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Abstract We study a variant of the spanning tree problem where we require that,
for a given connected graph, the spanning tree to be found has the minimum num-
ber of branch vertices (that is vertices of the tree whose degree is greater than two).
We provide four different formulations of the problem and compare different relax-
ations of them, namely Lagrangian relaxation, continuous relaxation, mixed integer-
continuous relaxation. We approach the solution of the Lagrangian dual both by
means of a standard subgradient method and an ad-hoc finite ascent algorithm based
on updating one multiplier at the time. We provide numerical result comparison of all
the considered relaxations on a wide set of benchmark instances. A useful follow-up
of tackling the Lagrangian dual is the possibility of getting a feasible solution for the
original problem with no extra costs. We evaluate the quality of the resulting upper
bound by comparison either with the optimal solution, whenever available, or with
the feasible solution provided by some existing heuristic algorithms.
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406 F. Carrabs et al.

1 Introduction

There are several variants of the spanning tree problem that are useful to model prob-
lems arising in communication networks. For example, the network may be required
to connect a specified subset of nodes (Steiner Tree Problem [13]); if a label is as-
signed to each link, one could be interested in looking for homogeneous subgraphs of
the network (Minimum Labelling Spanning Tree Problem [4, 6, 7]); when costs are
related to the connectivity of a node then looking for a spanning tree with constraints
on the degree of the nodes could be of interest ([1-3]). The problem addressed in
this paper is related to this last mentioned variant and it is known in the literature as
the Spanning Tree with Minimum Number of Branch Vertices Problem ([5, 8]). It is
motivated by some applications in optical networks where it is useful to connect the
nodes so that the number of connections of each node is limited.

In particular this problem arises from a practical application in the context of all-
optical networks which are a class of backbone wide-area networks (WAN) where
connections are routed by intermediate nodes in the optical domain without electronic
conversion [18]. The main advantage of such a networking is the great expansion of
the bandwidth gained by the wavelength-division multiplexing (WDM), a multiplex-
ing technique that permits each fiber to carry many independent signals with different
wavelengths.

Let us consider the simple example depicted in Fig. 1. The optical network is
composed of three stations, namely A, B and C and four intermediate nodes, namely,
1, 2, 3 and 4. Station A is connected to node 2, station B to node 3 and station C
to node 1. Roughly speaking, we could define a station as a node in the network
where the traffic is aggregated and the opto-electronic conversions are carried out.
A Wavelength Routed optical network is a network where the intermediate nodes are
able to route the signal according to the assigned bandwidth. Suppose that in our ex-
ample network station A needs to communicate with station B and station C. This
communication could be carried out by 2 different unicast connections (i.e., single
source—single destination) that would use two different bandwidths, or by means of a
multicast connection (single source—multiple destinations) using the same bandwidth.

Fig. 1 An example of optical
network
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Lower and upper bounds comparison for the MBV problem 407

In the former case, a Routing and Wavelength Assignment (RWA) algorithm defines a
light-path (p, w), where p is the path used to route the connection, i.e. the set of fiber
links from the source to the destination, and w is the wavelength of the connection
allowing communication between the two stations for each unicast connection. In our
example, we would have two light-paths, the first one connecting station A to station
B with intermediate nodes 2, 4, 3 and using bandwidth w 4 p; the second one connect-
ing station A to station C with intermediate nodes 2, 4, 1 and using bandwidth wc.
In the latter case, a multicast connection from a source to a set of destinations can be
represented by a couple (¢, w), where ¢ is a directed tree used for signal routing and w
is the connection wavelength. Such a couple is referred to as a light-tree [19] whose
practical implementation requires the intermediate nodes (in our case node 4) to have
the ability to split the input signal to multiple outputs. A light-splitting switch is the
optical device needed to perform such a task. Such devices are rather expensive and
determine significant power loss of the output signals. Therefore, a design method
aimed at reducing the number of light-splitting switches is in order.

Note that, light-splitting switches are located at branch nodes, that is at the nodes
of the tree whose degree is greater than 2, hence this problem can be formalized as
follows: given a connected graph G representing a network, look for a spanning tree
of G with the minimum number of branch vertices (in the sequel the problem will
be referred to as MBV-Minimum Branch Vertices Problem). Observe that, in such
a context, obviously, a Hamiltonian path, if any, would ensure complete connection
requiring no light-splitting switches at all. Of course, in real-case network, it is not
known in advance whether such a Hamiltonian path exists or not.

The problem was introduced by Gargano et al. [5], where the computational com-
plexity was analyzed and the problem was proved to be NP-hard. Cerulli et al. [8]
provide some heuristics suitable for general instances and compare the results with
those provided by a standard solver. In this paper we further study the problem by
analyzing different lower and upper bounds obtained by considering different relax-
ations of four different formulations of the problem, namely, a Lagrangian relaxation,
a continuous relaxation and a mixed integer-continuous relaxation. The Lagrangian
dual is solved by means of both a standard subgradient algorithm and an ad-hoc dual
ascent procedure. A useful follow-up of tackling the Lagrangian dual is the possi-
bility of getting a feasible solution of the original problem with no extra costs. The
quality of the corresponding upper bound is tested by comparison either with the op-
timal solution, whenever available, or with the feasible solution provided by some
existing heuristic algorithms [8].

The paper is organized as follows. In Sect. 2 we describe the problem and provide
the different mathematical formulations. In Sect. 3 the Lagrangian relaxation is dis-
cussed together with the Lagrangian dual. Our dual ascent algorithm is presented in
Sect. 4, while several computational results are discussed in Sect. 5. Some concluding
remarks are discussed in Sect. 6.

2 Mathematical formulations

The first provided formulation is an IP mathematical model. Due to the exponential
number of constraints this formulation is not suitable to be tested on instances of
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significant size; we used it since it is particularly suitable for adopting our Lagrangian
relaxation approach which will be described in Sect. 3. In addition, we consider: a
single commodity flow formulation (SC), a multicommodity flow formulation (MC)
and a Miller-Tucker-Zemlin formulation (MTZ).

2.1 Integer programming formulation (IP)

Let us consider an undirected network G = (V, E), where V denotes the set of n
vertices and E the set of m edges. The set of variables for the classical (IP) model are
the following:

— binary variable x, for each e € E that assumes value equal to 1 if edge e is selected
and value equal to 0 otherwise;

— binary variable y, for each v € V that assumes value equal to 1 if vertex v is of
the branch type (that is its degree, as vertex of the tree, is greater than two), and is
equal to O otherwise.

