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Abstract This paper presents a novel formulation of Multi Agent Collaborative
Search, for multi-objective optimization, based on Tchebycheff decomposition.
A population of agents combines heuristics that aim at exploring the search space
both globally (social moves) and in a neighborhood of each agent (individualistic
moves). In this novel formulation the selection process is based on a combination
of Tchebycheff scalarization and Pareto dominance. Furthermore, while in the previ-
ous implementation, social actions were applied to the whole population of agents
and individualistic actions only to an elite subpopulation, in this novel formula-
tion this mechanism is inverted. The novel agent-based algorithm is tested at first
on a standard benchmark of difficult problems and then on two specific problems
in space trajectory design. Its performance is compared against a number of state-
of-the-art multi-objective optimization algorithms. The results demonstrate that this
novel agent-based search has better performance with respect to its predecessor in a
number of cases and converges better than the other state-of-the-art algorithms with
a better spreading of the solutions.

Keywords Agent-based optimization · Multi-objective optimization · Memetic
strategies

1 Introduction

Multi-Agent Collaborative Search (MACS) has been proposed as a framework for
the implementation of hybrid, population-based, approaches for multi-objective opti-
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mization [20]. In this framework a number of heuristics are blended together in order
to achieve a balanced global and local exploration. In particular, the search for Pareto
optimal solutions is carried out by a population of agents implementing a combination
of social and individualistic actions. An external archive is then used to reconstruct
the Pareto optimal set.

The individualistic actions are devised to allow each agent to independently con-
verge to the Pareto optimal set, thus creating its own partial representation of the
Pareto front. Therefore, they can be regarded as memetic mechanisms associated to
a single individual. The effectiveness of the use of local moves was recently demon-
strated by Schuetze et al. [14]; Lara et al. [7] who proposed innovative local search
mechanisms based on mathematical programming.

Other examples of memetic algorithms for multi-objective optimization use local
sampling [5] or gradient-based methods [1–4, 6, 12, 16], generally building a scalar
function to be minimized or hybridizing an evolutionary algorithm with a Normal
Boundary Intersection (NBI) technique. The schedule with which the local search is
run is critical and defines the efficiency of the algorithm.

MACS has been applied to a number of standard problems and real applications
with good results, if compared to existing algorithms [10, 13, 18, 21]. The algorithm
proposed in this paper is a novel version of Multi-Agent Collaborative Search, for
multi-objective optimization problems, that implements some key elements of inno-
vation. Most of the search mechanisms have been simplified but more importantly in
this version Pareto dominance is not the only criterion used to rank and select the out-
comes of each action. Instead, agents are using Tchebycheff decomposition to solve a
number of single objective optimization problems in parallel. Furthermore, opposite
to previous implementations of MACS, here all agents perform individualistic actions
while social actions are performed only by selected sub-populations of agents.

Recent work by Zhang and Li [25] has demonstrated that Tchebycheff decomposi-
tion can be effectively used to solve difficult multi-objective optimization problems.
Another recent example is Sindhya et al. [16] that uses Tchebycheff scalarization to
introduce a local search mechanisms in NSGA-II. In this paper, it will be demon-
strated how MACS based on Tchebycheff decomposition can achieve very good re-
sults on a number of cases, improving over previous implementations and state-of-
the-art multi-objective optimization (MOO) algorithms.

The new algorithm is here applied to a set of known standard test cases and to two
space mission design problems. The space mission design cases consider spacecraft
equipped with a chemical engine and performing a multi-impulse transfer. They are
part of a test benchmark for multi-impulsive problems that has been extensively stud-
ied in the single objective case but for which only a few comparative studies exist in
the multi-objective case [11].

The paper is organized as follows: section two contains the general formulation of
the problem with a brief introduction to Tchebycheff decomposition, the third section
starts with a general introduction to the multi-agent collaborative search algorithm
and heuristics before going into some of the implementation details. Section four
contains a set of comparative tests that demonstrates the effectiveness of the new
heuristics implemented in MACS. The section briefly introduces the performance
metrics and ends with the results of the comparison.
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2 Problem formulation

The focus of this paper is on finding the feasible set of solutions that solves the
following problem:

min
x∈D

f(x) (1)

where D is a hyperrectangle defined as D = {xj | xj ∈ [bl
j bu

j ] ⊆ R, j = 1, . . . , n}
and f is the vector function:

f : D → R
m, f(x) = [

f1(x), f2(x), . . . , fm(x)
]T (2)

The optimality of a particular solution is defined through the concept of domi-
nance: with reference to problem (1), a vector y ∈ D is dominated by a vector x ∈ D

if fl(x) ≤ fl(y) for all l = 1, . . . ,m and there exists k so that fk(x) �= fk(y). The
relation x ≺ y states that x dominates y. A decision vector in D that is not dominated
by any other vector in D is said to be Pareto optimal. All non-dominated decision
vectors in D form the Pareto set DP and the corresponding image in criteria space is
the Pareto front

Starting from the concept of dominance, it is possible to associate, to each solution
in a finite set of solutions, the scalar dominance index:

Id(xi ) = ∣∣{i∗
∣∣ i, i∗ ∈ Np ∧ xi∗ ≺ xi

}∣∣ (3)

where the symbol |.| is used to denote the cardinality of a set and Np is the set of
the indices of all the solutions. All non-dominated and feasible solutions xi ∈ D with
i ∈ Np form the set:

X = {
xi ∈ D | Id(xi ) = 0

}
(4)

The set X is a subset of DP , therefore, the solution of problem (1) translates into
finding the elements of X. If DP is made of a collection of compact sets of finite
measure in R

n, then once an element of X is identified it makes sense to explore
its neighborhood to look for other elements of X. On the other hand, the set of non
dominated solutions can be disconnected and its elements can form islands in D.
Hence, multiple parallel exploration can increase the collection of elements of X.

