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Abstract We present a parallelization of the revised simplex method for large exten-
sive forms of two-stage stochastic linear programming (LP) problems. These prob-
lems have been considered too large to solve with the simplex method; instead, de-
composition approaches based on Benders decomposition or, more recently, interior-
point methods are generally used. However, these approaches do not provide opti-
mal basic solutions, which allow for efficient hot-starts (e.g., in a branch-and-bound
context) and can provide important sensitivity information. Our approach exploits
the dual block-angular structure of these problems inside the linear algebra of the re-
vised simplex method in a manner suitable for high-performance distributed-memory
clusters or supercomputers. While this paper focuses on stochastic LPs, the work is
applicable to all problems with a dual block-angular structure. Our implementation
is competitive in serial with highly efficient sparsity-exploiting simplex codes and
achieves significant relative speed-ups when run in parallel. Additionally, very large
problems with hundreds of millions of variables have been successfully solved to
optimality. This is the largest-scale parallel sparsity-exploiting revised simplex im-
plementation that has been developed to date and the first truly distributed solver. It
is built on novel analysis of the linear algebra for dual block-angular LP problems
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when solved by using the revised simplex method and a novel parallel scheme for
applying product-form updates.

Keywords Simplex method · Parallel computing · Stochastic optimization ·
Block-angular

1 Introduction

In this paper, we present a parallel solution procedure based on the revised simplex
method for linear programming (LP) problems with a special structure of the form

minimize cT
0 x0 + cT

1 x1 + cT
2 x2 + · · · + cT

NxN

subject to Ax0 = b0,

T1x0 + W1x1 = b1,

T2x0 + W2x2 = b2,
...

. . .
...

TNx0 + WNxN = bN,

x0 ≥ 0, x1 ≥ 0, x2 ≥ 0, . . . , xN ≥ 0.

(1)

The structure of such problems is known as dual block angular or block angular
with linking columns. This structure commonly arises in stochastic optimization as
the extensive form or deterministic equivalent of two-stage stochastic linear programs
with recourse when the underlying distribution is discrete or when a finite number of
samples have been chosen as an approximation [4]. The dual problem to (1) has a
primal or row-linked block-angular structure. Linear programs with block-angular
structure, both primal and dual, occur in a wide array of applications, and this struc-
ture can also be identified within general LPs [2].

Borrowing the terminology from stochastic optimization, we say that the vector
x0 contains the first-stage variables and the vectors x1, . . . , xN the second-stage vari-
ables. The matrices W1,W2, . . . ,WN contain the coefficients of the second-stage con-
straints, and the matrices T1, T2, . . . , TN those of the linking constraints. Each diago-
nal block corresponds to a scenario, a realization of a random variable. Although we
adopt this specialist terminology, our work applies to any LP of the form (1).

Block-angular LPs are natural candidates for decomposition procedures that take
advantage of their special structure. Such procedures are of interest both because they
permit the solution of much larger problems than could be solved with general algo-
rithms for unstructured problems and because they typically offer a natural scope for
parallel computation, presenting an opportunity to significantly decrease the required
time to solution. Our primary focus is on the latter motivation.

Existing parallel decomposition procedures for dual block-angular LPs are re-
viewed by Vladimirou and Zenios [32]. Subsequent to their review, Linderoth and
Wright [24] developed an asynchronous approach combining �∞ trust regions with
Benders decomposition on a large computational grid. Decomposition inside interior-
point methods applied to the extensive form has been implemented in the state-of-the-
art software package OOPS [14] as well as by some of the authors in PIPS [25].
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These parallel decomposition approaches, based on either Benders decomposition
or specialized linear algebra inside interior-point methods, have successfully demon-
strated both parallel scalability on appropriately sized problems and capability to
solve very large instances. However, each has algorithmic drawbacks. Neither of the
approaches produces an optimal basis for the extensive form (1), which would allow
for efficient hot-starts when solving a sequence of related LPs, whether in the context
of branch-and-bound or real-time control, and may also provide important sensitivity
information.

While techniques exist to warm-start Benders-based approaches, such as in [24],
as well as interior-point methods to a limited extent, in practice the simplex method
is considered to be the most effective for solving sequences of related LPs. This intu-
ition drove us to consider yet another decomposition approach, which we present in
this paper, one in which the simplex method itself is applied to the extensive form (1)
and its operations are parallelized according to the special structure of the problem.
Conceptually, this is similar to the successful approach of linear algebra decomposi-
tion inside interior-point methods.

Exploiting primal block-angular structure in the context of the primal simplex
method was considered in the 1960s by, for example, Bennett [3] and summarized by
Lasdon [23, p. 340]. Kall [20] presented a similar approach in the context of stochas-
tic LPs, and Strazicky [29] reported results from an implementation, both solving
the dual of the stochastic LPs as primal-block angular programs. These works fo-
cused solely on the decrease in computational and storage requirements obtained by
exploiting the structure. As serial algorithms, these specialized approaches have not
been shown to perform better than efficient modern simplex codes for general LPs
and so are considered unattractive and unnecessarily complicated as solution meth-
ods; see, for example, the discussion in [4, p. 226]. Only recently (with a notable
exception of [28]) have the opportunities for parallelism been considered, and so far
only in the context of the primal simplex method; Hall and Smith [18] have developed
a high-performance shared-memory primal revised simplex solver for primal block-
angular LP problems. To our knowledge, a successful parallelization of the revised
simplex method for dual block-angular LP problems has not yet been published. We
present here our design and implementation of a distributed-memory parallelization
of both the primal and dual simplex methods for dual block-angular LPs.

2 Revised simplex method for general LPs

We review the primal and dual revised simplex methods for general LPs, primarily in
order to establish our notation. We assume that the reader is familiar with the math-
ematical algorithms. Following this section, the computational components of the
primal and dual algorithms will be treated in a unified manner to the extent possible.

A linear programming problem in standard form is

minimize cT x

subject to Ax = b,

x ≥ 0,

(2)
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CHUZC: Scan ĉN for a good candidate q to enter the basis.
FTRAN: Form the pivotal column âq = B−1aq , where aq is column q of A.
CHUZR: Scan the ratios b̂i/âiq for the row p of a good candidate to leave the basis.

Update b̂ := b̂ − αâq , where α = b̂p/âpq .
BTRAN: Form πp= B−T ep .
PRICE: Form the pivotal row âp = NT πp .

Update reduced costs ĉN := ĉN − βâp , where β = ĉq/âpq .
If {growth in representation of B} then

INVERT: Form a new representation of B−1.
else

UPDATE: Update the representation of B−1 corresponding to the basis change.
end if

Fig. 1 Operations in an iteration of the primal revised simplex method

where x ∈ R
n and b ∈ R

m. The matrix A in (2) usually contains columns of the
identity corresponding to logical (slack) variables introduced to transform inequal-
ity constraints into equalities. The remaining columns of A correspond to structural
(original) variables. It may be assumed that the matrix A is of full rank.

