
Comput Optim Appl (2013) 56:1–38
DOI 10.1007/s10589-013-9547-6

A derivative-free approximate gradient sampling
algorithm for finite minimax problems

W. Hare · J. Nutini

Received: 6 February 2012 / Published online: 1 March 2013
© Springer Science+Business Media New York 2013

Abstract In this paper we present a derivative-free optimization algorithm for finite
minimax problems. The algorithm calculates an approximate gradient for each of the
active functions of the finite max function and uses these to generate an approximate
subdifferential. The negative projection of 0 onto this set is used as a descent direc-
tion in an Armijo-like line search. We also present a robust version of the algorithm,
which uses the ‘almost active’ functions of the finite max function in the calculation
of the approximate subdifferential. Convergence results are presented for both algo-
rithms, showing that either f (xk) → −∞ or every cluster point is a Clarke stationary
point. Theoretical and numerical results are presented for three specific approximate
gradients: the simplex gradient, the centered simplex gradient and the Gupal estimate
of the gradient of the Steklov averaged function. A performance comparison is made
between the regular and robust algorithms, the three approximate gradients, and a
regular and robust stopping condition.

Keywords Derivative-free optimization · Minimax problems · Generalized
gradient · Subgradient approximation

1 Introduction

In this paper we consider the finite minimax problem:

min
x

f (x) where f (x) = max
{
fi(x) : i = 1, . . . ,N

}
,

where each individual fi is continuously differentiable. We further restrict ourselves
to the field of derivative-free optimization (DFO), where we are only permitted to

W. Hare (�) · J. Nutini
University of British Columbia, Kelowna, BC, Canada
e-mail: warren.hare@ubc.ca

mailto:warren.hare@ubc.ca

2 W. Hare, J. Nutini

compute function values, i.e., we cannot compute gradient values ∇fi directly. We
present a derivative-free algorithm that exploits the smooth substructure of the finite
max problem, thereby creating a robust algorithm with an elegant convergence theory.

Finite minimax problems occur in numerous applications, such as portfolio opti-
mization [8], control system design [21], engineering design [32], and determining
the cosine measure of a positive spanning set [10, Def. 2.7]. In a finite max function,
although each individual fi may be smooth, taking the maximum forms a nonsmooth
function with ‘nondifferentiable ridges’. For this reason, most algorithms designed to
solve finite minimax problems employ some form of smoothing technique; [31, 33,
34] and [39] (among many others). In general, these smoothing techniques require
gradient calculations.

However, in many situations gradient information is not available or can be diffi-
cult to compute accurately (see [4, 15, 20, 29] and [10, Chap. 1] for some examples of
such situations). Such situations are considered by research in the area of derivative-
free optimization. For a thorough introduction to several basic DFO frameworks and
convergence results for each, see [10].

Research on optimizing finite max functions without calculating derivatives can
be seen as early as 1975 [28], while more recently we have seen a resurface in this
area [26] and [19].

In 2006, Liuzzi, Lucidi and Sciandrone used a smoothing technique based on
an exponential penalty function in a directional direct-search framework to form a
derivative-free optimization method for finite minimax problems [26]. This method
is shown to globally converge towards a standard stationary point of the original finite
minimax problem.

Also specific to the finite minimax problem, a derivative-free method is presented
in [19] that exploits the smooth substructure of the problem. It combines the frame-
works of a directional direct search method [10, Chap. 7] and the gradient sampling
algorithm (GS algorithm) presented in [6] and [7]. Loosely speaking, the GS algo-
rithm uses a collection of local gradients to build a ‘robust subdifferential’ of the
objective function and uses this to determine a ‘robust descent direction’. In [19],
these ideas are used to develop several methods to find an approximate descent direc-
tion that moves close to parallel to an ‘active manifold’. During each iteration, points
are sampled from around the current iterate and the simplex gradient is calculated
for each of the active functions of the objective function. The calculated simplex gra-
dients are then used to form an approximate subdifferential, which is then used to
determine a likely descent direction.

Ideas from the GS algorithm have appeared in two other recent DFO methodolo-
gies [2] and [24].

In 2008, Bagirov, Karasözen and Sezer presented a discrete gradient derivative-
free method for unconstrained nonsmooth optimization problems [2]. Described as
a derivative-free version of the bundle method presented in [37], the method uses
discrete gradients to approximate subgradients of the function and build an approxi-
mate subdifferential. The analysis of this method provides proof of convergence to a
Clarke stationary point for an extensive class of nonsmooth problems. In this paper,
we focus on the finite minimax problem. This allows us to require few (other) as-
sumptions on our function while maintaining strong convergence analysis. It is worth

A derivative-free approximate gradient sampling algorithm for finite 3

noting that we use the same set of test problems as in [2]. Specifically, we use the
[27] test set and exclude one problem as its sub-functions are complex-valued. (The
numerics in [2] exclude the same problem, and several others, without explanation.)

Using approximate gradient calculations instead of gradient calculations, the
GS algorithm is made derivative free by Kiwiel in [24]. Specifically, Kiwiel em-
ploys the Gupal estimate of the gradient of the Steklov averaged function (see [18]
or Sect. 4.3 herein) as an approximate gradient. It is shown that, with probabil-
ity 1, this derivative-free algorithm satisfies the same convergence results as the GS
algorithm—it either drives the f -values to −∞ or each cluster point is found to be
Clarke stationary [24, Theorem 3.8]. No numerical results are presented for Kiwiel’s
derivative-free algorithm.

In this paper, we use the GS algorithm framework with approximate gradients to
form a derivative-free approximate gradient sampling algorithm. As we are dealing
with finite max functions, instead of calculating an approximate gradient at each of
the sampled points, we calculate an approximate gradient for each of the active func-
tions. Expanding the active set to include ‘almost’ active functions, we also present
a robust version of our algorithm, which is more akin to the GS algorithm. In this
robust version, when our iterate is close to a point of nondifferentiability, the size and
shape of our approximate subdifferential will reflect the presence of ‘almost active’
functions. Hence, when we project 0 onto our approximate subdifferential, the de-
scent direction will direct minimization parallel to a ‘nondifferentiable ridge’, rather
than straight at this ridge. It can be seen in our numerical results that these robust
changes greatly influence the performance of our algorithm.

Our algorithm differs from the above in a few key manners. Unlike in [26] we do
not employ a smoothing technique. Unlike in [19], which uses the directional direct-
search framework to imply convergence, we employ an approximate steepest descent
framework. Using this framework, we are able to analyze convergence directly and
develop stopping conditions for the algorithm. Unlike in [2] and [24], where conver-
gence is proven for a specific approximate gradient, we prove convergence for any
approximate gradient that satisfies a simple error bound dependent on the sampling
radius. As examples, we present the simplex gradient, the centered simplex gradi-
ent and the Gupal estimate of the gradient of the Steklov averaged function. (As a
side-note, Sect. 4.3 also provides, to the best of the authors’ knowledge, novel error
analysis of the Gupal estimate of the gradient of the Steklov averaged function.)

Focusing on the finite minimax problem provides us with an advantage over the
methods of [2] and [24]. In particular, we only require order n function calls per iter-
ation (where n is the dimension of the problem), while both [2] and [24] require order
mn function calls per iteration (where m is the number of gradients they approximate
to build their approximate subdifferential). (The original GS algorithm suggests that
m ≈ 2n provides a good value for m.)

The remainder of this paper is organized as follows. In Sect. 2, we present the ap-
proximate gradient sampling algorithm (AGS algorithm) and our convergence analy-
sis. In Sect. 3, we present a robust version of the AGS algorithm (RAGS algorithm),
which uses ‘almost active’ functions in the calculation of the approximate subdiffer-
ential. In Sect. 4, we show that the AGS and RAGS algorithms converge using three
specific approximate gradients: simplex gradient, centered simplex gradient and the

4 W. Hare, J. Nutini

Gupal estimate of the gradient of the Steklov averaged function. Finally, in Sect. 5,
we present our numerical results and analysis.

2 Approximate gradient sampling algorithm

Throughout this paper, we assume that our objective function is of the form

min
x

f (x) where f (x) = max
{
fi(x) : i = 1, . . . ,N

}
, (1)

where each fi ∈ C 1, but we cannot compute ∇fi . We use C 1 to denote the class of
differentiable functions whose gradient mapping ∇f is continuous. We denote by
C 1+ the class of continuously differentiable functions whose gradient mapping ∇f is
locally Lipschitz and we denote by C 2+ the class of twice continuously differentiable
functions whose Hessian mapping ∇2f is locally Lipschitz. Additionally, throughout
this paper, | · | denotes the Euclidean norm and ‖ · ‖ denotes the corresponding matrix
norm.

For the finite max function in (1), we define the active set of f at a point x̄ to be
the set of indices

A(x̄) = {i : f (x̄) = fi(x̄)
}
.

The set of active gradients of f at x̄ is denoted by

{∇fi(x̄)
}
i∈A(x̄)

.

Let f be locally Lipschitz at a point x̄. As f is Lipschitz, there exists an open dense
set D ⊂ R

n such that f is continuously differentiable on D. The Clarke subdifferen-
tial [9] is constructed via

∂f (x) =
⋂

ε>0

Gε(x) where Gε(x) = cl conv
{∇f (y) : y ∈ Bε(x) ∩ D

}
.

For a finite max function, assuming fi ∈ C 1 for each i ∈ A(x̄), the Clarke subdiffer-
ential (as proven in [9, Prop. 2.3.12]) is equivalent to

∂f (x̄) = conv
{∇fi(x̄)

}
i∈A(x̄)

. (2)

By (2), it is clear that for finite max functions the subdifferential is a compact set.
This will be important in the convergence analysis in Sect. 2.2.

We are now ready to state the general form of the AGS algorithm, an approximate
subgradient descent method.

2.1 Algorithm—AGS

We first provide a partial glossary of notation used in the definition of the AGS algo-
rithm (see Table 1).

A derivative-free approximate gradient sampling algorithm for finite 5

Table 1 Glossary of notation used in the AGS algorithm

Glossary of notation

k: Iteration counter xk : Current iterate

μk : Accuracy measure �k : Sampling radius

m: Sample size θ : Sampling radius reduction factor

yj : Sampling points Y : Sampled set of points

η: Armijo-like parameter dk : Search direction

tk : Step length tmin: Minimum step length

∇Afi : Approximate gradient of fi A(xk): Active set at xk

Gk : Approximate subdifferential εtol : Stopping tolerance

Conceptual Algorithm: [Approximate Gradient Sampling Algorithm]

0. INITIALIZE: Set k = 0 and input

x0—starting point
μ0 > 0—accuracy measure
�0 > 0—initial sampling radius
θ ∈ (0,1)—sampling radius reduction factor
0 < η < 1—Armijo-like parameter
tmin—minimum step length
εtol > 0—stopping tolerance

1. GENERATE APPROXIMATE SUBDIFFERENTIAL Gk :

Generate a set Y = [xk, y1, . . . , ym] around the current iterate xk such that

max
j=1,...,m

∣∣yj − xk
∣∣≤ �k.

Use Y to calculate the approximate gradient of fi , denoted ∇Afi , at xk for each
i ∈ A(xk). Set

Gk = conv
{∇Afi

(
xk
)}

i∈A(xk)
.

2. GENERATE SEARCH DIRECTION:
Let

dk = −Proj
(
0|Gk

)
.