Then, the (IP) formulation of MBV is the following:

minz Vo 2.1)
veV

S.t.:
Y xe=n-—1 (2.2)
ecE

Y xe<ISI-1 vScV (2.3)
ecE(S)

> xe—2<8yy, YveV (2.4)
ecA(v)
vy € {0, 1} YveV 2.5)
xe €1{0, 1} Ve e E (2.6)

where for any given subset of vertices S we denote by E(S) the set of edges having
both the endpoints in S. Moreover we denote by A(v) the set of incident edges to
vertex v and by §, its size, i.e. §, = |A(v)|. The objective function (2.1) requires the
minimization of the total number of branch vertices. Constraint (2.2) requires to select
exactly n — 1 edges in the spanning tree. Constraints (2.3) guarantee that the edges in
the spanning tree cannot form cycles. The coupling constraints (2.4) ensure that each
variable y, is set to 1, whenever v has more than two incident edges belonging to the
optimum spanning tree.

2.2 Single commodity flow formulation (SC)

For the flow-based formulations we consider the directed version of the graph where
two oriented arcs (u,v) and (v, u) are associated with each edge (u,v) € E. We
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Lower and upper bounds comparison for the MBV problem 409

denote by E’ this new set of arcs. Let us denote by A™(v) and A~ (v), the set of arcs
in E’ outgoing from v and incoming into v, respectively. A spanning tree T of G
can be found by sending from a source vertex s € V one unit of flow to every other
vertex v € V' \ {s} of the graph [16]. We introduce both the binary variable x,, for
each (u, v) € E’ that assumes value equal to 1 if arc (u, v) is selected and value equal
to 0 otherwise, and the flow variable f,, for each (u, v) € E’ representing the flow
going from vertex u to vertex v.
The single-commodity flow formulation (SC) of MBYV is then the following [8]:

min Z Yo 2.7

veV
S.t.:

Z Xup = 1 YveV\ (s} (2.8)
(u,v)eA= (v)

Z fsv_ Z fvs:n_ 1 (29)
(s,v)€AT(s) (v,5)EA™(5)

Yo fu— Y fu=-1 YoeV\{sh  (210)
(v,u)eAt(v) (u,v)eA™(v)
Xuy < fuv < (= Dxyy Y(u,v) € E’ (2.11)

Yo xwt Y xw—2<8y, YveV 2.12)
(v,u)eA*(v) (u,v)eA~(v)
yu € {0, 1} YveV (2.13)
Xuv € {0, 1} Y(u,v) € E' (2.14)
Sur =0 Y(u,v) e E’ (2.15)

The objective function (2.7) to be minimized is the same as in the (IP) model and
counts the number of branch vertices in the spanning tree. Constraints (2.8) ensure
that each vertex in the optimal spanning tree has exactly one incoming arc. Equa-
tions (2.9) and (2.10) balance the flow at each vertex and ensure the connectivity
of any feasible solution. Constraints (2.11) are coupling constraints linking the flow
variables f with the binary variables x. The coupling constraints (2.12) ensure each
variable y, to be equal to 1, whenever v has more than two adjacent arcs belonging
to the optimum spanning tree.

We considered in our experiments two different relaxations of this model. The
first one is a mixed integer-continuous relaxation obtained by replacing constraints
(2.14) with the new set of constraints 0 < x,,, < 1, V(u, v) € E’ (denoted in the sequel
(2.14)). The second considered relaxation is a continuous relaxation obtained by
replacing constraints (2.14) by constraints (2.14") and constraints (2.13) by the new
set of constraints 0 < y, < 1, Vv € V (denoted in the sequel (2.13")). Additionally (as
it was also done, for example, in [1] and [2]), in order to improve the quality of the
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410 F. Carrabs et al.

returned bounds of both the relaxations we added the following set of constraints:
Xy +xXou <1 Y(u,v)eE’ (2.16)

imposing that for each edge (u, v) € E of the original graph, at most one among the
two associated arcs (u,v) and (v, u) will be selected. The single commodity flow
model (SC) will be solved also to optimality by means of the Cplex solver to get the
optimum solution and to evaluate the quality of the lower bounds obtained by the
different relaxations and of the upper bounds provided by our algorithms.

2.3 Multi commodity flow formulation (MC)

MBYV can be also formulated in terms of multicommodity flow (MC) [14]. We in-
troduce a set of flow variables fX defined on each (u,v) € E’ and k € V which
represents the flow along the arc (u, v) relative to the path from the root s to vertex k.
We also consider any given vertex s to be the source as in the previous model.

min Yy, 2.17)
veV
S.t.:
Z Yup = 1 YoeV\{s} (2.18)
(u,v)eA=(v)
o= > fh=0 VkeV,veV\{s}, vk (2.19)
(v,u)eAT(v) (u,v)€A™(v)
Yoo Y =1 VkeV\ {s) (2.20)
(s,v)eAt(s) (v,5)EA™(s5)
YoooR- > fh=-1 Vk e V\ {s} (2.21)
(k,u)e At (k) (i,k)e A~ (k)
R < xu V(u,v) e E ke V (2.22)
Z Xou + Z Xypy —2 <8y YVEV (2.23)
(v,u)eAT(v) (u,v)eA=(v)
Xup € {0, 1} Y(u,v) e E’ (2.24)
yv € {0, 1} YveV (2.25)
flfvzo Yu,v)ye E,keV (2.26)

The objective function (2.17) is the same as in the previous models. Constraints (2.18)
ensure each vertex in the spanning tree has exactly one incoming arc. Flow conser-
vations constraints (2.19)—(2.21) ensure that the root vertex s is connected to every
vertex in the graph. Constraints (2.22) are logical constraints linking the flow and
the arcs variables. Constraints (2.23) corresponds to constraints (2.12) of the (SC)
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Lower and upper bounds comparison for the MBV problem 411

model. The mixed continuous relaxation of this model is obtained by replacing con-
straints (2.24) by (2.14’) and by adding constraints (2.16). The continuous relaxation
of this model is obtained by replacing constraints (2.24) by (2.14"), constraints (2.25)
by (2.13’) and by adding constraints (2.16). Note that, the polyhedron defined by
(2.18)—(2.22), (2.14") and (2.26) describes the convex hull of the incidence vectors of
the spanning tree, hence, this relaxation will be used in our experiments to compute
the optimum solution of the Lagrangian dual described in the next section. This so-
Iution will be then used to evaluate the quality of the bounds provided by our dual
ascent procedure and by the subgradient algorithm in solving the Lagrangian dual.