In the simplex method, the indices of variables are partitioned into sets B, corre-
sponding to m basic variables xB , and N , corresponding to n−m nonbasic variables
xN , such that the basis matrix B formed from the columns of A corresponding to B
is nonsingular. The set B itself is conventionally referred to as the basis. The columns
of A corresponding to N form the matrix N . The components of c corresponding to
B and N are referred to as, respectively, the basic costs cB and non-basic costs cN .

When the simplex method is used, for a given partition {B, N } the values of the
primal variables are defined to be xN = 0 and xB = B−1b =: b̂, and the values of
the nonbasic dual variables are defined to be ĉN = cN − NT B−T cB . The aim of the
simplex method is to identify a partition characterized by primal feasibility (b̂ ≥ 0)
and dual feasibility (ĉN ≥ 0). Such a partition corresponds to an optimal solution
of (2).

2.1 Primal revised simplex

The computational components of the primal revised simplex method are illustrated
in Fig. 1. At the beginning of an iteration, it is assumed that the vector of reduced
costs ĉN and the vector b̂ of values of the basic variables are known, that b̂ is feasible
(nonnegative), and that a representation of B−1 is available. The first operation is
CHUZC (choose column), which scans the (weighted) reduced costs to determine a
good candidate q to enter the basis. The pivotal column âq is formed by using the
representation of B−1 in an operation referred to as FTRAN (forward transformation).

The CHUZR (choose row) operation determines the variable to leave the basis, with
p being used to denote the index of the row in which the leaving variable occurred,
referred to as the pivotal row. The index of the leaving variable itself is denoted by
p′. Once the indices q and p′ have been interchanged between the sets B and N , a
basis change is said to have occurred. The vector b̂ is then updated to correspond to
the increase α = b̂p/âpq in xq .
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CHUZR: Scan b̂ for the row p of a good candidate to leave the basis.
BTRAN: Form πp= B−T ep .
PRICE: Form the pivotal row âT

p = πT
pN .

CHUZC: Scan the ratios ĉj /âpj for a good candidate q to enter the basis.
Update ĉN := ĉN − βâp , where β = ĉq/âpq .

FTRAN: Form the pivotal column âq = B−1aq , where aq is column q of A.
Update b̂ := b̂ − αâq , where α = b̂p/âpq .

If {growth in representation of B} then
INVERT: Form a new representation of B−1.

else
UPDATE: Update the representation of B−1 corresponding to the basis change.

end if

Fig. 2 Operations in an iteration of the dual revised simplex method

Before the next iteration can be performed, one must update the reduced costs
and obtain a representation of the new matrix B−1. The reduced costs are updated
by computing the pivotal row âT

p = eT
pB−1N of the standard simplex tableau. This

is obtained in two steps. First the vector πT
p = eT

pB−1 is formed by using the repre-

sentation of B−1 in an operation known as BTRAN (backward transformation), and
then the vector âT

p = πT
pN of values in the pivotal row is formed. This sparse matrix-

vector product with N is referred to as PRICE. Once the reduced costs have been
updated, the UPDATE operation modifies the representation of B−1 according to the
basis change. Note that, periodically, it will generally be either more efficient or nec-
essary for numerical stability to find a new representation of B−1 using the INVERT
operation.

2.2 Dual revised simplex

While primal simplex has historically been more important, it is now widely accepted
that the dual variant, the dual simplex method, generally has superior performance.
Dual simplex is often the default algorithm in commercial solvers, and it is also used
inside branch-and-bound algorithms.

Given an initial partition {B, N } and corresponding values for the basic and non-
basic primal and dual variables, the dual simplex method aims to find an optimal
solution of (2) by maintaining dual feasibility and seeking primal feasibility. Thus
optimality is achieved when the basic variables b̂ are non-negative.

The computational components of the dual revised simplex method are illustrated
in Fig. 2, where the same data are assumed to be known at the beginning of an it-
eration. The first operation is CHUZR which scans the (weighted) basic variables to
determine a good candidate to leave the basis, with p being used to denote the in-
dex of the row in which the leaving variable occurs. A candidate to leave the basis
must have a negative primal value b̂p . The pivotal row âT

p is formed via BTRAN and
PRICE operations. The CHUZC operation determines the variable q to enter the ba-
sis. In order to update the vector b̂, it is necessary to form the pivotal column âq with
an FTRAN operation.
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2.3 Computational techniques

Today’s highly efficient implementations of the revised simplex method are a prod-
uct of over 60 years of refinements, both in the computational linear algebra and in
the mathematical algorithm itself, which have increased its performance by many or-
ders of magnitude. A reasonable treatment of the techniques required to achieve an
efficient implementation is beyond the scope of this paper; the reader is referred to
the works of Koberstein [21] and Maros [27] for the necessary background. Our im-
plementation includes these algorithmic refinements to the extent necessary in order
to achieve serial execution times comparable with existing efficient solvers. This is
necessary, of course, for any parallel speedup we obtain to have practical value. Our
implementation largely follows that of Koberstein, and advanced computational tech-
niques are discussed only when their implementation is nontrivial in the context of
the parallel decomposition.

3 Parallel computing

This section provides the necessary background in the parallel-computing concepts
relevant to the present work. A fuller and more general introduction to parallel com-
puting is given by Grama et al. [15].

3.1 Parallel architectures

When classifying parallel architectures, an important distinction is between dis-
tributed memory, where each processor has its own local memory, and shared mem-
ory, where all processors have access to a common memory. We target distributed-
memory architectures because of their availability and because they offer the potential
to solve much larger problems. However, our parallel scheme could be implemented
on either.

3.2 Speedup and scalability

In general, success in parallelization is measured in terms of speedup, the time re-
quired to solve a problem with more than one parallel process compared with the
time required with a single process. The traditional goal is to achieve a speedup factor
equal to the number of cores and/or nodes used. Such a factor is referred to as linear
speedup and corresponds to a parallel efficiency of 100 %, where parallel efficiency
is defined as the percentage of the ideal linear speed-up obtained empirically. The
increase in available processor cache per unit computation as the number of parallel
processes is increased occasionally leads to the phenomenon of superlinear speedup.

3.3 MPI (Message Passing Interface)

In our implementation we use the MPI (Message Passing Interface) API [16]. MPI
is a widely portable standard for implementing distributed-memory programs. The
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message-passing paradigm is such that all communication between MPI processes,
typically physical processes at the operating-system level, must be explicitly re-
quested by function calls. Our algorithm uses only the following three types of com-
munication operations, all collective operations in which all MPI processes must par-
ticipate.

– Broadcast (MPI_Bcast) is a simple operation in which data that are locally stored
on only one process are broadcast to all.

– Reduce (MPI_Allreduce) combines data from each MPI process using a speci-
fied operation, and the result is returned to all MPI processes. One may use this, for
example, to compute a sum to which each process contributes or to scan through
values on each process and determine the maximum/minimum value and its loca-
tion.

– Gather (MPI_Allgather) collects and concatenates contributions from all pro-
cesses and distributes the result. For example, given P MPI processes, suppose a
(row) vector xp is stored in local memory in each process p. The gather operation
can be used to form the combined vector [x1 x2 . . . xP ] in local memory in each
process.