Check if

�k ≤ μk
∣∣dk
∣∣. (3)

If (3) does not hold, then set xk+1 = xk ,

�k+1 =
{

θμk|dk| if |dk| �= 0,

θ�k if |dk| = 0,
(4)

6 W. Hare, J. Nutini

k = k + 1 and return to Step 1. If (3) holds and |dk| < εtol , then STOP. Else,
continue to the line search.

3. LINE SEARCH:
Attempt to find tk > 0 such that

f
(
xk + tkdk

)
< f
(
xk
)− ηtk

∣
∣dk
∣
∣2.

LINE SEARCH FAILURE:

Set μk+1 = μk

2 , xk+1 = xk and go to Step 4.

LINE SEARCH SUCCESS:

Let xk+1 be any point such that

f
(
xk+1)≤ f

(
xk + tkdk

)
.

4. UPDATE AND LOOP:

Set �k+1 = maxj=1,...,m |yj − xk|, k = k + 1 and return to Step 1.

In Step 0 of the AGS algorithm, we set the iterate counter to 0, provide an initial
starting point x0, and initialize the parameter values.

In Step 1, we create the approximate subdifferential. First, we select a set of points
around xk within a sampling radius of �k . In implementation, the points are ran-
domly and uniformly sampled from a ball of radius �k (using the MATLAB rand-
sphere.m function [36]). Using this set Y , we then calculate an approximate gradi-
ent for each of the active functions at xk and set the approximate subdifferential Gk

equal to the convex hull of these active approximate gradients, ∇Afi(x
k). Details on

various approximate gradients appear in Sect. 4.
In Step 2, we generate a search direction by solving the projection of 0 onto the

approximate subdifferential: Proj(0|Gk) ∈ arg ming∈Gk |g|2. The search direction dk

is set equal to the negative of the solution, i.e., dk = −Proj(0|Gk).
After finding a search direction, we check the inequality �k ≤ μk|dk|. This in-

equality determines if the current sampling radius is sufficiently small relative to
the distance from 0 to the approximate subdifferential. If this inequality holds and
|dk| < εtol , then we terminate the algorithm, as 0 is within εtol of the approximate
subdifferential and the sampling radius is small enough to reason that the approximate
subdifferential is accurate. If the above inequality does not hold, then the approximate
subdifferential is not sufficiently accurate to warrant a line search, so we decrease the
sampling radius, set xk+1 = xk , update the iterate counter and loop (Step 1). If the
above inequality holds, but |dk| ≥ εtol , then we proceed to a line search.

In Step 3, we carry out a line search. We attempt to find a step length tk > 0 such
that the Armijo-like condition holds

f
(
xk + tkdk

)
< f
(
xk
)− ηtk

∣∣dk
∣∣2. (5)

This condition ensures sufficient decrease is found in the function value. In imple-
mentation, we use a back-tracking line search (described in [30]) with an initial step-
length of t ini = 1, terminating when the step length tk is less than a threshold tmin.

A derivative-free approximate gradient sampling algorithm for finite 7

If we find a tk such that (5) holds, then we declare a line search success. If not, then
we declare a line search failure.

If a line search success occurs, then we let xk+1 be any point such that

f
(
xk+1)≤ f

(
xk + tkdk

)
. (6)

In implementation, we do this by searching through the function values used in the
calculation of our approximate gradients ({f (yi)}yi∈Y). As this set of function values
corresponds to points distributed around our current iterate, there is a good possibil-
ity of finding further function value decrease without having to carry out additional
function evaluations. We find the minimum function value in our set of evaluations
and if (6) holds for this minimum value, then we set xk+1 equal to the corresponding
input point. Otherwise, we set xk+1 = xk + tkdk .

If a line search failure occurs, then we reduce the accuracy measure μk by a factor
of 1

2 and set xk+1 = xk .
Finally, in Step 4, we update the iterate counter and the sampling radius, and then

loop to Step 1 to resample.

2.2 Convergence

For the following results, we denote the approximate subdifferential of f at x̄ as

G(x̄) = conv
{∇Afi(x̄)

}
i∈A(x̄)

,

where ∇Afi(x̄) is the approximate gradient of fi at x̄. Our first result establishes an
error bound relation between the elements of the approximate subdifferential and the
exact subdifferential.

Lemma 2.1 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Suppose there ex-
ists an ε > 0 such that |∇Afi(x̄) − ∇fi(x̄)| ≤ ε for all i = 1, . . . ,N . Then

1. for all w ∈ G(x̄), there exists a v ∈ ∂f (x̄) such that |w − v| ≤ ε, and

2. for all v ∈ ∂f (x̄), there exists a w ∈ G(x̄) such that |w − v| ≤ ε.

Proof 1. By definition, for all w ∈ G(x̄) there exists a set of αi such that

w =
∑

i∈A(x̄)

αi∇Afi(x̄), where αi ≥ 0,
∑

i∈A(x̄)

αi = 1.

By our assumption that each fi ∈ C 1, we have ∂f (x̄) = conv{∇fi(x̄)}i∈A(x̄). Using
the same αi as above, we see that

v =
∑

i∈A(x̄)

αi∇fi(x̄) ∈ ∂f (x̄)

8 W. Hare, J. Nutini

Then

|w − v| =
∣∣∣∣
∑

i∈A(x̄)

αi∇Afi(x̄) −
∑

i∈A(x̄)

αi∇fi(x̄)

∣∣∣∣

≤
∑

i∈A(x̄)

αi

∣∣∇Afi(x̄) − ∇fi(x̄)
∣∣

≤
∑

i∈A(x̄)

αiε

= ε

Hence, for all w ∈ G(x̄), there exists a v ∈ ∂f (x̄) such that

|w − v| ≤ ε. (7)

2. Analogous arguments can be applied to v ∈ ∂f (x̄). �

Lemma 2.1 states the quality of the approximate subdifferential as an approxi-
mation to the exact subdifferential once the approximate gradients of the component
functions are quality approximations to the real gradients. Our next goal (in The-
orem 2.4) is to show that eventually a line search success will occur in the AGS
algorithm. To achieve this we make use of the following lemma.

Lemma 2.2 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Suppose there
exists an ε > 0 such that |∇Afi(x̄) − ∇fi(x̄)| ≤ ε for all i = 1, . . . ,N . Define
d = −Proj(0|G(x̄)) and suppose |d| �= 0. Let β ∈ [0,1). If ε < (1 − β)|d|, then for
all v ∈ ∂f (x̄) we have

〈d, v〉 < −β|d|2.

Proof Notice that, by the Projection Theorem [3, Theorem 3.14], d = −Proj(0|G(x̄))

implies that
〈
0 − (−d),w − (−d)

〉≤ 0 for all w ∈ G(x̄).

Hence,

〈d,w + d〉 ≤ 0 for all w ∈ G(x̄). (8)

So we have for all v ∈ ∂f (x̄),

〈d, v〉 = 〈d, v − w + w − d + d〉 for all w ∈ G(x̄)

= 〈d, v − w〉 + 〈d,w + d〉 + 〈d,−d〉 for all w ∈ G(x̄)

≤ 〈d, v − w〉 − |d|2 for all w ∈ G(x̄)

≤ |d||v − w| − |d|2 for all w ∈ G(x̄).

For any v ∈ ∂f (x̄), using w as constructed in Lemma 2.1, we see that

A derivative-free approximate gradient sampling algorithm for finite 9

〈d, v〉 ≤ |d|ε − |d|2
< |d|2(1 − β) − |d|2 (

as ε < (1 − β)|d|)

= −β|d|2. �

Remark 2.3 In Lemma 2.2, for the case when β = 0, the condition ε < (1 − β)|d|
simplifies to ε < |d|. Thus, if ε is bounded above by |d|, then Lemma 2.2 proves that
for all v ∈ ∂f (x̄) we have 〈d, v〉 < 0, showing that d is a descent direction for f at x̄.

To guarantee convergence, we must show that, except in the case of 0 ∈ ∂f (xk), the
algorithm will always be able to find a sampling radius that satisfies the requirements
in Step 2. In Sect. 4 we show that (for three different approximate gradients) the
value ε (in Lemma 2.2) is linked to �. As unsuccessful line searches will drive � to
zero, this implies that eventually the requirements of Lemma 2.2 will be satisfied. We
formalize this in the next two theorems.

Theorem 2.4 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Suppose 0 �∈
∂f (xk) for each iteration k. Suppose there exists K̄ > 0 such that given any set of
points generated in Step 1 of the AGS algorithm, the approximate gradient satisfies
|∇Afi(x

k) − ∇fi(x
k)| ≤ K̄�k for all i = 1, . . . ,N . Let dk = −Proj(0|G(xk)). Then

for any μ > 0, there exists �̄ = �̄(xk) > 0 such that,

� ≤ μ
∣∣dk
∣∣+ K̄μ

(
�k − �

)
for all 0 < � < �̄.

Moreover, if �k < �̄, then the following inequality holds

�k ≤ μ
∣∣dk
∣∣.

Proof Let v̄ = Proj(0|∂f (xk)) (by assumption, v̄ �= 0).
Given μ > 0, let

�̄ = 1

K̄ + 1
μ

|v̄|, (9)

and consider 0 < � < �̄. Now create G(xk) and dk = −Proj(0|G(xk)). As −dk ∈
G(xk), by Lemma 2.1(1), there exists a vk ∈ ∂f (xk) such that

∣∣−dk − vk
∣∣≤ K̄�k.

Then

K̄�k ≥ ∣∣−dk − vk
∣∣

⇒ K̄�k ≥ ∣∣vk
∣∣− ∣∣dk

∣∣

⇒ K̄�k ≥ |v̄| − ∣∣dk
∣∣ (as |v| ≥ |v̄| for all v ∈ ∂f

(
xk
))

.

10 W. Hare, J. Nutini

Thus, for 0 < � < �̄, we apply (9) to |v̄| in the above inequality to get

K̄�k ≥
(

K̄ + 1

μ

)
� − ∣∣dk

∣∣,

which rearranges to

� ≤ μ
∣∣dk
∣∣+ K̄μ

(
�k − �

)
.

Hence, � ≤ μ|dk| + K̄μ(�k − �) for all 0 < � < �̄. Finally, if �k < �̄, then

�k ≤ μ
∣∣dk
∣∣. �

Remark 2.5 In Theorem 2.4, it is important to note that eventually the condition
�k < �̄ will hold. Examine �̄ as constructed above: K̄ is a constant and v̄ is associ-
ated with the current iterate. However, the current iterate is only updated when a line
search success occurs, which will not occur unless the condition �k ≤ μk|dk| is sat-
isfied. As a result, if �k ≥ �̄, the AGS algorithm will reduce �k , with �̄ remaining
constant, until �k < �̄.

Recall in Step 3 of the AGS algorithm, for a given η ∈ (0,1), we attempt to find a
step length tk > 0 such that

f
(
xk + tkdk

)
< f
(
xk
)− ηtk

∣∣dk
∣∣2.

The following result shows that eventually the above inequality will hold in the AGS
algorithm. Recall that the exact subdifferential for a finite max function, as defined
in (2), is a compact set. Thus, we know that in the following theorem ṽ is well-
defined.

