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Abstract Given a simple undirected graph, the problem of finding a maximum sub-
set of vertices satisfying a nontrivial, interesting property Π that is hereditary on in-
duced subgraphs, is known to be NP-hard. Many well-known graph properties meet
the above conditions, making the problem widely applicable. This paper proposes a
general purpose exact algorithmic framework to solve this problem and investigates
key algorithm design and implementation issues that are helpful in tailoring the gen-
eral framework for specific graph properties. The performance of the algorithms so
derived for the maximum s-plex and the maximum s-defective clique problems, which
arise in network-based data mining applications, is assessed through a computational
study.
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1 Introduction

Given a simple, undirected graph G = (V ,E), let G[S] denote the subgraph induced
by a subset of vertices S ⊆ V . A graph property Π is said to be hereditary on induced
subgraphs, if for any S ⊆ V such that G[S] satisfies property Π , the deletion of any
subset of vertices in G[S] does not produce a graph violating Π . Property Π is said to
be nontrivial if it is true for a single-vertex graph and is not satisfied by every graph.
A property is said to be interesting if there are arbitrarily large graphs satisfying Π .
Given a fixed graph property Π , the the maximum Π problem seeks to find a largest
order subset of vertices inducing a subgraph satisfying property Π . Clearly, the max-
imum Π problem is meaningful only if Π is nontrivial and interesting, therefore, we
will assume that these properties are satisfied for all the considered problems without
stating this explicitly. Yannakakis [50] obtained a general complexity result for such
properties Π as stated in Theorem 1 (see also [28, 29, 51]).

Theorem 1 [50] The maximum Π problem for nontrivial, interesting graph proper-
ties that are hereditary on induced subgraphs is NP-hard.

The broad scope of this result is evident from the following examples of Π that
meet (what are henceforth referred to as) the Yannakakis conditions: clique, indepen-
dent set, planar, outerplanar, perfect, bipartite, complete bipartite, acyclic, degree-
constrained, interval, and chordal graphs among others. In particular, the proof of the
above theorem relies heavily on properties of cliques and independent sets, which
are defined next. A clique C ⊆ V is a subset of vertices such that G[C] is complete,
i.e., vertices of C are pairwise adjacent. An independent set is a subset of pairwise
nonadjacent vertices in a graph. Clearly, C is a clique in G if and only if C is an
independent set in the complement graph Ḡ = (V , Ē).

A maximum clique (independent set) is a clique (independent set) of the largest
cardinality in the graph, whose size is the clique number (independence number) of
G denoted by ω(G) (α(G)). The maximum clique and the maximum independent set
are well-known problems in combinatorial optimization which are NP-hard [22] and
hard to approximate [24]. Weighted versions of these problems seek to find a maxi-
mum weight clique (independent set) in G = (V ,E) where weights w(v), v ∈ V are
assumed to be positive. The weight of a clique (independent set) is the sum of the
weights of vertices in the corresponding set. Note that a maximum weight clique (in-
dependent set) need not be a maximum size clique (independent set) in the graph, but
it will be maximal by inclusion since the weights are positive. An exact algorithm for
the weighted problem can solve the unweighted problem (with unit weights), while
the converse is not true. Cliques and independent sets have found applications in sev-
eral areas such as coding theory [15, 42–44], telecommunication [1, 26, 38], fault-
diagnosis [23], biochemistry [16], portfolio selection [11, 12], and social network
analysis [39] among others. For a survey of the maximum clique problem formula-
tions, exact and heuristic algorithms, see [13].

Motivated by the wide applicability of Yannakakis theorem and the effectiveness
of algorithms that can be classified as Russian Doll Search (RDS) approaches to
the maximum clique problem [17, 35], this paper introduces a general algorithmic
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framework for solving the maximum weight Π problem to optimality for any graph
property Π that meets the Yannakakis conditions in Sect. 2. This general framework
argues for the necessity and sufficiency of Yannakakis conditions in admitting the ex-
tension of RDS to graph properties other than cliques. Section 3 discusses algorithm
design and implementation issues that help tailor the general framework for specific
graph properties, namely, s-plexes [40] and s-defective cliques [52]. These are two
hereditary clique relaxations used in graph-based data mining applications, specifi-
cally in social and biological network analysis. The performance of the algorithms
so derived for the maximum s-plex problem, and the maximum s-defective clique
problem, is assessed through a computational study detailed in Sect. 4. The paper is
concluded in Sect. 5, and the Appendix (Online Supplement) includes the complete
set of numerical results.

2 The maximum weight Π problem and a general algorithm

Exact combinatorial algorithms for the maximum clique problem have been devel-
oped by Bron and Kerbosch [14], Balas and Yu [6], Applegate and Johnson [2], Car-
raghan and Pardalos [17], Babel [3], Balas and Xue [5], Wood [49], Sewell [41],
Östergård [35] and Tomita and Kameda [45]. Östergård also presented an extension
designed to solve the weighted version of the problem in [34]. The algorithmic frame-
work presented in this section is a direct generalization of Östergård’s algorithm for
the maximum weight clique problem [34], which is itself a variant of the RDS algo-
rithm proposed in [47] for constraint satisfaction problems. RDS has recently been
applied to other discrete optimization problems such as the Steiner triple covering
problem and the maximum transitive subtournament problem [36, 46].