The efficiency of these operations is determined by both their implementation and
the physical communication network between nodes, known as an interconnect. The
cost of communication depends on both the latency and the bandwidth of the inter-
connect. The former is the startup overhead for performing communication opera-
tions, and the latter is the rate of communication. A more detailed discussion of these
issues is beyond the scope of this paper.

4 Linear algebra overview

Here we present from a mathematical point of view the specialized linear algebra re-
quired to solve, in parallel, systems of equations with basis matrices from dual block-
angular LPs of the form (1). Precise statements of algorithms and implementation
details are reserved for Sect. 5.

To discuss these linear algebra requirements, we represent the basis matrix B in
the following singly bordered block-diagonal form,

B =

⎡
⎢⎢⎢⎢⎢⎣

WB
1 T B

1
WB

2 T B
2

. . .
...

WB
N T B

N

AB

⎤
⎥⎥⎥⎥⎥⎦

, (3)

where the matrices WB
i contain a subset, possibly empty, of the columns of the orig-

inal matrix Wi , and similarly for T B
i and AB . This has been achieved by reordering

the linking columns to the right and the rows of the first-stage constraints to the bot-
tom, and it is done so that the block AB will yield pivotal elements later than the WB

i
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Fig. 3 Illustration of the structure of a dual block-angular basis matrix before and after elimination of
lower-triangular elements in the diagonal WB

i
blocks. Left: A basis matrix with the linking columns on the

right. The WB
i

blocks contain the basic columns of the corresponding Wi blocks of the constraint matrix.

The WB
i

blocks in the basis cannot have more columns than rows. Center: The matrix after eliminating

the lower-triangular elements in the WB
i

blocks. Right: The matrix with the linearly independent rows
permuted to the bottom. The darkened elements indicate square, nonsingular blocks. This linear system is
now trivial to solve

blocks when performing Gaussian elimination on B . Note that, within our implemen-
tation, this reordering is achieved implicitly.

In the linear algebra community, the scope for parallelism in solving linear sys-
tems with matrices of the form (3) is well known and has been used to facilitate
parallel solution methods for general unsymmetric linear systems [8]. However, we
are not aware of this form having been analyzed or exploited in the context of solving
dual block-angular LP problems. For completeness and to establish our notation, we
present the essentials of this approach.

Let the dimensions of the WB
i block be mi × nB

i , where mi is the number of rows
in Wi and is fixed while nB

i is the number of basic variables from the ith block and
varies. Similarly let AB be m0 × nB

0 , where m0 is the number of rows in A and is
fixed and nB

0 is the number of linking variables in the basis. Then T B
i is mi × nB

0 .
The assumption that the basis matrix is nonsingular implies particular properties

of the structure of a dual block-angular basis matrix. Specifically, the diagonal WB
i

blocks have full column rank and therefore are tall or square (mi ≥ nB
i ), and the

AB block has full row rank and therefore is thin or square (m0 ≤ nB
0 ). The structure

implied by these two observations is illustrated on the left of Fig. 3.
A special case occurs when AB is square, since it follows from the observations

above and the fact that B is square that all diagonal blocks are square and nonsin-
gular. In this case a solution procedure for linear systems with the basis matrix B is
mathematically trivial since

[
W T

A

]−1

=
[
W−1 −T A−1

A−1

]
,

for any square, nonsingular A and W . In our case, W would be block-diagonal.
We refer to a matrix with this particular dual block-angular structure as being triv-
ial because of the clear scope for parallelism when computing a representation
of W−1.
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In the remainder of this section, we will prove the following result, which underlies
the specialized solution procedure for singly bordered block-diagonal linear systems.

Result Any square, nonsingular matrix with singly bordered block-diagonal struc-
ture can be reduced to trivial form, up to a row permutation, by a sequence of invert-
ible transformations that may be computed independently for each diagonal block.

Proof We may apply a sequence of Gauss transformations [13], together with row
permutations, to eliminate the lower-triangular elements of WB

i . Denote the sequence
of operations as Gi , so that GiW

B
i = [

Ui

0

]
, where Ui is square (nB

i × nB
i ), upper

triangular, and nonsingular because WB
i has full rank. One may equivalently consider

this as an LU factorization of a “tall” matrix,

PiW
B
i = LiU

′
i , U ′

i =
[
Ui

0

]
, (4)

where Li is square (mi × mi), lower triangular, and invertible, Pi is a permutation
matrix, and Gi = L−1

i Pi .

For notational purposes, we write the block form Gi = [ Xi

Zi

]
, although these

blocks are generally inaccessible, so that XiW
B
i = Ui and ZiW

B
i = 0. We let

D := diag(G1,G2, . . . ,Gn, I ) be a block-diagonal matrix with the Gi transforma-
tions on the diagonal. Then,

DB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1 X1T
B
1

0 Z1T
B
1

U2 X2T
B
2

0 Z2T
B
2

. . .
...

UN XNT B
N

0 ZNT B
N

AB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

After permuting the rows corresponding to the ZiT
B
i blocks to the bottom, we ob-

tain a trivial singly bordered block-diagonal matrix whose square, invertible, bottom-
right block is

M :=

⎡
⎢⎢⎢⎢⎢⎣

Z1T
B
1

Z2T
B
2

...

ZNT B
N

AB

⎤
⎥⎥⎥⎥⎥⎦

. (6)

�

This procedure is illustrated in Fig. 3. If we then perform an LU factorization
of the first-stage block M , this entire procedure could be viewed as forming an LU

factorization of B through a restricted sequence of pivot choices. Note that the spar-
sity and numerical stability of this LU factorization are expected to be inferior to
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those of a structureless factorization resulting from unrestricted pivot choices. Thus
it is important to explore fully the scope for maintaining sparsity and numerical sta-
bility within the scope of the structured LU factorization. This topic is discussed in
Sect. 5.2.

5 Design and implementation

Here we present the algorithmic design and implementation details of our code,
PIPS-S, a new simplex code base for dual block-angular LPs written in C++. PIPS-S
implements both the primal and dual revised simplex methods.

5.1 Distribution of data

In a distributed-memory algorithm, as described in Sect. 3, we must specify the distri-
bution of data across parallel processes. We naturally expect to distribute the second-
stage blocks, but the extent to which they are distributed and how the first stage is
treated are important design decisions. We arrived at the following design after re-
viewing the data requirements of the parallel operations described in the subsequent
sections.

Given a set of P MPI processes and N ≥ P scenarios or second-stage blocks, on
initialization we assign each second-stage block to a single MPI process. All data, it-
erates, and computations relating to the first stage are duplicated in each process. The
second-stage data (i.e., Wi,Ti, ci , and bi ), iterates, and computations are only stored
in and performed by their assigned process. If a scenario is not assigned to a process,
this process stores no data pertaining to the scenario, not even the basic/nonbasic
states of its variables. Thus, in terms of memory usage, the approach scales to an
arbitrary number of scenarios.

5.2 Factorizing a dual block-angular basis matrix

In the INVERT step, one forms an invertible representation of the basis matrix B .
This is performed in efficient sparsity-exploiting codes by forming a sparse LU fac-
torization of the basis matrix. Our approach forms these factors implicitly and in
parallel.