2.4 Miller-Tucker-Zemlin formulation (MTZ)

Finally, we provide a Miller-Tucker-Zemlin (MTZ) formulation for the problem. We
need an additional set of variables u, defined on each vertex v € V that assign a label
to each vertex of the graph. In particular, such a labeling ensures any directed arc
that belongs to the optimum spanning tree goes from a vertex with a lower label to a
vertex with a higher label. Such a label assignment is aimed at subtour elimination.
The basic MTZ formulation for our problem is the following:

min Z Yo (2.27)
veV
S.t.:
Z xw=1 YveV\{s} (2.28)
(u,v)eA=(v)
nxyy +uy <uy+m—1) Yu,v) e E', u#s, v#s (2.29)
uy<m-—1) YveV\s (2.30)
Uy > 1 YoeV\s (2.31)
ty =0 (2.32)
Yo xwt Y xw—228y YweV (2.33)
(v,u)eAt (v) (u,v)eA=(v)
Xuy € 10,1} Y(u,v) € E' (2.34)
yy €10, 1} YoeV (2.35)
u>0 YoeV (2.36)

Constraints (2.29)—(2.32) ensure that: (i) node v is assigned a label 1 <u, <n — 1
(constraints (2.30)—(2.31)), (ii) the root node s has label equal to zero (constraints
(2.32)), and (iii) each selected arc (u, v) is such that u, < u, (constraints (2.29)).
Note that the above mentioned set of constraints does not associate a unique set of
node labels to a given spanning tree (see for example Fig. 2). Indeed, for a given se-
lected arc (u, v) variable u,, may assume a value strictly greater than u,, 4+ 1. However,
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(b)

Fig. 2 An example of multiple labeling assignment corresponding to the same spanning tree

it is possible to lift these constraints to ensure u,, = u, + 1 so that u, indicates the po-
sition of vertex v in the spanning tree, i.e. the number of arcs in the path between the
root s and vertex v. In order to face this issue, we added some lifting constraints pro-
posed by Desrosiers and Laporte [9] and by Gouveia [12]. In particular, Desrosiers
and Laporte proposed the following lifted modification of constraints (2.29):

(N —2)Xpu +1Xyp Fuy <uy+m—1) Yu,v)€E', u#s, v#s (2.37)

Constraints (2.37) ensure that for each arc (u, v) in the spanning tree with u # s and
v # s we have u, = u, + 1. This is due to the combined effect of these constraints
for arcs (u, v) and (v, u) when x,,, = 1.

Note that, if an arc (s, v) is selected to be in the final tree, constraints (2.37) do
not ensure u, = us + 1. For this reason we consider also the following inequalities
proposed by Gouveia [12] to lift constraints (2.30)—(2.31) for arcs incident to the root
node:

Uy <n—m—Dxs,, YveV\s, (s,v)eE’ (2.38)
Uy > 2 — Xy YveV\s, (s,v)eE’ (2.39)

They ensure that variable u, is equal to 1 in case arc (s, v) is selected, and u, > 2
otherwise. Note that these constraints were proposed in [12] for the minimum span-
ning tree problem with hop constraints, that is the problem of finding a spanning tree
of minimum cost with the additional constraints that each path starting from the root
node has no more than p arcs; however, by setting p = n these inequalities are valid
for our problem too. Some other lifting constraints were proposed in [12], however,
we did not add them to our formulation since when considered together with con-
straints (2.37), (2.38) and (2.39) they did not affect the quality of the lower bound for
both the considered relaxations.

The final MTZ formulation we considered for our problem is reported below for
clarity of exposition:

min Z Vo (2.27)

veV
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Lower and upper bounds comparison for the MBV problem 413

s.t.:
Y xw=1 YoeV\ (s} (2.28)
(u,v)eA~(v)
n—Dxpy +nxyp+uy <uy+m—1) Yu,v) €eE', u#s, v#s (237
Uy <n—m-—1)xgy YveV\s, (s,v) e E (2.38)
Uy =2 — Xgy YveV\s, (s,v) € E (2.39)
u; =0 (2.32)
Y xwt Y xw—2<8y, YveV (2.33)
(v,u)eA*(v) (u,v)eA™(v)
Xuy € {0, 1) Y(u,v) e E’ (2.34)
(2.35) y,€{0,1} YveV (2.35)
uy >0 YveV (2.36)

The continuous relaxation of this formulation is obtained by replacing (2.34) and
(2.35), with (2.14’) and (2.13’), respectively, and by adding the set of constraints
(2.16). While the mixed integer-continuous relaxation is obtained by replacing con-
straints (2.34) by (2.14") and by adding the set of constraints (2.16). Next section
presents the Lagrangian relaxation of problem (IP) obtained by relaxing the coupling
constraints (2.4).

3 Relaxing the (IP) formulation: the Lagrangian dual

We focus in this section on the (IP) formulation of (MBV) presented in the previous
section and study its Lagrangian relaxation [17]. Solution of the corresponding La-
grangian dual can be obtained by means of a standard subgradient approach or by
means of an appropriate dual ascent procedure. We implemented and tested both of
them.

3.1 Relaxing the coupling constraints

Before introducing the Lagrangian relaxation, note that whenever §, = |A(v)| < 2,
constraint (2.4) is trivially satisfied for any choice of the decision variables satisfying
the remaining constraints. Thus we rewrite it in the form:

D xe—2<8,y,, VYveV’ (3.1)
ecA(v)

where V' ={v e V|§, > 2}.
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414 F. Carrabs et al.

By introducing the Lagrangian multipliers A, > 0, v € V', and relaxing constraints
(3.1), we obtain the following relaxed problem (LR):

dGy=min Y Ty + )y xv( D w2 &,yv) (3.2)

veV’ veV’ ecA(v)

subject to constraints (2.2)—(2.3) and constraints (2.5)—(2.6), where the multipliers
Ay >0, v € V' have been grouped into the vector A of appropriate dimension. Note
that the above problem is formally identical to the problem obtained by relaxing the
original constraints (2.4) and letting A, = 0, v € V\V’. Function z()) will be referred
to as the Lagrangian function.

By simple manipulations, z(A) may be rewritten as:

) ==2Y d+z)+220) (33)
veV’
where z1(A) and zp (L) are defined as follows:
z1(A) = min Z Z AypXe
veV/eeA(v)

subject to constraints (2.2), (2.3) and (2.6) 3.4

and

200 =min ) yy(1—8,2)

veV’

subject to constraints (2.5) 3.5

The Lagrangian dual problem (LD) is then:
maxz(A) =max —2 Y Ay +21(1) + 22(4) (3.6)
A>0 A>0 s

It is well known that z(A) is a piecewise linear concave function; a subgradient of
z at A is the vector g € RIY'| whose generic component g, is
gv= Y () —2-8y0), veV 3.7)

ecA(v)

The subgradient method [17] to maximize z(A) consists in a sequence of moves,
according to appropriately calculated stepsizes, along the subgradient direction. The
pseudocode of the subgradient algorithm is given next. The algorithm requires setting
of the precision parameter €; and of the maximum number of iterations k.
Algorithm 3.1 (Subgradient)

L. Set 4y = max,cya{z}, Yo e V;k=0
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2. Solve the Lagrangian relaxation by solving separately problems (3.4) and (3.5)
and obtain z(A®)) = —2 Zvevxf,") + z2100®) 4+ z,(A0), and, also, (x(A X)),
y(k(k))). Keep zru R, the best solution value found so far.