Our choice of the RDS approach as the basis for a general framework applicable
to any hereditary property is motivated by its simplicity and effectiveness. It should
be noted that a variant of the Carraghan-Pardalos algorithm was used as a bench-
mark exact algorithm [2] for the maximum clique problem in the Second DIMACS
Implementation Challenge [25]. Östergård’s algorithm enhances the framework pro-
posed by Carraghan and Pardalos, yielding what is known to be one the fastest exact
combinatorial algorithms for solving the maximum clique problem [35]. According
to the results reported by Tomita and Kameda [45] for randomly generated test in-
stances and DIMACS benchmark instances [19], their algorithm appears to be the
fastest available algorithm in published literature with Östergård’s algorithm follow-
ing closely behind at the time.

Consider a simple, undirected graph G = (V ,E), positive weights w(v) for each
v ∈ V , and a property Π that satisfies the Yannakakis conditions. Define the invariant
μ(G) as follows:

μ(G) = max
{
w(P ) : P ⊆ V, G[P ] satisfies Π

}
,

where w(P ) = ∑
v∈P w(v). Finding P ∗ such that μ(G) = w(P ∗) constitutes the

maximum weight Π problem. When w(v) = 1 ∀v ∈ V , this is the maximum Π prob-
lem. Note that the assumption of positive weights is not restrictive when Π is heredi-
tary, as vertices with nonpositive weights can be deleted without changing μ(·). Un-
der this assumption, an optimal P ∗ such that w(P ∗) = μ(G) will be maximal by

http://dx.doi.org/10.1007/s10589-013-9548-5
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Algorithm 1 RDS Algorithm for The Maximum Π Problem
1: procedure RDS-ALGORITHM(G,Π )
2: Order(V ) � Vertex ordering point
3: max := 0
4: for i := n downto 1 do
5: C := {v ∈ Si \ {vi} : {v, vi} satisfies Π} � Π -verification
6: FINDMAXΠ (C, {vi})
7: μ(i) := max
8: end for
9: return max

10: end procedure

11: procedure FINDMAXΠ (C,P)
12: if C = ∅ then
13: if w(P ) > max then
14: max := w(P )

15: end if
16: return
17: end if
18: while C �= ∅ do
19: if w(C) + w(P ) < max then
20: return � Prune point 1
21: end if
22: i := min{j : vj ∈ C}
23: if μ(i) + w(P ) < max then
24: return � Prune point 2
25: end if
26: C := C \ {vi}
27: P ′ := P ∪ {vi}
28: C′ := {v ∈ C : P ′ ∪ {v} satisfies Π} � Π -verification
29: FINDMAXΠ (C′,P ′)
30: end while
31: end procedure

inclusion. Based on Theorem 1 and the fact that the unweighted version is a special
case, the maximum weight Π problem is also NP-hard.

Algorithm 1 presenting the overall framework proceeds as follows. First, we im-
pose an ordering of vertices in V and use the notation V = (v1, v2, . . . , vn) to refer
to the set of ordered vertices. With the sets Si ⊆ V defined as Si = {vi, vi+1, . . . , vn},
Algorithm 1 computes μ(G[Si]), denoted simply by μ(i). Obviously, μ(n) = w(vn)

and μ(1) = μ(G). The algorithm computes the value of μ(i) starting from μ(n)

and down to μ(1), and clearly μ(i) ≥ μ(i + 1). Moreover, if μ(i) > μ(i + 1), then
any solution that yields the value μ(i) contains vertex vi . Otherwise, there exists
a solution Pi , such that μ(i) = w(Pi) and vi /∈ Pi , then Pi ⊆ Si \ {vi} = Si+1 im-
plying, μ(i + 1) = μ(i), a contradiction. Therefore, for the unweighted case with
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w(vi) = 1, i = 1, . . . , n, the above argument implies that,

μ(i) =
{

μ(i + 1) + 1, if every corresponding solution contains vi

μ(i + 1), otherwise

For the general weighted case, it is important to observe that a similar claim, i.e.
μ(i) = μ(i + 1) or μ(i) = μ(i + 1) + w(vi) would be incorrect. However, μ(i) >

μ(i + 1) implies that vi belongs to every optimal solution, and μ(i) ≤ μ(i + 1) +
w(vi).

In order to understand the importance of requiring Π to be hereditary on induced
subgraphs, consider the following definition of Π which is not hereditary on induced
subgraphs. G is said to satisfy Π if the diameter of G is at most two (the subset of
vertices inducing a subgraph satisfying such a Π is also called a 2-club [9]). Now con-
sider the graph G = (V ,E) where V = {v1, . . . , vn} and E = {(v1, vi) : i = 2, . . . , n},
i.e., G is a star graph with central vertex v1 and leaves v2, . . . , vn. Assuming unit
weights, μ(i) = 1 ∀i = 2, . . . , n, but μ(1) = n. This is because G satisfies Π while
any induced subgraph with at least two vertices obtained by deleting v1 violates Π .