Theorem 2.6 Fix 0 < η < 1. Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1.
Suppose there exists an ε > 0 such that |∇Afi(x̄)−∇fi(x̄)| ≤ ε for all i = 1, . . . ,N .
Define d = −Proj(0|G(x̄)) and suppose |d| �= 0. Let ṽ ∈ arg max{〈d, v〉 : v ∈ ∂f (x̄)}.
Let β = 2η

1+η
. If ε < (1 − β)|d|, then there exists t̄ > 0 such that

f (x̄ + td) − f (x̄) < −ηt |d|2 for all 0 < t < t̄.

Proof Note that β ∈ (0,1). Recall, from Lemma 2.2, we have for all v ∈ ∂f (x̄)

〈d, v〉 < −β|d|2. (10)

Using β = 2η
1+η

, (10) becomes

〈d, v〉 < − 2η

1 + η
|d|2 for all v ∈ ∂f (x̄). (11)

From (11) we can conclude that for all v ∈ ∂f (x̄)

〈d, v〉 < 0.

A derivative-free approximate gradient sampling algorithm for finite 11

Notice that

lim
τ↘0

f (x̄ + τd) − f (x̄)

τ
= max

{〈d, v〉 : v ∈ ∂f (x̄)
}= 〈d, ṽ〉 < 0.

Therefore, there exists t̄ > 0 such that

f (x̄ + td) − f (x̄)

t
<

η + 1

2
〈d, ṽ〉 for all 0 < t < t̄.

For such a t , we have

f (x̄ + td) − f (x̄) <
η + 1

2
t〈d, ṽ〉

< −η + 1

2

2η

η + 1
t |d|2

< −ηt |d|2.
Hence,

f (x̄ + td) − f (x̄) < −ηt |d|2 for all 0 < t < t̄. �

Combining the previous results, we can show that the AGS algorithm is guaran-
teed to find function value decrease (provided 0 /∈ ∂f (xk)). We summarize with the
following corollary.

Corollary 2.7 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Suppose 0 /∈
∂f (xk) for each iteration k. Suppose there exists a K̄ > 0 such that given any set of
points generated in Step 1 of the AGS algorithm, the approximate gradient satisfies
|∇Afi(x

k) − ∇fi(x
k)| ≤ K̄�k for all i = 1, . . . ,N . Then after a finite number of

iterations, the algorithm will find a new iterate with a lower function value.

Proof Consider xk , where 0 /∈ ∂f (xk).
To find function value decrease with the AGS algorithm, we must declare a line

search success in Step 3. The AGS algorithm will only carry out a line search if the
condition below is satisfied

�k ≤ μk
∣∣dk
∣∣, (12)

where dk = −Proj(0|G(xk)), as usual. In Theorem 2.4, we showed that for any
μk > 0, there exists a �̄ = �̄(xk) > 0 such that if �k < �̄(xk), then (12) is satisfied.
If (12) is not satisfied, then �k is updated according to (4) and xk+1 = xk , which
further implies �̄ = �̄(xk+1) = �̄(xk) is unchanged. In this case, whether |dk| �= 0
or |dk| = 0, we can see that �k+1 ≤ θ�k . Hence an infinite sequence of (12) being
unsatisfied is impossible (as eventually we would have �k < �̄). So eventually (12)
will be satisfied and the AGS algorithm will carry out a line search.

Now, in order to have a line search success, we must be able to find a step length
tk such that the Armijo-like condition holds,

f
(
xk + tkdk

)
< f
(
xk
)− ηtk

∣∣dk
∣∣2.

12 W. Hare, J. Nutini

In Theorem 2.6, we showed that there exists t̄ > 0 such that

f
(
xk + tkdk

)− f
(
xk
)
< −ηtk

∣∣dk
∣∣2 for all 0 < tk < t̄,

provided that for β ∈ (0,1),

ε < (1 − β)
∣∣dk
∣∣. (13)

Set ε = K̄�k . If (13) does not hold, then a line search failure will occur, resulting in
μk+1 = 0.5μk . Thus, eventually we will have μk <

(1−β)

K̄
and

�k ≤ μk
∣
∣dk
∣
∣<

(1 − β)

K̄

∣
∣dk
∣
∣,

which means (13) will hold. Thus, after a finite number of iterations, the AGS algo-
rithm will declare a line search success and find a new iterate with a lower function
value. �

We are now ready to prove convergence. In particular, we study the limiting case
of the algorithm generating an infinite sequence (i.e., the situation with εtol = 0). In
the following, assuming that the step length tk is bounded away from 0 means that
there exists a t̄ > 0 such that tk > t̄ .

Theorem 2.8 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Set εtol = 0
and suppose that {xk}∞k=0 is an infinite sequence generated by the AGS algo-
rithm. Suppose there exists a K̄ > 0 such that given any set of points generated
in Step 1 of the AGS algorithm, the approximate gradient satisfies the error bound
|∇Afi(x

k) − ∇fi(x
k)| ≤ K̄�k for all i = 1, . . . ,N . Suppose tk is bounded away

from 0. Then either

1. f (xk) ↓ −∞, or
2. |dk| → 0, �k ↓ 0 and every cluster point x̄ of the sequence {xk}∞k=0 satisfies 0 ∈

∂f (x̄).

Proof If f (xk) ↓ −∞, then we are done.
Conversely, if f (xk) is bounded below, then f (xk) is non-increasing and bounded

below, therefore f (xk) converges. We consider two cases.
Case 1: An infinite number of line search successes occur.

Let x̄ be a cluster point of {xk}∞k=0. Notice that xk only changes for line search
successes, so there exists a subsequence {xkj }∞j=0 of line search successes such that

xkj → x̄. Then for each corresponding step length tkj and direction dkj , the following
condition holds

f
(
xkj +1)≤ f

(
xkj + tkj dkj

)
< f
(
xkj
)− ηtkj

∣∣dkj
∣∣2.

Note that

0 ≤ ηtkj
∣∣dkj
∣∣2 < f

(
xkj
)− f

(
xkj +1).

A derivative-free approximate gradient sampling algorithm for finite 13

Since f (xk) converges we know that f (xkj) − f (xkj +1) → 0. Since tkj is bounded
away from 0, we see that

lim
j→∞

∣
∣dkj
∣
∣= 0.

Recall from the AGS algorithm, we check the condition

�kj ≤ μkj
∣∣dkj
∣∣.

As �kj > 0, μkj ≤ μ0, and |dkj | → 0, we conclude that �kj ↓ 0.
Finally, from Lemma 2.1(1), as −dkj ∈ G(xkj), there exists a vkj ∈ ∂f (xkj) such

that

∣∣−vkj − dkj
∣∣≤ K̄�kj

⇒ ∣∣−vkj
∣∣− ∣∣dkj

∣∣≤ K̄�kj

⇒ ∣∣vkj
∣∣≤ K̄�kj + ∣∣dkj

∣∣,

which implies that

0 ≤ ∣∣vkj
∣∣≤ K̄�kj + ∣∣dkj

∣∣→ 0.

So,

lim
j→∞

∣∣vkj
∣∣= 0,

where |vkj | ≥ dist(0|∂f (xkj)) ≥ 0, which implies dist(0|∂f (xkj)) → 0. We have
xkj → x̄. As f is a finite max function, ∂f is outer semicontinuous (see [35, Def-
inition 5.4 & Proposition 8.7]). Hence, every cluster point x̄ of a convergent subse-
quence of {xk}∞k=0 satisfies 0 ∈ ∂f (x̄).
Case 2: A finite number of line search successes occur.

This means there exists a k̄ such that xk = xk̄ = x̄ for all k ≥ k̄. However, by
Corollary 2.7, if 0 /∈ ∂f (x̄), then after a finite number of iterations, the algorithm will
find function value decrease (line search success). Hence, we have 0 ∈ ∂f (x̄).

To see �k ↓ 0 and |dk| → 0, note that by Lemma 2.1(1) and 0 ∈ ∂f (x̄), we have
that for all k > k̄ there exists d ∈ G(xk) such that |d −0| ≤ K̄�k . In particular, |dk| =
|Proj(0|G(xk))| ≤ K̄�k ≤ K̄�0 for all k > k̄. Now note that one of two situations
must occur: either (3) is unsatisfied an infinite number of times or after a finite number
of steps (3) is always satisfied and a line search failure occurs in Step 4. In the first
case, we directly have �k ↓ 0 (by Step 3). In the second case, we have μk ↓ 0 (by
Step 4), so �k ≤ μk|dk| ≤ μkK̄�0 (by (3)) implies �k ↓ 0. Finally, |dk| ≤ K̄�k

completes the proof. �

Our last result shows that if the algorithm terminates in Step 2, then the distance
from 0 to the exact subdifferential is controlled by εtol .

Theorem 2.9 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Suppose there
exists a K̄ > 0 such that for each iteration k, the approximate gradient satisfies

14 W. Hare, J. Nutini

|∇Afi(x
k) − ∇fi(x

k)| ≤ K̄�k for all i = 1, . . . ,N . Suppose the AGS algorithm ter-
minates at some iteration k̄ in Step 2 for εtol > 0. Then

dist
(
0|∂f (xk̄

))
<
(
1 + K̄μ0)εtol .

Proof Let w̄ = Proj(0|G(xk)). We use v̄ ∈ ∂f (xk) as constructed in Lemma 2.1(1)
to see that

dist
(
0|∂f (xk

)) ≤ dist(0|w̄) + dist(w̄|v̄)

= ∣∣dk
∣
∣+ |w̄ − v̄|

≤ ∣∣dk
∣∣+ K̄�k

< εtol + K̄�k

The final statement now follows by the test �k ≤ μk|dk| ≤ μ0εtol in Step 2. �

3 Robust approximate gradient sampling algorithm

The AGS algorithm depends on the active set of functions at each iterate, A(xk). Of
course, it is possible at various times in the algorithm for there to be functions that are
inactive at the current iterate, but active within a small radius of the current iterate.
Typically such behaviour means that the current iterate is close to a ‘nondifferentiable
ridge’ formed by the function. In [6] and [7], it is suggested that allowing an algo-
rithm to take into account these ‘almost active’ functions will provide a better idea of
what is happening at and around the current iterate, thus, making the algorithm more
robust.

In this section we present the robust gradient sampling algorithm (RAGS algo-
rithm). Specifically, we adapt the AGS algorithm by expanding our active set to in-
clude all functions that are active at any of the points in the set Y . Recall from the
AGS algorithm that the set Y is sampled from within a ball of radius �k . Thus, the
points in Y are not far from the current iterate. We define the robust active set next.

Definition 3.1 Let f = max{fi : i = 1, . . . ,N} where fi ∈ C 1. Let y0 = xk be the
current iterate and Y = [y0, y1, y2, . . . , ym] be a set of randomly sampled points from
a ball centered at y0 with radius �k . The robust active set of f on Y is

A(Y) =
⋃

yj ∈Y

A
(
yj
)

.

3.1 Algorithm—RAGS

Using the idea of the robust active set, we alter the AGS algorithm to accommodate
the robust active set by replacing Steps 1 and 2 with the following.

A derivative-free approximate gradient sampling algorithm for finite 15

1. GENERATE APPROXIMATE SUBDIFFERENTIAL Gk
Y (ROBUST):

Generate a set Y = [xk, y1, . . . , ym] around the current iterate xk such that

max
j=1,...,m

∣∣yj − xk
∣∣≤ �k.

