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Abstract The numerical approximation to a parabolic control problem with con-
trol and state constraints is studied in this paper. We use standard piecewise linear
and continuous finite elements for the space discretization of the state, while the
dG(0) method is used for time discretization. A priori error estimates for control and
state are obtained by an improved maximum error estimate for the corresponding
discretized state equation. Numerical experiments are provided which support our
theoretical results.

Keywords Optimal control problem - Finite element method - A priori error
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1 Introduction

In this paper we consider the optimal control problem
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subject to
yi—Ay+y=DBu in$2r,

0

Yo onI'r, (1.2)
on

y(0) = yo in 2,

where 27 = 2 x (0,T], I'T =082 x (0, T], £2 is an open bounded domain in R2
with sufficiently smooth boundary I"' =082, and « > 0, T > 0, y; € Lz(.QT) are
fixed. The precise smoothness requirements on I” are given in the next section. The
initial value yy is specified in Sect. 2. The constraints on control and state are specified
through the closed and convex subsets

ueKy:= {u € LZ(QT) ra<u(x,t) <b, foraa. (x,1) € .QT} cuU (1.3)
for controls with U := L%(£27) and
yeKy:= {y € L®(27) : y(x,t) < ¢, fora.a. (x,t) € .QT} (1.4)

for states, where for simplicity we assume that a, b and ¢ denote constants with
a < b. Furthermore, B : L?>(£27) — L?(0, T; H'(£2)*) denotes the injection.

State constrained optimal control problems are important from the practical point
of view. The numerical analysis for these problems is involved since the multipliers
associated to constraints on the state in general are Borel measures. To the best of
the authors’ knowledge, there are only a few contributions to numerical analysis of
parabolic optimal control problems with state constraints. Lavrentiev regularization
of state constrained parabolic optimal control problems is studied in [24]. Recently,
error estimates for state constrained parabolic control problem with controls of the
form

(Bu)(x,1) :=Zu,-(t)fi(x) (x,1) € 27, (1.5)

i=1

are derived in [9], where f1,..., fm € H 1(S.?) N L°°(£2) are given functions. Error
analysis for optimal control problems with final state constraints and control con-
straints is considered in [29]. Finally, in [22] a priori error estimates for parabolic
optimal control problems with pointwise state constraints in time are considered.
Other related work on state constrained optimal control problems and parabolic con-
trol problems can be found in, e.g., [1, 3, 4, 7, 18, 21].

In this paper we consider an optimal control problem for the heat equation with
distributed control and pointwise control and state constraints. The optimization prob-
lem is approximated using variational discretization proposed in [14] combined with
linear finite elements in space and the dG(0) scheme in time for the discretization
of the state equation. Based on an improved maximum error estimate for the state
equation, we among other things derive in Theorem 4 the L2-norm error estimate

2 2
a||u - Mh*k||L2(O,T;L2(Q)) + ||)’ - Yh’k”LZ(O,T;LZ(Q))

< Cs?|logh*(R*~ + k175, (1.6)
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where (u,y) and (upk, Y5 x) denote the continuous and discrete optimal controls
and states with 4 < s < co denoting a positive real number related to the regularity
of y, and A, k denote the space and time discretization parameters which have to be
coupled appropriately. In the analysis we use results of [26] concerning the parabolic
projection, which are only proved for two spatial dimensions. Therefore we restrict
our analysis to the case £2 C R?.

The rest of this paper is organized as follows. In Sect. 2 we present the state
constrained optimal control problem and the corresponding optimality conditions. In
Sect. 3 we establish the fully discrete approximation for the state equation and derive
uniform estimates for the discretization error of the state. We obtain the a priori error
estimates for the optimal control problem in Sect. 4. We also present some numerical
experiments to support our theoretical findings.

2 Optimal control problem

Let £2 C R? be a convex domain which matches the smoothness requirements in [17,
Chap. 4, § 4]. Specifically, we require that I" € O2. We say that a surface I" C R”
belongs to class O! (I > 1) if there exists a number p > 0 such that the intersec-
tion of I" with a ball K, of radius p with center at an arbitrary point erlisa
connected surface, which locally can be represented as the graph of a function w of
class O, i.e., in the local coordinate system (yi, ..., y,) with origin at x9 one has
yn =01, ..., yn-1) for (y1,...,y2) € ' N K,, and w is a function of class 0!
on the projection of I" N K, onto the subspace y, = 0. Here 01(.{_2) is the set of
all continuous functions in £2 having continuous derivatives in £2 up to order [ — I,
with the derivatives of order / — 1 having a first differential at each point of £2 and
the derivative of order / being bounded in £ (see [17, Chap. 1, pp. 9-10] for more
details). For example, convex domains §2 with C>! boundary I" meet the above men-
tioned requirements. Here we note that convex polygonal domains do not meet our
regularity assumptions on the domain. However, convex polygonal domains could be
included in our analysis by assuming that the states appearing in our analysis satisfy
the required regularity assumptions.