Algorithm 1 computes μ(n),μ(n−1), . . . ,μ(1) using backtracking, and employs
two pruning strategies (discussed later). In particular, the second pruning strategy is
based on the bounded increase going from i + 1 to i, which only holds in general
(for any graph and any ordering) when Π is hereditary. The second pruning strategy
is a key factor contributing to the effectiveness of Östergård’s algorithm, which is
dependent on the hereditary nature of Π .

The main procedure RDS-ALGORITHM accepts graph G (and property Π ) as in-
put and calls the recursive procedure FINDMAXΠ to compute the values of μ(i). The
procedure FINDMAXΠ is the core of the algorithm and finds a maximum weight sub-
graph with property Π using two sets as the input: (i) the working set C (also known
as candidate list or candidate set) is the set of vertices that may be used to build a
subgraph with property Π , and (ii) the set of vertices P that represents the currently
found subgraph with property Π . The procedure chooses vertices from C one by one,
adds a chosen vertex to the current graph P , updates the candidate list, and calls itself
with new values of input sets. Obviously, if the candidate set is empty, the procedure
terminates returning the best weight value found. Other points of termination are the
prune points at Line 20 and Line 24 indicated in Algorithm 1, referred to as type 1
and type 2 pruning, respectively. Pruning of the first type occurs when the weight
of the current subgraph together with the weight of the whole candidate set is less
than the incumbent max. The second type of pruning occurs when the weight of the
current subgraph together with μ(i) (which is best possible in G[Si]) is less than the
incumbent max.

This general framework to solve the maximum weight Π problem would be a
depth-first search order complete enumeration in the absence of both prune points 1
and 2; with only prune point 1, the algorithm is a depth-first search order implicit enu-
meration. The latter results in a “Carraghan-Pardalos type” backtracking algorithm
for the maximum clique problem [17]. The second type of pruning is facilitated by
the vertex ordering, and the ensuing arguments on bounded increase in μ(i) devel-
oped by Östergård [34, 35] for the maximum clique problem. One of the key design
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elements that heavily influences the effectiveness of this algorithm is the choice of a
vertex ordering scheme that “encourages” type 2 pruning. While the general frame-
work itself conceptually subsumes other approaches, key implementation issues need
to be addressed to make the resulting algorithm as effective for the particular problem
under consideration as the Östergård’s algorithm is for the maximum clique problem.
In the remainder of this paper, we study the development of such an implementation
for the maximum s-plex problem and the maximum s-defective clique problem.

3 Adaptation of the algorithm for two hereditary clique relaxations

Definition 1 Given a simple, undirected graph G = (V ,E) and a fixed positive inte-
ger s, a subset of vertices S is an s-plex if it satisfies the following property:

∣∣N(v) ∩ S
∣∣ ≥ |S| − s ∀v ∈ S,

where N(v) is the neighborhood of v (i.e., N(v) = {u ∈ V : (u, v) ∈ E}). In other
words, the minimum vertex degree in G[S] is at least |S| − s.

The case s = 1 corresponds to a clique, and for s > 1, the s-plex model is a relax-
ation of clique which allows for at most s − 1 non-neighbors for each vertex.

Definition 2 Given a simple, undirected graph G = (V ,E) and a fixed nonnegative
integer s, an s-defective clique S is a subset of vertices that satisfies the following
property:

∣∣E[S]∣∣ ≥
(|S|

2

)
− s,

where E[S] is the edge set of the subgraph induced by S.

A 0-defective clique is a clique, and the s-defective clique model for s > 0 relaxes
the clique requirement of having all possible edges by allowing at most s edges to be
absent from the induced subgraph.

The maximum weight s-plex problem and the maximum weight s-defective clique
problem are the optimization problems of interest. The s-plex model was introduced
by Seidman and Foster [40] to represent cohesive subgroups in social network anal-
ysis [48]. A typical social network is the acquaintance network were vertices repre-
sent people and an edge indicates that the two people represented by the end-points
know each other. Seidman and Foster were motivated by the observation that cliques
were capable of modeling “ideal” cohesive subgroups in which every individual knew
everyone else, but were not necessarily suitable for detecting real-life cohesive sub-
groups. Polyhedral approaches [8, 31] and exact combinatorial algorithms [32, 33]
have been developed to solve the maximum s-plex problem. In particular, McClosky
and Hicks [32] independently extended Carraghan-Pardalos [17] and Östergård [35]
algorithms for the maximum s-plex problem. This paper demonstrates improvements
over the results of McClosky and Hicks [32] and Balasundaram et al. [8] in Sect. 4
that are achieved via improved algorithm design and implementation.
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The s-defective clique model was introduced by Yu et al. [52], who use it to rep-
resent clusters in protein interaction networks. In such networks, the proteins in an
organism are represented by vertices, and an edge indicates that the proteins corre-
sponding to its end-points are known to interact based on biological experiments.
These biological experiments can be high-throughput and noisy [4, 52] resulting in
large-scale network models representing an erroneous edge set. This motivated Yu
et al. [52] to use s-defective cliques as an alternative to cliques to facilitate the de-
tection of protein complexes in the presence of missing edges. However, a heuristic
method is proposed therein and no exact algorithms are currently available for this
problem. This paper investigates the performance of the proposed general-purpose
exact algorithm when tailored to this problem.