2.1 Tchebycheff decomposition

In Tchebycheff’ approach to the solution of problem (1), a number of scalar opti-
mization problems are solved in the form:

min
x∈D

g
(
f(x), λ, z

) = min
x∈D

max
l=1,...,m

{
λl |fl(x) − zl |

}
(5)

where z = [z1, . . . , zm]T is the reference objective vector whose components are
zl = minx∈D fl(x), for l = 1, . . . ,m, and λl is the l-th component of the weight vec-
tor λ. By solving a number of problems (5), with different weight vectors, one can
obtain different Pareto optimal solutions. Although the final goal is always to find the
set X, using the solution of problem (5) or index (3) has substantially different conse-
quences in the way samples are generated and selected. In the following, the solution
to problem (5) will be used as selection criterion in combination with index (3).
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3 MACS with Tchebycheff decomposition

The key idea underneath multi-agent collaborative search is to combine local and
global search in a coordinated way such that local convergence is improved while
retaining global exploration [19]. This combination of local and global search is
achieved by endowing a set of agents with a repertoire of actions producing either
the sampling of the whole search space or the exploration of a neighborhood of each
agent. Actions are classified into two categories: social, or collaborative, and indi-
vidualistic. In this section, the key heuristics underneath MACS will be described in
details. Compared to previous implementations of MACS [20], this paper proposes a
number of key innovations. First of all, Tchebycheff decomposition is used in com-
bination with dominance-based ranking to accept the outcome of an action. The idea
is that each agent can either try to improve its dominance index or can try to im-
prove one particular objective function by working on a subproblem characterized by
a subset of weights λ. This combination extends the accepted individualistic moves
and improves the spreading of the solutions in the criteria space. The second inno-
vation comes from an inversion of the policy to schedule individualistic and social
actions. In previous implementations the whole population was participating in the
implementation of social actions at every generation, while an elite of agents was
implementing individualistic actions. In this paper, this policy is inverted and now
all the agents perform individualistic actions while selected subpopulations perform
social actions either with other agents in the current population or with elements in
the archive. This inversion is quite significant as it translates into a parallel local
search performed by the whole population at each iteration, rather than having the
local search performed by a selected number of individuals at a particular time of the
evolution. More specific heuristics are described in the next sections.

The use of either dominance or Tchebycheff scalarization leads to the selection of
different outcomes of the actions executed by the agents. With reference to Fig. 1(a)
the dominance criterion can be used to select a displacement of agent x in the dom-
inating region. In this case only strongly dominant solutions are accepted as admis-
sible for a displacement of agent x. Tchebycheff scalarization, instead, allows for
movements in the region of decreasing g(x) in Fig. 1(a).

This region extends the dominating region of Fig. 1(a) and includes part of the
non-dominating region. Therefore, Tchebycheff scalarization, as defined in (5) al-
lows for the selection of weakly efficient solutions. If λ is kept constant the agent
would progressively try to align along the direction ζ (see Fig. 1(b)). The rectilin-
ear line ζ divides the criteria space in Fig. 1(b) in two half-planes, one, below ζ ,
where λ1|f1(x) − z1| > λ2|f2(x) − z2|, the other, above ζ , where λ1|f1(x) − z1| <

λ2|f2(x) − z2|. The rectilinear line ζ is, therefore, the locus of points, in the criteria
space, for which λ1|f1(x) − z1| = λ2|f2(x) − z2|. Figure 1(b) shows that by solving
problem (5) one would take displacements in any direction that improves f1, starting
from a solution that is under the ζ line. If one of these displacements crosses the ζ

line, the solution of problem (5) would then generate displacements that improve f2.
This mechanisms allows for the generation of dominating steps (see Fig. 1(c)) as well
as side steps (see Fig. 1(d)). Side steps are important to move along the Pareto front
(see [7] for more details on the effect of side steps). In MACS side steps were gen-
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Fig. 1 Selection criteria

erated by accepting displacements in the non-dominating regions of Fig. 1(a) when
no dominant solutions were available. In MACS2 instead side steps are generated by
selecting displacements according to Tchebycheff scalarization when strongly domi-
nant solutions are not available. Note however, that although displacements are com-
puted considering a combination of strong dominance and Tchebycheff scalarization,
the archive is filled with all the solutions that have dominance index Id = 0 and a large
reciprocal distance (see Sect. 3.4).
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3.1 General algorithm description

A population P0 of npop virtual agents, one for each solution vector xi , with
i = 1, . . . , npop , is deployed in the problem domain D, and is evolved according
to Algorithm 1.

