn/sszhou/en/paper.html
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Table 1 Experimental results with the proposed techniques on some medium sized training datasets. All
the data are obtained on an average over 20 random trials and the standard deviations are also given in
brackets for columns 3–6; ‖∇f ‖ (∇f is defined in (11)) is to check the quality of these approximate
solutions in term of exact solutions in the 7th column, and the quality of the solutions achieved by the two
algorithms is compared in the 8th column, where ẑ is computed by NSSVM and z̄ is computed by SSVM
with Optimal Scheme. “SS” and “NS”are “SSVM” and “NSSVM” for shorts respectively

Data size Alg. Test accuracy (%) Iteration Training time (s) ‖∇f ‖ f (ẑ) − f (z̄)

Opt. scheme Sheme I

8,000 SS 99.89 (0.05) 60.00 (6.51) 7.96 (0.50) 13.69 (0.95) 2.24e-7 7.31e-11

NS 99.89 (0.05) 62.20 (6.65) 8.34 (0.44) 14.07 (1.07) 1.55e-7

10,000 SS 99.92 (0.03) 69.70 (10.1) 14.40 (1.22) 25.97 (2.95) 3.23e-7 7.28e-12

NS 99.92 (0.03) 69.65 (5.30) 14.76 (0.88) 25.64 (1.61) 1.91e-7

12,000 SS 99.94 (0.02) 74.20 (8.76) 17.48 (1.17) 29.82 (2.47) 2.11e-7 2.73e-10

NS 99.94 (0.02) 74.90 (8.32) 17.86 (1.25) 29.90 (2.31) 3.09e-7

15,000 SS 99.96 (0.02) 76.90 (12.7) 22.41 (2.29) 34.93 (4.08) 2.53e-7 −1.06e-10

NS 99.96 (0.02) 77.40 (9.96) 22.19 (1.86) 35.07 (3.45) 2.74e-7

18,000 SS 99.97 (0.02) 80.05 (7.74) 26.92 (1.67) 40.57 (3.14) 1.21e-7 −3.76e-10

NS 99.97 (0.02) 79.60 (9.59) 26.32 (1.93) 40.14 (3.64) 3.35e-7

From Fig. 1, it can be observed that m̂k is often smaller than m̃k . Both m̂k and
m̃k have a tendency to quickly converge to a small number. m̃k has a tendency to
converge to the number of support vectors (near 70) while m̂k has a tendency to con-
verge to a very small number less than 10 in the iterative process. They are both much
smaller than the reduced size m after 6 iterations. It can be concluded that the boost-
ing skills dramatically reduce the complexity of the algorithms: The computational
complexity is O(m̂km

2) for the first 5 (or 6) iterations (over the reduced size level)
and is O(mm̃2

k) for the rest (below the reduced size level), which is less than O(mm2)

for RSVM in [16, 20] and O(md2
max) for PSVM in [13].

More training sets are randomly sampled from the checkerboard dataset with
different training sizes for further experiments, where algorithms with the reduced
method and the boosting techniques in Sect. 5 are compared. Table 1 lists the exper-
imental results. The reduced set, with the size m = 0.1m but limited by the lower
bound 100 and the upper bound 1,000, is randomly selected from the training set.
All the data in Table 1 are obtained on an average over 20 random experiments, and
the standard deviations are also given in brackets for some columns. In the 5th and
6th columns, the mean training time of the proposed Optimal Scheme in Sect. 5.2 is
compared with the mean training time of RSVM [16, 20] only with the sparsity con-
sidered as (26), which corresponds to Scheme I in Sect. 5.2. In the 7th column, we
list the average value of ‖∇f ‖ (∇f is defined in (11)) to check the quality of those
approximate solutions in term of the exact solutions of the original problem. In the
8th column, we list the average value of f (ẑ) − f (z̄) to compare the quality of the
solutions achieved by the two algorithms, where ẑ is obtained by the new smoothing
algorithm and z̄ is obtained by SSVM.
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The results in Table 1 show that the new algorithm works as well as SSVM [17].
The two algorithms can get the same training accuracies (not listed) and testing ac-
curacies with a little difference in the training time and the number of iterations.
It is coherent with our theoretical analysis that the two algorithms have similar er-
ror bound. At the same time, according to the 5th and 6th columns, our optimal
scheme saves nearly 1/3 of the training time. In the 7th column, it is clear that
the obtained solutions are good approximate solutions of original problems, since
the mean values of ‖∇f ‖ are all much smaller than our stop criterion ε = 10−4

and all ∇f meet the optimality conditions of original problems with tiny errors.
The average values of f (ẑ) − f (z̄) in the last column show that the difference
of the two algorithms is also very tiny and clearly they both satisfy inequality

− Cm

2p2 ≤ f (ẑ)−f (z̄) = f (ẑ)−f (z∗)− (f (z̄)−f (z∗)) ≤ Cmπ2

6p2 , which is implied by
our theorems on error bound.

7.2 Compare SSVM, NSSVM and PSVM on some large benchmark datasets

This set of experiments is to evaluate the performance of the SSVM, our new
NSSVM, as well as the PSVM in [13]. And the reported results in [27] are also cited
here to compare with our algorithm. The Matlab codes for PSVM are gotten from the
site [2], which are designed for paper [13]. Our codes for SSVM and NSSVM are
available on the webpage http://web.xidian.edu.cn/sszhou/en/paper.html.