It should be noted that in addition to s-plexes and s-defective cliques several
other clique relaxations were introduced and studied in the context of graph-based
data mining and clustering applications [10, 37, 39], however, unlike s-plexes and
s-defective cliques, they do not satisfy the Yannakakis conditions. Tailoring the gen-
eral framework of Algorithm 1 for the maximum s-plex problem and the maximum
s-defective clique problem requires us to focus our attention on two key points iden-
tified in the algorithm, (i) vertex ordering, which significantly affects type 2 pruning
(also noted by Östergård [35], McClosky and Hicks [32]), and (ii) Π -verification, a
step that is invoked very frequently and hence, can be a potential source for perfor-
mance improvement. These issues are the focus of the investigation in the remainder
of this paper.

3.1 Candidate set generation and Π -verification

Recall that Algorithm 1 makes recursive calls with a candidate set C and a current
solution P . The candidate set has the property that {v}∪P satisfies Π for each v ∈ C.
The first key challenge with respect to algorithm design when tailoring Algorithm 1
for a specific graph property Π is the candidate set update procedure that verifies and,
hence, maintains Π . For cliques, the candidate set is just the intersection of neigh-
borhoods of vertices from the current clique. If vi was added at current iteration, then
the candidate set C′ for the next iteration is the intersection of the current candidate
set and the neighborhood of the newly added vertex: C′ = C ∩ N(vi).

However, in the case of s-plex and s-defective clique, the definition permits a lim-
ited number of non-neighbors. The new candidate set must be generated by explic-
itly verifying and selecting each vertex from the current candidate set that forms an
s-plex/s-defective clique when added to the current s-plex/s-defective clique. This
forces the use of Π -verification procedures such as Algorithm 2 and Algorithm 3.
The function is called for each member of the current candidate set each time the
candidate set needs to be updated. The speed of the Π -verification procedure de-
termines the speed of candidate set update process, and significantly influences the
overall algorithm running time, given the number of such calls. We need to focus on
improving the running time of this procedure, as well as reducing the number of calls
to this procedure. This subsection focuses on the former while Sect. 3.3 focuses on
the latter.

Algorithms 2 and 3 present simple verification procedures for s-plex and s-
defective clique, respectively. The function ISPLEX1 has a quadratic running time



120 S. Trukhanov et al.

Algorithm 2 s-Plex verification procedure
1: function ISPLEX1(K , s)
2: for v ∈ K do
3: if degG[K](v) < |K| − s then
4: return false
5: end if
6: end for
7: return true
8: end function

Algorithm 3 s-Defective clique verification procedure
1: function ISDEFCLIQUE(K , s)
2: count ← 0
3: for v ∈ K do
4: count ← count + |K| − 1 − degG[K](v)

5: if count > 2s then
6: return false
7: end if
8: end for
9: return true

10: end function

complexity with respect to the size of its argument K with a linear-time procedure
for determining the induced degree in each iteration of the for-loop. We can improve
this procedure by using additional information available from the previous steps. As-
sume that the vertex u has just been added to the s-plex K in the current iteration, so
that the new s-plex is K ′ = K ∪ {u}. We know that K ∪ {u} is an s-plex and K ∪ {v}
is an s-plex for any vertex v from C. To determine whether v will be included in the
new candidate set C′, we need to verify that K ∪ {u} ∪ {v} is an s-plex. Let us call a
vertex i ∈ K saturated if |K ∩N(i)| = |K| − s, which means it is not possible to add
vertices not in N(i) to K without violating the degree requirement. Since K ∪ {v}
is already known to be an s-plex, the only possible violations may be caused by the
newly added vertex u. First, addition of u could increase the number of non-neighbors
for some vertex y ∈ K \ N(u) by one. If such a vertex y becomes saturated in K ′,
then C′ must be a subset of N(y). Second, the vertex u itself could be saturated in
K ′, in which case C′ ⊆ N(u). Unsaturated vertices in K ′ do not create any restric-
tions for the candidate set. Note that if s = 1, then every vertex in K is saturated and
these observations unify to yield the intersection of neighborhoods. These consid-
erations allow one to create a faster procedure for updating the candidate set. After
adding a new vertex we determine the list of saturated vertices. Then the new candi-
date set is obtained by intersecting the current candidate set with the neighborhood of
each saturated vertex. In order to quickly identify vertices that become saturated, we
keep and update the list and number of non-neighbors for vertices in K . Algorithm 4
formalizes the resulting incremental s-plex verification procedure.
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Algorithm 4 Incremental s-plex verification procedure
1: function MAKESATURATEDLIST(K , s)
2: u ← last vertex added to K

3: S ← ∅ � Saturated vertex list
4: for v ∈ K \ {u} do
5: if (u, v) /∈ E(G) then
6: nncnt[u] ← nncnt[u] + 1 � update number of non-neighbors for u

7: nncnt[v] ← nncnt[v] + 1 � update number of non-neighbors for v

8: if nncnt[v] = s − 1 then
9: S ← S ∪ {v}

10: end if
11: end if
12: end for
13: if nncnt[u] = s − 1 then
14: S ← S ∪ {u}
15: end if
16: return S