The population Ph at iteration h = 0 is initialized using a Latin Hypercube dis-
tribution. Each agent then evaluates the associated objective vector fi = f(xi ) and all
non-dominated agents are cloned and inserted in the global archive Ag (lines 4 and 5
in Algorithm 1). The archive Ag contains the current best estimation of the target

Algorithm 1 MACS2
1: Set nf eval,max , npop , nsocial = round(ρpopnpop), F , tolconv , nA,out , uiter

2: Set nλ = 100m, nA,max = round(1.5 max([nλ,nA,out ]))
3: Set nf eval = 0
4: Initialize population Ph, h = 0
5: Insert the non-dominated elements of P0 in the global archive Ag

6: ρi = 1, ∀i ∈ {1, . . . , npop}
7: Initialize λk for k ∈ {1, . . . , nλ} such that ‖λk‖ = 1
8: Initialize utility function vector Uk = 1, ∀k ∈ {1, . . . , nλ}
9: Select the nsocial active subproblems λl , and save their indexes l in the index

set Ia

10: Initialize δl = maxq φq,l − minq φq,l , zl = minq φq,l , q ∈ {1, . . . , |Ag|}, l =
1, . . . ,m,

11: for all k ∈ {1, . . . , nλ} do
12: φ

k
= arg minφq

g(φq,λk, z), q = 1, . . . , |Ag|
13: end for
14: for all λl , l ∈ Ia do
15: Select the [xq fq ] ∈ Ph which minimises g(fq, λl, z), l ∈ Ia

16: and save its index in the list of the social agents Iλ

17: end for
18: while nf eval < nf eval,max do
19: h = h + 1
20: [Ph,nf eval,Al, ρ] = explore(Ph−1, nf eval, n, ρ,bl ,bu, f, λ, Iλ, Ia)

21: If necessary, update the vector of the best objectives z, with Al

22: Update archive Ag with non dominated elements of Al

23: [y, ϕ,nf eval,Ph,Ag] = com(Ph,Ag,bl ,bu, nf eval, n,F, f, λ, Iλ, Ia)

24: if |Ag| > nA,max then
25: Ag = resize(Ag,m,nA,max)

26: end if
27: if (mod (h,uiter ) = 0) then
28: [Ia, Iλ,U, φ] = select(U, λ,φ,Pk,Ag, z,m,nsocial, nλ)

29: end if
30: end while
31: Ag = resize(Ag,m,nA,out )
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set X. The q-th element of the archive is the vector aq = [ξq φq ]T where ξq is a
vector in the parameter space and φq is a vector in the criteria space.

Each agent is associated to a neighborhood Dρi
with size ρi . The size ρi is initially

set to 1, i.e. representing the entire domain D (line 6 in Algorithm 1).
A set of nλ, m-dimensional unit vectors λk is initialized such that the first m vec-

tors are mutually orthogonal. The remaining nλ − m have random components in-
stead. In two dimensions the vectors are initialized with a uniform sampling on a
unit circle and in three dimensions with a uniform sampling on a unit sphere, while
in n-dimensions with a Latin Hypercube sampling plus normalization, such that the
length of each vector is 1 (see line 7 in Algorithm 1). For each vector λk , the value
of an associated utility function Uk is set to 1 (see line 8 in Algorithm 1). The utility
function is the one defined in [28] and its value is updated every uiter iterations using
Algorithm 5. In this work it was decided to maintain the exact definition and settings
of the utility function as can be found in [28], the interested reader can therefore refer
to [28] for further details.

Each λk represents a subproblem in Eq. (5), i.e. it is used to compute the scalar
function gk . A total of nsocial = round(ρpopnpop) λ vectors are inserted in the index
set Ia . The first m indexes in Ia correspond to the m orthogonal λ vectors, the other
nsocial − m are initially chosen randomly (line 9 of Algorithm 1).

Each λk for k = 1, . . . , nλ is associated to the element in Ag that minimizes gk

such that:

φ
k
= arg min

φq

g(φq,λk, z) (6)

where z is the vector containing the minimum values of each of the objective func-
tions. Then, for each λl , with l ∈ Ia and associated vector φ

l
, a social agent xq

is selected from the current population Ph such that it minimizes g(fq, λl, z). The
indexes of all the selected social agents are inserted in the index set Iλ (see lines
14 to 17 in Algorithm 1). The indexes in Ia and Iλ are updated every uiter itera-
tions.

At the h-th iteration, the population Ph is evolved through two sets of heuris-
tics: first, every agent xi performs a set of individualistic actions which aims at
exploring a neighborhood Dρi

of xi (line 20 of Algorithm 1), the function explore
described in Algorithm 2 is used to implement individualistic actions. All the sam-
ples collected during the execution of individualistic actions are stored in the local
archive Al . The elements of Al and the outcome of social actions are inserted in
the global archive Ag if they are not dominated by any element of Ag (line 22 in
Algorithm 1).

Then, a sub-population Iλ of nsocial selected social agents performs a set of social
actions (see line 23 of Algorithm 1). Social actions aim at sharing information among
agents. More details about individualistic and social actions are provided in the fol-
lowing sections. The function com described in Algorithm 3 is used to implement
social actions.

At the end of each iteration the global archive Ag is resized if its size has grown
larger than nA,max (line 25 in Algorithm 1). The resizing is performed by function
resize described in Algorithm 4.
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Algorithm 2 explore—Individualistic Actions

1: 	 = (bu − bl )/2
2: for all i = 1 : npop do
3: Set Al,i = Ø, pi ∈ Ia
4: Take a random permutation IE of {1, . . . , n}
5: for all j ∈ IE do
6: Take a random number r ∈ U (−1,1)

7: y+ = xi

8: if r > 0 then
9: y+

j
= min{y+

j
+ rρi	j , bu

j
}

10: else
11: y+

j
= max{y+

j
+ rρi	j , bl

j
}

12: end if
13: if y+ �= xi then
14: Evaluate ϕ+ = f(y+)

15: nf eval = nf eval + 1
16: if (y+

� xi ) then
17: Al,i = Al,i ∪ {[y+ ϕ+]}
18: end if
19: if y+ ≺ xi ∨ (i ∈ Iλ ∧ g(ϕ+, λpi , z) < g(fi , λpi , z)) then
20: xi = y+; break
21: end if
22: end if
23: y− = xi