Sparse LU factorization procedures perform both row and column permutations
in order to reduce the number of nonzero elements in the factors [7] while achieving
acceptable numerical stability. Permutation matrices P and Q and triangular factors
L and U are identified so that PBQ = LU .

In order to address issues of sparsity and numerical stability to the utmost within
our structured LU factorization, the elimination of the lower-triangular elements in
the WB

i blocks, or equivalently, the “tall” LU factorization (4), must be modified.
A pivot chosen within WB

i may be locally optimal in terms of sparsity and numerical
stability but have adverse consequences for fill-in or numerical growth in GiT

B
i . This

drawback is avoided by maintaining the active submatrix corresponding to the aug-
mented matrix [WB

i T B
i ] during the factorization, even though the pivots are limited
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INVERT

1. Perform partial sparse Gaussian elimination on each
[
WB

i T B
i

]
, forming (7).

2. Collect and duplicate ZiT
B
i terms across processes.

3. In each process, form and factor the first-stage block M (6).

Fig. 4 Procedure for factoring a dual block-angular basis matrix. Step 1 may be performed in parallel
for each second-stage block. In Step 2 the results are collected and duplicated in each parallel process by
using MPI_Allgather, and in Step 3 each process factors its local copy of the first-stage block

to the columns of WB
i . This approach yields Pi,Li,Ui,XiT

B
i , and ZiT

B
i , as previ-

ously defined, and Qi , an nB
i × nB

i permutation matrix, which satisfy

Pi

[
WB

i Qi T B
i

] = Li

[
Ui XiT

B
i

0 ZiT
B
i

]
. (7)

As a benefit, the XiT
B
i and ZiT

B
i terms do not need to be formed separately by what

would be multiple triangular solves with the Li factor.
We implemented this factorization (7) by modifying the CoinFactorization

C++ class, written by John Forrest, from the open-source CoinUtils1 package. The
methods used in the code are undocumented; however, we determined that it uses
a Markowitz-type approach [26] such as that used by Suhl and Suhl [31]. After the
factorization is complete, we extract the XiT

B
i and ZiT

B
i terms and store them for

later use.
After the factorization is computed for each scenario or block i, we must also form

and factor the first-stage block M (6). This is a square matrix of dimension nB
0 × nB

0 .
The size of nB

0 (the number of basic first-stage variables) and the density of the ZiT
B
i

terms determine whether M should be treated as dense or sparse. In problems of
interest, nB

0 ranges in the thousands and the ZiT
B
i terms are sufficiently sparse that

treating M as sparse is orders of magnitude faster than treating it as dense; hence,
this is the form used in our implementation. We duplicate M in the local memory
of each MPI process and factorize it using the unmodified CoinFactorization
routines. The nontrivial elements of the ZiT

B
i terms are collected and duplicated in

each process by MPI_Allgather. We summarize the INVERT procedure in Fig. 4.
The Markowitz approach used by CoinFactorization is considered numer-

ically stable because the pivot order is determined dynamically, taking into account
numerical cancellation. Simpler approaches that fix a sequence of pivots are known
to fail in some cases; see [31], for example. Because our INVERT procedure couples
Markowitz factorizations, we expect it to share many of the same numerical proper-
ties.

1https://projects.coin-or.org/CoinUtils.

https://projects.coin-or.org/CoinUtils
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Solving linear systems with B

1. Compute

[
Xiri
Ziri

]
= Giri = L−1

i Piri , i = 1,2, . . . ,N .

2. Collect Ziri terms and form r̂ :=

⎡
⎢⎢⎢⎢⎢⎣

Z1r1
Z2r2

...

ZNrN
r0

⎤
⎥⎥⎥⎥⎥⎦

in local memory in each process.

3. In each process, solve the first-stage system Mx0 = r̂ .

4. Form qi := Xiri − (XiT
B
i )x0, i = 1, . . . ,N .

5. Compute xi = QiU
−1
i qi , i = 1, . . . ,N .

Fig. 5 Procedure to solve linear systems of the form (8) with a dual block-angular basis matrix B for
arbitrary right-hand sides. Parallelism may be exploited within Steps 1, 4, and 5. Step 2 is a collective
communication operation performed by MPI_Allgather, and Step 3 is a calculation duplicated in all
processes

5.3 Solving linear systems with B

Given r0, r1, . . . , rN , suppose we wish to solve

B

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

xN

x0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

r1
r2
...

rN
r0

⎤
⎥⎥⎥⎥⎥⎦

(8)

for x0, x1, . . . , xN , where the partitioning of the vectors conforms to the structure of
the dual block-angular basis matrix. The linear system (8) is solved by the procedure
in Fig. 5, which can be derived following the mathematical developments of Sect. 4.

Efficient implementations must take advantage of sparsity, not only in the matrix
factors, but also in the right-hand side vectors, exploiting hyper-sparsity [17], when
applicable. We reused the routines from CoinFactorization for solves with
the factors. These include hyper-sparse solution routines based on the original work
in [11], where a symbolic phase computes the sparsity pattern of the solution vector
and then a numerical phase computes only the nonzero values in the solution.

The solution procedure exhibits parallelism in the calculations that are performed
per block, that is, in Steps 1, 4, and 5. An MPI_Allgather communication oper-
ation is required at Step 2, and the first-stage calculation in Step 3 is duplicated, in
serial in each process.

This computational pattern changes somewhat when the right-hand side vector
is structured, as is the case in the most common FTRAN step, which computes the
pivotal column âq = B−1aq , where aq is a column of the constraint matrix. If the
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Solving linear systems with BT

1. Compute αi := U−T
i QT

i ri , i = 1,2, . . . ,N .

2. Form qi := (XiT
B
i )T αi, i = 1,2, . . . ,N .

3. Reduce qi’s, forming q0 := ∑N
i=1 qi in local memory in each process.

4. In each process, solve the first-stage system MT

⎡
⎢⎢⎢⎣

β1
...

βN

π0

⎤
⎥⎥⎥⎦ = r0 − q0.

5. Compute πi = GT
i

[
αi

βi

]
= P T

i L−T
i

[
αi

βi

]
, i = 1,2, . . . ,N .

Fig. 6 Procedure to solve linear systems of the form (9) with a dual block-angular basis B for arbitrary
right-hand sides. Parallelism may be exploited within Steps 1, 2, and 5. Step 3 is a collective communi-
cation operation performed by MPI_Allreduce, and Step 4 is a calculation duplicated in all processes.
Intermediate vectors βi have mi − nB

i
elements, the difference between the number of rows and columns

of the WB
i

block

entering column in FTRAN is from second-stage block j , then ri has nonzero ele-
ments only for i = j . Since Step 1 is then trivial for all other second-stage blocks, it
becomes a serial bottleneck. Fortunately we can expect Step 1 to be relatively inex-
pensive because the right-hand side will be a column from Wj , which should have
few non-zero elements. Additionally, Step 2 becomes a broadcast instead of a gather
operation.

5.4 Solving linear systems with BT

Given r0, r1, . . . , rN , suppose we wish to solve

BT

⎡
⎢⎢⎢⎢⎢⎣

π1
π2
...