Use Y to calculate the approximate gradient of fi , denoted ∇Afi , at xk for each i ∈
A(Y). Then set Gk = conv{∇Afi(x

k)}i∈A(xk) and Gk
Y = conv{∇Afi(x

k)}i∈A(Y).
2. GENERATE SEARCH DIRECTION:

Let

dk = −Proj
(
0|Gk

)
.

Let

dk
Y = −Proj

(
0|Gk

Y

)
.

Check if

�k ≤ μk
∣∣dk
∣∣. (14)

If (14) does not hold, then set xk+1 = xk ,

�k+1 =
{

θμk|dk| if |dk| �= 0,

θ�k if |dk| = 0,

k = k + 1 and return to Step 1. If (14) holds and |dk| < εtol , then STOP. Else,
continue to the line search, using dk

Y as a search direction.

Notice that in Step 2 we still use the stopping conditions from Sect. 2. Although
this modification requires the calculation of two projections, it should be noted that
neither of these projections are particularly difficult to calculate. In Sect. 3.3, we use
the Goldstein approximate subdifferential to adapt Theorem 2.9 to work for stopping
conditions based on dk

Y , but we still do not have theoretical results for the exact subd-
ifferential. It is important to note that no additional function evaluations are required
for this modification.

In the numerics section, we test each version of our algorithm using the robust
descent direction to check the stopping conditions. This alteration shows convincing
results that the robust stopping conditions not only guarantee convergence, but sig-
nificantly decrease the number of function evaluations required for the algorithm to
converge.

3.2 Convergence

To show that the RAGS algorithm is well-defined we will require the fact that when
�k is small enough, the robust active set is in fact equal to the original active set.

Lemma 3.2 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Let Y = [x̄, y1, . . . ,

ym] be a randomly sampled set from a ball centered at x̄ with radius �. Then there
exists an ε̃ > 0 such that if Y ⊆ Bε̃(x̄), then A(x̄) = A(Y).

16 W. Hare, J. Nutini

Proof Clearly, if i ∈ A(x̄), then i ∈ A(Y) as x̄ ∈ Y .
Consider i �∈ A(x̄). Then by the definition of f , we have that

fi(x̄) < f (x̄).

By definition, f is continuous, thus, there exists an ε̃i > 0 such that for all z ∈ Bε̃i
(x̄),

fi(z) < f (z).

If � < ε̃i , then we have |yj − x̄| < ε̃i for all j = 1, . . . ,m. Therefore,

fi

(
yj
)
< f
(
yj
)

for all j = 1, . . . ,m, (15)

so i �∈ A(Y). Setting ε̃ = mini ε̃i completes the proof. �

Using Lemma 3.2, we can easily conclude that the AGS algorithm is still well-
defined when using the robust active set.

Corollary 3.3 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Suppose 0 �∈
∂f (xk) for each iteration k. Suppose there exists a K̄ > 0 such that given any set of
points generated in Step 1 of the RAGS algorithm, the approximate gradient satisfies
|∇Afi(x

k) − ∇fi(x
k)| ≤ K̄�k for all i = 1, . . . ,N . Then after a finite number of

iterations, the RAGS algorithm will find function value decrease.

Proof Consider xk , where 0 /∈ ∂f (xk).
For eventual contradiction, suppose we do not find function value decrease. In the

RAGS algorithm, this corresponds to an infinite number of line search failures. If we
have an infinite number of line search failures, then �k → 0, as |dk| is bounded, and
xk̄ = xk for all k̄ ≥ k. In Lemma 3.2, ε̃ depends only on xk . Hence, we can conclude
that eventually �k ≤ ε̃ and therefore Y ⊆ Bε̃(x

k). Thus, eventually A(xk) = A(Y k).
Once the two active sets are equal, the results of Sect. 2 will hold. �

To examine convergence of the RAGS algorithm we use the result that eventually
the robust active set at the current iterate will be a subset of the regular active set at
any cluster point of the algorithm.

Lemma 3.4 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Let Y k =
[xk, y1, . . . , ym] be a randomly sampled set from a ball centered at xk with radius �k .
Let xk → x̄. Then there exists an ε̃ > 0 such that if Y k ⊆ Bε̃(x̄), then A(Y k) ⊆ A(x̄).

Proof Let i /∈ A(x̄). We must show that for k sufficiently large i /∈ A(Y k).
By definition of f , we have that

fi(x̄) < f (x̄).

Since f is continuous, there exists an ε̃i > 0 such that for all z ∈ Bε̃i
(x̄)

fi(z) < f (z).

A derivative-free approximate gradient sampling algorithm for finite 17

If Y k ⊆ Bε̃i
(x̄), then we have |xk − x̄| < ε̃i and |yj − x̄| < ε̃i for all j = 1, . . . ,m.

Therefore

fi

(
xk
)
< f
(
xk
)

and

fi

(
yj
)
< f
(
yj
)

for all j = 1, . . . ,m.

Thus, if Y k ⊆ Bε̃i
(x̄), then i �∈ A(Y k). Letting ε̃ = mini ε̃i completes the proof. �

Now we examine the convergence of the RAGS algorithm.

Theorem 3.5 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Set εtol = 0
and suppose that {xk}∞k=0 is an infinite sequence generated by the RAGS algo-
rithm. Suppose there exists a K̄ > 0 such that given any set of points generated in
Step 1 of the RAGS algorithm, the approximate gradient satisfies the error bound
|∇Afi(x

k) − ∇fi(x
k)| ≤ K̄�k for all i = 1, . . . ,N . Suppose tk is bounded away

from 0. Then either

1. f (xk) ↓ −∞, or
2. |dk| → 0, �k ↓ 0 and every cluster point x̄ of the sequence {xk}∞k=0 satisfies 0 ∈

∂f (x̄).

Proof If f (xk) ↓ −∞, then we are done.
Conversely, if f (xk) is bounded below, then f (xk) is non-increasing and bounded

below, therefore f (xk) converges. We consider two cases.
Case 1: An infinite number of line search successes occur.

Let x̄ be a cluster point of {xk}∞k=0. Notice that xk only changes for line search
successes, so there exists a subsequence {xkj }∞k=0 of line search successes such that
xkj → x̄. Following the arguments of Theorem 2.8, we have |dkj | → 0 and �kj ↓ 0.
Notice that if �kj ↓ 0, then eventually Y kj ⊆ Bε̃(x̄), where xkj → x̄ and ε̃ is defined
as in Lemma 3.4. Thus, by Lemma 3.4, we have that A(Y kj) ⊆ A(x̄). This means that
G

Y
kj (xkj) is formed from a subset of the approximated active gradients, related to

∂f (x̄). Thus, by Lemma 2.1(1), as −dkj ∈ G
Y

kj (xkj), we can construct a vkj ∈ ∂f (x̄)

from the same set of approximated active gradients, related to G
Y

kj (xkj), such that

∣∣−dkj − vkj
∣∣ =
∣∣∣∣
∑

i∈A(Y
kj)

αi∇Afi

(
xkj
)−

∑

i∈A(Y
kj)

αi∇fi(x̄)

∣∣∣∣

≤
∑

i∈A(Y
kj)

αi

∣∣∇Afi

(
xkj
)− ∇fi(x̄)

∣∣

≤
∑

i∈A(Y
kj)

αi

∣∣∇Afi

(
xkj
)− ∇fi

(
xkj
)∣∣+ αi

∣∣∇fi

(
xkj
)− ∇fi(x̄)

∣∣

18 W. Hare, J. Nutini

≤
∑

i∈A(Y
kj)

αiK̄�kj + αi

∣∣∇fi

(
xkj
)− ∇fi(x̄)

∣∣

≤ K̄�kj +
∑

i∈A(Y
kj)

αi

∣∣∇fi

(
xkj
)− ∇fi(x̄)

∣∣.

Using the Triangle Inequality, we have that

∣∣vkj
∣∣− ∣∣dkj

∣∣≤ K̄�kj +
∑

i∈A(Y
kj)

αi

∣∣∇fi

(
xkj
)− ∇fi(x̄)

∣∣.

We already showed that |dkj | → 0 and �kj ↓ 0. Furthermore, since ∇fi is continuous
and xkj → x̄, we have |∇fi(x

kj) − ∇fi(x̄)| → 0. So,

lim
j→∞

∣∣vkj
∣∣= 0.

Using the same arguments as in Theorem 2.8, the result follows.
Case 2: A finite number of line search successes occur.

This means there exists a k̄ such that xk = xk̄ = x̄ for all k ≥ k̄. However, by
Corollary 3.3, if 0 /∈ ∂f (x̄), then after a finite number of iterations, the algorithm will
find function value decrease (line search success). Hence, we have 0 ∈ ∂f (x̄). This
implies �k ↓ 0 and |dk| → 0, as in the proof of Theorem 2.8. �

Remark 3.6 Using dk to check our stopping conditions allows the result of Theo-
rem 2.9 to still hold.

3.3 Robust stopping with Goldstein approximate subdifferential

We want to provide some insight as to how Theorem 2.9 can work for stopping
conditions based on dk

Y , that is, replacing the stopping conditions �k ≤ μk|dk| and
|dk| < εtol in Step 2 with the robust stopping conditions

�k ≤ μk
∣∣dk

Y

∣∣ and
∣∣dk

Y

∣∣< εtol . (16)

In the situation when the algorithm terminates, the following proposition does
not theoretically justify why the stopping conditions are sufficient, but does help ex-
plain their logic. Theoretically, since we do not know what x̄ is, we cannot tell when
A(Y) ⊆ A(x̄). However, as seen above, we do know that if xk → x̄, then eventually
A(Y k) ⊆ A(x̄).

Proposition 3.7 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1. Suppose there
exists a K̄ > 0 such that |∇Afi(x) − ∇fi(x)| ≤ K̄�k for all i = 1, . . . ,N and for all
x ∈ B�k(xk). Suppose the RAGS algorithm terminates at some iteration k̄ in Step 2
using the robust stopping conditions given in (16). Furthermore, suppose there exists
x̄ ∈ B

�k̄ (x
k̄) such that A(Y k̄) ⊆ A(x̄). Then

dist
(
0|∂f (x̄)

)
<
(
1 + K̄μ0)εtol .

A derivative-free approximate gradient sampling algorithm for finite 19

Proof If A(Y k̄) ⊆ A(x̄), then the proofs of Lemma 2.1(1) and Theorem 2.9 still
hold. �

Additionally, in the following results, we approach the theory for robust stopping
conditions using the Goldstein approximate subdifferential. If the RAGS algorithm
terminates in Step 2, then it is shown that the distance between 0 and the Goldstein
approximate subdifferential is controlled by εtol . Again, this does not prove the robust
stopping conditions are sufficient for the exact subdifferential.

First, the Goldstein approximate subdifferential, as defined in [17], is given by the
set

∂G
�f (x̄) = conv

{
∂f (z) : z ∈ B�(x̄)

}
. (17)

We now show that the Goldstein approximate subdifferential contains all of the
gradients of the active functions in the robust active set.

Lemma 3.8 Let f = max{fi : i = 1, . . . ,N}. Let Y = [y0, y1, y2, . . . , ym] be a ran-
domly sampled set from a ball centered at y0 = x̄ with radius �. If fi ∈ C 1 for each i,
then

∂G
�f (x̄) ⊇ conv

{∇fi

(
yj
) : yj ∈ Y, i ∈ A

(
yj
)}

.