24: Take a random number rr ∈ U (0,1)

25: if r > 0 then
26: y−

j
= max{y−

j
− rrρi	j , bl

j
}

27: else
28: y−

j
= min{y−

j
+ rrρi	j , bu

j
}

29: end if
30: if y− �= xi then
31: Evaluate ϕ− = f(y−)

32: nf eval = nf eval + 1
33: if y−

� xi then
34: Al,i = Al,i ∪ {[y− ϕ−]}
35: end if
36: if y− ≺ xi ∨ (i ∈ Iλ ∧ g(ϕ−, λpi , z) < g(fi , λpi , z)) then
37: xi = y−; break
38: end if
39: end if
40: end for
41: if y− � xi ∧ y+ � xi then
42: ρi = ηρρi

43: if ρi < tolconv then
44: ρi = 1
45: end if
46: end if
47: end for
48: Al = ⋃

i=1,...,npop
Al,i
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Algorithm 3 com—Social Actions

1: pAvsP = 1 − e−|Ag |/nsocial

2: for all i ∈ Iλ do
3: AvsP = r < pAvsP , r ∈ U (0,1), pi ∈ Ia

4: if AvsP ∧ |Ag| ≥ 3 then
5: Select the nsocial closest elements of the archive Ag to the agent xi and

save their indexes in the set IT

6: else
7: Select the nsocial closest agents of the population Pk to the agent xi and

save their indexes in the set IT

8: end if
9: K ∈ U (0,1)

10: Randomly select s1 �= s2 �= s3 ∈ IT

11: y = xi + K(s3 − xi ) + KF(s1 − s2)

12: for all j ∈ {1, . . . , n} do
13: r ∈ U (0,1)

14: if yj < bl
j then

15: yj = bl
j + r(yj − bl

j )

16: else if yj > bu
j then

17: yj = bu
j − r(bu

j − yj )

18: end if
19: end for
20: if y �= xi then
21: Evaluate ϕ = f(y)

22: nf eval = nf eval + 1
23: end if
24: If necessary, update z with ϕ

25: if g(ϕ,λpi
, z) < g(fi , λpi

, z) then
26: fi = ϕ, xi = y
27: end if
28: Update archive Ag with non-dominated elements of {[y ϕ]}
29: end for

The value nA,max was selected to be the largest number between 1.5nλ and
1.5nA,out , where nA,out is the desired number of Pareto optimal elements in Ag at
the last iteration. This resizing of the archive is done in order to reduce the compu-
tational burden required by operations like the computation of the dominance index.
It also provides an improved distribution of the solutions along the Pareto front as it
discards solutions that are excessively cluttered.

At the end of each iteration the algorithm also checks if the maximum number
of function evaluations nf eval,max , defined by the user, has been reached and if so,
the algorithm terminates. At termination, the archive Ag is resized to nA,out if its
cardinality is bigger than nA,out .
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Algorithm 4 resize—Archive Resizing
1: nA = |Ag|, S = Ø
2: δj = maxi φq,j − mini φq,j , ∀j = 1, . . . ,m

3: for all q ∈ {1, . . . , (nA − 1)} do
4: for all i ∈ {(q + 1), . . . , nA} do
5: dq,i = ‖(φq − φi)/δ‖
6: di,q = dq,i

7: end for
8: end for
9: for all l ∈ {1, . . . ,m} do

10: S = S ∪ {arg minq(φq,l)}
11: end for
12: Sn = {1, . . . , nA} \ S

13: for all i ∈ {m + 1, . . . , nA,max} do
14: lS = argmaxl (minq(dq,l)), q ∈ S, l ∈ Sn

15: S = S ∪ {lS}
16: Sn = Sn \ {lS}
17: end for
18: Ag = {ai |∀i ∈ S}

3.2 Individualistic actions

Individualistic actions perform an independent exploration of the neighborhood Dρi

of each agent. As in the original version of MACS [18] the neighborhood is progres-
sively resized so that the exploration is over the entire D when the size ρi is equal
to 1 and becomes progressively more and more local as the neighborhood shrinks
down. In this new implementation of MACS each agent performs only a simple sam-
pling along the coordinates. The neighborhood Dρi

is a hypercube centered in xi

with size defined by ρi such that each edge of the hypercube has length ρi(bu − bl).
Algorithm 2 describes individualistic actions.

The search is performed along a single component of xi at a time, in a random
order: given an agent xi , a sample y+ is taken within Dρi

along the j -th coordinate
with random step size r ∈ U (−1,1), where U (−1,1) is a uniform distribution over
the closed interval [−1 1], leaving the other components unchanged. If y+ dominates
xi , y+ replaces xi , otherwise another sample y− is taken in the opposite direction
with step size rr , with rr ∈ U (0,1). Again, if y− dominates xi , y− replaces xi . If yi

is not dominating and is not dominated by xi and the index i of xi belongs to Iλ, then
yi replaces xi if yi improves the value of the subproblem associated to xi . Whether
a dominant sample or a sample that improves the value of the subproblem is gener-
ated the exploration terminates. This is a key innovation that exploits Tchebycheff
decomposition and allows the agents to perform moves that improve one objective
function at the time. The search terminates also when all the components of xi have
been examined, even if all the generated samples are dominated (see Algorithm 2
lines 3 to 40).

If all children are dominated by their parent, the size of the neighborhood ρi is
reduced by a factor ηρ . Finally, if ρi is smaller than a tolerance tolconv , it is reset to 1
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(see Algorithm 2 lines 41 to 46). In all the tests in this paper ηρ was taken equal to
0.5 as this value provided good results, on average, across all test cases.