17: end function

18: function ISPLEX2(K , S, v)
19: for u ∈ S do
20: if (u, v) /∈ E(G) then
21: return false
22: end if
23: end for
24: return true
25: end function

Recall that the naive s-plex verification procedure runs in O(|K|2) time. The new
procedure consists of two parts: generation of the list of saturated vertices, which can
be done in O(|K|) time and is performed once; and verification whether a vertex is
in the neighborhood of saturated vertices, which is performed for every vertex from
the candidate list. The theoretical complexity of the second part is O(|K|), but each
vertex can be a member of the saturated vertex list only once during the whole pro-
cess of building K (once a vertex is included in this list, the candidate list will be
intersected with this vertex neighborhood, and no more vertices from the candidate
list may satisfy the condition in line 5 of Algorithm 4). As will be discussed later,
the comparison of running time of the maximum weight s-plex algorithms that uti-
lize the original and the alternative s-plex verification procedures shows a significant
improvement in the performance by using the latter approach, especially for larger s.

Since an s-defective clique is also an (s + 1)-plex, Algorithm 4 is valid for the
maximum s-defective clique problem as well. Algorithm 4 verifies if the vertex subset
K is an (s + 1)-plex and if so, calls Algorithm 3 for checking if K is an s-defective
clique. This reduces the number of calls for Algorithm 3, which runs in O(|K|2)
time.
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3.2 Scale-reduction based on 2-neighborhood for the unweighted case

The simple fact that for any vertex v from clique C, C ⊆ N [v], allows us to reduce
the problem of finding a maximum clique from the whole graph to several single-
vertex neighborhoods. Seidman and Foster [40] showed that if G is an s-plex with
more than 2s − 2 vertices, then the diameter of G is at most two. The connectivity
of large s-plexes has already been used indirectly in the previous subsection, where
the candidate list was shrunk by intersection of neighborhoods of saturated vertices,
which means that all other candidates to be included in s-plex are connected to the
saturated vertex. This observation will also be used heuristically to order vertices
based on the size of their distance-two neighborhoods in Sect. 3.3.2. Unlike with
cliques, the containment of solution inside the (double) neighborhood only holds for
s-plexes of size at least 2s −1 and may not hold in general for smaller order s-plexes.
At first glance, the bounded diameter property cannot be used in the algorithm, since
in a weighted graph there can be an s-plex of cardinality less than 2s − 1, but of a
weight larger than that of any s-plex of size greater than 2s − 2. However, we can
still modify the original maximum s-plex algorithm to improve its performance for
instances of the problem containing s-plexes of a certain size in the unweighted case
as follows. After adding a new vertex v to the formed s-plex, the working set outside
of N2[v] is simply cut off, thus reducing the problem of finding the required s-plex
to N2[v]. Then, if the resulting solution has cardinality at least 2s − 1, this solution
must be a maximum s-plex in G. Otherwise, if the resulting s-plex has cardinality
smaller than 2s − 1, then the original algorithm must be executed in order to find an
optimal solution.

3.3 Vertex ordering

While Sect. 3.1 dealt with improving the s-plex and the s-defective clique verification
procedure, this subsection investigates approaches that aim to decrease the number
of calls to this procedure. Algorithm 1 is a branch and bound algorithm, where Π -
verification procedure is called in each branching node multiple times. Given the
intractability of the problem, it is unlikely to be able to provably reduce the number
of such calls in general. The number of calls would be reduced if, (1) we can shrink
the working set faster (i.e., the branch is cut off because of feasibility), and (2) we
can prune more often (i.e., the branch is cut off because of the bound). Both these
goals are influenced by the ordering of vertices in line 2 prior to commencing the
main iterations in line 4 of Algorithm 1. The following subsections discuss different
vertex ordering schemes for weighted and unweighted graphs.

3.3.1 Weight-based ordering

Since we seek an s-plex/s-defective clique of maximum weight, a weight-based or-
dering is an alternative. Recall that the algorithm processes the vertices starting from
vn down to v1. A greedy approach would suggest a non-increasing order of vertex
weights i.e., an ordering such that w(vn) ≥ w(vn−1) · · · ≥ w(v1). However, in this
case the values μ(i) and the weight of the incumbent s-plex/s-defective clique, max,
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grow quickly in the beginning, but subsequently, as max is already close, or, per-
haps, equal, to the optimal value, the growth stalls. Thus, the values of μ(i) and max
remain equal for a long time, and the algorithm proceeds without any improvement.
This leads to the situation where the pruning in line 24 of Algorithm 1 does not occur.

The smallest-to-the-largest-weight ordering benefits from the opposite effect: the
values of μ(i) are maintained to be as small as possible in order to yield more type
2 pruning points. Therefore, ordering the vertices in nondecreasing order of their
weights provides a reasonable weight-based ordering. It should be noted that the
Östergård’s algorithm for the maximum weight clique used a similar ordering with
additional tie-breaking rules when several vertices have the same weight. In our study,
we break the ties by simply ordering vertices according to their original labels. In par-
ticular, for instances with all equal weights and for unweighted instances this results
in the natural ordering from vertex labels, which we call the control ordering.