For nonnegative integer m we adopt the standard notation W% (£2) for Sobolev
spaces on §2 with norm ||-||,.s.2 and seminorm |-, 5., and the standard modifica-
tion for s = co. We denote by H™(£2) with norm ||-||,,,2 and seminorm |-|,, o for
s = 2. Note that H O(.Q) = Lz(.Q). For real numbers m we define the Sobolev space
WS (£2) by interpolation, i.e., W™ (£2) := (W55 (2), WLs(2))g s, ke N, m e
(k,k+1),0 =m — |m]. We denote the L2-inner products on L2(£2) by

(v, w) = / vwdx VYv,we LZ(Q).
2

With 27 = 2 x (0,T] let HS (27) = L*(0,T; H*(£2)) N H (0, T; L*(£2))
equipped with the norm

r }
||w||s,r,m=( /0 Jwe 0]} gdr + /Q ||w<x~>||f,[o,ndX> :
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where |-]|,.[0,77 denotes the norm on H' ([0, T]). For a real positive number /,

c *I(QT) is the space of functions which are continuous in 2r, together with all
derivatives of the form Dj D3 for 2r 4+ s <[ (see [17], p. 7), where D; and D, de-
note the derivatives w.r.t time and space, respectively. Throughout the presentation ¢
and C denote generic positive constants.

The variational form of problem (1.2) reads: Given u € U and yg € L%(£2), find
ye L%, T; H'(2))NH' (0, T; H~'(£2)) such that

i, v) + (Vy, Vo) + (y,v) = (Bu,v) Yve H'(2),ae.1€(0,T], @1
y(x,0) = yo(x) x e, :

We denote y = G(Bu) the solution to problem (2.1). It is well-known that if
Bu € L>(27), yo € H'(£2), problem (2.1) admits a unique solution y = G(Bu) €
H>'(Q27):=L*0,T; H*(2)) N H'(0, T; L*>(2)) = C([0, T]; H'(2)).

We define W' (£27) (1 <5 < 00) as

W2l(@r):={y e L*(0,T; W**(22)), y € L*(0, T; L*(£2))}

and use ||-[|2,1,s to denote the norm defined on WYZ’I(QT). Thanks to the control

constraints given by (1.3), we have Bu € L*°(§27). If in addition yy € Wz_%’s(.Q)
for some 2 < s < oo, from [17, Chap. 4, Thm. 9.1] we with our assumptions on the
domain £2 have the improved regularity y € W?’l(QT) such that

102,15 = C(1Bullo.ce.c2 + 0l 2., o)

with a positive constant C depending on I” but not on s. We note that since Bu €
L% (27), we obtain for yg € W2(£2) that y € W>'(£27), V1 < s < co. In what

follows we fix yo € WZ*%’s(.Q) for some 2 < s < 0o which will be specified later,
Yo < ¢ and % =0 on I" throughout the paper.
Our optimal control problem reads:

1 o
: _ _ _ 2 bl 2
min ]()’s l/t) - 2 ”y )’d”Lz(_QT) + 2 ”M”LZ(QT) (22)

st. y=GBu), andye Ky, uecKy.

Since J is quadratic and Ky and Ky are closed and convex, problem (2.2) admits a

unique solution (y, u) € Wsz’l(.QT) x Ky . Note that W?’I(QT) < C(827) holds for
s > 2, so that it is meaningful to require

Assumption 1 (Slater condition) There exists z € Ky such that the associated state y
fulfills (1.4) strictly, i.e. $(x, 1) < ¢ holds for all (x, t) € £27.

With this assumption it then follows from e.g., [5, 10, 24] that the first order opti-
mality conditions for the optimal control problem (2.2) are given by
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Theorem 1 Assume that u € L°°(§27) is the solution of problem (1.1) and let y be
the corresponding state given by (2.1). Let M(27) denote the space of regular Borel
measures on 2. Then there exists an adjoint state p € L1(0, T} wlo(2) for all
q,0€[1,2) with 2 ~|— > 3, and a Lagrange multiplier n € M(§27) such that

—Ap+p=y—yi+ue, inSfr,

0
£ —ur, on I'r, 2.3)
p(T) = pr in 2

is satisfied in the sense of transposition, and

/Q (au—i—B*p)(v—u)zO Yv e Ky, 2.4)

w>0, yx,0)<¢, (x,1)eRr, and / (¢ —y)du=0 (2.5
7

holds. Here o, = oy, iy = wlry and pr == Ml G seqry-

Proof For a proof we refer to e.g., [5, 9]. We note that in [9] a proof for a slightly
different setting is provided whose adaption to the present situation is obvious. [l

Let us note that (2.3) is satisfied in the sense of transposition (see [19]), if

Jw
(wz—Aw+w)p+/ —p= (y—yd)w+/, wd p

2T I'r on 7 2r

Vw € WE° (2.6)

holds, where

W = {w e H*'(27)NC(27) :w(-,0)=0in £,

9
— Aw+w e L®(27), % c L“(FT)}.