All the non-dominated children generated by each agent xi during the exploration
form the local archive Al,i . The elements of Al,i are inserted in the global archive Ag

if they are not dominated by any element in Ag .

3.3 Social actions

Social actions are performed by each agent whose index is in the set Iλ. Social actions
are meant to improve the subproblem defined by the weight vectors λk in Ia and
associated to the agents xi in Iλ. This is done by exploiting the information carried
by either the other agents in the population Ph or the elements in the archive Ag .
Social actions implement the Differential Evolution (DE) heuristic:

yi = xi + K
[
(s1 − xi ) + F(s2 − s3)

]
(7)

where the vectors sl , with l = 1, . . . ,3, are randomly taken from the local social
network IT of each social agent xi . The local social network is formed by either the
nsocial agents closest to xi or the nsocial elements of Ag closest to xi . The probability
of choosing the archive vs. the population is directly proportional to pAvsP (see line 3
of Algorithm 3). The parameter pAvsP is defined as 1−e−|Ag |/nsocial . This means that
in the limit case in which the archive is empty, the population is always selected. On
the other hand, if the archive is much larger than the population, it is more likely
to be selected. Note that, if the size of Ag is below 3 elements, then the population
is automatically chosen instead (line 4 of Algorithm 3) as the minimum number of
elements to form the step in (7) is 3. The offspring yi replaces xi if it improves
the subproblem associated to xi otherwise yi is added to the archive Ag if it is not
dominated by any of the elements of Ag . The value of F in this implementation is 0.9.
Social actions, described in Algorithm 3, dramatically improve the convergence speed
once a promising basin of attraction has been identified. On the other hand, in some
cases social actions lead to a collapse of the subpopulation of social agents in one
or more single points. This is in line with the convergence behavior of DE dynamics
presented in [24]. This drawback is partially mitigated by the remaining agents which
perform only individualistic actions. Algorithm 3 implements social actions.

3.4 Archive resizing

If the size of Ag exceeds a specified value (as detailed in Sect. 3.1), a resizing pro-
cedure is initiated. The resizing procedure progressively selects elements from the
current archive and adds them to the resized archive until its specified maximum
size nA,max is reached. First, the normalized Euclidean distances, in the objective
space, between all the elements of the current archive are computed (lines 3–8 of
Algorithm 4). Then the l-th element minimizing the l-th objective function, with
l = 1, . . . ,m, is inserted in the resized archive (lines 9 to 12 of Algorithm 4). The
remaining nA,max − m elements are iteratively selected by considering each time the
element of the current archive (excluding those which are already in the resized one)
which has the largest distance from its closet element in the resized archive (lines 13
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Algorithm 5 select—Subproblem Selection
1: φ

old
= φ

2: for all k ∈ {1, . . . , nλ} do
3: φ

k
= arg minφq

g(φq,λk, z), q ∈ {1, . . . , |Ag|}
4: γ = (g(φ

old,k
, λk, z) − g(φ

k
,λk, z))

5: if γ > 0.001 then
6: Uk = 1
7: else
8: Uk = (0.95 + 50γ )Uk

9: end if
10: end for
11: tsize = round(nλ/60)

12: Ia = {1, . . . ,m}
13: for all i ∈ {m + 1, . . . , nsocial} do
14: Randomly select a subset Isel of tsize elements of {1, . . . , nλ}
15: k̄ = argmaxk Uk, k ∈ Isel

16: Ia = Ia ∪ {k̄}
17: end for
18: for all λl , l ∈ Ia do
19: Select the [xq fq ] ∈ Ph which minimises g(fq, λl, z), l ∈ Ia

20: and save its index in the list of the social agents Iλ

21: end for

to 17 of Algorithm 4). This procedure provides a good uniformity in the distribution
of samples. Future work will investigate the comparative performance of different
archiving strategies like the one proposed in [8] and [15].

3.5 Subproblem selection

Every uiter iterations the active subproblems in Ia and the associated agents in Iλ per-
forming social actions are updated. The agents performing social actions are updated
through function select described in Algorithm 5.

The improvement γ between φ
k

(i.e. the best value of gk at current iteration in
the global archive) and φ

old,k
(the best value of gk , uiter iterations before) is calcu-

lated. Then, the utility function Uk associated to λk is updated according to the rule
described in [28] and reported in Algorithm 5, lines 2 to 10.

Once a value Uk is associated to each λk , nsocial new subproblems and associated
λ vectors are selected. The first m λ vectors are always the orthogonal ones. The
remaining nsocial − m are selected by taking tsize = round(nλ/60) random indexes
and then choosing the one with the largest value of Uk . This is repeated till Ia is full
(see lines 11 to 17 in Algorithm 5). Note that tsize cannot exceed the size of Itmp in
Algorithm 5 if the number of social agents nsocial is small compared to nλ

Finally, the agent xi , that minimizes the scalar objective function in Eq. (5) is
associated to each λk with index in Ia , and its index is included in the new subset Iλ

(lines 18 to 21 in Algorithm 5).
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4 Experimental results