3.3.2 Degree-based ordering

When searching for a maximum clique in an unweighted graph, it is natural to order
the vertices according to their degree. The ordering procedure does start with the
minimum degree vertex vn, however the further order of vertices depends on their
degrees in the subgraph induced by the subset of vertices that have not yet been
ordered and hence the resulting order is not the same as the one resulting from sorting
the vertices by their degree. Such a degree-based ordering was used in the Carraghan-
Pardalos algorithm for the maximum clique problem, and is supported by the fact that
the clique C that contains vertex v is a subset of N [v], so starting with vertices of
smaller degree provides small values for μ(i), which can yield higher success rate
with the type 2 prune points (Algorithm 1, line 24).

3.3.3 2-Neighborhood-based ordering

Since an s-plex containing vi is not necessarily a subset of N [vi], the ordering is not
as clearly justified as for the maximum clique algorithm, even though the number
of non-neighbors is limited to s − 1. The same holds for s-defective clique. Hence,
the degree-based ordering for the maximum clique problem is modified to suit the
properties of the problems in hand. The result of Seidman and Foster [40] is helpful
in this regard. If the unknown optimal s-plex K∗ is sufficiently large, i.e., |K∗| >

2s − 2, then every maximum s-plex has diameter at most two. So any maximum s-
plex containing an arbitrary vertex v is a subset of N2

G[v] = {u ∈ V (G) : dG(v,u) ≤
2}. This simple modification provides a new ordering based on the size of the 2-
neighborhood of a vertex instead of its degree. The same considerations apply to the
maximum s-defective clique problem.

3.3.4 Coloring based ordering

Another popular vertex ordering for the maximum clique problem emphasizes reduc-
ing the working set as fast as possible and is based on the fact that no more than one
vertex from an independent set can be included in a clique. The corresponding or-
dering partitions a graph into independent sets (performs graph coloring) and groups
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vertices from the same color class together. Since the problem of graph coloring is
NP-hard, the coloring is performed greedily, and the corresponding ordering is based
on the order in which colors were assigned. Such an ordering is expected to reduce
the working set fast, since all vertices of some color will be removed after one vertex
of this color is chosen for inclusion into clique. Vertices can be ordered starting from
the color class of the largest cardinality or in the opposite order.

Coloring guarantees that only one vertex of each color could be included in a
clique. However, this is not the case for s-plex, as any s vertices form an s-plex
by definition, and the implementation of coloring-based ordering must be modified
accordingly. Thus, we replace partitioning into independent sets (classical coloring)
by partitioning into independent set relaxations. One such structure is the co-s-plex,
defined as a subset S ⊆ V of vertices satisfying the following property:

∣
∣N(v) ∩ S

∣
∣ ≤ s − 1 ∀v ∈ S.

Clearly, a co-s-plex is an independent set for s = 1 and its relaxation for s > 1.
Further, S ⊆ V is a co-s-plex in G if and only if S is an s-plex in the complement
of G.

Balasundaram et al. [8] showed that at most 2s − 2 + (s mod 2) vertices from a
co-s-plex may be included into an s-plex. It is not known how many vertices from a
co-s̄-plex may be included in an s-plex for arbitrary values of s̄ and s, but obviously
for a fixed s this number increases when s̄ increases. On the one hand, increasing
s̄ creates more branches at each step, however, on the other hand, the number of
partitions in the graph will be smaller. The problem of partitioning a graph into co-
s-plexes is known in the literature as defective coloring [18, 21] and is NP-hard, so
we use a simple greedy procedure (Algorithm 5) to obtain the needed partitions. If
the graph is weighted then the next vertex in line 6 of Algorithm 5 is chosen as the
smallest weight non-colored vertex. For vertices with the same weight, the one with
the largest neighborhood weight is chosen, following the rules similar to [34, 35].

Experiments were conducted for s̄ = 1,2, . . . ,5 using both ordering strategies
(largest color class first and the opposite) with unweighted instances of the maxi-
mum s-plex problem and the maximum (s − 1)-defective clique problem. The main
observation from these experiments is that the ordering based on defective coloring
typically yields better algorithm performance than the control ordering. Again, there
is no conclusive evidence as to which coloring provides the best results. In many
cases, the classical coloring (i.e., partitioning the graph into independent sets) out-
performs the other considered orderings, but quite often the best result is obtained
when s̄ = s. Less often, the best running time is given by values of s̄ that are in
between 1 and s, and even more rarely, when s̄ > s.