3 Finite element discretization and error estimates for the state equation

Let 2" C £2 be a polygonal approximation to £2 with a boundary I}, = 352". From
the assumption on the boundary 92 we have |2 \ £2"| < Ch?. For the spatial dis-
cretization let 7" be a quasi-uniform partitioning of £2” into disjoint regular triangles
or rectangles 7, so that 2" = (Uze7n T. We assume that all vertices of 7° " that are
on the boundary I}, stay on the boundary 0£2. Let h; denote the diameter of .
Set h = max,¢7;, h. Associated with 7}, is a finite dimensional space V" consisting
of piecewise linear and continuous polynomials. We note that functions in V” can
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136 W. Gong, M. Hinze

continuously be extended to £2 such that Vh c C(£2) holds, i.e, for a boundary ele-
ment 7, the function vy, defined on the part of £2\£2” which shares one edge with the
element t is the linear extension of vy|;. It is easy to see that VhcH 1(£2). Since
T" is quasi-uniform, the following inverse estimates (see [6])

lvalls.e < CH ™S upllie, 0<Il<s<l, 3.1)
lvallo.co.2 < Ch™Hvnllo.e (3.2)

hold for all v, € V.

Remark I In [8] a quasi-uniform partition with curved boundary elements is pro-
posed for the approximation of elliptic optimal control problems with state con-
straints. This approach also would be applicable in the present situation.

Let IT, : C(£2) — V" denote the standard Lagrange interpolation operator. Inter-
polation error estimates imply that for y € W™ (£2), r > 2 (see, e.g., [6])

Iy = Mpyllore +hlly = Mpyllire <CA" [ylmre 1<m=<2.  (3.3)
Let Ry, : H'(£2) — V" denote the Ritz projection operator defined as

(VRuy, Vup) + (Rpy, va) = (Vy, Vup) + (v, vp) Yo, € VI 34

Lemma 1 Let Ry, be the Ritz projection operator defined above. Then there holds:

ly = Riylloye <Crh inf |y —villine r=2. (3.5)
veVh
ly = Ruyllo,co,2 < Cllogh| inf [y —vpllo,c0,02- (3.6)
v,eVh

Proof A result related to (3.5) is proved by Rannacher and Scott in [28] for Dirichlet
boundary conditions, but the arguments can be adapted to the present situation, we
omit the details here. The result of (3.6) can be found in [30]. O

Then the semi-discrete finite element approximation of (2.1) reads: Given u € U
and y} € V. find y; (1) € H' (0. T; V") such that

0
(% wh) + (Vyn, Vwp) + (v, wp) = Bu, wy)  Yw, € VI, 1€(0,T1,

yh(x,0)=yi(x) xef
(3.7
is satisfied. Here yé’ = ITj,yo € V" is an approximation to y.
We next consider the fully discrete approximation for above semidiscrete problem.
LetO=t)<t) <---<ty—1 <ty =T be atime grid witht, =nk, n=1,2,..., N,
where k .= % Let I,, = (t,_1, ;] and

Vik:={¢: 2 x[0,TI>R, ¢(,0)lg e V", ¢(x,);, ePoforn=1,...,N},
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Error estimates for state constrained parabolic optimal control problems 137

i.e. ¢ € V1 is a piecewise constant polynomial w.r.t. time. For Y, @ € Vj, ; we set

N
AY, @)=Y (r"=y"" @) +k(VY", VO") + k(¥", &")) + (Y], Y).

n=1

where @" := @", @ =limy_, o+ P (1, + 5).
The fully discrete dG(0)—-cG(1) approximation scheme for (3.7) now reads: Given
u €U, find Yp, x € Vp k such that

1 (Bu, ®") + (yo. ®}), VP € Vyx. (3.8)

N
A(Yh,k,qb):Z/

n=1"""

Note that on each time interval I,,, the solution Y, }:’ € vV satisfies

—1
Yi?,k - Y;ll,k
(3.9)

. ,wh) + (VY o Vwn) + (Y w) = (Bw)", wy),

Ywy, € Vi n=1,...,N, Y;?yk(x)zyg(x)x €,

Now we are in a position to estimate the error between the solutions of prob-
lem (2.1) and (3.8). The following result is a standard consequence of error estimates
for parabolic equation (see, e.g., [12]).

where Bu = (% ft:’_l Bu)flV | and yg € V" is an approximation to yy.

Theorem 2 Let Bu € L%(27), let y € H>'(£27) be the solution to problem (2.1),
and let Yy, i € Vy i be the solution to problem (3.8). Then we have

Iy = Yail 2.7 22y < C(h* + k) 1yll2.1,2; - (3.10)

We also need the maximum norm estimates for the state equation. Using ideas
of [26] it is convenient to introduce the weighted-norm technique. For this purpose
let

1
p(x):=(Ix —z* +0?)? Vx e,
where z € £2 and w = Ch|logh|. The choice of C > 1 and z will be specified latter.
It is easy to verify (see, e.g., Lemma 4.3 in [26] or p. 216 in [2]) that

/ p(x)"dx < C((m — 2" 2) ™" form > 2. 3.11)
2

Theorem 3 Let Bu € L*(827), y € WSZ’I(QT) (4 < 5 < 00) be the solution of prob-
lem (2.1), and Y j € Vi i be the solution of problem (3.8). There exists C* > 1 such
that if o = C*h|logh| and k > C*h?|logh|3, then
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138 W. Gong, M. Hinze

1I’SI}laSXN ||y(', In) — Y}’zl,k ”O,oo,S?