πN

π0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

r1
r2
...

rN
r0

⎤
⎥⎥⎥⎥⎥⎦

(9)

for π0,π1, . . . , πN , where the partitioning of the vectors conforms to the structure of
the dual block-angular basis matrix. The linear system (9) is solved by the procedure
in Fig. 6.

Hyper-sparsity in solves with the factors is handled as previously described. Note
that at Step 3 we must sum an arbitrary number of sparse vectors across MPI pro-
cesses. This step is performed by using a dense buffer and MPI_Allreduce, then
passing through the result to build an index of the nonzero elements in q0. The over-
head of this pass-through is small compared with the overhead of the communication
operation itself.
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As for linear systems with B , there is an important special case for the most com-
mon BTRAN step in which the right-hand side to BTRAN is entirely zero except for
a unit element in the position corresponding to the row/variable that has been se-
lected to leave the basis. If a second-stage variable has been chosen to leave the
basis, Steps 1 and 2 become trivial for all but the corresponding second-stage block.
Fortunately, as before, we can expect these steps to be relatively inexpensive because
of the sparsity of the right-hand sides. Similarly, Step 3 may be implemented as a
broadcast operation instead of a reduce operation.

5.5 Matrix-vector product with the block-angular constraint matrix

The PRICE operation, which forms the pivotal row at every iteration, is a matrix-
vector product between the transpose of the nonbasic columns of the constraint ma-
trix and the result of the BTRAN operation. Let WN

i ,T N
i , and AN be the nonbasic

columns of Wi,Ti , and A, respectively. Then, given π1,π2, . . . , πN ,π0, we wish to
compute

⎡
⎢⎢⎢⎢⎢⎣

WN
1 T N

1
WN

2 T N
2

. . .
...

WN
N T N

N

AN

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

π1
π2
...

πN

π0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(WN
1 )T π1

(WN
2 )T π2
...

(WN
N )T πN

(AN)T π0 + ∑N
i=1(T

N
i )T πi

⎤
⎥⎥⎥⎥⎥⎦

.

(10)
The procedure to compute (10) in parallel is immediately evident from the right-

hand side. The terms involving WN
i and T N

i may be computed independently by
column-wise or row-wise procedures, depending on the sparsity of each πi vector.
Then a reduce operation is required to form

∑N
i=1(T

N
i )T πi .

5.6 Updating the inverse of the dual block-angular basis matrix

Multiple approaches exist for updating the invertible representation of the basis ma-
trix following each iteration, in which a single column of the basis matrix is replaced.
Updating the LU factors is generally considered the most efficient, in terms of both
speed and numerical stability. Such an approach was considered but not implemented.
We provide some brief thoughts on the issue, both for the interested reader and to in-
dicate the difficulty of the task given the specialized structure of the representation of
the basis inverse. The factors from the second-stage block could be updated by ex-
tending the ideas of Forrest and Tomlin [10] and Suhl and Suhl [30]. The first-stage
matrix M , however, is significantly more difficult. With a single basis update, large
blocks of elements in M could be changed, and the dimension of M could potentially
increase or decrease by one. Updating this block with external Schur-complement-
type updates as developed in [5] is one possibility.

Given the complexity of updating the basis factors, we first implemented product-
form updates, which do not require any modification of the factors. While this ap-
proach generally has larger storage requirements and can exhibit numerical instability
with long sequences of updates, these downsides are mitigated by invoking INVERT
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more frequently. Early reinversion is triggered if numerical instability is detected.
Empirically, a reinversion frequency on the order of 100 iterations performed well on
the problems tested, although the optimal choice for this number depends on both the
size and numerical difficulty of a given problem. Product-form updates performed
sufficiently well in our tests that we decided to not implement more complex proce-
dures at this time. We now review briefly the product-form update and then describe
our parallel implementation.

5.6.1 Product-form update

Suppose that a column aq replaces the pth column of the basis matrix B in the con-
text of a general LP problem. One may verify that the new basis matrix B may be
expressed as B = B(I + (âq −ep)eT

p ), where âq = B−1aq is the pivotal column com-

puted in the FTRAN step. Let E = (I + (âq − ep)eT
p )−1. Now, B

−1 = EB−1. The
elementary transformation (“eta”) matrix E may be represented as E = (I + ηeT

p ),
where η is a vector derived from âq . Given a right-hand side x, we have

Ex = (x + xpη).

That is, a multiple of the η vector is added, and the multiple is determined by the
element in the pivotal index p. Additionally,

ET x = x + (
ηT x

)
ep.

That is, the dot product between η and x is added to the element in the pivotal in-
dex. After K iterations, one obtains a representation of the basis inverse of the form

B
−1 = EK . . .E2E1B

−1, and in transpose form, B
−T = B−T ET

1 ET
2 . . .ET

K . This is
the essence of the product-form update, first introduced in [6].

We introduce a small variation of this procedure for dual block-angular bases. An
implicit permutation is applied with each eta matrix in order to preserve the structure
of the basis (an entering variable is placed at the end of its respective block). With
each η vector, we store both an entering index and a leaving index. We refer to the
leaving index as the pivotal index.

5.6.2 Product-form update for parallel computation

Consider the requirements for applying an eta matrix during FTRAN to a structured
right-hand side vector with components distributed by block. If the pivotal index for
the eta matrix is in a second-stage block, then the element in the pivotal index is
stored only in one MPI process, but it is needed by all and so must be broadcast.
Following this approach, one would need to perform a communication operation for
each eta matrix applied. The overhead of these broadcasts, which are synchronous
bottlenecks, would likely be significantly larger than the cost of the floating-point
operations themselves. Instead, we implemented a procedure that, at the cost of a
small amount of extra computation, requires only one communication operation to
apply an arbitrary number of eta matrices. The procedure may be considered a parallel



586 M. Lubin et al.

product-form update. The essence of the procedure has been used by Hall in previous
work, although the details below have not been published before.

Every MPI process stores all of the pivotal components of each η vector, regard-
less of which block they belong to, in a rectangular array. After a solve with B is
performed (as in Fig. 5), MPI_Allgather is called to collect the elements of the
solution vector in pivotal positions. Given all the pivotal elements in both the η vec-
tors and the solution vector, each process can proceed to apply the eta matrices re-
stricted to only these elements in order to compute the sequence of multipliers. Given
these multipliers, the eta matrices can then be applied to the local blocks of the entire
right-hand side. The communication cost of this approach is the single communi-
cation to collect the pivotal elements in the right-hand side, as well as the cost of
maintaining the pivotal components of the η vectors.

The rectangular array of pivotal components of each η vector also serves to apply
eta matrices in the BTRAN operation efficiently when the right-hand side is the unit
vector with a single nontrivial element in the leaving index; see Hall and McKin-
non [17]. This operation requires no communication once the leaving index is known
to all processes and after the rectangular array has been updated correspondingly.

5.7 Algorithmic refinements

In order to improve the iteration count and numerical stability, it is valuable to use a
weighted edge-selection strategy in CHUZC (primal) and CHUZR (dual). In PIPS-S,
the former operation uses the DEVEX scheme [19], and the latter is based on the
exact steepest-edge variant of Forrest and Goldfarb [9] described in [22]. Algorith-
mically, weighted edge selection is a simple operation with a straightforward paral-
lelization. Each process scans through its local variables (both the local second-stage
blocks and the first-stage block) and finds the largest (weighted) local infeasibility.
An MPI_Allreduce communication operation then determines the largest value
among all processes and returns to all processes its corresponding index.