3. Calculate the subgradient g, whose v-th component is gX = D e X)) —
28,y ()

4. Calculate the stepsize #: ty = € Z””Rg(_ffﬁ%@)

5. Set
0 if )»f)k) + tkg,(,k) <0
A a0 g 0 <0 ng® <
% otherwise

6. If k > kyjqx Stop else k =k + 1 and iterate.

We remark that in general the subgradient method does not guarantee monotonic-
ity of the objective function z(A); such monotonicity is, instead, typical of the dual
ascent method we are introducing next.

The effectiveness of any dual ascent procedure lies on the possibility of easily
solving problem (LR) for any fixed set of multipliers, that is to calculate z(A), which
requires evaluation of both z1 (1) and z2(}).

In particular z; (1) can be calculated by solving a minimum spanning tree problem
where the weight of edge e = (u, v) is A, + Ay, While z2(A) is simply obtained by
inspection, that is by setting y, = 1 whenever 1 — §,A, <0 and y, = 0 otherwise:

2 =) (=8

veV’
where we define:
(a)— =min{0, a}

Now let {x.(A)} and {y,(A)} be any pair of optimal solutions to z;(}) and z2(}),
respectively. If they constitute a feasible solution for the original problem, then such
a solution is also e-optimal for € defined as:

€= va(zwvyv(x)— > xe(x))

veV’ ecA(v)

On the contrary, let us suppose that {x,(A)}, {y,(A)} do not constitute a feasible
solution for (IP), then there exists at least one node v € V’ such that the corresponding
constraint (3.1) is not satisfied; this means that for such node v the following Case 1
occurs:

e Case 1: ZeeA(v) Xe(A) > 2 and y, (1) =0;

On the other hand, it might be also happen that there exists some node v for which
we have:

o Case2: )" yXe(A) <2and y,(A) = 1;

ecA(v
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The two above described cases are the basis for our multiplier-updating strategy in
the dual ascent procedure, which is aimed at obtaining a greater value of the objective
function of the Lagrangian dual problem and, therefore, a better bound for the objec-
tive function of (IP) by updating the multipliers. The proposed dual ascent procedure,
starting from any initial setting of the multipliers, works by updating one multiplier
at the time as explained in the next subsection.

3.2 Multipliers update
The multipliers setting and updating process is based on the following property

Theorem 3.2 The optimal multiplier vector \* of (LD) satisfies the condition

Proof Suppose that at the optimum of the Lagrangian dual (3.6) for some v’ € V’
we have A7, > % Observe that, corresponding to such a value of the multiplier, we

have y,/(A*) = 1. Leto = A}, — % > 0 and let us decrease the value of the multiplier
by the quantity o obtaining the new value: A" = 1%, — 0. Let us evaluate the new
value of the corresponding objective function z(A) given in Eq. (3.2). Note that, the
corresponding optimal value of y, is still equal to 1 when evaluated considering the
new value of the multiplier; moreover, since any feasible choice of the variables x,
is such that 3, 4,y Xe — 2 — 8y < —2, then we have the objective function value
of the relaxed problem in such new multiplier setting increases at least by 2o, which
contradicts optimality of A*. g

From Theorem 3.2, the following remark can be stated:

Remark 3.3 In the sequel we assume that every multiplier A, can only range in the
closed interval [0, Lv].

Suppose now that for any given choice of the multiplier vector A, Case 2 (described
in the previous section) occurs for any node v’ € V’, that is:

Z xe(A)—2>0 and y,y(1)=0
ecA(V)

Since y,(A) =0, then we have A, < 5% hence in this case it is possible to increase
Ay while keeping y,» = 0. Indeed, recaflling the expression of the subgradient (3.7),
the v'-th component of g is g =), A@) Xe(2) —2 > 0. Consequently, we consider
the case of modifying just one multiplier, in particular of increasing only the mul-
tiplier A,. This corresponds to move along the direction e, that is along the v’-th
unit vector and it is clear that the necessary ascent condition gTev/ > 0 is satisfied.
Consequently, it is worth assuming such direction suitable for a line search process.
Obser?/e that by Theorem 3.2 the maximum increase to be considered for multiplier
v'is 5 — Ay
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Lower and upper bounds comparison for the MBV problem 417

Let us examine now when for a given vertex v’ Case 1 occurs, that is for any given
choice of the multiplier vector A there is some vertex v’ € V' such that:

> x(M)=2<0 and y,()=1.
ecA(v)

In this case we have A,y = % and by Remark 3.3 a reduction of A, is to be consid-
ered as a possible way to increase z. In fact, taking into account the subgradient (3.7),
we have g, < 0 and, moving along —e,/ the necessary ascent condition —g” e, >0
is satisfied and —e, is a possible ascent direction for z.

Based on the above observations, we are now ready to provide the detailed de-
scription of our dual ascent procedure.

4 The algorithm

Our algorithm is an ascent method which is equipped with a line search along a
direction that can only assume the form either of the unit vector e,, for some v € V’,
(increase of just the multiplier A,) or of —e, (decrease of just the multiplier A,).

As usual in nonsmooth optimization algorithms [15], the selected search direction
cannot be guaranteed in general to be an ascent one, possible failure of the line search
has to be taken into account. More complex nonsmooth optimization algorithms ca-
pable to handle such difficulty are described in [10, 11].

In particular we adopt a line search procedure of the Armijo type, which can pro-
vide two possible outputs:

1. Serious step (ascent achieved), with consequent update of the current multiplier
vector;
2. Null step (no significant ascent achieved), with no current multiplier vector update.

We describe separately the dual ascent and the line search procedures.

Algorithm 4.1 (Dual ascent)

1. Select A, in the interval [0, Siv], YveV’

2. Solve (LR) for the initial setting of the multiplier vector A; let (x (1), y(1)) be the
optimal solution.

3. Define VY ={v e V| Y eca) Xe(r) > 2 and yy (1) = 0}.

4. If V* =@ go to step 6. Else randomly select v’ € V't and perform the line search
along the direction e,.

5. If the line search exit is “Serious step” update the multiplier vector by setting
) = AT, the output of the line search. Update also the solution (x(1), y(L)) of
the current Lagrangian relaxation. Return to step 3. Else set V™ = V' — {v/} and
return to step 4.