< Cs*loghP(h*™*° + k') (IBullo,co.2 + y0ll52 5. 5)  (3:12)
holds, where Y}’f’k (n=1,..., N)is the solution of (3.8).

Proof The proof follows [26] (see, e.g., pp. 501-504), where an error estimate for the
parabolic projection in the case of Dirichlet boundary conditions is presented. The
proof in the present situation is slightly different. We sketch it for the convenience of
the reader. We also note that we impose Neumann boundary conditions for the state.

With
1 [
v e ',t dt
5 k/ Y1)
we have
yeitn) = Y) =y 1) = Ry + Ry = Vi
=&"—n"
Thus

|y Gt = Yy x ||0,oo,9 <|yC tm) = Ryy" ||0,oo,_(2 + [ Ruy" = Y/?,k”o,oo,sz' (3.13)
Note that (see [17, 26])
W2l(@2r) = 15 (@)
with m =4 < s < 00. From (3.3) and (3.6) we deduce
[yCot) = Ra3" o 00,0

= ||y(-, ) =" ||0,oo,_(z + H)_’n = Rny" ||0,oo,.rz
1 [ _ _
= gf [9) = 3() g o0 ot + Clloghl[ 3" = 115" o o
-1

1-2 94
< C(k'=5 +h*75 [Toghl) I yll2.1.s, (3.14)
where interpolation error estimates in space and time are used (see e.g., [2]).
It remains to estimate ||R,y" —Y, ,’f 1 10,00,2 - Suppose that z € £2 is the point where

IRpy" — Y/;l,k”O,oo,.Q achieves its maximal value. Using Thm. 3.3.3 (p. 151) in [6]
(see also [25]) we have

”Rhyn - Yf?,kHO,oo,Q = C%”p_lnn HO,Q' (3.15)

Integration of (2.1) from #;_; to #; yields
. . L4 L4 L4
(' —y“l,v) —l—/ (Vy,Vv)—i—/ (y,v) =/ (Bu, v),
ti—1 ti—1 ti—1
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Error estimates for state constrained parabolic optimal control problems 139

where yi =y(x,t),i=0,1,..., N, so that using (3.9) we have for all v € yh

(ni — nifl, v) +k(Vni, Vv) + k(ni, v)
= (Yii = Yk 0) + k(YY) 4 Vo) + k(Y 4 )

. . t t
—(Rh(y’—y'—l),v)—/ (Rm,vm—/ (Ruy. v)
1i—1 tiq
/ Buv) — (R (5 — 5", v) f (RaVy. Vo) — /_(Rhy,w
==y / (Vy, Vo) + / (7, v)

. . t t
— (R (5" —yl*‘),v)—/ (Rth,vU)—f (Rny,v)
ti—1 ti—1
= (& _gi—l,v)' (3.16)

Let Zi-1 e V" i=1,2,...,n be the unique solution of following backward fully
discrete problem

(217 = Z  wp) +k(VZI, V) + k(277 wy) =0 Yw, eV (3.17)

with Z" =¢ € Vh 1<n<N.Nowletv=Z1in (3.16). Summing from 1 to n we
find

(" ¢)=(E"0)+ Y (. 27 = Z) + (¥ — y0. 2°), (3.18)
i=1

where we have used (3.17) and the fact that n' € V". Setting ¢ = Pr(p~%n")
in (3.18), where Py, : L>(£2) — V" is the L?-projection operator, we deduce from
n" € V" that

[~ "5 = (0", p720") = (0", Pu (o™ 20"))

= (" Pu(p 20" +Z £,77 =70 4+ (Y2 — 0, 2%).  (3.19)

Since [|pPpvllo,2 < Cllpvllo,2 we have
& Pu(o™n") < [o7'€" g ol 0Pu(e™0") o
= ”p_lsn“o,gnp_l”n “o.o
Thus Young’s inequality implies
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140 W. Gong, M. Hinze

n
”10 1’7””0,(25CHP 1“3’1“0,9"'CX:||'0 léflno,sz”p(zl 1_Zl)||o,.(2

i=1
+CH'0_1(thO_yO)HO,QHpZOHO,.Q’ (3.20)

Now we need a priori estimates for Z'~! — Z/ and Z" in weighted norms. According
to [11] there exists C* > 1 such that if w = C*h|logh| and k > C*h?|logh|?, the
estimate

1

n
020, . + (k-lzrn-i+l||p<zf-l —zf>||§,g)
i=1

< Clloghllptllo,e < Clloghl| o' o (3:21)

holds. We note that the estimate (3.21) was proved in [11] for problems with Dirichlet
boundary conditions defined on polygonal domain. The technique used there was to
exploit the properties of the L?-projections in weighted norms, and can be adapted
to our cases where smooth domain and homogeneous Neumann boundary conditions
are employed.