Proof If fi ∈ C 1 for each i ∈ A(Y), then by (2), for each yj ∈ Y we have

∂f
(
yj
)= conv

{∇fi

(
yj
)}

i∈A(yj)
= conv

{∇fi

(
yj
) : i ∈ A

(
yj
)}

.

Using this in our definition of the Goldstein approximate subdifferential in (17) and
knowing B�(x̄) ⊇ Y , we have

∂G
�f (x̄) ⊇ conv

{
conv
{∇fi

(
yj
) : i ∈ A

(
yj
)} : yj ∈ Y

}
,

which simplifies to

∂G
�f (x̄) ⊇ conv

{∇fi

(
yj
) : yj ∈ Y, i ∈ A

(
yj
)}

. (18)

�

Now we have a result similar to Lemma 2.1(1) for dk
Y with respect to the Goldstein

approximate subdifferential.

Remark 3.9 For the following two results, we assume each of the fi ∈ C 1+ with
Lipschitz constant L. Note that this implies the Lipschitz constant L is independent
of i. If each fi ∈ C 1+ with Lipschitz constant Li , then L is easily obtained by L =
max{Li : i = 1, . . . ,N}.
Lemma 3.10 Let f = max{fi : i = 1, . . . ,N} where fi ∈ C 1+ with Lipschitz con-
stant L. Let Y = [y0, y1, y2, . . . , ym] be a randomly sampled set from a ball cen-
tered at y0 = x̄ with radius �. Suppose there exists a K̄ > 0 such that |∇Afi(x̄) −
∇fi(x̄)| ≤ K̄�. Then for all w ∈ GY (x̄), there exists a g ∈ ∂G

�f (x̄) such that

|w − g| ≤ (K̄ + L)�.

20 W. Hare, J. Nutini

Proof By definition, for all w ∈ GY (x̄) there exists a set of αi such that

w =
∑

i∈A(Y)

αi∇Afi(x̄), where αi ≥ 0,
∑

i∈A(Y)

αi = 1.

By our assumption that each fi ∈ C 1+, Lemma 3.8 holds. It is clear that for each
i ∈ A(Y), i ∈ A(yj) for some yj ∈ Y . Let ji be the index corresponding to this
active index; i.e., i ∈ A(yji). Thus, for each i ∈ A(Y), there is a corresponding active
gradient

∇fi

(
yji
) ∈ conv

{∇fi

(
yji
) : yji ∈ Y, i ∈ A

(
yji
)}⊆ ∂G

�f (x̄).

Using the same αi as above, we can construct

g =
∑

i∈A(Y)

αi∇fi

(
yji
) ∈ conv

{∇fi

(
yji
) : yji ∈ Y, i ∈ A

(
yji
)}⊆ ∂G

�f (x̄).

Then

|w − g| =
∣∣
∣∣
∑

i∈A(Y)

αi∇Afi(x̄) −
∑

i∈A(Y)

αi∇fi

(
yji
)
∣∣
∣∣

≤
∑

i∈A(Y)

αi

∣∣∇Afi(x̄) − ∇fi

(
yji
)∣∣

≤
∑

i∈A(Y)

αi

(∣∣∇Afi(x̄) − ∇fi(x̄)
∣∣+ ∣∣∇fi(x̄) − ∇fi

(
yji
)∣∣)

≤
∑

i∈A(Y)

αi

(
K̄� + Lmax

ji

∣∣x̄ − yji
∣∣
)

≤ (K̄ + L)�. �

Thus, using Lemma 3.10, we can show that if the algorithm stops due to the robust
stopping conditions, then the distance from 0 to the Goldstein approximate subdiffer-
ential is controlled by εtol .

Proposition 3.11 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1+ with Lip-
schitz constant L. Suppose there exists a K̄ > 0 such that for each iteration k, the
approximate gradient satisfies |∇Afi(x

k) − ∇fi(x
k)| ≤ K̄�k for all i = 1, . . . ,N .

Suppose the RAGS algorithm terminates at some iteration k̄ in Step 2 using the ro-
bust stopping conditions given in (16). Then

dist
(
0|∂G

�k̄
f
(
xk̄
))

<
[
1 + μ0(K̄ + L)

]
εtol .

Proof Let w̄ = Proj(0|G
Yk̄ (x

k̄)). We use ḡ ∈ ∂G

�k̄
f (xk̄) as constructed in Lemma 3.10

to see that

A derivative-free approximate gradient sampling algorithm for finite 21

dist
(
0|∂G

�k̄
f
(
xk̄
)) ≤ dist(0|ḡ)

≤ dist(0|w̄) + dist(w̄|ḡ)

= ∣∣dk̄
Y

∣∣+ |w̄ − ḡ|
≤ ∣∣dk̄

Y

∣∣+ (K̄ + L)�k̄

< εtol + (K̄ + L)�k̄

The statement now follows by the test �k̄ ≤ μk̄|dk̄
Y | in Step 2 and the fact that

μk̄ ≤ μ0 as {μk}k=0 is a non-increasing sequence. �

4 Approximate gradients

As seen in the previous two sections, in order for convergence to be guaranteed in
the AGS or RAGS algorithm, the approximate gradient used must satisfy an error
bound for each of the active fi . Specifically, there must exist a K̄ > 0 such that

∣∣∇Afi

(
xk
)− ∇fi

(
xk
)∣∣≤ K̄�k,

where �k = maxj |yj − xk|. In this section, we present three specific approximate
gradients that satisfy the above requirement: the simplex gradient, the centered sim-
plex gradient and the Gupal estimate of the gradient of the Steklov averaged function.

4.1 Simplex gradient

The simplex gradient is a commonly used approximate gradient. In recent years, sev-
eral derivative-free algorithms have been proposed that use the simplex gradient ([5,
11, 12, 22] and [19] among others). It is geometrically defined as the gradient of the
linear interpolation of f over a set of n + 1 points in R

n. Mathematically, we define
it as follows.

Let Y = [y0, y1, . . . , yn] be a set of affinely independent points in R
n. We say that

Y forms the simplex S = conv{Y }. Thus, S is a simplex if it can be written as the
convex hull of an affinely independent set of n + 1 points in R

n.
The simplex gradient of a function f over the set Y is given by

∇sf (Y) = L−1δf (Y),

where

L = [y1 − y0 · · · yn − y0
]�

and

δf (Y) =
⎡

⎢
⎣

f (y1) − f (y0)
...

f (yn) − f (y0)

⎤

⎥
⎦ .

22 W. Hare, J. Nutini

The condition number of the simplex formed by Y is given by ‖L̂−1‖, where

L̂ = 1

�

[
y1 − y0 y2 − y0 · · · yn − y0

]�
and where � = max

j=1,...,n

∣
∣yj − y0

∣
∣.

4.1.1 Convergence

The following result (by Kelley [23]) shows that there exists an appropriate error
bound between the simplex gradient and the exact gradient of our objective function.
We note that the Lipschitz constant used in the following theorem corresponds to ∇fi .

Theorem 4.1 Consider fi ∈ C 1+ with Lipschitz constant Ki for ∇fi . Let Y =
[y0, y1, . . . , yn] form a simplex. Let

L̂ = 1

�

[
y1 − y0 y2 − y0 · · · yn − y0

]�
, where � = max

j=1,...,n

∣∣yj − y0
∣∣.

Then the simplex gradient satisfies the error bound
∣∣∇sfi(Y) − ∇fi

(
y0)∣∣≤ K̄�,

where K̄ = 1
2Ki

√
n‖L̂−1‖.

Proof See [23, Lemma 6.2.1]. �

With the above error bound result, we conclude that convergence holds when us-
ing the simplex gradient as an approximate gradient in both the AGS and RAGS
algorithms.

Corollary 4.2 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1+ with Lipschitz
constant Ki for ∇fi . If the approximate gradient used in the AGS or RAGS algo-
rithm is the simplex gradient and ‖L̂−1‖ is bounded above for each simplex gradient
computed, then the results of Theorems 2.4, 2.6, 2.8, 2.9 and 3.5 hold.

4.1.2 Algorithm—simplex gradient

In order to calculate a simplex gradient in Step 1, we generate a set Y = [xk, y1, . . . ,

yn] of points in R
n and then check to see if Y forms a well-poised simplex by calculat-

ing its condition number, ‖L̂−1‖. A bounded condition number (‖L̂−1‖ < n) ensures
a ‘good’ error bound between the approximate gradient and the exact gradient.

If the set Y does not form a well-poised simplex (‖L̂−1‖ ≥ n), then we resample.
If Y forms a well-poised simplex, then we calculate the simplex gradient of fi over
Y for each i ∈ A(xk) and then set the approximate subdifferential equal to the convex
hull of the active simplex gradients. We note that the probability of generating a ran-
dom matrix with a condition number greater than n is asymptotically constant [38].
Thus, randomly generating simplices is a quick and practical option. Furthermore,
notice that calculating the condition number does not require function evaluations;
thus, resampling does not affect the number of function evaluations required by the
algorithm.

A derivative-free approximate gradient sampling algorithm for finite 23

4.2 Centered simplex gradient

The centered simplex gradient is the average of two simplex gradients. Although
it requires more function evaluations, it contains an advantage that the error bound
satisfied by the centered simplex gradient is in terms of �2, rather than �.

Let Y = [y0, y1, . . . , yn] form a simplex. We define the sets

Y+ = [x, x + ỹ1, . . . , x + ỹn
]

and

Y− = [x, x − ỹ1, . . . , x − ỹn
]
,

where x = y0 and ỹi = yi − y0 for i = 1, . . . , n. The centered simplex gradient is
the average of the two simplex gradients over the sets Y+ and Y−, i.e.,

∇CSf (Y) = 1

2

(∇Sf
(
Y+)+ ∇Sf

(
Y−)).

4.2.1 Convergence

To show that the AGS and RAGS algorithms are both well-defined when using the
centered simplex gradient as an approximate gradient, we provide an error bound
between the centered simplex gradient and the exact gradient (again by Kelley [23]).

Theorem 4.3 Consider fi ∈ C 2+ with Lipschitz constant Ki for ∇2fi . Let Y =
[y0, y1, . . . , yn] form a simplex. Let

L̂ = 1

�

[
y1 − y0, . . . , yn − y0] where � = max

j=1,...,n

∣∣yj − y0
∣∣.

Then the centered simplex gradient satisfies the error bound
∣∣∇CSfi(Y) − ∇fi

(
y0)∣∣≤ K̄�2,

where K̄ = Ki

√
n‖L̂−1‖.

Proof See [23, Lemma 6.2.5]. �

Notice that Theorem 4.3 requires fi ∈ C 2+. If fi ∈ C 1+, then the error bound is in
terms of �, not �2. With the above error bound result, we conclude that convergence
holds when using the centered simplex gradient as an approximate gradient in both
the AGS and RAGS algorithms.

Corollary 4.4 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 2+ with Lipschitz
constant Ki for ∇2fi . If the approximate gradient used in the AGS or RAGS algorithm
is the centered simplex gradient, ‖L̂−1‖ is bounded above for each centered simplex
gradient computed and �0 ≤ 1, then the results of Theorems 2.4, 2.6, 2.8, 2.9 and 3.5
hold.