All algorithms are compared on the training time and the classification accuracies
with reduced method, and the iterations of SSVM and our NSSVM are also given
(we do not listed the iterations of PSVM since it is not easy to count).

The reduced sets for SSVM and NSSVM is random chosen while the reduced set
for PSVM is iteratively updated by some complicate skills (see [13] for details). If we
use the same reduced set size, PSVM is much slower than SSVM and NSSVM, but
most of time has a little bit higher classification accuracies than SSVM and NSSVM
have. So in Table 2, we half the reduced set size of PSVM so that the classification
accuracies of three algorithms are comparable.

Eight large benchmark datasets from the site of [5] are adopted. Some of them are
also appeared in [13] and [27]. For simplicity, Gaussian kernel function k(x, y) =
exp(−γ ‖x − y‖2) with different spread parameters γ is used for all datasets. The
kernel spread parameters γ and the tradeoff parameters C are roughly chosen by
10-fold cross-validation. The details of the data sets and the corresponding selected
parameters are listed as follows:

– USPS3 and USPS8—USPS is a multi-class data set with 10 classes including
7,291 training samples and 2,007 test samples. Each sample has 256 features. Here
USPS3 is used for the task of classifying the digit 3 versus the rest of the classes
and USPS8 is used for the task of classifying the digit 8 versus the rest of the
classes. The parameters are C = 40 and γ = 0.02.

– Adult—It is the version given by Platt which has 32,561 training examples and
16,281 test examples. Each example has 123 binary features, and the parameters
are C = 1 and γ = 0.05.

– Shuttle—It is a multi-class data set with seven classes including 43,500 training
examples and 14,500 test examples. Each example has 9 features. Here a binary

http://web.xidian.edu.cn/sszhou/en/paper.html
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classification problem is solved to separate class 1 from the rest, and the parameters
used are C = 10,000 and γ = 2.

– IJCNN—It has 49,990 training examples and 91,701 test examples. Each example
is described by 22 features, and the parameters used are C = 1,000 and γ = 0.5.

– MNIST3 and MNIST8—MNIST is a multi-class data set to classify the handwrit-
ten digits 0 to 9. It has 60,000 training examples and 10,000 test examples. Each
example is described by 28 × 28 features. Here MNIST3 is the task of classifying
digit 3 versus the rest of the classes and MNIST8 is the task of classifying digit 8
versus the other classes. The parameters used are C = 40 and γ = 0.02.

– Vechile—It is the combined SensIT Vechile in [5]. It has 78,823 training examples
and 19,705 test examples in three classes. Each example has 100 features. Here
the task of classifying class 3 from the rest is trained, and the parameters are set as
C = 1,000 and γ = 0.25.

The experimental results are listed in Table 2, where the means of abbreviations in
the first column are explained in the table caption. All the results are obtained on an
average over 20 random trials and the standard deviations are given in brackets, and
the best values are in bold.

The results in Table 2 again show that the new algorithm works as well as
SSVM [17]. The two algorithms can get the same testing accuracies with a little
difference in the training time and the number of iterations, which are coherent with
our theoretical analysis that the two algorithms have similar error bound. All the de-
viations (in brackets) are very small, so the mean values are confident.

The results in Table 2 also show that the smooth algorithms with the proposed
boosting skills can achieve test accuracies comparable to PSVM, but save the training
time about 2 to 10 times. Notice that the complicate codes of PSVM are more than
200 lines in Maltab while our SSVM and NSSVM are all less than 40 lines: the new
smooth algorithms are more suited for the common SVM users than PSVM.

Furthermore, as reported in the footnotes of Table 2, by comparing our results
against those obtained in [27] (with a more powerful computer), we can conclude
that the smooth algorithms with our boosting skills are faster than some popular SVM
solvers with the comparable test accuracies.

By the way, in this set of experiments, we found that Scheme II in Sect. 5.2 is the
most useful skill to boost the algorithms. On the last 6 large training datasets with the
smaller reduced set size, our Optimal Scheme is equivalent to Scheme II since m̃k is
larger than the reduced set size m.

8 Conclusion

The quadratic convergence rate algorithms for training SVM with smooth method are
studied in this paper. In the primal space, SVM can be modeled as an unconstrained
problem with a piecewise quadratic objective function, whose optimality condition
is a system of piecewise linear equations. We derive a new smoothing, quadratically
convergent algorithm by smoothing the piecewise linear equations. The smoothing
method is different from SSVM [17], where the objective function is smoothed. We
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prove that both the algorithms have the same approximation error bound O( 1
p2 ),

which is tighter than the result given in [17].
For large-scale nonlinear problems, some reduced methods and boosting tech-

niques are introduced to reduce the computational complexity of these algorithms
and to improve the performance of these smoothing methods. Many experimental re-
sults support that the new smoothing algorithm is not only as good as SSVM, but also
simpler than SSVM on the Hessian matrix. It can also be observed that the smoothing
algorithms with the proposed boosting skills are comparable with similar algorithms
like PSVM [13], but simpler and easier in implement.
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