The new implementation of MACS is here called MACS2. This section presents the
performance of MACS2 on a standard benchmark for multi-objective optimization
algorithms and on some space-related test cases. Through an experimental analysis
an optimal settings for MACS2 is derived. The results obtained with MACS2 will
also be compared with those of MACS and other known multi-objective optimization
algorithms [26]. The standard benchmark problems aim at optimizing the UF1-10
functions in the CEC09 test suite [27] and the test instances ZDT2, ZDT4, ZDT6 [29].
UF1 to UF7 are bi-objective test functions with 30 optimization parameters. UF8 to
UF10 are tri-objective functions, again with 30 optimization parameters. The CEC09
competition rules specified 300000 function evaluations and 100 and 150 elements
for the output Pareto fronts for the bi- and tri-objective functions respectively. ZDT2
ZDT4 and ZDT6 are bi-objective test cases with 30 parameters for the first one and
10 for the remaining two. They are tested running the algorithm for 25000 evaluations
and taking an output front of 200 elements. The space-related test instances are given
by two trajectory optimization problems as described in [11, 21]. The former is a 3-
impulse transfer between a circular Low Earth Orbit (LEO) with radius r0 = 7000 km
to a Geostationary Orbit (GEO) with radius rf = 42000 km. The latter test case,
Cassini, describes a trajectory optimization instance from Earth to Jupiter with four
intermediate gravity assists at Venus (twice), Earth and Jupiter respectively. For both
test cases the objective functions to be minimized are total 	V and time of flight.
The 3-impulse test case has 5 optimization parameters and is run for 30000 function
evaluations while Cassini has 6 parameters and is run for 600000 evaluations as it
was demonstrated, in the single objective case, to have multiple nested local minima
with a funnel structure [24]. The metrics which will be used in order to evaluate the
performance of the algorithms are chosen so to have a direct comparison of the results
in this paper with those in previous works. Therefore, for the CEC09 test set the IGD
performance metric will be used [27]:

IGD
(
A,P ∗) = 1

|P ∗|
∑

v∈P ∗
min
a∈A

‖v − a‖ (8)

where P ∗ is a set of equispaced points on the true Pareto front, in the objective space,
while A is the set of points from the approximation of the Pareto front. As in [27],
performance will be assessed as mean and standard deviation of the IGD over 30
independent runs. Note that a second batch of tests was performed taking 200 inde-
pendent runs but the value of the IGD was providing similar indications. For the ZDT
test set and for the space problems, the success rate on the convergence Mconv and
spreading Mspr metrics are used instead. Note that, the IGD metric has been preferred
for the UF test problems in order to keep consistency with the results presented in the
CEC’09 competition. Convergence and spreading are defined as:

Mconv = 1

|A|
∑

a∈A

min
v∈P ∗

∥∥∥∥
v − a

δ

∥∥∥∥ (9)

Mspr = 1

|P ∗|
∑

v∈P ∗
min
a∈A

∥∥∥∥
v − a

δ

∥∥∥∥ (10)
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Table 1 Convergence
tolerances 3-impulse Cassini UF1 UF2 UF3 UF4 UF5 UF6

τconv 5e–2 7.5e–3 5e–3 5e–3 2e–2 3.5e–2 3e–2 3e–2

τspr 5e–2 5e–2 1e–2 1e–2 3e–2 3.5e–2 5e–2 3e–2

UF7 UF8 UF9 UF10 ZDT2 ZDT4 ZDT6

τconv 5e–3 2e–2 3e–2 3e–2 1e–3 1e–2 1e–3

τspr 1e–2 6e–2 4e–2 6e–2 3e–3 1.5e–2 3e–3

Table 2 Reference settings for
MACS2. Values within
parenthesis are for 3-impulse
and ZDT test cases

npop ρpop F Tolconv

60 (30) 0.33 0.5 0.0001

with δ = maxi af,i − mini af,i . It is clear that Mspr is the IGD but with the solu-
tion difference, in objective space, normalized with respect to the exact (or best-
so-far) solution. In the case of the ZDT test set, the two objective functions range
from 0 to 1, therefore no normalization is required and Mspr is in fact the IGD.
The success rates for Mconv and Mspr is defined as pconv = P(Mconv < τconv) and
pspr = P(Mspr < τspr) respectively, or the probability that the indexes Mconv and
Mspr achieve a value less than the threshold τconv and τspr respectively. The success
rates pconv and pspr are computed over 200 independent runs, hence they account
for the number of times Mconv and Mspr are below their respective thresholds. Ac-
cording to the theory developed in [11, 23], 200 runs provide a 5 % error interval
with a 95 % confidence level. Values for thresholds for each test case are reported in
Table 1.

MACS2 was initially set with a some arbitrary values reported in Table 2. The size
of the population was set to 60 for all the test cases except for the 3-impulse and ZDT
functions. For these test cases the number of agents was set to 30. In the following,
these values will identify the reference settings.

Starting from this reference settings a number of tuning experiments were run to
investigate the reciprocal influence of different parameters and different heuristics
within the algorithm. Different combinations of npop , ρpop , F and Tolconv were con-
sidered. Furthermore, the social moves were activated or de-activated to assess their
impact. The success rates were then used to tune the algorithm in order to improve
the spreading, and therefore the IGD. After an extensive testing of the algorithms, it
was realized that the use of the success rates offers a clearer metric, than the mean
and variance of the IGD, to understand the impact of some user-defined parameters.
In the following, only the most significant results with the most significant metric are
presented.

Table 3 summarizes the success rates on the Cassini test case for different values
of npop and ρpop but with all the heuristics active.