By exploiting the property of the weight function p, the following estimates can
be found in, e.g., [26], and generalized to our case:

n 3 n 3
(Sl elia) <catit (300h,,) . o
i=l1 i=l1

1

n s
o], scmfkf(k2||a||as,g) » 523

i=1

where Holder’s inequality and property (3.11) are used. Then the interpolation error
estimate (3.3), (3.11) and Hélder’s inequality with ¢ = -*5 lead to

1 2 124
o™ (Thyo = yo) | o < ( /Q p- ‘f) 1774 y0 = yollo.s, 2

_1 2
< C(Q2q =™ ) W h  yolly_2 o

s—2 3=
<C
- 4

1. 5 4
< Cs2h S yolly_2 0 (3.24)

LS

_2.,9_2
w sh yolly_2 5 o

as well as to

s

n
(k > |E ||8,s,g> < Cs(R +K)Iyla.1ss (3.25)
i=1
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Error estimates for state constrained parabolic optimal control problems 141

see [26, Lemma 4.9]. The later one used the L®-norm error estimates (3.5) for the
Ritz-projection Ry . From (3.20)—(3.25) we then have that

_ _4 _1
[o7™" 0"l @ = Cs?lloghl (75 + k') (IBullo.se.2 + 1y0lly_2 5 o). (3:26)
With (3.15) and (3.26) we conclude that

[R25" = ik lo 0.2

1

4
< Cs?[logh*(h*~5 + k') (IBulloco.2 + 1y0ll,_2 5 0)-  (3:27)
Combining (3.14) and (3.27) we complete the proof of the theorem. O

Remark 2 A uniform error estimate for the discretized error of (2.1) and (3.8) is de-
rived in [9] under the condition that the right hand side and hence the time derivative
of the solution is only square integrable in time. Here the right hand side is uniformly
bounded w.r.t. space and time, which guarantees an improved regularity of the solu-
tion and thus an improved error estimate.

4 Error estimates for optimal control problem

In this section we consider the finite element approximation and error estimates for
optimal control problem (1.1)—(1.2).

We consider the variational discretization approach proposed in [9, 14]. Then the
fully discrete optimization problem reads

N T
1 . ) o
in Jy, (Vi)=Y ~k [ (Y}, —5) += ’ 4J
min o =305k [ =5+ 5 0 [0 @
iz
subject to

N
AYpi, @)= Z/ (Bu, ®) + (yo. ®}), VO € Vyx. 42)
n=1 In '

Y;l,k(xj) <¢, i=1,...,N, j=1,...,m,
where m denotes the number of nodes in the triangulation 7”. Let & denote the con-

trol satisfying Assumption 1, i.e., there exists § > 0 such that the corresponding state
y = G(Bu) satisfies

$=GBa)<¢p—8 inQr. 4.3)
It follows from Theorem 3 that there exist hg, kg > O such that l?h,k =G (Bi) €
Vi k satisfies

n 1)
Y,f’k(xj)§¢—§<¢, 1<n<N,O0<h<hgy, 0<k<kg. 4.4)
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142 W. Gong, M. Hinze

Thus the pair (i, IA/h,k) is a discrete feasible Slater point for problem (4.1) for 4 and
k small enough.

As a minimization problem for a quadratic functional over a closed convex set,
the variational discrete optimization problem (4.1)—(4.2) admits a unique solution
upx € Ky with corresponding state Yy x € Vj . Furthermore, it follows from [5]
again that the discrete Slater condition (4.4) guarantees the existence of a dis-
crete co-state Pp, x € Vj i and discrete Lagrange multiplier /“Ll/ eR,i=1,...,N,
Jj=1,...,m, such that the triplet (Y x, Pn k, un k) € Vik X Vhr X Ky, satisfies the
following optimality conditions:

N
AYpi, D) = Z-/; (Buh,lo CD") + (y(), CD_?_), Y& € Vi, 4.5)
n=1

N N m
A(®, Pyj) = Z/I (Vi =ya. @")+ Y Y @ (xpufy, VP EVir  (4.6)
n=1""n i=1 j=1

T
/ / (auh,k + B*Ph,k)(v —upr)dxdt >0 VYve Ky, 4.7)
0 2

N m
M;zo; Y} (xj)<¢, and ZZ(qﬁ—Y;ﬁ,k(xj))M;:O- (4.8)

i=1 j=1

It follows from (4.7) that uj, 4 is piecewise constant w.r.t. time, but in general uy,  is
not a finite element function w.r.t. space. It is easy to show that

1
unk = Py (——B* Ph,k>,
o
where Pk, denotes the orthogonal projection in U onto K. Let us define measure

Whk € M(27) by

N

/Q fdune:=) ) faju; VfeC@r). (4.9)
T

i=1j=1
For vy i € Vi, x we use the notation
N m
/_ v kd p k2= Znggk(xj),ufj. (4.10)
$r i=1j=1
= j_

As a first result for (4.1)-(4.2) we prove that the sequence of optimal controls,
states and measures (p are uniformly bounded.