24 W. Hare, J. Nutini

Proof Since �0 ≤ 1 and non-increasing, (�k)2 ≤ �k and ergo, Theorems 2.4, 2.6,
2.8, 2.9 and 3.5 hold. �

4.2.2 Algorithm

In Step 1, to adapt the AGS or RAGS algorithm to use the centered simplex gradient,
we sample our set Y in the same manner as for the simplex gradient (resampling
until a well-poised set is achieved). We then form the sets Y+ and Y− and proceed as
expected.

4.3 Gupal estimate

The nonderivative version of the gradient sampling algorithm presented by Kiwiel
in [24] uses the Gupal estimate of the gradient of the Steklov averaged function as an
approximate gradient. We see in Theorem 4.8 that an appropriate error bound exists
for this approximate gradient. Surprisingly, unlike the error bounds for the simplex
and centered simplex gradients, the error bound in Theorem 4.8 does not include a
condition number term. Mathematically, we define the Gupal estimate of the gradient
of the Steklov averaged function as follows.

For α > 0, the Steklov averaged function fα , as defined in [16, Def. 3.1], is given
by

fα(x) =
∫

Rn

f (x − y)ψα(y)dy,

where ψα : R
n → R+ is the Steklov mollifier defined by

ψα(y) =
{

1/αn if y ∈ [−α/2, α/2]n,
0 otherwise.

We can equivalently define the Steklov averaged function by

fα(x) = 1

αn

∫ x1+α/2

x1−α/2
· · ·
∫ xn+α/2

xn−α/2
f (y)dy1 · · ·dyn. (19)

The partial derivatives of fα are given by ([16, Prop. 3.11] and [18])

∂fα

∂xi

(x) =
∫

B∞
γi(x,α, ζ)dζ (20)

for i = 1, . . . , n, where B∞ = [−1/2,1/2]n is the unit cube centred at 0 and

γi(x,α, ζ)

= 1

α

[
f

(
x1 + αζ1, . . . , xi−1 + αζi−1, xi + 1

2
α,xi+1 + αζi+1, . . . , xn + αζn

)

− f

(
x1 + αζ1, . . . , xi−1 + αζi−1, xi − 1

2
α,xi+1 + αζi+1, . . . , xn + αζn

)]
.

(21)

A derivative-free approximate gradient sampling algorithm for finite 25

Given α > 0 and z = (ζ 1, . . . , ζ n) ∈∏n
i=1 B∞, the Gupal estimate of ∇fα(x) over

z is given by

γ (x,α, z) = (γ1
(
x,α, ζ 1), . . . , γn

(
x,α, ζ n

))
. (22)

Remark 4.5 Although we define γ (x,α, z) as the Gupal estimate of ∇fα(x), in
Sect. 4.3.1, we will show that γ (x,α, z) provides a good approximation to the ex-
act gradient, ∇f (x).

Remark 4.6 For the following results, we note that the α used in the above definitions
is equivalent to our sampling radius �. Thus, we will be replacing α with � in the
convergence results in Sect. 4.3.1.

4.3.1 Convergence

As before, in order to show that both the AGS and RAGS algorithms are well-defined
when using the Gupal estimate as an approximate gradient, we must establish that
it provides a good approximate of our exact gradient. To do this, we first need the
following classic result from [13].

Lemma 4.7 [13, Lemma 4.1.12] Let f ∈ C 1+ with Lipschitz constant K for ∇f . Let
y0 ∈ R

n. Then for any y ∈ R
n

∣∣f (y) − f
(
y0)− ∇f

(
y0)�(y − y0)∣∣≤ 1

2
K
∣∣y − y0

∣∣2.

Using Lemma 4.7, we establish an error bound between the Gupal estimate and
the exact gradient of f .

Theorem 4.8 Consider fi ∈ C 1+ with Lipschitz constant Ki for ∇fi . Let ε > 0.
Then for � > 0, z = (ζ 1, . . . , ζ n) ∈ Z =∏n

i=1 B∞ and any point x ∈ R
n, the Gupal

estimate of ∇fi,�(x) satisfies the error bound

∣∣γ (x,�, z) − ∇fi(x)
∣∣≤ √

n
1

2
Ki�(

√
n + 3).

Proof For � > 0, let

yj− =
[
x1 + �ζ1, . . . , xj−1 + �ζj−1, xj − 1

2
�,xj+1 + �ζj+1, . . . , xn + �ζn

]�

and

yj+ =
[
x1 + �ζ1, . . . , xj−1 + �ζj−1, xj + 1

2
�,xj+1 + �ζj+1, . . . , xn + �ζn

]�
.

Applying Lemma 4.7, we have that

∣
∣fi

(
yj+)− fi

(
yj−)− ∇fi

(
yj−)�(yj+ − yj−)∣∣≤ 1

2
Ki

∣
∣yj+ − yj−∣∣2. (23)

26 W. Hare, J. Nutini

From (21) (with α = �), we can see that

fi

(
yj+)− fi

(
yj−)= �γj

(
x,�, ζ j

)
.

Hence, (23) becomes

∣∣�γj

(
x,�, ζ j

)− ∇fi

(
yj−)�(yj+ − yj−)∣∣≤ 1

2
Ki

∣∣yj+ − yj−∣∣2. (24)

From our definitions of yj− and yj+, we can see that

yj+ − yj− = [0, . . . ,0,�,0, . . . ,0]�.

The inner product in (24) simplifies to

∇fi

(
yj−)�(yj+ − yj−)= �

∂fi

∂xj

(
yj−).

Thus, we have
∣∣∣∣�γj

(
x,�, ζ j

)− �
∂fi

∂xj

(
yj−)

∣∣∣∣≤
1

2
Ki�

2,

implying
∣∣∣∣γj

(
x,�, ζ j

)− ∂fi

∂xj

(
yj−)

∣∣∣∣≤
1

2
Ki�. (25)

Also notice that

∣∣yj− − x
∣∣= �

∣∣∣∣

(
ζ

j

1 , . . . , ζ
j

j−1,−
1

2
, ζ

j

j+1, . . . , ζ
j
n

)∣∣∣∣.

Using the standard basis vector ej , we have

∣∣yj− − x
∣∣= �

∣∣ζ j − ζj e
j − 1

2
ej
∣∣≤ �

(∣∣ζ j
∣∣+ ∣∣ζj e

j
∣∣+ 1

2

)
≤ 1

2
�(

√
n + 2).

Thus, since fi ∈ C 1+, we have

∣∣∇fi

(
yj−)− ∇fi(x)

∣∣≤ Ki

1

2
�(

√
n + 2). (26)

Noting that
∣∣∣∣
∂fi

∂xj

(
yj−)− ∂fi

∂xj

(x)

∣∣∣∣≤
∣∣∇fi

(
yj−)− ∇fi(x)

∣∣,

we have
∣∣
∣∣
∂fi

∂xj

(
yj−)− ∂fi

∂xj

(x)

∣∣
∣∣≤ Ki

1

2
�(

√
n + 2). (27)

A derivative-free approximate gradient sampling algorithm for finite 27

Using (25) and (27), we have

∣∣∣
∣γj

(
x,�, ζ j

)− ∂fi

∂xj

(x)

∣∣∣
∣ ≤
∣∣∣
∣γj

(
x,�, ζ j

)− ∂fi

∂xj

(
yj−)

∣∣∣
∣+
∣∣∣
∣
∂fi

∂xj

(
yj−)− ∂fi

∂xj

(x)

∣∣∣
∣

≤ 1

2
Ki� + Ki

1

2
�(

√
n + 2)

= 1

2
Ki�(

√
n + 3).

Finally,

∣∣γ (x,�, z) − ∇fi(x)
∣∣ =
√√√√

n∑

j=1

(
γj

(
x,�, ζ j

)− ∂fi

∂xj

(x)

)2

≤
√√
√√

n∑

j=1

(
1

2
Ki�(

√
n + 3)

)2

= √
n

1

2
Ki�(

√
n + 3). �

We conclude that convergence holds when using the Gupal estimate of the gradient
of the Steklov averaged function of f as an approximate gradient in both the AGS
and RAGS algorithms.

Corollary 4.9 Let f = max{fi : i = 1, . . . ,N} where each fi ∈ C 1+ with Lipschitz
constant Ki for ∇fi . If the approximate gradient used in the AGS or RAGS algorithm
is the Gupal estimate of the gradient of the Steklov averaged function, then the results
of Theorems 2.4, 2.6, 2.8, 2.9 and 3.5 hold.

4.3.2 Algorithm

To use the Gupal estimate of the gradient of the Steklov averaged function in both
the AGS and RAGS algorithms, in Step 1, we sample independently and uniformly
{zkl}ml=1 from the unit cube in R

n×n, respectively, where m is the number of active
functions.

5 Numerical results

5.1 Versions of the AGS and RAGS algorithms

We implemented the AGS and RAGS algorithms using the simplex gradient, the cen-
tered simplex gradient and the Gupal estimate of the gradient of the Steklov averaged
function as approximate gradients.

28 W. Hare, J. Nutini

Additionally, we used the robust descent direction to create robust stopping con-
ditions. That is, the algorithm terminates when

�k ≤ μk
∣∣dk

Y

∣∣ and
∣∣dk

Y

∣∣< εtol, (28)

where dk
Y is the projection of 0 onto the approximate subdifferential generated us-

ing the robust active set (see Proposition 3.11 for results linking the robust stopping
conditions with the Goldstein approximate subdifferential). The implementation was
done in MATLAB (v. 7.11.0.584, R2010b). Software is available by contacting the
corresponding author.

Let dk denote the regular descent direction and let dk
Y denote the robust descent

direction. There are three scenarios that could occur when using the robust stopping
conditions:

1. |dk| = |dk
Y |;

2. |dk| ≥ |dk
Y |, but checking the stopping conditions leads to the same result (line

search, radius decrease or termination); or
3. |dk| ≥ |dk

Y |, but checking the stopping conditions leads to a different result.

In Scenarios 1 and 2, the robust stopping conditions have no influence on the
algorithm. In Scenario 3, we have two cases:

1. �k ≤ μk|dk
Y | ≤ μk|dk|, but |dk| ≥ εtol and |dk

Y | < εtol or

2. �k ≤ μk|dk| holds, but �k > μk|dk
Y |.

Thus, we hypothesize that the robust stopping conditions will cause the AGS and
RAGS algorithms to do one of two things: to terminate early, providing a solution
that has a smaller quality measure, but requires less function evaluations to find, or
to reduce its sampling radius instead of carrying out a line search, reducing the num-
ber of function evaluations carried out during that iteration and calculating a more
accurate approximate subdifferential at the next iteration.

Our goal in this testing is to determine if there are any notable numerical differ-
ences in the quality of the three approximate gradients (simplex, centered simplex,
and Gupal estimate), the two search directions (robust and non-robust), and the two
stopping conditions (robust and non-robust). This leads to the following 12 versions:

AGS Simplex (1. non-robust/2. robust stopping)

RAGS Simplex (3. non-robust/4. robust stopping)

AGS Centered Simplex (5. non-robust/6. robust stopping)

RAGS Centered Simplex (7. non-robust/8. robust stopping)

AGS Gupal (9. non-robust/10. robust stopping)

RAGS Gupal (11. non-robust/12. robust stopping)

5.2 Test sets and software

Testing was performed on a 2.0 GHz Intel Core i7 Macbook Pro. We used the test set
from Lukšan-Vlček [27]. The first 25 problems presented are of the desired form

min
x

{
F(x)

}
where F(x) = max

i=1,2,...,N

{
fi(x)

}
.