6. Define V™ ={ve V'| 3,40 Xe(X) =2 — 8y yu(2) <0}

7. If V— =@ STOP. Else randomly select v' € V~ and perform the line search along
the direction —e,,.
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8. If the line search exit is “Serious step” update the multiplier vector by setting
A = AT, the output of the line search. Update also the solution (x(A), y(A)) of
the current Lagrangian relaxation. Return to step 3. Else set V™ =V~ — {v/} and
return to step 7.

We state now the line search algorithm. The input direction is either e,y or —e,y
according to the fact that the algorithm is called, respectively, at step 4 or at step 7 of
the dual ascent. We indicate the search direction by d,s. Observe that the maximum
positive allowable stepsize t,,,, is equal to % — Ay whenever dy = e/, while it is
equal to A,y whenever is dy = —e,. '

The algorithm requires initialization of the following parameters:

1. Null step threshold 7;
2. Ascent parameter 0 < p < 1;
3. Step reduction parameter 0 <o < 1.

Algorithm 4.2 (Line search)

1. Set t = tyuy. If t <1 declare “Null step” and exit. Else calculate 7/, a majorizing
estimate of the directional derivative of z()\) along d,,, according to the formula:

7= ZeEA(v’) Xe(A) —2 ifdy =ey
2 + 81)’ - ZeEA(v/) Xe ()\) if dv/ = —ey

2. Set AT = A + td, . Solve the Lagrangian relaxation for {z(A 1), x(AT), y(A)}.
3. If

zZ(A*) = z(0) + ptd

declare “Serious step” and exit, returning the updated multiplier vector A ™.
4. Sett =ot. If r <t declare “Null step” and exit, else return to step 2.

To verify that the proposed procedure terminates, we observe first that it is z/ > 1,
and, consequently, every time a serious step takes place an increase in the objective
function z of at least pf is achieved. Since z(1) is bounded from above, only a finite
number of such bounded-away-from-zero increases may occur. Termination hence
follows by considering that, whenever ascent cannot be achieved, and consequently
no multiplier vector update occurs, only a finite number of calls of the line search
algorithm can take place.

Notice that, at each iteration the solution of (LR) provides a spanning tree of the
input graph and therefore, an upper bound to the problem. Hence, at termination, the
algorithm returns both a lower bound and the best upper bound among all the ones
computed during the performed iterations.

5 Computational experiments and analysis of the results

We compare the bounds obtained by our Lagrangian approaches and by the relax-
ations of the proposed mathematical formulations on a wide set of experiments. We
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remark that the optimal solutions which are used for comparison purposes in this
section are obtained by solving to optimality (when possible) the Single Commodity
Flow formulation (2.7)—(2.15).

The main aim of our experiments is to gain insight on the trade-off between quality
of the returned solutions and required computational time for all proposed method-
ologies which can be useful to decide which one of them is eligible in different scenar-
ios of application (i.e., simply getting a lower bound, getting a good feasible solution
in reasonable amount of time, embedding the relaxation into an exact algorithm such
as Branch and Bound).

Our discussion is divided into two parts: the first one is devoted to the analysis of
the procedures proposed to get a lower bound of the problem, while the second part
is focused on the comparison of different algorithms able to return feasible solutions
for the problem.

Hence, in the first part, we compare the subgradient (SG), the Dual Ascent (DA),
the continuous and the mixed relaxations of the proposed models.

In the second part we compare the best feasible solutions returned during execu-
tion of both subgradient (SG) and Dual Ascent (DA), against those provided by three
other heuristics drawn from the literature [8].

5.1 Scenarios generation and parameter settings

We generated sparse graphs of different size n and different number of edges m. We
need to point out that the density of the graph is relevant to make the comparison
among the different lower bounds meaningful. Indeed, we noticed that for instances
where the density d of the graph was greater than 0.2 (where d = %), the lower

bounds obtained by the continuous LP relaxation of all the models véere in most of
the cases equal to zero, which means that the optimal solution is very probably equal
to zero. Hence, our benchmark instances are sparse graphs (i.e. d < 0.2) to guarantee
a significant number of branch vertices in the optimal tree and therefore significant
lower bound values. Parameter m has been generated according to the following for-
mula: m = [(n — 1) +i x 1.5 x [/n]] with i = 1,2,3,4,5. Small instances cor-
respond to a range of n between 20 and 180, while large instances correspond to a
range from 200 to 500. The total number of different scenarios is 80. We generated
five instances for each scenario, hence our numerical experiments are related to a
total number of 400 instances. All the instances, together with the detailed results,
can be downloaded from authors’ website [20]. Both the subgradient and the dual
ascent algorithms have been coded in C and run on a 2.4 GHz Intel Core2 Q6600
processor. All the proposed formulations have been coded in AMPL and solved us-
ing CPLEX 11. Since the choice of the root node could affect the quality of the lower
bounds, in order to make a safe comparison we always chose the same vertex, namely
vertex 1, as a source vertex. A time limit equal to 3600 seconds has been defined to
solve the mathematical models. The parameters of the dual ascent algorithm have
been set to p =0.1, 0 = 0.05 and 7 = 0.02. The precision parameter ¢ of the sub-
gradient algorithm has been fixed to 0.1 and the maximum number of iterations ky,
to 1000.
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5.2 Lower bound analysis

All the results are given in Tables 1-7 and Figs. 3 and 4.

In particular, Tables 1 and 2 compare the quality of the lower bounds and the re-
quired computational time of SG, DA and of the different relaxations of the models,
for small and large instances, respectively. In each table, the first three columns re-
port the characteristics of each scenario: scenario ID, the number of nodes (n) and
the number of arcs (m). For each algorithm and each model, the tables report the
average values taken on the five tested instances of LB (the calculated lower bound),
Time (the computation time in seconds) and GAP (the relative gap between the re-
turned lower bound and the optimum solution, when available). In particular, GAP
on a given instance is computed as the ratio %, where Optimum is the opti-
mum value of the problem. The average of the optimal values over the five instances
is reported, when available, together with the average time. Whenever at least one
instance of the scenario has not been solved to optimality by solver CPLEX within
the time limit of 3600 s, the term N.A. (Not Available) appears in the tables. In such
case, of course, no GAP value is reported for all the tested algorithms. Since the
optimum solution was not available for many of the large instances (and hence the
GAP could not be computed for many scenarios), we report in Table 10 the optimum
value (when available), the best lower and the best upper bound obtained on each of
the 175 large instances. This table is useful to perform comparisons with other algo-
rithms (the interested reader can also refer to the detailed results related to the entire
set of instances available on authors’ website [20]).