Lemma 2 Let (Ypk, Un k) € Vhi x Ky be the solutions of problem (4.1)-(4.2),
Py € Vg and ppx € M(827) be the corresponding adjoint state and measure,
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respectively. Then there exists hg > 0 such that

N m

”uh*k”iz(O,T;Lz(Q)) + ”Yh,kH%Z(O’T;LZ(Q)) + Z Zﬂlj S C fOl" Clll O < h S h()-
i=1j=1

Proof The proof follows [9]. From (4.4) and (4.8) we obtain

||M§

l\)|°'>

N m
Z ¢ — Vi )l =D (Vi () = Yj o)t

i=1j=1

||M2

N
=AWk = Yiko Pui) — D _k(Yj o — G Vi = Vi)
i=1

_Z/(Buhk—Bu Phk)_Zthk Ga)'. th th)

i=1

N
N . 2 . A . _ . A _ .
<> [1 (@up i, it —up ) +k /Q (—(Yh) + Y Yh e+ Y0 Ga) =Y Ga))
i i

N N
1 o« .
=32 [ 1ialia =52 [ Iualia+c @)
i=1"" i=1v"

where we have used (4.5) and (4.6). This completes the proof of the Lemma. Il

Now we are in a position to prove the main result of this paper. We use a proof
technique developed in Chap. 3 of [15] which only relies on uniform a priori error
estimates of the state approximation.

Theorem 4 Let (y,u) € W2 (27) x L®(27),4 < s < 00 and (Y x, up.x) € Vix X
Ky be the solutions to problem (2.2) and (4.1)—(4.2). Assume that the assumptions
of Theorem 3 are all satisfied. Then we have the following a priori error estimate:

2 2
(24 ”u — Uhk ||L2((),T;L2(SZ)) + ”y - Yh,k ”LZ(O,T;LZ(Q))

< Cs|logh[*(h?5 +k'77). (4.12)

Proof From (2.4) and (4.7) we have

/ (au—i—B*p)(v—u)ZO Yv € Ky
Qr
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and
/ (auh,k —i—B*Ph,k)(vh —upr)dx >0 Vv, € Ky.
2r

Choosing v = uy,  as well as v, = u, and adding these inequalities gives

T
e =k B gy = | (9= Prc Bl =) @13)
e 0

In the following we need to introduce some auxiliary problems. Let y" := G(Buy 1) €
Wf’l(.QT) be the variational solution of

yth — Ayh + yh =Bup in 27,

h
» on Iy, (4.14)
on
y'(0) = yo in 2,

ie.

9 h
(%, v) + (V" Vo) + (", v) = (Bupk,v) foraa.re(0,T], Vve H'(2)

with y” (-, 0) = yo, and let Y k() := G (Bu) € Vj  be the solution of
A(Yn i), @) Z/ (Bu, ®") + (yo. ®}), VO € Vyx. (4.15)

Note that Yj x and Yj x(u) are the fully discrete approximations to yh and y, re-
spectively. Then from (2.1) and (4.14) we have y" — y € H>'(27) N C(27),
GF == AQ" =y + " = y) = Bl —u) € L®(27), 0" = »)(x,0) =0
and 8(‘ _V) =0. Thus y" — y € W§°. Now (2.6) and (4.14) imply that

T T 9 h _
/(P’B(Mh,k—“))=/ (%—A(yh—y)ﬂyh—y),p)
0 0 t
T
=/ (y—yd,yh—y)+/_ O" = y)au. (4.16)
0 Qr

Similarly, from (4.6) and (4.15) we have
T
/(; (P, Bu —up ) = A(Yn i) — Yk, Prk)
T
= /0 (Ynk — ya: Ynx(u) = Ynx)
4 / (k@) = Yai)dpns.  @417)
fr

@ Springer



Error estimates for state constrained parabolic optimal control problems 145

Thus
o ”u - uh,k ”%,Z(O,T;LZ(Q))
! h h
S/ (y=yay —y)+/, (" —y)du
0 Qr
T
+/ (Y = Ya Ynx () = Ynz) +/_ (Ynk() = Yni)dpn
0 Qr
T , T
=/ (y—va.y _Yh,k)+/ O =ya Ynxk—y)
0 0
T T
—i—/ (Ynk = ya, Ynx(u) — y) +/ Yk —Yd» Yy — Ynk)
0 0
+/_ (' - y)dM-Ff_ (Yna(u) — Yni)dmn
2r 2r
2 r /
=_||y_Yh,k||L2(O’T;L2(_Q))+‘/\O (y_yd7 yl _Yh,k)
T
—i—/ (Y — ya Ynx(u) — y)
0
+ / " - y)dup + f (Yn k) = Yk )dpn k-
Qr 2T
This implies