A derivative-free approximate gradient sampling algorithm for finite 29

Of these 25 problems, we omit problem 2.17 because the sub-functions are complex-
valued. Thus, our test set presents a total of 24 finite minimax problems with di-
mensions from 2 to 20. There are several problems with functions fi that have
the form fi = |fi|, where fi is a smooth function. We rewrote these functions as
fi = max{fi,−fi}. The resulting test problems have from 2 to 130 sub-functions.
A summary of the test problems appears in Table 2 in the Appendix.

5.3 Initialization and stopping conditions

We first describe our choices for the initialization parameters used in the AGS and
RAGS algorithms.

The initial starting points are given for each problem in [27]. We set the initial
accuracy measure to 0.5 with a reduction factor of 0.5. We set the initial sampling
radius to 0.1 with a reduction factor of 0.5. The Armijo-like parameter η was chosen
to be 0.1 to ensure that a line search success resulted in a significant function value
decrease. We set the minimum step length to 10−10.

Next, we discuss the stopping tolerances used to ensure finite termination of the
AGS and RAGS algorithms. We encoded four possible reasons for termination in our
algorithm. The first is our theoretical stopping condition, while the remaining three
are to ensure numerical stability of the algorithm.

1. Stopping conditions met—As stated in the theoretical algorithm, the algorithm
terminates for this reason when �k ≤ μk|dk| and |dk| < εtol , where dk is either
the regular or the robust descent direction.

2. Hessian matrix has NaN/Inf entries—For the solution of the quadratic program in
Step 2, we use the quadprog command in MATLAB, which has certain numerical
limitations. When these limitations result in NaN or Inf entries in the Hessian, the
algorithm terminates.

3. �k , μk , and |dk| are small—This stopping criterion bipasses the test �k ≤ μk|dk|
(in Step 2) and stops if �k < �tol , |μk| < μtol and |dk| < εtol . Examining The-
orem 2.9 along with Theorems 4.1, 4.3 and 4.8, it is clear that this is also a valid
stopping criterion. We used a bound of 10−6 in our implementation for both �k

and μk .
4. Max number of function evaluations reached—As a final failsafe, we added an

upper bound of 106 on the number of function evaluations allowed. (This stopping
condition only occurs once in our results.)

5.4 Results

Due to the randomness in the AGS and RAGS algorithms, we carry out 25 trials for
each version. For each of the 25 trials, we record the number of function evaluations,
the number of iterations, the solution, the quality of the solution and the reason for
termination. The quality was measured by the improvement in the number of digits
of accuracy, which is calculated using the formula

− log

(|Fmin − F ∗|
|F0 − F ∗|

)
,

30 W. Hare, J. Nutini

where Fmin is the function value at the final (best) iterate, F ∗ is the true minimum
value (optimal value) of the problem (as given in [27]) and F0 is the function value
at the initial iterate. Results on function evaluations and solution quality appear in
Tables 3, 4 and 5 of the Appendix.

To visually compare algorithmic versions, we use performance profiles. A perfor-
mance profile is the (cumulative) distribution function for a performance metric [14].
For the AGS and RAGS algorithms, the performance metric is the ratio of the num-
ber of function evaluations taken by the current version to successfully solve each test
problem versus the least number of function evaluations taken by any of the versions
to successfully solve each test problem. Performance profiles eliminate the need to
discard failures in numerical results and provide a visual representation of the per-
formance difference between several solvers. For full details on the construction of
performance profiles, see [14].

In Figs. 1(a) and 1(b) we include a performance profile showing all 12 versions of
the AGS and RAGS algorithms tested, declaring a success for 1 digit and 3 digits of
improvement, respectively.

In general, we can see that using the Gupal estimate of the gradient of the Steklov
averaged function as an approximate gradient does not produce the best results.
It only produces 1 or more digits of accuracy for problems 2.1, 2.2, 2.4, 2.10, 2.18
and 2.23 (robust version). There is no significant difference between the performance
of the AGS and RAGS algorithms using the simplex and centered simplex gradients
as approximate gradients.

Looking at the results in Tables 3, 4 and 5, and our performance profiles, we can
make the following two observations:

(i) the versions of the RAGS algorithm generally outperform (converge faster than)
the versions of the AGS algorithm, and

(ii) the RAGS algorithm using the robust stopping conditions terminates faster and
with lower (but still significant) accuracy.

Robust active set: From our results, it is clear that expanding the active set to include
‘almost active’ functions in the RAGS algorithm greatly improves performance for
the simplex and centered simplex algorithm. This robust active set brings more local
information into the approximate subdifferential and thereby allows for descent di-
rections that are more parallel to any nondifferentiable ridges formed by the function.
Robust stopping conditions: We notice from the performance profiles that in terms
of function evaluations, the robust stopping conditions improve the overall perfor-
mance of the RAGS algorithm, although they decrease the average accuracy on some
problems. These results correspond with our previously discussed hypothesis. Fur-
thermore, upon studying the reasons for termination, it appears that the non-robust
stopping conditions cause the AGS and RAGS algorithms to terminate mainly due to
�k and μk becoming too small. For the robust stopping conditions, the RAGS algo-
rithm terminated often because the stopping conditions were satisfied. As our theory
in Sect. 3.3 is not complete, we cannot make any theoretical statements about how
the robust stopping conditions would perform in general (like those in Theorem 2.9).
However, from our results, we conjecture that the alteration is beneficial for decreas-
ing function evaluations.

A derivative-free approximate gradient sampling algorithm for finite 31

Fig. 1 Performance profiles for 12 versions of AGS/RAGS algorithm

In 23 of the 24 problems tested, for both robust and non-robust stopping con-
ditions, the RAGS algorithm either matches or outperforms the AGS algorithm in
average accuracy obtained over 25 trials using the simplex and centered simplex gra-

32 W. Hare, J. Nutini

Fig. 2 Performance profile comparing RAGS with NOMAD for an improvement of 3 digits of accuracy

dients. Knowing this, we conclude that the improvement of the accuracy is due to the
choice of a robust search direction.

5.5 Comparison to NOMAD

NOMAD is a well established general DFO solver, not specialized for the class of
minimax problems [1, 25]. Using the same set of 24 test problems as we did with our
previous tests, we compare the RAGS algorithm to the NOMAD algorithm. Based on
the previous tests we use the simplex gradient with robust stopping conditions. All
parameters for the NOMAD algorithm we left to default settings. The performance
profile generated by these two algorithms for the improvement of 3 digits of accuracy
appears in Fig. 2.

As seen in Fig. 2, NOMAD appears slightly faster than RAGS, but slightly less ro-
bust. Overall, the two algorithms are fairly comparable. Further research into RAGS
may lead to algorithmic improvement. For example, a more informed selection of the
sample set Y in Step 1, an improved line search, or better selection of default param-
eters for RAGS, could all lead to improved convergence. We leave such research for
future study.

6 Conclusion

We have presented a new derivative-free algorithm for finite minimax problems that
exploits the smooth substructure of the problem. Convergence results are given for
any arbitrary approximate gradient that satisfies an error bound dependent on the sam-
pling radius. Three examples of such approximate gradients are given. Additionally,

A derivative-free approximate gradient sampling algorithm for finite 33

a robust version of the algorithm is presented and shown to have the same conver-
gence results as the regular version.

Through numerical testing, we find that the robust version of the algorithm out-
performs the regular version with respect to both the number of function evaluations
required and the accuracy of the solutions obtained. Additionally, we tested robust
stopping conditions and found that they generally required less function evaluations
before termination. Overall, the robust stopping conditions paired with the robust
version of the algorithm performed best (as seen in the performance profiles).

Considerable future work is available in this research direction. Most obvious is an
exploration of the theory behind the performance of the robust stopping conditions.
Another direction lies in the theoretical requirement bounding the step length away
from 0 (see Theorems 2.8 and 3.5). In gradient based methods, one common way to
avoid this requirement is with the use of Wolfe-like conditions. We are unaware of
any derivative-free variant on the Wolfe conditions.

Acknowledgements The authors would like to express their gratitude to Dr. C. Sagastizábal for inspi-
rational conversations regarding the Goldstein subdifferential. This research was partially funded by the
NSERC DG program and by UBC IRF.

Appendix

Table 2 Test set summary: problem name and number, problem dimension (N), and number of sub-
functions (M)

Prob. # Name N M

2.1 CB2 2 3

2.2 WF 2 3

2.3 SPIRAL 2 2

2.4 EVD52 3 6

2.5 Rosen-Suzuki 4 4

2.6 Polak 6 4 4

2.7 PCB3 3 42a

2.8 Bard 3 30a

2.9 Kow.-Osborne 4 22a

2.10 Davidon 2 4 40a

2.11 OET 5 4 42a

2.12 OET 6 4 42a

Prob. # Name N M

2.13 GAMMA 4 122a

2.14 EXP 5 21

2.15 PBC1 5 60a

2.16 EVD61 6 102a

2.18 Filter 9 82a

2.19 Wong 1 7 5

2.20 Wong 2 10 9

2.21 Wong 3 20 18

2.22 Polak 2 10 2

2.23 Polak 3 11 10

2.24 Watson 20 62a

2.25 Osborne 2 11 130a

adenotes an absolute value operation (doubled number of sub-functions).

34 W. Hare, J. Nutini

Table 3 Average accuracy for 25 trials obtained by the AGS and RAGS algorithms for the simplex gradi-
ent

Prob.

AGS RAGS

Regular stop Robust stop Regular stop Robust stop

f-evals Acc. f-evals Acc. f-evals Acc. f-evals Acc.

2.1 3018 2.082 2855 2.120 2580 9.470 202 6.759

2.2 3136 4.565 3112 4.987 4179 13.211 418 6.343

2.3 3085 0.002 3087 0.002 3090 0.002 3096 0.002

2.4 3254 2.189 3265 2.238 2986 11.559 367 7.570

2.5 3391 1.379 3138 1.351 3576 1.471 539 1.471

2.6 3260 1.236 3341 1.228 4258 1.338 859 1.338

2.7 2949 1.408 2757 1.367 4155 9.939 4190 7.230

2.8 4959 0.879 4492 0.913 3634 9.941 3435 7.655

2.9 2806 0.732 3303 0.581 16000 8.049 13681 3.975

2.10 2978 3.343 2993 3.342 3567 3.459 1924 3.459

2.11 3303 2.554 3453 2.559 35367 6.099 11725 5.063

2.12 2721 1.866 3117 1.871 15052 2.882 8818 2.660

2.13 2580 1.073 2706 0.874 43618 1.952 141 1.679

2.14 3254 1.585 3289 1.086 7713 2.696 4221 1.476

2.15 3917 0.262 5554 0.259 31030 0.286 12796 0.277

2.16 3711 2.182 4500 2.077 20331 3.242 11254 2.178

2.18 10468 0.000 10338 0.000 76355 17.717 30972 17.138

2.19 3397 0.376 3327 0.351 5403 7.105 1767 7.169

2.20 4535 1.624 4271 1.624 8757 8.435 7160 6.073

2.21 8624 2.031 8380 2.157 15225 1.334 11752 1.393

2.22 1563 0.958 1408 1.042 64116 3.049 1256 2.978

2.23 7054 2.557 10392 2.744 6092 6.117 970 6.178

2.24 4570 0.301 7857 0.298 93032 0.447 21204 0.328

2.25 3427 0.339 4197 0.340 98505 0.342 343 0.342

A derivative-free approximate gradient sampling algorithm for finite 35

Table 4 Average accuracy for 25 trials obtained by the AGS and RAGS algorithms for the centered
simplex gradient

Prob.