Further contributions to improved iteration count and numerical stability come
from the use of a two-pass EXPAND [12] ratio test, together with the shifting tech-
niques described by [27] and [22]. We implement the two-pass ratio test in its canon-
ical form, inserting the necessary MPI_Allreduce operations after each pass.

5.8 Updating iterates

After the pivotal column and row are chosen and computed, iterate values and edge
weights are updated by using the standard formulas to reflect the basis change. We
note here that each MPI process already has the sections of the pivotal row and col-
umn corresponding to its local variables (both the local second-stage blocks and the
first-stage block). The only communication required is a broadcast of the primal and
dual step lengths by the processes that own the leaving and entering variables, re-
spectively. If edge weights are used, the pivotal element in the simplex tableau and a
dot product (reduce) are usually required as well, if not an additional linear solve.
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6 Numerical experiments

Numerical experiments with PIPS-S were conducted on two distributed-memory ar-
chitectures available at Argonne National Laboratory. Fusion is a 320-node cluster
with an InfiniBand QDR interconnect; each node has two 2.6 GHz Xeon processors
(total 8 cores). Most nodes have 36 GB of RAM, while a small number offer 96 GB
of RAM. A single node of Fusion is comparable to a high-performance workstation.
Intrepid is a Blue Gene/P (BG/P) supercomputer with 40,960 nodes with a custom
high-performance interconnect. Each BG/P node, much less powerful in comparison,
has a quad-core 850 MHz PowerPC processor with 2 GB of RAM.

Using the stochastic LP test problems described in Sect. 6.1, we present results
from problems of three different scales by varying the number of scenarios in the test
problems. The smallest instances considered (Sect. 6.2) are those that could be solved
on a modern desktop computer. The next set of instances (Sect. 6.3) are large-scale
instances that demand the use of the Fusion nodes with 96 GB of RAM to solve in
serial. The largest instances considered (Sect. 6.4) would require up to 1 TB of RAM
to solve in serial; we use the Blue Gene/P system for these. At the first two scales,
we compare our solver, PIPS-S, with the highly efficient, open-source, serial simplex
code Clp.2 At the largest scale, no comparison is possible. These experiments aim to
demonstrate both the scalability and capability of PIPS-S.

In all experiments, primal and dual feasibility tolerances of 10−6 were used. It
was verified that the optimal objective values reported in each run were equal for
each instance. A reinversion frequency of 150 iterations was used in PIPS-S, with
earlier reinversion triggered by numerical stability tests. Presolve and internal rescal-
ing, important features of LP solvers that have not yet been implemented in PIPS-S,
were disabled in Clp to produce a fair comparison. Otherwise, default options were
used. Commercial solvers were unavailable for testing on the Fusion cluster because
of licensing constraints. The number of cores reported used corresponds to the total
number of MPI processes.

6.1 Test problems

We take two two-stage stochastic LP test problems from the stochastic programming
literature as well as two stochastic power-grid problems of interest to the authors.
Table 1 lists the problems and their dimensions. “Storm” and “SSN” were used by
Linderoth and Wright [24] and are publicly available in SMPS format.3 We refer
the reader to [24] for a description of these problems. Scenarios were generated by
simple Monte-Carlo sampling.

The “UC12” and “UC24” problems are stochastic unit commitment problems de-
veloped at Argonne National Laboratory by Victor Zavala. See [25] for details of
a stochastic economic dispatch model with similar structure. The problems aim to
choose optimal on/off schedules for generators on the power grid of the state of Illi-
nois over a 12-hour and 24-hour horizon, respectively. The stochasticity considered

2https://projects.coin-or.org/Clp.
3http://pages.cs.wisc.edu/~swright/stochastic/sampling.

https://projects.coin-or.org/Clp
http://pages.cs.wisc.edu/~swright/stochastic/sampling
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Table 1 Dimensions of stochastic LP test problems

Test
problem

1st stage 2nd-stage scenario Nonzero elements

Vars. Cons. Vars. Cons. A Wi Ti

Storm 121 185 1,259 528 696 3,220 121

SSN 89 1 706 175 89 2,284 89

UC12 3,132 0 56,532 59,436 0 163,839 3,132

UC24 6,264 0 113,064 118,872 0 327,939 6,264

is that of the availability of wind-generated electricity, which can be highly variable.
In practice each scenario would be the result of a weather simulation. For testing pur-
poses only, we generate these scenarios by normal perturbations. Each second-stage
scenario incorporates (direct-current) transmission constraints corresponding to the
physical power grid, and so these scenarios become very large. We consider the LP
relaxations, in the context of what would be required in order to solve these problems
using a branch-and-bound approach.

In these test problems, only the right-hand side vectors b1, b2, . . . , bN vary per
scenario; the matrices Ti and Wi are identical for each scenario. This special structure,
common in practice, is not currently exploited by PIPS-S.

6.2 Solution from scratch

We first consider instances that could be solved on a modern desktop from scratch,
that is, from an all-slack starting basis. These instances, with 1–10 million total vari-
ables, could be considered large scale because they take many hours to solve in serial,
although they are well within the capabilities of modern simplex codes. These tests
serve both to compare the serial efficiency of PIPS-S with that of a modern simplex
code and to investigate the potential for parallel speedup on problems of this size.
The results are presented in Table 2.

We observe that Clp is faster than PIPS-S in serial on all instances; however, the
total number of iterations performed by PIPS-S is consistent with the number of
iterations performed by Clp, empirically confirming our implementation of pricing
strategies. Significant parallel speedups are observed in all cases, and PIPS-S is 5
and 8 times faster than Clp for SSN and Storm respectively when using four nodes
(32 cores). Parallel speedups obtained on the UC12 and UC24 instances are smaller,
possibly because of the smaller number of scenarios and the larger dimensions of the
first stage.

6.3 Larger instances with advanced starts

We next consider larger instances with 20–40 million total variables. The high-
memory nodes of the Fusion cluster with 96 GB of RAM were required for these
tests. Given the long times to solution for the smaller instances solved in the pre-
vious section, it is impractical to solve these larger instances from scratch. Instead,
we consider using advanced or near-optimal starting bases in two different contexts.
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Table 2 Solves from scratch (all-slack basis) using dual simplex. Storm instance has 8,192 scenarios,
10,313,849 variables, and 4,325,561 constraints. SSN instance has 8,192 scenarios, 5,783,651 variables,
and 1,433,601 constraints. UC12 instance has 32 scenarios, 1,812,156 variables, and 1,901,952 constraints.
UC24 instance has 16 scenarios, 1,815,288 variables, and 1,901,952 constraints. Runs performed on nodes
of the Fusion cluster

Test
problem

Solver Nodes Cores Iterations Solution
time (sec.)

Iter./sec.