One can see that the best convergence is obtained for npop = 150 and in particular
when combined with ρpop = 0.5. On the other hand, best spreading is obtained with
medium sized populations with npop = 60. A good compromise seems to be npop =
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Table 3 Tuning of npop and
ρpop on the Cassini test case pconv

ρpop\npop 20 60 150

0.2 0.22 0.34 0.76

0.5 0.16 0.41 0.78

0.8 0.35 0.40 0.77

pspr

ρpop\npop 20 60 150

0.2 0.32 0.45 0.31

0.5 0.45 0.48 0.26

0.8 0.37 0.40 0.26

Table 4 Tuning of MACS2 on
the 3-impulse and Cassini test
cases

3-impulse Cassini

pconv pspr pconv pspr

Reference 0.99 0.99 0.38 0.36

no social 0.47 1 0 0.18

npop = 150, ρpop = 0.2 1 1 0.76 0.31

F = 0.9 0.97 0.99 0.50 0.36

Tolconv = 10−6 0.99 0.99 0.38 0.45

Tolconv = 10−2 0.97 0.99 0.33 0.39

150 and ρpop = 0.2. Results on the other test cases (as shown in Table 4, Table 5
and Table 6, with npop = 150 and ρpop = 0.2) show in general that large populations
and small ρpop are preferable. This also means that social actions on a large quota
of the populations are undesirable and it is better to perform social moves among a
restricted circle of agents. Table 4 reports the results of the tuning of MACS2 on the
3-imp and Cassini test cases. Table 5 and Table 6 report the results of the tuning of
MACS2 on the UF and ZDT test sets respectively.

Table 4 shows a marked improvement of pconv on the Cassini when the population
size is 150. Likewise, Table 5 shows that in general, with a population of 150 agents,
there is an improvement in performance, and on pspr in particular, on the UF1, 2,
6, 8 and 9 test cases. Notable exceptions are the ZDT in Table 6, for which the best
performance is obtained for a small population with npop = 20.

The impact of F is uncertain in many cases, however, Table 7 shows for exam-
ple that on the UF8 test case a better performance is obtained for a high value of F .
Table 5 and Table 6 show that the default value for Tolconv already gives good perfor-
mance and it does not seem advantageous to reduce it or make it larger.

The impact of social actions can be seen in Table 4, Table 5 and Table 6. Ta-
ble 4 shows that on the 3-impulse and Cassini test cases the impact is clearly evident,
since there is a marked worsening of both pconv and pspr . On the UF benchmark, see
Table 5, removing social actions induces a sizeable worsening of the performance
metrics. This is true in particular for functions UF1, UF3, UF5, UF6, UF7, UF8 and
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Table 5 Tuning of MACS2 on the UF test cases

Reference no social npop = 150
ρpop = 0.2

npop = 20
ρpop = 0.8

Tolconv = 10−6

UF1 pconv 1 1 1 1 1

pspr 1 1 1 0.11 1

UF2 pconv 1 1 1 1 1

pspr 1 1 1 0.46 1

UF3 pconv 0.95 0.32 0.99 0.86 0.95

pspr 0.99 0.11 1 0.97 1

UF4 pconv 1 1 1 0.06 1

pspr 1 1 1 0.54 1

UF5 pconv 0.59 0.10 0.62 0.91 0.58

pspr 0.85 0.21 1 0.39 0.85

UF6 pconv 0.58 0.50 0.32 0.54 0.61

pspr 0.40 0.42 0.45 0 0.37

UF7 pconv 1 0.91 1 0.94 1

pspr 0.98 0 0.98 0.74 0.97

UF8 pconv 0.86 0 0.88 0.89 0.88

pspr 0.48 0.01 1 0.04 0.54

UF9 pconv 0.68 0.12 0.84 0.31 0.74

pspr 0.60 0 1 0 0.64

UF10 pconv 0 0.01 0 0.28 0.01

pspr 0 0 0 0 0

Table 6 Tuning of MACS2 on ZDT test cases

ZDT2
τconv = 1e–3
τspr = 3e–3

ZDT4
τconv = 1e–2
τspr = 1.5e–2

ZDT6
τconv = 1e–3
τspr = 3e–3

Reference pconv 1 0 0.93

pspr 1 0 1

no social pconv 1 0 0.91

pspr 1 0 0.98

npop = 150 pconv 0.20 0 0.60

ρpop = 0.2 pspr 0.17 0 1

npop = 20 pconv 1 0.02 0.96

ρpop = 0.8 pspr 1 0.02 1

F = 0.9 pconv 1 0 0.96

pspr 1 0 1

Tolconv = 1e–6 pconv 1 0 0.96

pspr 1 0 1

MACS2 (Tuned) pconv 1 0 0.96

pspr 1 0 1

MACS pconv 0.82 0.81 0.63

pspr 0 0.93 0.0
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Table 7 Tuning of F on the
UF8 test cases UF8

F 0.1 0.5 0.9

IGD 6.75e–2 (3.20e–5) 6.06e–2 (2.56e–5) 5.57e–2 (1.87e–5)

Table 8 Settings for MACS2
after tuning npop ρpop F Tolconv

150(20) 0.2(0.8) 0.9 10−4

Table 9 Performance comparison on UF test cases: Average IGD (variance within parenthesis)