The vertex ordering techniques considered in this section are heuristic in nature
and cannot provide a predictable performance improvement on all problem instances,
as was in the case of candidate set generation in Sect. 3.1. But when they do provide
an improvement, it is usually much more significant than that obtained using the
techniques from Sect. 3.1 alone.
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Algorithm 5 Defective s̄-coloring based vertex ordering

1: procedure ORDERCOLORING(V , s̄)
2: U ← ∅ � Set U is ordered
3: col[v] ← 0 ∀v ∈ V � Color assigned to vertex
4: colnum[v] ← 0 ∀v ∈ V � Number of neighbors of the same color
5: for i = 1 to |V | do � Assign the colors
6: u ← min{v : col[v] = 0 and v ∈ V }
7: C ← {col[v] : colnum[v] < s̄ − 1 ∀v ∈ N(u)}
8: if C = ∅ then
9: col[u] ← max col[v] + 1

10: else
11: col[u] ← minC

12: end if
13: colnum[u] = |{v ∈ N(u) : col[u] = col[v]}|
14: colnum[v] = colnum[v] + 1 ∀v ∈ N(u) : col[u] = col[v]
15: end for
16: for j = 1 to max{col[v] : v ∈ V } do
17: U ← U ⊕ {u : col[u] = j} � ⊕ means “append to the end”
18: end for
19: return U

20: end procedure

4 Results of numerical experiments

All numerical experiments presented in this paper were conducted on DELL OPTI-
PLEX GX620 computer with INTEL(R) CORE(TM) 2 QUAD 3 GHZ processor and
4 GB of RAM. The algorithm was implemented in the C programming language, us-
ing MICROSOFT VISUAL C++ .NET 2010 (V 10.0) development environment for
Win32 platform. Despite the dual core feature of the CPU, the algorithm is imple-
mented using single threaded mode and cannot use this hardware advantage.

In the experiments reported in this paper, we considered only unweighted in-
stances of the problems of interest. A set of preliminary experiments was conducted
to facilitate the choice of algorithm settings used in the set of tests reported below.
In particular, in the reported experiments the algorithm always used the incremental
s-plex verification routine, as described in Sect. 3.1 and the diameter based pruning
from Sect. 3.2. Degree-based vertex ordering described in Sect. 3.3.2, which exhib-
ited the best overall performance for both problems in the preliminary tests, is consid-
ered for the reported experiments. It should be noted that this ordering is the same as
the one used in Carraghan-Pardalos algorithm for the maximum clique problem [17].
Therefore, we will refer to this ordering as the standard ordering.

4.1 Standard testbed

The standard testbed of instances used in our experiments consists of two groups.
The first group is comprised of benchmark clique instances from the Second
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Table 1 Running time
comparison with algorithms of
Balasundaram et al.

Graph Runtime, sec

BC-MIS BC-C2PLX Algorithm 1

MANN_a27.clq >10800 >10800 >10800

MANN_a9.clq 0.262 0.289 0.02

brock200_1.clq >10800 >10800 >10800

c-fat200-1.clq 25.891 212.239 0.13

c-fat200-2.clq 24.235 7636.49 0.05

c-fat500-1.clq 1263.81 9587.21 0.06

c-fat500-10.clq >10800 >10800 0.11

c-fat500-2.clq 2985.04 >10800 0.08

c-fat500-5.clq 10142.8 >10800 0.16

hamming6-2.clq 0.421 1.686 0.03

hamming6-4.clq 4.609 6.767 0.02

hamming8-2.clq >10800 >10800 0.14

hamming8-4.clq >10800 >10800 4.76

johnson16-2-4.clq >10800 >10800 3311.91

johnson8-2-4.clq 1.952 1.171 0.01

johnson8-4-4.clq 1951.87 3283.15 0.03

keller4.clq >10800 >10800 460.01

DIMACS Challenge [19, 25]. The second group is comprised of instances from the
Tenth DIMACS Challenge [20] and Standford Large Network Database Collection
(SNAP) [27]. The instances in this group are typically very large and sparse, and
hence a reduction on the graph size using the so-called peeling procedure originally
proposed for the maximum clique problem [1], which, given a lower bound |S| on the
clique number (found, e.g., heuristically) recursively removes vertices of degree less
than |S| − s. Obviously, the peeling procedure cannot remove any vertices belonging
to a maximum s-plex or s-defective clique. The total number of instances considered
is 63, and we preserve their original names in Tables 1–2, 3–6.

Tables 3 and 4 in the Appendix (Online Supplement) show the parameters of the
instances, including the graph order, size, density, clique number, s-plex number for
s = 2,3,4,5 and s-defective clique number for s = 1,2,3,4. The clique numbers for
DIMACS graphs were obtained from [19] and other sources. The s-plex numbers and
the s-defective clique numbers were obtained by our algorithm. If the algorithm could
not find the optimal solution within a 3-hour time limit, the size of the incumbent s-
plex/s-defective clique is provided, indicated with “≥” in the tables.

Tables 5 and 6 in the Appendix (Online Supplement) provide the running time of
the maximum weight s-plex and s-defective clique algorithm in CPU seconds. In
these tables, the column labeled by “Reduced” specifies the number of vertices re-
maining in the graph after applying the peeling procedure, with an asterisk used to
mark the cases where no reduction occurred.