Storm Clp 1 1 6,706,401 133,047 50.4

PIPS-S 1 1 6,353,593 385,825 16.5

1 4 6,357,445 108,517 58.6

1 8 6,343,352 52,948 119.8

2 16 6,351,493 28,288 224.5

4 32 6,347,643 15,667 405.2

SSN Clp 1 1 1,175,282 12,619 93.1

PIPS-S 1 1 1,025,279 58,425 17.5

1 4 1,062,776 16,511 64.4

1 8 1,055,422 7,788 135.5

2 16 1,051,860 3,865 272.1

4 32 1,046,840 1,931 542.1

UC12 Clp 1 1 2,474,175 39,722 62.3

PIPS-S 1 1 1,968,400 236,219 8.3

1 4 2,044,673 86,834 23.5

1 8 1,987,608 39,033 50.9

2 16 2,063,507 27,902 74.0

4 32 2,036,306 16,255 125.3

UC24 Clp 1 1 2,441,374 41,708 58.5

PIPS-S 1 1 2,142,962 543,272 3.9

1 4 2,204,729 182,370 12.1

1 8 2,253,199 101,893 22.1

2 16 2,270,728 60,887 37.3

In Sect. 6.3.1 we generate starting bases by taking advantage of the structure of the
problem. In Sect. 6.3.2 we attempt to simulate the problems solved by dual simplex
inside a branch-and-bound node.

6.3.1 Advanced starts from exploiting structure

We provide a minimal description of an approach we developed for generating ad-
vanced starting bases to solve extensive-form LPs. Given an extensive-form LP with
a set of scenarios {1, . . . ,N}, fix a subset of the scenarios S ⊂ {1, . . . ,N}, and solve
the extensive-form LP corresponding to S. Given the first-stage solution x̂0 for this
subset of scenarios, for i ∈ {1, . . . ,N} \ S solve the second-stage problem

LP2(i, x̂0) min cixi s.t. Wixi = bi − Ti x̂0, xi ≥ 0.
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Table 3 Solves from advanced starting bases using primal simplex. Both instances have 32,768 scenar-
ios. Starting bases were generated by using a subset of 16,386 scenarios. Storm instance has 41,255,033
variables and 17,301,689 constraints. SSN instance has 23,134,297 variables and 5,734,401 constraints.
Runs performed on nodes of Fusion cluster. Asterisk indicates that high-memory nodes were required

Test
problem

Solver Nodes Cores Iterations Solution
time (sec.)

Iter./sec.

Storm Clp 1* 1 16,247 7537 2.2

PIPS-S 1* 1 9,026 7184 1.3

1* 4 6,598 662 10.0

1* 8 10,899 486 22.4

2* 16 6,519 137 47.6

4 32 5,776 61.5 93.9

8 64 7,509 47.3 158.8

16 128 7,691 35.5 216.6

32 256 6,572 25.2 260.4

SSN Clp 1* 1 99,303 50,737 2.0

PIPS-S 1* 1 353,354 427,648 0.8

1* 4 239,882 58,621 4.1

1* 8 235,039 22,485 10.5

2 16 219,050 9,550 22.9

4 32 193,565 4,134 46.8

8 64 219,560 2,365 92.8

16 128 212,269 1,481 143.3

32 256 200,979 1,117 180.0

Then, concatenate the optimal bases from the extensive-form LP for S with those
of LP2(i, x̂0). For some i, LP2(i, x̂0) may be infeasible. If this situation occurs, one
may take a slack basis or, if Wi does not vary per scenario, use the optimal basis from
another subproblem. It may be shown that this procedure produces a valid (but poten-
tially infeasible) basis for the original extensive-form LP. If all LP2(i, x̂0) problems
are feasible, then this basis is in fact primal feasible (and so is appropriate for primal
simplex). We call this procedure stochastic basis bootstrapping, because one uses the
solution to a smaller problem to “bootstrap” or warm-start the solution of a larger
problem; this has no relationship to the common usage of the term bootstrapping in
the field of statistics. A more detailed description and investigation of this procedure
are warranted but are beyond the scope of this paper.

In the following tests, we consider these advanced starting bases as given. The
time to generate the starting basis is not included in the execution times; these two
times are typically of the same order of magnitude. Results with the Storm and SSN
problems are given in Table 3. These two problems have the property that all second-
stage subproblems are feasible, and so the starting basis is primal feasible. We apply
this approach to the UC12 problem in Sect. 6.4.

Clp remains faster in serial than PIPS-S on these instances, although by a smaller
factor than before. The parallel scalability of PIPS-S is almost ideal (>90 % paral-
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lel efficiency) up to 4 nodes (32 cores) and continues to scale well up to 16 nodes
(128 cores). Scaling from 16 nodes to 32 nodes is poor. On 16 nodes, the iteration
speed of PIPS-S is nearly 100× that of Clp for Storm and 70× that of Clp for SSN.
A curious instance of superlinear scaling is observed within a single node. This could
be caused by properties of the memory hierarchy (e.g. processor cache size).

We observe that the advanced starting bases are indeed near-optimal, particularly
for Storm, where approximately ten thousand iterations are required to solve a prob-
lem with 41 million variables.

6.3.2 Dual simplex inside branch and bound

The dual simplex method is generally used inside branch-and-bound algorithms be-
cause the optimal basis obtained at the parent node remains dual feasible after vari-
able bounds are changed.

For the UC12 and UC24 problems, we obtained optimal bases for the LP relax-
ation and then selected three binary variables to fix to zero. Because of the nature
of the model, the subproblems resulting from fixing variables to one typically re-
quire very few iterations, and these problems are not considered because the initial
INVERT operation, which may not required in a real branch-and-bound setting, dom-
inates their execution time. For each of the three variables chosen, all subproblems
were (primal) feasible. These subproblems are intended to simulate the work per-
formed inside a branch-and-bound node, with the aim of both investigating parallel
scalability and indicating how many simplex iterations may be needed for such prob-
lems. The results are presented in Table 4.

For UC12 and UC24, we obtain 71 % and 81 % scaling efficiency, respectively,
up to 4 nodes (32 cores) and approximately 50 % scaling efficiency on both instances
up to 16 nodes (128 cores). On 16 nodes, the iteration speed of PIPS-S is slightly
over 25× that of Clp. PIPS-S requires fewer iterations than Clp on these problems,
although we do not claim any general advantage. Comparing solution times, we ob-
serve relative speedups of over 100× in some cases.

These results, while inconclusive because only three subproblems were consid-
ered, suggest that with sufficient resources, branch-and-bound subproblems for these
instances may be solved in minutes instead of hours. With these same resources, a
parallel branch-and-bound approach is also possible; however, for instances of the
sizes considered it will likely be necessary to distribute the subproblems to some
extent because of memory constraints.