We remark that symbol N.A. is also used when a tested algorithm has been unable
to calculate the lower bound in the given time limit for at least one of the instances
of the scenario. In fact, such a case occurs actually only for the mixed continuous
relaxation of MC. The results related to the subgradient algorithm and to the dual
ascent algorithm are reported as SG and DA, respectively. SC-Mixed and SC-Cont
contain the results provided by the mixed and the continuous relaxation of the single-
commodity formulation, respectively; MTZ-Mixed and MTZ-Cont are the mixed and
the continuous relaxation of the Miller-Tucker-Zemlin formulation, respectively. Fi-
nally, MC-Cont and MC-Mixed report the results of the continuous relaxation and
the mixed relaxation of the multicommodity-flow formulation, respectively, while SC
gives the results of the exact solution (when available). To summarize the behavior of
the solver CPLEX on the tested instances we remark that all the 225 small instances
and only 128 out of 175 large ones have been solved to optimality within the time
limit. As far as the MC-Mixed is concerned 209 of the small instances and only 44
out of 175 large ones have been solved to optimality within the time limit.

In Figs. 3 and 4 we report the average and the standard deviation of the relative
gap computed on all the instances (for which the optimum was available).

We report, finally, Tables 3 and 4 for small instances and Tables 5 and 6 for large
instances, where complete comparisons of the performances, both in terms of quality
of the lower bound and computational time, is provided. The generic cell (i, j) in the
tables reports the percentage of instances for which the procedure associated to row
i has worked strictly better than the one associated to column j.

Some comments on the results are in order.
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We observe first that the best bounds are those returned by the mixed relaxations
(as was expected) which in many cases return zero gap. More specifically, out of the
total number of 353 instances for which the optimal solution is available, zero gap has
been achieved 343, 256, and 253 times by SC-Mixed, MTZ-Mixed and MC-Mixed,
respectively.

As for comparison among the mixed relaxations we observe (refer to Tables 1
and 2) that the SC-Mixed relaxation in the worst case returns a bound that is 3 %
away from the optimum value on the small instances (see instance number 12 and
25), and O % on the large ones. The worst bound for the MTZ-Mixed relaxation is
7 % away from the optimum on the small instances (instance number 12 an 19), and
2 % on the large ones. The MC-Mixed relaxation, whenever is solved at the optimum
in the given time limit, provides always zero gap.

As far as we compare the bounds provided by SG and DA, we observe that they
are, as expected, comparable with those provided by the continuous relaxation SC-
Cont and MTZ-Cont. On the other hand, SG (see Tables 3 and 5) works better than
DA in the 84 % of the experiments for the small instances and 98 % for the large
ones.

The comparison provides totally different observations if we consider the results
of the experiments from the point of view of the computational time. DA works uni-
formly better than SG and the continuous relaxations, while the related computational
time is, as expected, order of magnitude lower as far as the mixed relaxations are con-
cerned.

Finally, in order to evaluate the robustness of the bounds, we observe from Figs. 3
and 4 that the average value of the gap (whenever available) is relatively stable both
on small and large instances in all cases, with the mixed relaxations exhibiting also
quite small values of the standard deviation.

When considering this aspect together with the corresponding computational time
the final conclusion makes SG and DA preferable to the three continuous relaxations
in terms of trade-off between quality of solution and computational time. More in
general, we believe that SG and DA can be considered as the election tool whenever
it is necessary to run many times relaxed models to obtain quick lower bounds (this
is the case of application in a Branch and Bound framework). While, whenever one
is faced with the need of calculating a better lower bound, the use of any Mixed
relaxation appears definitely advisable.

We have also evaluated the role of the constraints (2.16), (2.37), (2.38) and (2.39)
in the improvement of the bounds. In particular, we have proceeded on a leave-one-
out basis for the mixed and the continuous relaxations of both the single-commodity
flow formulation and the Miller-Tucker-Zemlin formulation.

The results are reported in Table 7 where each row corresponds to the constraints,
while the columns report the average and the standard deviation of the relative dif-
ference of the bounds, computed on all the 400 instances, once the constraints are
removed.

The average improvement of the lower bound due to constraints (2.16) is higher for
the continuous relaxations of both the models than for the corresponding mixed ones,
where, however it has an important role as well. Such an improvement is around 33 %
on average for the continuous relaxations and 15 % for the mixed ones. Constraints
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0.00 0.01

SG DA SC-Cont SC-Mixed MTZ-Cont MTZ-Mixed MC-Cont
= Average m Stand. Dev

Fig. 3 Lower bound analysis: average and standard deviation of the relative gap from the optimum on the
small instances

0.00 0.00

SG DA SC-Cont SC-Mixed MTZ-Cont MTZ-Mixed MC-Cont

® Average mStand. Dev

Fig. 4 Lower bound analysis: average and standard deviation of the relative gap from the optimum on the
large instances

Table 3 Lower bound analysis: dominance with respect to quality of the solution on small instances. The
generic cell (i, j) in the table reports the percentage of small instances for which the procedure associated
to row i showed a strictly better bound than the one associated to column j

SG DA SC-Cont SC-Mixed = MTZ-Cont MTZ-Mixed = MC-Cont

SG - 84 %  36% 0 % 47 % 0 % 4 %
DA 2% - 7 % 0 % 9 % 0 % 2%
SC-Cont 51% 83% - 0% 49 % 0% 1%
SC-Mixed 2% 92% 92% - 92 % 21 % 92 %
MTZ-Cont 40% 19% 3% 0 % - 0 % 2%
MTZ-Mixed 92% 2% 92% 0 % 92 % - 92 %
MC-Cont 82% 871% 51% 0% 52 % 0% -

(2.16) on the MTZ relaxations has the same effectiveness as constraints (2.37). Fi-
nally, constraints (2.38) and (2.39) are the least effective ones having an average
improvement of the bound on MTZ-Cont equal to 0.2 % and not affecting at all the
lower bound returned by MTZ-Mixed.