As mentioned before, the ordering scheme considered was the standard ordering
due to its superior performance on most instances. However, it should be noted that
for several instances other ordering schemes explained in Sect. 3.3 performed much

http://dx.doi.org/10.1007/s10589-013-9548-5
http://dx.doi.org/10.1007/s10589-013-9548-5
http://dx.doi.org/10.1007/s10589-013-9548-5
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Table 2 Running time comparison with McClosky-Hicks algorithm

Graph Runtime, sec

s = 2 s = 3 s = 4

MH Alg. 1 MH Alg. 1 MH Alg. 1

brock200_2 64 6.55 >3600 446.68 >3600 >3600

brock200_4 >3600 398.65 >3600 >3600 >3600 >3600

c-fat200-1 0 0.13 0 0.08 18 0.05

c-fat200-2 0 0.05 0 0.03 3 0.05

c-fat500-1 0 0.06 8 0.11 1234 0.11

c-fat500-2 0 0.08 2 0.06 92 0.09

c-fat500-5 0 0.16 1 0.2 8 0.64

c-fat500-10 0 0.11 0 0.09 4 0.2

hamming6-2 0 0.03 1 0.19 951 178.24

hamming6-4 0 0.02 0 0.05 1 0.22

hamming8-2 1 0.14 >3600 >3600 >3600 >3600

hamming8-4 58 4.76 >3600 >3600 >3600 >3600

johnson8-2-4 0 0.01 0 0.01 0 0.05

johnson8-4-4 0 0.03 35 6.41 >3600 906.06

johnson16-2-4 >3600 3311.91 >3600 >3600 >3600 >3600

keller4 913 460.01 >3600 >3600 >3600 >3600

MANN_a9 0 0.02 2 0.03 141 4.18

MANN_a27 >3600 >3600 >3600 0.24 >3600 >3600

p_hat300_1 5 0.48 416 41.74 >3600 3041.44

p_hat300_2 >3600 992.36 >3600 >3600 >3600 >3600

better than the standard ordering. Most notably, for the instance c-fat200-5.clq the
running times obtained using the ordering by the smallest degree first for s = 2,3,
coloring-based ordering with the smallest color class first for s = 4, and the ordering
that uses the smallest double neighbourhood size first for s = 5, were below 1 sec,
whereas the run using the standard ordering failed to terminate after 3 hours.

4.2 Comparison with existing approaches

Since the recent introduction of the maximum s-plex problem to the operations re-
search literature by Balasundaram at el. [7, 8], at least four approaches (including
the original one and the current one) for solving the problem have been developed.
The first approach was proposed in [7, 8], where a branch-and-cut method for the
maximum s-plex problem was developed and tested on a subset of DIMACS graphs.
Two versions of the branch-and-cut algorithm for the maximum s-plex problem were
implemented. Both versions employ CPLEX for solving the IP formulation of the
problem, the difference being the cuts used. One version incorporates the maximum
independent set cuts (referred as BC-MIS), while the other incorporates co-s-plex
cuts (referred as BC-C2PLX).
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Table 1 shows the running time of the three approaches: BC-MIS and BC-
C2PLX by Balasundaram et al. [8] and Algorithm 1. In most cases, our algorithm
outperforms both branch-and-cut approaches, possibly due to tuning of this algo-
rithm to the particular problem. The branch-and-cut approaches were less tuned to
this particular problem as they only employed problem-specific cutting planes while
inheriting default CPLEX branching and search strategies.

McClosky and Hicks [30, 32] considered two different algorithms for finding a
maximum s-plex in a graph. The first algorithm is based on Carraghan-Pardalos [17]
ideas, while the second is based on the aforementioned Östergård’s algorithm for
cliques. Both algorithms were tested on a subset of DIMACS benchmarks. Since their
second algorithm outperforms the first on all test instances, we only compare our
results with the second algorithm. Since McClosky and Hicks limited the algorithm
execution time to one hour in their experiments, we also disregard all results that
were obtained in a larger amount of time. The numerical results were provided for
s = 2,3,4 with precision 1 sec, the running time 0 in McClosky-Hicks experiments
was interpreted as <1 sec. The time limit was set to 1 hour in this case since the
same termination criterion was used in [32]. Table 2 provides the running times,
where the columns marked with “MH” refer to McClosky-Hicks experiments and
those marked by “Alg. 1” show our results. From the results, we conclude that our
algorithm demonstrated better running time performance, which can be explained by
more refined procedures for candidate set generation and pruning points used.

5 Conclusion

This paper exploits the connections between the complexity result for the problem
of finding a maximum subset of vertices satisfying a nontrivial, interesting property
Π that is hereditary on induced subgraphs, established in 1978 by Yannakakis, and
RDS-type algorithms for the maximum clique problem proposed by Carraghan and
Pardalos in 1990 and enhanced by Östergård in 2002. We first extend the ideas used
in these algorithms to the weighted version of node deletion problems satisfying the
conditions of Yannakakis theorem and then perform a problem-specific study of the
approach with the maximum s-plex and the maximum s-defective clique problems,
which are two hereditary relaxations of the maximum clique problem that are of
interest in graph-based data mining applications. The comparison of the proposed al-
gorithm with two other existing methods for the maximum s-plex problem published
in the literature on standard testing instances demonstrates the improved performance
of the proposed algorithm and its problem-specific enhancements. To the best of our
knowledge, our adaptation of the proposed algorithm to the maximum s-defective
clique problem is the first reported exact algorithm for this problem. The proposed
general algorithmic framework as well as some of the observations made in the pro-
cess of experimenting with the maximum s-plex and the maximum s-defective clique
instances could be used to develop successful implementations for other hereditary
structures in graphs.
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