MACS2 MACS MOEAD MTS DMOEADD

UF1 4.37e–3 (1.67e–8) 1.15e–1 (1.66e–3) 4.35e–3 6.46e–3 1.04e–2

UF2 4.48e–3 (1.16e–8) 5.43e–2 (4.19e–4) 6.79e–3 6.15e–3 6.79e–3

UF3 2.29e–2 (5.21e–6) 6.56e–2 (1.42e–3) 7.42e–3 5.31e–2 3.34e–2

UF4 2.64e–2 (3.48e–7) 3.36e–2 (1.66e–5) 6.39e–2 2.36e–2 4.27e–2

UF5 2.95e–2 (1.56e–5) 6.44e–2 (1.17e–3) 1.81e–1 1.49e–2 3.15e–1

UF6 3.31e–2 (7.42e–4) 2.40e–1 (1.43e–2) 1.76e–1 5.91e–2 6.67e–2

UF7 6.12e–3 (3.14e–6) 1.69e–1 (1.22e–2) 4.44e–3 4.08e–2 1.03e–2

UF8 4.98e–2 (2.05e–6) 2.35e–1 (1.77e–3) 5.84e–2 1.13e–1 6.84e–2

UF9 3.23e–2 (2.68e–6) 2.68e–1 (1.71e–2) 7.90e–2 1.14e–1 4.90e–2

UF10 1.41e–1 (5.59e–5) 1.25 (4.28e–1) 4.74e–1 1.53e–1 3.22e–1

UF9. Notable exceptions are UF2, UF4 and UF10. As a results of the tuning test cam-
paign, the settings reported in Table 8 are recommended. Note that the recommended
population size for all the cases except the ZDT functions, is 150 agents, while for
the ZDT functions remains 20 agents.

With these settings, the performance of MACS2 was compared, on the UF test
suite in Table 9, with that of MACS, Multi objective Evolutionary Algorithm based
on Decomposition (MOEAD [25]), Multiple Trajectory Search (MTS [17]) and Dy-
namical Multi Objective Evolutionary Algorithm (DMOEADD [9]). The last three
are the best performing algorithms in the CEC09 competition [26].

As shown in Table 9, the tuned version of MACS2 outperforms the other algo-
rithms on UF2, 3, 6, 8, 9 and 10, on UF1 is very close to MOEAD, while it ranks
second on UF5 and 10 and finally third on UF7.

In Table 6 one can find the comparison against the old version MACS on the ZDT
test set. MACS2 results generally better except on the ZDT4 case. Note that Mspr

of MACS for both ZDT2 and ZDT6 is always between 0.6e-2 and 0.9e-2, therefore
always above the chosen threshold τspr .

The poor performance of MACS2 on ZDT4, might be due to the relative ineffec-
tiveness of the pattern search along the coordinates on this particular test case. In the
attempt to improve performance on ZDT4, a second test set was run with a slightly
modified version of MACS2: the number of components which are explored by each
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Table 10 Comparison of
MACS, MACS2 and MOEAD
on 3-impulse and Cassini test
cases

3-impulse Cassini

pconv pspr pconv pspr

MACS 0.99 0.99 0.87 0.49

MACS2 (Tuned) 0.99 1 0.77 0.34

MOEAD 1 0.49 0.51 0.01

MTS 0.57 1 0.05 0.32

NSGA-II 0.03 1 0.90 0.26

Fig. 2 Comparison of Pareto
fronts for the Cassini case

agent at the h-th iteration was reduced to 1 only, compared to the n in Algorithm 2,
at the same time, all individuals were performing social actions, i.e. nsocial = npop .
With this modifications, a success rate of 0.66 both on convergence and spreading is
achieved although the pconv and pspr on ZDT2 drops to 0 and the pconv on ZDT6
drops to 23 %.

Table 10 shows a comparison of the performance of MACS2 on 3-impulse and
Cassini, against MACS, MOEAD, MTS and NSGA-II. Both MACS and MACS2 are
able to reliably solve the 3-impulse case, while MOEAD manages to attain good con-
vergence but with only mediocre spreading. On the contrary, both MTS and NSGA-II
achieve good spreading but worse convergence, indicating that their fronts are quite
well distributed but probably too distant from the true Pareto front. Cassini is a rather
difficult problem and this is reflected by the generally lower metrics achieved by most
algorithms. Only MACS, MACS2 and NSGA-II reach a high convergence ratio, but
for the last two, their spreading is still rather low. After inspection of each of the 200
Pareto fronts one can see that such a low spreading implies that the algorithm did
not converge to the global Pareto front. Figure 2 illustrates the difference between
MACS and NSGA-II. The behavior of MACS2 is similar to the one of NSGA-II.
MACS achieves the best known value for objective function 	v. Both NSGA-II and
MACS2 instead fall in the basin of attraction of the second best value for objective
function 	v [22].
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The performance of MOEAD and MTS on Cassini is rather poor, with the former
attaining only 50 % convergence but with almost zero pspr ; conversely, only one
third of the latter’s runs are below the spreading threshold and almost none meets the
convergence criterion.

5 Conclusions

This paper has presented a version of Multi-Agent Collaborative Search based on
Tchebycheff decomposition. Compared to the previous version of MACS a number
of heuristics has been revised and in particular there was an inversion of the per-
centage of agents performing social and individualistic moves. The new version, de-
nominated MACS2, demonstrated remarkable performance on known difficult bench-
marks outperforming known algorithms. On the Cassini real case application, and on
benchmark function ZDT4, MACS2 falls back behind its predecessor. In both cases
there are multiple local Pareto fronts corresponding to strong attractors. From a first
analysis it seems that the simple pattern search implemented in MACS2 is not suf-
ficient and is limited by its search along the coordinates only. In MACS the search
included random directions and directions derived from DE and PSO heuristics. It
seems reasonable to assume that a more flexible set of individualistic moves might
improve MACS2. This is the subject of current developments. Also, from the tests
performed so far the actual contribution of the utility function is uncertain and more
investigations are underway.

The use of a selection operator based on Tchebycheff decomposition, instead, ap-
pears to be beneficial in a number of cases. In MACS2, in particular, agents operating
at the extreme of the range of each objective are always preserved and forced to
improve a subproblem. A better solution of the subproblems is expected to further
improve convergence. One possibility currently under investigation is to make some
agents use a directed search exploiting the directions defined by the λ vectors.
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