(X”M - uh,k”%Z(o’T;LZ(Q)) + ”y - Yh,k ”%2(0’7‘;1‘2(9))

T T
5/0 (y—yd,yh—Yh,k)+/(; (Ynk — Ya, Yauu) — )

+ / (" - y)du +/_ (Yn k) = Y )dpn i
27 7
h
= (" = Yuil 120 o200y + Y00 = 3] 120 7:12(020)
+ /_ (yh — )’)dﬂ + /_ (Yh’k(u) — Yh,k)dﬂh,k
27 r
< C(h? + k) (IBullo.co.2 + | Bunillo.co.2 + 1yoll,_z2 )
+/Q (" = y)du +/_ (Ynx ) = Yk )d i . (4.18)
T

Qr

where we have used Theorem 2. From (2.5) we have

/Qr(yh—y)duzfm(yh—¢+¢—y)du
:/QT(yh—qb)du.
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Since u > 0, with (y")* = max(y", 0) we have
/sz (V' = ¢)du < f(}r(yh —¢) " du.
Define y*" = y"(x, 1,), so that for t,_; <t <t, we have
(5" =) (x.0
<|0"=d) =P =) @[+ |07 — ) @) — (¥ — ) )]
+[ (Y =) @

<Y =y | V) = Yo |+ | (v — ¢) o)

<c /,t @ = 3 (0) g 0+ C /t [ ) = 3" (1) 0,07
) = Y 0l oo+ (Vi = 0) T @)

< Cs?logh (k' =% + Ch*3) (I1Bun i llo.0co.2 + 1yoll—2 ;. )
+[(¥ e —9) @) (4.19)

where we have used an interpolation estimate and Theorem 3. From Y, ;f () < ¢
(j=1,...,m) we conclude (Y}, — #)T(x) =0 on 2". Theorem 3 implies that Yy
is uniformly bounded in £2, so we conclude from [§2 \ .th < Ch? that

Y, —)tdu < cle\ 2" Y, —¢)t
/S?r( e —9) " din = C|2\ |xen.;l;i)f(2h|( e —9) @

= Ch2(|| Yf?,k”o,oo,(z + l¢ll0,00,2)
=cn’. (4.20)

Similarly, from (4.8), (4.9), (4.10), Theorem 3 and the fact that j % >0, y < ¢ and
fQT (¢ — Yp 1)dppx =0 we have

/_ (Ynk () = Ynk)dpnk
Qr
=/fz (Yni@) —y+y—0¢+¢—Yni)dunk
T

5/_ (Yna(u) — y)dpunx
Qr

N m
=¢ 1I5r:za§XN” Vil k@) =" lg o 0 (Z Z/'Llj)

i=1 j=I

2 4
< Cs?|loghl* (k™5 + Ch*75) (I Bullo.co.2 + 130ll,_2 5 o). (421)
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We note that || Bup i l0,00,2 < C|$2] - max{|al, |b|}. Combining (4.18), (4.19)—-(4.21)
the claim is proved. g

In [9], the authors obtain the convergence order of O (|logh| i (h% + k%)) in 2d
and O(h% + h_%k%) in 3d for problems with state constraints pointwise in space
and time where controls only act in time as in (1.5). In [22], the authors obtain the
convergence order of O (log(%) 3 (k% + h)) for problems with state constraints acting
only pointwise in time and distributed control. In the present paper for some fixed

s € (4, co) which depends on the regularity of yy € Wz_%’s(.Q) and the regularity
1

of the domain £2, we obtain the convergence order s|logh|(k2 s + hl_%) in two
space dimensions. If the assumption of Theorem 3 are satisfied for all 4 < s < oo we
can get the order i + k? up to a logarithmic factor by setting, e.g., s = |logx|. This
compares to the results of [22] in the 2d case. Thus, if the regularity of the boundary
of domain £2 allows for y € Wsz’1 (827) for all 4 < s < 0o we in this case obtain an
improvement over the results of [9], which appears to be quasi-optimal for problems
with state constraints pointwisely in space and time with distributed control when
compared with the elliptic case, see e.g., [8, 9, 23].

5 Numerical examples

In this section we will carry out some numerical experiments to support our theoreti-
cal findings. We consider the following parabolic optimal control problem:

inJ 1 2 o2
min (y, u) = E”.y - )’d”Lz(QT) + EHMHLZ(-QT)

subject to

yvi—Ay+y=f+u inS27r,

d

—y=0 on FT,
on

y(0)=yo in 2

with box type control constraints
ueKy={uel®R2r):a<u(x1)<b, (x,1)€Rr}
and state constraints
yeKy:={yeL®Qr):y(x,1) S¢(x,t)or y(x,1) = ¢p(x,1), (x,1) € 2r}.
For constructing an example with exact solution we allow additional data f.