6.4 Very large instance

We report here on the solution of a very large instance, UC12 with 8,192 scenarios.
This instance has 463,113,276 variables and 486,899,712 constraints. An advanced
starting basis was generated from 4,096 scenarios, not included in the execution time.
Results are reported in Table 5 for a range of node counts using a Blue Gene/P system.
This problem requires approximately 1 TB of RAM to solve, requiring a minimum
of 512 Blue Gene nodes; however, results are only available for runs with 1,024
nodes or more because of execution time limits. While scaling performance is poor
on these large numbers of nodes, this test demonstrates the capability of PIPS-S to
solve instances considered far too large to solve today with commercial solvers.
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Table 4 Iteration counts and solution times for three reoptimization problems intended to simulate the
work performed at a branch-and-bound node. UC12 instance has 512 scenarios, 28,947,516 variables,
and 30,431,232 constraints. UC24 instance has 256 scenarios, 28,950,648 variables, and 30,431,232 con-
straints. Runs performed on Fusion cluster. Asterisk indicates that high-memory nodes were required

Test
problem

Solver Nodes Cores Iterations Solution time (sec.) Avg.
iter./sec.

UC12 Clp 1* 1 10,370/13,495/5,888 15,205/19,782/7,022 0.73

PIPS-S 1* 1 5,030/6,734/4,454 14,033/20,762/12,749 0.34

1* 8 5,031/6,793/4,454 1,963/2,955/1,788 2.5

2* 16 5,031/6,794/4,451 1,015/1,537/929 4.7

4 32 5,031/6,738/4,454 548/810/503 8.8

8 64 5,031/6,738/4,454 321/476/300 14.9

16 128 5,031/6,793/4,454 226/346/214 20.9

32 256 5,031/6,794/4,454 180/296/169 25.8

UC24 Clp 1* 1 5,813/9,386/2,909 6,818/10,815/3,280 0.87

PIPS-S 1* 1 3,035/2,240/2,272 8,031/6,049/6,841 0.36

1* 8 3,035/2,230/2,271 1,247/855/1,043 2.4

2* 16 3,035/2,230/2,272 675/487/565 4.4

4 32 3,035/2,230/2,271 358/257/300 8.2

8 64 3,035/2,230/2,270 198/143/170 14.8

16 128 3,035/2,230/2,272 125/90/111 23.2

32 256 3,035/2,230/2,272 101/71/92 28.7

Table 5 Iteration counts and
solution times for UC12 with
8,192 scenarios. Starting basis
was generated by using a subset
of 4,096 scenarios. Runs
performed on Intrepid Blue
Gene/P system using PIPS-S

Nodes Cores Iterations Solution
time (hr.)

Iter./sec.

1,024 2,048 82,638 6.14 3.74

2,048 4,096 75,732 5.03 4.18

4,096 8,192 86,439 4.67 5.14

6.5 Performance analysis

For a given operation in the simplex algorithm, a simple model of its ideal execution
time on P processes is

1

P

P∑
i=1

tp + t0, (11)

where tp is the time spent by process p on its local second-stage calculations and t0 is
the time spent on first-stage calculations. A more realistic, but still imperfect, model
is

max
p

{tp} + c + t0, (12)

where c is the cost of communication.



Parallel distributed-memory simplex for large-scale stochastic LP problems 593

Table 6 Inefficiencies in
PRICE operation on instances
from Sects. 6.3.1 and 6.3.2.
Times, given in microseconds
(µs), are averages over all
iterations. Load imbalance is
defined as the difference
between the maximum and
average execution time in the
second-stage calculations per
MPI process. Total time in
PRICE per iteration is given on
the right

Test
problem

Nodes Cores Load
imbal.
(µs)

Comm.
cost
(µs)

Serial
bottleneck
(µs)

Total
time/iter.
(µs)

Storm 1 1 0 0 1.0 13,243

1 8 88 33 0.8 1,635

2 16 40 68 0.9 856

4 32 25 105 0.9 512

8 64 26 112 1.0 326

16 128 11 102 0.9 205

32 256 34 253 0.8 333

SSN 1 1 0 0 0.8 2,229

1 8 18 23 0.8 305

2 16 25 54 0.8 203

4 32 14 68 0.7 133

8 64 12 65 0.7 100

16 128 10 87 0.6 106

32 256 8 122 0.6 135

UC12 1 1 0 0 6.8 24,291

1 8 510 183 6.0 4,785

2 16 554 274 6.0 2,879

4 32 563 327 6.0 1,921

8 64 542 355 6.0 1,418

16 128 523 547 6.0 1,335

32 256 519 668 5.8 1,323

UC24 1 1 0 0 11.0 28,890

1 8 553 259 9.8 5,983

2 16 543 315 9.7 3,436

4 32 551 386 9.6 2,248

8 64 509 367 9.5 1,536

16 128 538 718 9.5 1,593

32 256 584 1413 9.5 2,170

The magnitude of the load imbalance, defined as maxp{tp} − 1
P

∑P
i=1 tp , and the

cost of communication explain the deviation between the observed execution time
and the ideal execution time, whereas the magnitude of the serial bottleneck t0 deter-
mines the algorithmic limit of scalability according to Amdahl’s law [1]. Evaluating
the relative impacts of these three factors; namely, load imbalance, communication
cost, and serial bottlenecks; on a given instance provides valuable insight into the
empirical performance of PIPS-S.

The PRICE operation (Sect. 5.5), chosen for its relative simplicity, was instru-
mented to calculate the quantities t0, t1, . . . , tP and c explicitly. Table 6 displays the
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magnitudes of the three performance factors identified for the problem instances from
Sect. 6.3 (the “larger” instances).

We observe that for all instances, the cost of the first-stage calculations is small
compared with the other factors. For a sufficiently large number of scenarios, this
property will always hold for stochastic LPs, but it may not hold for block-angular
LPs obtained by using the hypergraph partitioning of [2].

Communication cost is significant in all cases, particularly when more than 4 or
8 nodes are used. Communication cost increases with the number of first-stage vari-
ables (from SSN to Storm to UC12 to UC24), indicating the effects of bandwidth.
Unsurprisingly, the communication cost increases with the number of nodes.

Load imbalance in PRICE is due primarily to exploitation of hyper-sparsity, and
UC12 and UC24, potentially because they contain network-like structure, exhibit this
property to a greater extent than do Storm and SSN. Interestingly, the load imbalance
does not increase on an absolute scale with the number of nodes, although it becomes
a larger proportion of the total execution time.

Despite communication overhead and load imbalance, which we had suspected to
be insurmountable, significant speedups are possible, as evidenced by the results pre-
sented here. Advances in hardware have brought communication times across nodes
to as little as tens of microseconds using high-performance interconnects such as
InfiniBand. We note that a shared-memory implementation of our approach would
have the potential to address load-balancing issues to a greater extent than the present
distributed-memory implementation.

7 Conclusions

We have developed the linear algebra techniques necessary to exploit the dual block-
angular structure of an LP problem inside the revised simplex method and a tech-
nique for applying product form updates efficiently in a parallel context. Using these
advances, we have demonstrated the potential for significant parallel speedups. The
approach is most effective on large instances that might otherwise be considered very
difficult to solve using the simplex algorithm. The number of simplex iterations re-
quired to solve such problems is greatly reduced by using advanced starting bases
generated by taking advantage of the structure of the problem. The optimal bases
generated may be used to efficiently hot-start the solution of related problems, which
often occur in real-time control or branch-and-bound approaches. This work paves
the path for efficiently solving stochastic programming problems in these two con-
texts.
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