AGS RAGS

Regular stop Robust stop Regular stop Robust stop

f-evals Acc. f-evals Acc. f-evals Acc. f-evals Acc.

2.1 3769 2.054 3573 2.051 2351 9.469 221 7.125

2.2 3705 6.888 1284 5.154 4151 9.589 330 5.594

2.3 5410 0.003 5352 0.003 5332 0.003 5353 0.003

2.4 4059 2.520 4154 2.456 4347 11.578 296 6.834

2.5 3949 1.422 3813 1.437 4112 1.471 452 1.471

2.6 3756 1.302 3880 1.309 4815 1.338 879 1.338

2.7 4227 1.435 4187 1.373 5285 9.950 7164 6.372

2.8 6928 0.988 6933 1.003 4116 9.939 3754 7.775

2.9 3301 0.933 3743 0.949 17944 8.072 13014 2.436

2.10 3447 3.343 3424 3.342 4744 3.459 427 3.459

2.11 3593 2.768 4082 2.785 47362 6.344 11886 5.115

2.12 3321 1.892 3406 1.876 15550 2.843 10726 2.651

2.13 3067 1.355 3508 1.216 36969 1.873 519 1.643

2.14 3967 1.771 6110 1.152 9757 2.692 7284 1.510

2.15 4646 0.272 6014 0.273 23947 0.280 15692 0.277

2.16 4518 2.223 6911 2.074 22225 2.628 17001 2.215

2.18 30492 16.931 14671 16.634 125859 17.804 20815 17.293

2.19 4473 0.551 4484 0.591 8561 7.113 1697 5.851

2.20 5462 1.615 5503 1.599 8908 9.011 7846 6.042

2.21 11629 1.887 11724 1.661 18957 1.304 17067 1.339

2.22 1877 1.166 1604 1.160 1453 3.139 2066 3.644

2.23 3807 2.150 7850 3.586 15625 6.117 1020 6.230

2.24 7198 0.302 12745 0.301 115787 0.436 61652 0.329

2.25 4749 0.339 4896 0.341 256508 0.342 568 0.342

36 W. Hare, J. Nutini

Table 5 Average accuracy for 25 trials obtained by the AGS and RAGS algorithm for the Gupal estimate
of the gradient of the Steklov averaged function

Prob.

AGS RAGS

Regular stop Robust stop Regular stop Robust stop

f-evals Acc. f-evals Acc. f-evals Acc. f-evals Acc.

2.1 2775 2.448 2542 2.124 13126 3.896 89 2.708

2.2 3729 3.267 2221 2.813 5029 15.904 1776 7.228

2.3 2243 0.000 2262 0.000 2276 0.000 2255 0.000

2.4 2985 2.771 2841 2.892 3475 3.449 2362 3.738

2.5 3493 1.213 3529 1.196 3447 1.211 338 1.200

2.6 3144 0.187 3245 0.188 3018 0.162 3059 0.162

2.7 2631 1.368 3129 1.248 2476 1.048 2208 1.047

2.8 2711 1.125 3898 0.893 2231 0.514 5846 0.515

2.9 3102 0.727 3011 0.600 2955 0.937 3248 0.863

2.10 3075 3.241 2927 3.272 3100 0.000 3050 0.000

2.11 2947 1.527 3307 1.528 3003 1.560 2905 1.560

2.12 3095 1.099 7179 0.000 2670 0.788 7803 0.000

2.13 2755 0.710 1485 0.715 2517 0.231 6871 0.227

2.14 2965 0.574 3070 0.427 2860 0.708 4571 0.668

2.15 2658 0.010 2386 0.017 3355 0.050 3210 0.031

2.16 3431 0.457 3256 0.459 2861 0.199 2620 0.119

2.18 3936 16.345 5814 0.000 3950 16.451 6598 4.542

2.19 3337 0.014 3270 0.011 3488 0.970 3376 0.957

2.20 4604 0.835 4434 0.808 9459 1.360 10560 1.359

2.21 5468 0.000 5418 0.000 6632 0.641 6159 0.635

2.22 21 0.000 21 0.000 21 0.000 21 0.000

2.23 5436 1.814 5176 1.877 1.00E + 06 2.354 954 2.415

2.24 7426 0.280 171 0.017 7927 0.043 6389 0.283

2.25 4519 0.286 4814 0.300 3760 0.017 3209 0.023

References

1. Abramson, A.M., Audet, C., Couture, G., Dennis, J.E. Jr., Le Digabel, S., Tribes, C.: The NOMAD
project. Software available at http://www.gerad.ca/nomad

2. Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for nons-
mooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)

3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
CMS Books in Mathematics. Springer, New York (2011)

4. Booker, A.J., Dennis, J.E. Jr., Frank, P.D., Serafini, D.B., Torczon, V.: Optimization using surrogate
objectives on a helicopter test example. In: Computational Methods for Optimal Design and Control,
Arlington, VA, 1997. Progr. Systems Control Theory, vol. 24, pp. 49–58. Birkhäuser, Boston (1998)

http://www.gerad.ca/nomad

A derivative-free approximate gradient sampling algorithm for finite 37

5. Bortz, D.M., Kelley, C.T.: The simplex gradient and noisy optimization problems. In: Computa-
tional Methods for Optimal Design and Control. Progr. Systems Control Theory, vol. 24, pp. 77–90.
Birkhäuser, Boston (1998)

6. Burke, J.V., Lewis, A.S., Overton, M.L.: Approximating subdifferentials by random sampling of gra-
dients. Math. Oper. Res. 27(3), 567–584 (2002)

7. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, non-
convex optimization. SIAM J. Optim. 15(3), 751–779 (2005)

8. Cai, X., Teo, K., Yang, X., Zhou, X.: Portfolio optimization under a minimax rule. Manag. Sci. 46(7),
957–972 (2000)

9. Clarke, F.H.: Optimization and Nonsmooth Analysis, 2nd edn. Classics Appl. Math., vol. 5. SIAM,
Philadelphia (1990)

10. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS/SIAM
Series on Optimization, vol. 8. SIAM, Philadelphia (2009)

11. Custódio, A.L., Dennis, J.E. Jr., Vicente, L.N.: Using simplex gradients of nonsmooth functions in
direct search methods. IMA J. Numer. Anal. 28(4), 770–784 (2008)

12. Custódio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern search methods.
SIAM J. Optim. 18(2), 537–555 (2007)

13. Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Classics in Applied Mathematics. SIAM, Philadelphia (1996)

14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2, Ser. A), 201–213 (2002)

15. Duvigneau, R., Visonneau, M.: Hydrodynamic design using a derivative-free method. Struct. Multi-
discip. Optim. 28, 195–205 (2004)

16. Ermoliev, Y.M., Norkin, V.I., Wets, R.J.-B.: The minimization of semicontinuous functions: mollifier
subgradients. SIAM J. Control Optim. 33, 149–167 (1995)

17. Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13(1), 14–22
(1977)

18. Gupal, A.M.: A method for the minimization of almost differentiable functions. Kibernetika 1, 114–
116 (1977) (in Russian); English translation in: Cybernetics, 13(2), 220–222 (1977)

19. Hare, W., Macklem, M.: Derivative-free optimization methods for finite minimax problems. Optim.
Methods Softw. 28(2), 300–312 (2013)

20. Hare, W.L.: Using derivative free optimization for constrained parameter selection in a home and
community care forecasting model. In: International Perspectives on Operations Research and Health
Care, Proceedings of the 34th Meeting of the EURO Working Group on Operational Research Applied
to Health Sciences, pp. 61–73 (2010)

21. Imae, J., Ohtsuki, N., Kikuchi, Y., Kobayashi, T.: A minimax control design for nonlinear systems
based on genetic programming: Jung’s collective unconscious approach. Int. J. Syst. Sci. 35, 775–785
(2004)

22. Kelley, C.T.: Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient
decrease condition. SIAM J. Optim. 10(1), 43–55 (1999)

23. Kelley, C.T.: Iterative Methods for Optimization. Frontiers in Applied Mathematics, vol. 18. SIAM,
Philadelphia (1999)

24. Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM J. Optim. 20(4), 1983–1994 (2010)

25. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM
Trans. Math. Softw. 37(4), 1–15 (2011)

26. Liuzzi, G., Lucidi, S., Sciandrone, M.: A derivative-free algorithm for linearly constrained finite min-
imax problems. SIAM J. Optim. 16(4), 1054–1075 (2006)

27. Lukšan, L., Vlček, J.: Test Problems for Nonsmooth Unconstrained and Linearly Constrained Opti-
mization. Technical report (February 2000)

28. Madsen, K.: Minimax solution of non-linear equations without calculating derivatives. Math. Pro-
gram. Stud. 3, 110–126 (1975)

29. Marsden, A.L., Feinstein, J.A., Taylor, C.A.: A computational framework for derivative-free opti-
mization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 197(21–24), 1890–1905
(2008)

30. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer,
New York (1999)

31. Di Pillo, G., Grippo, L., Lucidi, S.: A smooth method for the finite minimax problem. Math. Program.,
Ser. A 60(2), 187–214 (1993)

38 W. Hare, J. Nutini

32. Polak, E.: On the mathematical foundations of nondifferentiable optimization in engineering design.
SIAM Rev. 29(1), 21–89 (1987)

33. Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax
problems. J. Optim. Theory Appl. 119(3), 459–484 (2003)

34. Polyak, R.A.: Smooth optimization methods for minimax problems. SIAM J. Control Optim. 26(6),
1274–1286 (1988)

35. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)

36. Stafford, R.: Random Points in an n-Dimensional Hypersphere. MATLAB File Exchange (2005).
http://www.mathworks.com/matlabcentral/fileexchange/9443-random-points-in-an-n-dimensional-
hypersphere

37. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable functions. Math.
Program. Stud. 3, 145–173 (1975)

38. Wschebor, M.: Smoothed analysis of κ(A). J. Complex. 20(1), 97–107 (2004)
39. Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20(3), 267–279 (2001)

http://www.mathworks.com/matlabcentral/fileexchange/9443-random-points-in-an-n-dimensional-hypersphere
http://www.mathworks.com/matlabcentral/fileexchange/9443-random-points-in-an-n-dimensional-hypersphere

	A derivative-free approximate gradient sampling algorithm for finite minimax problems
	Abstract
	Introduction
	Approximate gradient sampling algorithm
	Algorithm-AGS
	Convergence

	Robust approximate gradient sampling algorithm
	Algorithm-RAGS
	Convergence
	Robust stopping with Goldstein approximate subdifferential

	Approximate gradients
	Simplex gradient
	Convergence
	Algorithm-simplex gradient

	Centered simplex gradient
	Convergence
	Algorithm

	Gupal estimate
	Convergence
	Algorithm

	Numerical results
	Versions of the AGS and RAGS algorithms
	Test sets and software
	Initialization and stopping conditions
	Results
	Comparison to NOMAD

	Conclusion
	Acknowledgements
	Appendix
	References