5.3 Upper bound analysis

All the results are reported in Tables 8-9 and Figs. 5 and 6. Table 10 reports the best
lower bounds (and upper bounds) obtained on each of the 175 large instances.
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Table 4 Lower bound analysis: dominance with respect to computational time on small instances. The
generic cell (7, j) in the table reports the percentage of small instances for which the procedure associated
to row i showed a strictly better computational time than the one associated to column j

SG DA SC-Cont SC-Mixed = MTZ-Cont MTZ-Mixed = MC-Cont

SG - 0% 70 % 96 % 23 % 81 % 100 %
DA 100% - 94 % 98 % 92 % 95 % 100 %
SC-Cont 30 % 0% - 88 % 7 % 67 % 97 %
SC-Mixed 4 % 0% 4% - 2% 10 % 76 %
MTZ-Cont 77 % 0% 72% 90 % - 80 % 98 %
MTZ-Mixed 19 % 0% 19 % 81 % 8 % - 92 %
MC-Cont 0% 0% 0% 20 % 0% 6 % -

Table 5 Lower bound analysis: dominance with respect to quality of the solution on large instances. The
generic cell (i, j) in the table reports the percentage of large instances for which the procedure associated
to row i showed a strictly better bound than the one associated to column j

SG DA SC-Cont  SC-Mixed MTZ-Cont MTZ-Mixed MC-Cont

SG - 98 % 29 % 0 % 46 % 0% 0%

DA 2% - 3% 0% 4 % 0% 0%
SC-Cont 71 % 97 % - 0 % 71 % 0 % 2 %
SC-Mixed 100% 100% 100 % - 100 % 38 % 100 %
MTZ-Cont 54 % 96 % 1% 0 % - 0% 1 %
MTZ-Mixed 100% 100% 100 % 0% 100 % - 100 %
MC-Cont 100% 100% 71 % 0 % 70 % 0% -

Table 6 Lower bound analysis: dominance with respect to computational time on large instances. The
generic cell (i, j) in the table reports the percentage of large instances for which the procedure associated
to row i showed a strictly better computational time than the one associated to column j

SG DA SC-Cont  SC-Mixed MTZ-Cont MTZ-Mixed MC-Cont

SG - 0% 62 % 99 % 6 % 98 % 100 %
DA 100% - 87 % 100 % 51 % 100 % 100 %
SC-Cont 38 % 13% - 100 % 1% 99 % 100 %
SC-Mixed 1% 0 % 0% - 0 % 2% 57 %
MTZ-Cont 94 % 9% 97 % 100 % - 100 % 100 %
MTZ-Mixed 2% 0% 0% 98 % 0% - 89 %
MC-Cont 0% 0% 0% 43 % 0 % 11 % -

In particular, Tables 8 and 9 compare the quality of the upper bounds and the re-
quired computational time of SG, DA and of three heuristics EWS, NCH, MIXED
presented in [8]. An interesting property of SG and DA algorithms is the possibility
to compute an upper bound of the problem with no additional CPU time. The struc-
ture of these tables is identical to Tables 1 and 2. In each table, the first three columns
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428 F. Carrabs et al.

Table 7 Lower bound analysis: evaluation of effectiveness of constraints (2.16), (2.37), (2.38) and (2.39)
on the quality of the solution returned by SC-Cont, SC-Mixed, MTZ-Cont and MTZ-Mixed

SC-Cont SC-Mixed MTZ-Cont MTZ-Mixed
Avg.  St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St Dev.

Constraints (2.16) 0.325 0.184 0.151 0.155 0.335  0.190 0.161 0.155
Constraints (2.37) - - - - 0.335  0.190 0.161 0.155
Constraints (2.38) and (2.39) - - - - 0.002 0.040 0.000 0.000
Fig. 5 Upper bound analysis: 0.45 0.40
average and standard deviation 0.40 0-38 0-38
of the relative gap from the 035
optimum on the small instances g'ig

0.20

0.15

0.10

0.05

0.00
SG DA EWS NCH Mixed

mAverage ®Stand.Dev.

Fig. 6 Upper bound analysis:
average and standard deviation
of the relative gap from the
optimum on the large instances

SG DA EWS NCH Mixed
mAverage ®Stand.Dev.

report the characteristics of each scenario: scenario ID, the number of nodes (n) and
the number of arcs (m). For each algorithm, the tables report the average values taken
on the five tested instances of UB (the calculated upper bound), Time (the computa-
tion time in seconds) and GAP (the relative gap between the returned upper bound
and the optimum solution, when available). In particular, GAP is computed as the ra-
tio W. The average of the optimal values over the five instances is reported,
when available, together with the average time. Whenever at least one instance of the
scenario has not been solved to optimality by solver CPLEX within the time limit
of 3600 secs., the term N.A. (Not Available) appears in the tables. In such case, of
course, no GAP value is reported for all the tested algorithms.

First note that, all the five algorithms are very fast: all the instances were solved
within one second. The best upper bound is returned by SG. Figures 5 and 6 repre-
sent the average and standard deviation of the relative gap between the upper bound
and the optimum value (whenever available), for each algorithm on small and large
instances, respectively. On the small instances, the average percentage gap from the
optimum is 0.27 for SG, 0.34 for DA, 0.38 for EWS, 0.40 for NCH and 0.38 for
Mixed. The corresponding standard deviation varies between 0.24 ad 0.25 revealing
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Table 10 Optimum solution (whenever available), best lower and upped bounds for each of the large
instances

Scen. ID Inst. ID n m OPT Best LB Best UB
46 1 200 222 51 51 54
46 2 200 222 50 50 54
46 3 200 222 50 50 51
46 4 200 222 51 51 52
46 5 200 222 51 51 54
47 1 200 244 40 40 46
47 2 200 244 42 42 49
47 3 200 244 39 39 43
47 4 200 244 37 37 43
47 5 200 244 39 39 45
48 1 200 267 31 31 37
48 2 200 267 30 30 39
48 3 200 267 30 30 37
48 4 200 267 30 30 39
48 5 200 267 31 31 41
49 1 200 289 23 23 30
49 2 200 289 25 25 35
49 3 200 289 25 25 35
49 4 200 289 26 26 34
49 5 200 289 25 25 32
50 1 200 312 18 18 23
50 2 200 312 16 16 27
50 3 200 312 19 19 29
50 4 200 312 17 17 26
50 5 200 312 20 20 30
51 1 250 273 67 67 71
51 2 250 273 65 65 66
51 3 250 273 66 66 69
51 4 250 273 66 66 69
51 5 250 273 66 66 70
52 1 250 297 51 51 60
52 2 250 297 55 55 63
52 3 250 297 51 51 56
52 4 250 297 55 55 63
52 5 250 297 53 53 60
53 1 250 321 44 44 57
53 2 250 321 43 43 53
53 3 250 321 43 43 51
53 4 250 321 43 43 54
53 5 250 321 44 44 54
54 1 250 345 N.A. 31 41
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Table 10 (Continued)