The numerical solution of the two examples is performed with the method pro-
posed in [13, 20], which goes back to an idea of Pierre and Sokolowsky [27].
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Table 1 Error of control  and state y for Example 1

h N e = kel 200, Order Iy =Ynill 20, Order
\/E/4 8 0.032272253305 \ 0.056604772253 \
V2/6 18 0.015478395776 1.8121 0.027718367216 1.7609
\/5/8 32 0.009257272003 1.7868 0.016383380301 1.8278
\/5/10 50 0.006339627571 1.6966 0.010770666548 1.8797
V2/12 72 0.004790681261 1.5366 0.007613893931 1.9024
V2/14 98 0.003886436096 1.3570 0.005657242145 1.9269
«/5/16 128 0.003332771780 1.1510 0.004370258689 1.9330
\/5/18 162 0.002977342034 0.9575 0.003479452205 1.9353

Example 1 Let 27 = [0, 112 x [0,1], & = 1. Following the ideas of [9] we set
y(x,t) =cos(mwxy)cos(mwxy)sin(wt), d(x,t)= max(0.7, y(x, t)),
while control and adjoint state are given by
u(x,t) =t( —1)cos(mwxy)cos(mxy),
p(x,t) =cos(mwxy)cos(mxr)t(l —¢).

We omit control constraints since u € L°°(§27). We note that y € Ws2 ’I(SZT) for all
1 < s < oo although the domain is a polygon. In this example we have a regular
multiplier associated to the state constraint, namely

u(x,t) =max(y —0.7,0).
A simple calculation shows

ya(x,t) =y(x,t)+pulx,t) + (1 —2¢)cos(mwxy) cos(wrxa)

+t(1—1) (—2712 cos(mwxy) cos(mwxy) — cos(wxy) cos(rrxz)),
and

f(x,t) =mcos(mt)cos(wxy) cos(mwxr) + 272 cos(mwxy) cos(mwxy) sin(mwt)

+ y(t, p) —u(x,t).

To support our theoretical results we test the convergence order with respect to
space and time discretization. We choose the time step k = O (h?) where h denotes
the mesh size of space triangulation. The results are listed in Table 1.

It is observed that in this numerical example the convergence orders for the optimal
control 1 and the state y are better than the expected, which may be caused by the fact
that the multiplier associated to the state constraints is continuous. However, in this
context it should be mentioned that it is often difficult in control of parabolic PDEs
to construct numerical examples with exact known solutions which deliver the exact
predicted order of convergence, see e.g., [22, 24].
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Table 2 Error of control # and state y for Example 2

DOF N e = kll 202 Order 1y =Ynill 20, Order
289 4 0.128013975900 \ 0.020778308176 \
1089 8 0.059342708399 1.1092 0.009776691642 1.0877
4225 16 0.028680813384 1.0490 0.004449004173 1.1359
16641 32 0.016028859291 0.8394 0.002159618979 1.0427

Example 2 This example is chosen from [16]. We set 27 = B1(0) x [0, 1],

_ 1
REY S ”2 -4 0<t<yg,
y(x,r)=<||x||2—<5>> exp(l >+ﬂ(t) B =10 <=3,
4-3 2 <<l

Then again y € WS2 ’I(QT) for all 1 <s < oo. We impose the state constraint
y(x,t) > 0 such that the active set A = {(x,t) € 27 : y = 0} has the form

ro] =5},

th 3
{(’”G Pt

We define the adjoint state p as

) = { (1= =12 =5—lxDUxl = Ixl>5, 3<r<3,

otherwise.

The Lagrange multiplier u associated with the state constraints satisfies

2r

wome= 1 f, =205 ((3) -5
w, Wpm.c = =2(1-= — =) —— |wds
M % 335(0) 2 2 16

for any w € C(£27).

To accurately resolve the quadrature for this example we need to construct special
meshes. This is done by congruent refinement of the initial grid formed by 8 sectors
of the unit circle. For each i=1,2,...,Nwitht € [411 Z] we need to ensure that the
circle with radius [|x|| = % is well trlangulated Heret; i =1,2,..., N) denote the
time grid points. To do so, the time stepping has to be coupled with the grid size such
that & = O (k). Figure 1 depicts two such meshes with 289 (left) and 1089 (right)
nodes.

We observe first order convergence for the optimal control and state from Table 2.
Since the time step k is coupled with the mesh size & like 7 = O (k), the numerical
results mainly show the convergence order related to the time discretization. This
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1 T T T T T T 1

0.8} 1 08¢
0.6 1 06f
0.4} 1 04l
0.2 0.2
0 0
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-0.41 1 -0.4r
-0.61 1 -0.6¢
-0.81 1 -0.81
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-1 -08-06-04-02 0 02 04 06 08 1 -1-08-06-04-02 0 02 04 06 08 1

Fig. 1 The congruent refined meshes for Example 2 with nodes 289 (left) and 1089 (right)

order is better than O (k : ), which we would expect from our estimates. Although this
numerical example does not exactly meet the predictions of our theory if certainly
shows, when compared to Example 1, that less regularity of the exact solution results
in a decrease of the numerically observed convergence order.
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