Scen. ID Inst. ID n m OPT Best LB Best UB
54 2 250 345 37 37 47
54 3 250 345 36 36 44
54 4 250 345 N.A. 33 45
54 5 250 345 35 35 47
55 1 250 369 27 27 38
55 2 250 369 25 25 35
55 3 250 369 25 25 37
55 4 250 369 28 28 38
55 5 250 369 26 26 40
56 1 300 326 81 81 85
56 2 300 326 80 80 83
56 3 300 326 81 81 85
56 4 300 326 81 81 85
56 5 300 326 82 82 84
57 1 300 353 67 67 73
57 2 300 353 67 67 72
57 3 300 353 69 69 71
57 4 300 353 68 68 76
57 5 300 353 68 68 76
58 1 300 380 58 58 69
58 2 300 380 55 55 66
58 3 300 380 54 54 64
58 4 300 380 51 51 63
58 5 300 380 55 55 66
59 1 300 407 48 48 60
59 2 300 407 47 47 58
59 3 300 407 46 46 63
59 4 300 407 44 44 56
59 5 300 407 46 46 59
60 1 300 434 36 36 50
60 2 300 434 35 35 47
60 3 300 434 N.A. 36 47
60 4 300 434 N.A. 39 53
60 5 300 434 40 40 56
61 1 350 378 96 96 99
61 2 350 378 93 93 96
61 3 350 378 96 96 100
61 4 350 378 94 94 97
61 5 350 378 94 94 98
62 1 350 406 82 82 91
62 2 350 406 81 80 87
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Table 10 (Continued)

Scen. ID Inst. ID n m OPT Best LB Best UB
62 3 350 406 82 82 91
62 4 350 406 78 78 85
62 5 350 406 80 80 90
63 1 350 435 65 65 71
63 2 350 435 N.A. 64 74
63 3 350 435 64 64 76
63 4 350 435 69 68 77
63 5 350 435 66 66 74
64 1 350 463 59 58 70
64 2 350 463 N.A. 56 70
64 3 350 463 N.A. 57 71
64 4 350 463 N.A. 55 70
64 5 350 463 N.A. 56 73
65 1 350 492 N.A. 46 62
65 2 350 492 N.A. 50 64
65 3 350 492 N.A. 42 60
65 4 350 492 N.A. 41 57
65 5 350 492 N.A. 48 63
66 1 400 429 112 112 118
66 2 400 429 112 112 116
66 3 400 429 112 112 116
66 4 400 429 110 110 115
66 5 400 429 113 113 117
67 1 400 459 95 94 105
67 2 400 459 91 91 100
67 3 400 459 N.A. 94 106
67 4 400 459 N.A. 96 106
67 5 400 459 94 94 103
68 1 400 489 76 76 87
68 2 400 489 80 80 98
68 3 400 489 80 80 95
68 4 400 489 78 78 88
68 5 400 489 N.A. 81 92
69 1 400 519 N.A. 70 83
69 2 400 519 N.A. 65 85
69 3 400 519 N.A. 70 82
69 4 400 519 N.A. 68 85
69 5 400 519 N.A. 69 84
70 1 400 549 N.A. 57 77
70 2 400 549 54 54 73
70 3 400 549 56 56 71
70 4 400 549 N.A. 54 69
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Table 10 (Continued)

Scen. ID Inst. ID n m OPT Best LB Best UB
70 5 400 549 59 59 75
71 1 450 482 125 125 128
71 2 450 482 126 126 130
71 3 450 482 126 126 133
71 4 450 482 126 126 133
71 5 450 482 126 126 130
72 1 450 515 107 107 118
72 2 450 515 109 108 118
72 3 450 515 106 106 120
72 4 450 515 109 109 118
72 5 450 515 N.A. 106 114
73 1 450 548 92 92 105
73 2 450 548 N.A. 88 105
73 3 450 548 N.A. 90 101
73 4 450 548 89 89 106
73 5 450 548 N.A. 93 107
74 1 450 581 77 77 93
74 2 450 581 76 76 93
74 3 450 581 N.A. 79 99
74 4 450 581 N.A. 77 97
74 5 450 581 N.A. 77 96
75 1 450 614 N.A. 65 90
75 2 450 614 N.A. 66 88
75 3 450 614 N.A. 64 85
75 4 450 614 N.A. 68 86
75 5 450 614 N.A. 67 87
76 1 500 534 141 141 145
76 2 500 534 141 141 147
76 3 500 534 141 141 146
76 4 500 534 145 144 148
76 5 500 534 140 140 145
77 1 500 568 121 121 128
77 2 500 568 119 119 132
77 3 500 568 N.A. 122 132
77 4 500 568 121 121 131
77 5 500 568 121 121 132
78 1 500 603 109 109 125
78 2 500 603 105 105 115
78 3 500 603 N.A. 107 121
78 4 500 603 N.A. 105 123
78 5 500 603 N.A. 102 117
79 1 500 637 93 93 112
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Table 10 (Continued)

Scen. ID Inst. ID n m OPT Best LB Best UB
79 2 500 637 N.A. 91 108
79 3 500 637 91 91 107
79 4 500 637 N.A. 86 106
79 5 500 637 85 85 98
80 1 500 672 N.A. 81 105
80 2 500 672 N.A. 77 98
80 3 500 672 N.A. 71 92
80 4 500 672 N.A. 71 103
80 5 500 672 N.A. 76 97

quite a stable behavior for all the algorithms in terms of quality of the bound on all
the small instances. This observation can be made also for the large instances.

6 Conclusions

We analyzed a relevant problem arising in telecommunication networks, namely, the
problem of finding a spanning tree with the minimum number of branch vertices.
Different procedures both to determine a lower bound and to determine an upper
bound to the optimum solution of the problem were proposed, tested and compared.
A deep analysis of the results was performed to gain insight on the trade-off between
quality of the returned solutions and required computational time for all proposed
methodologies.

When analyzing the quality of the upper bound we compared our Lagrangian ap-
proaches, SG and DA, with three heuristics existing in the literature. All the tested
methodologies are very fast, however, SG and DA show a better performance in terms
of quality of the solution.

When analyzing the quality of the lower bounds, the final conclusion makes SG
and DA preferable to the three continuous relaxations in terms of trade-off between
quality of solution and computational time. We outline here that, among all the con-
sidered procedures, SG and DA are the only ones able to provide simultaneously in
very fast computational time both an upper bound (better than the existing heuristics)
and a lower bound (whose quality is comparable to the continuous relaxation of the
considered models). Our final conclusion in then that SG and DA can be considered
as the election tool whenever it is necessary to run many times relaxed models to ob-
tain quick lower bounds and upper bounds (this is the case of application in a Branch
and Bound framework). While, whenever one is faced with the need of calculating a
better lower bound, the use of any Mixed relaxation appears definitely advisable.
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