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Abstract A considerable number of differential evolution variants have been pro-
posed in the last few decades. However, no variant was able to consistently perform
over a wide range of test problems. In this paper, propose two novel differential evo-
lution based algorithms are proposed for solving constrained optimization problems.
Both algorithms utilize the strengths of multiple mutation and crossover operators.
The appropriate mix of the mutation and crossover operators, for any given problem,
is determined through an adaptive learning process. In addition, to further acceler-
ate the convergence of the algorithm, a local search technique is applied to a few
selected individuals in each generation. The resulting algorithms are named as Self-
Adaptive Differential Evolution Incorporating a Heuristic Mixing of Operators. The
algorithms have been tested by solving 60 constrained optimization test instances.
The results showed that the proposed algorithms have a competitive, if not better,
performance in comparison to the-state-of-the-art algorithms.

Keywords Constrained optimization · Differential evolution · Memetic algorithms

1 Introduction

Constrained optimization is an attractive research area in the computer science and
the operation research domains, as there are a considerable number of real-world
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decision processes that require the solving of Constrained Optimization Problems
(COPs). In COPs, the purpose is to determine the values for all of the decision vari-
ables by optimizing the objective function, while satisfying all the functional con-
straints and variable bounds. Formally, COP is stated as follows:

min f ( �X)

subject to:

gk( �X) ≤ 0, k = 1,2, . . . ,K,

he( �X) = 0, e = 1,2, . . . ,E,

Lj ≤ xj ≤ Uj , j = 1,2, . . . ,D,

(1)

where �X = [x0, x1, . . . , xD]T is a vector with D-decision variables, f ( �X) is the ob-
jective function, gk( �X) is the kth inequality constraints, he( �X) is the eth equality
constraint, and where each xj has a lower limit Lj and an upper limit Uj .

The benefit of optimization approaches in solving practical problems can be
demonstrated by using few examples. The optimization of a water management prob-
lem in South Africa has led to a 62 % reduction in the total pipe cost [1], the opti-
mization of the Norwegian natural gas production and transport accumulated a saving
of $2.0 billion in the period 1995–2008 [2], and the expected saving to optimize the
US army stationing for a given set of units is $7.6 billion for 20 years [3].

Evolutionary algorithms (EAs) have a long history of successfully solving COPs.
The Evolutionary algorithms (EAs) family contains a wide range of algorithms that
have been used to solve COPs, such as the genetic algorithm (GA) [4], particle swarm
optimization (PSO) [5], differential evolution (DE) [6, 7], evolutionary strategies (ES)
[8], and evolutionary programming [9]. In this research, DE is considered for solving
COPs. DE is known as an efficient EA. Due to the variability of the characteristics,
and the underlying mathematical properties of problems, most EAs use specialized
search operators that suit the problems on hand. Such an algorithm, even if it works
well for one problem, or a class of problems, does not guarantee that it will work for
another class, or range, of problems. This behavior is consistent with the no free lunch
(NFL) theorem [10]. In other words, we can state that there is no single algorithm,
or an algorithm with a known search operator, that will consistently perform for all
classes of optimization problems. This motivates us to consider multiple strategies in
DE for a better coverage of problems.

In this research, two novel self-adaptive DE algorithms that incorporate a heuristic
mixing of operators (DE/HMO) are proposed. Both variants split the population into
sub-populations in order to apply different evolutionary operators on each of them.
In addition, to speed up the convergence pattern of the proposed algorithms, a local
search procedure is applied to one random individual. To show the benefit of the local
search, both variants have been run with and without the local search. The algorithms
were tested by solving 60 test problems [11, 12]. They showed consistently better
performance as compared to the state of the art algorithms.

This paper is organized as follows. After the introduction, Sect. 2 presents the DE
algorithm with an overview of its parameters, ensemble DE and hybrid DE with local
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search. Section 3 describes the design of the proposed adaptive DE variants. The
experimental results and the analysis of those results are presented in Sect. 4. Finally,
the conclusions and future work are given in Sect. 5.

2 DE search operators

DE is known as a powerful algorithm for continuous optimization. DE usually con-
verges fast, incorporates a relatively simple and self-adapting mutation and the same
settings can be used for many different problems [6].

The remainder of this section discusses the commonly used DE operators. Some
of these are later used as a basis for the operators chosen for the DE/HMO variants.

2.1 Mutation

The simplest form of this operation is that a mutant vector is generated by multiplying
the amplification factor F by the difference of two random vectors, and the result is
added to another third random vector as is shown in the following equation:

�Vz,t = �xr1,t + F.(�xr2,t − �xr3,t ) (2)

where r1, r2, r3 are random numbers {1,2, . . . ,PS}, r1 �= r2 �= r3 �= z, x is a decision
vector, PS is the population size, the scaling factor F is a positive control parameter
for scaling the difference vector, and t is the current generation. This variant is also
known as: DE/rand/1 [13].

This operation enables DE to explore the search space and maintain diversity.
There are many strategies for mutation, such as: DE/best/1 [13], DE/rand-to-best/1
[14], rand/2/dir [7], DE/current-to-rand/1 [15] and DE/current-to-best/1 [16]. For
more details, readers are referred to [17].

2.2 Crossover

The DE family of algorithms uses two crossover schemes: exponential and binomial
crossover. These crossovers are briefly discussed below.

In exponential crossover, we first choose an integer i randomly within the range
[1,D]. This integer acts as a starting point in the target vector, from where the
crossover or exchange of components with the donor vector starts. An integer L is
chosen from the interval [1,D]. L denotes the number of components that the donor
vector actually contributes to the target. After the generation of i and L, the trial
vector (uz,j,t ) is obtained as:

uz,j,t =
{

vz,j,t for j = 〈l〉D, 〈l + 1〉D, . . . , 〈l + L − 1〉D,

xz,j,t for all other j ∈ [1,D] (3)

where j = 1,2, . . . ,D, and the angular brackets 〈l〉D denote a modulo function with
modulus D, with a starting index l, xz,j,t is the parent vector while vz,j,t is the mutant
vector.
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The binomial crossover is performed on each of the j th variables whenever a ran-
domly picked number (between 0 and 1) is less than or equal to a crossover rate (Cr).
The generation number is indicated here by t . In this case, the number of parameters
inherited from the donor has a (nearly) binomial distribution:

uzj,t =
{

vzj,t , if (rand ≤ Cr or j = jrand)

xzj,t , otherwise
(4)

where rand is a random number within in [0,1], and jrand ∈ [1,2, . . . ,D] is a ran-
domly chosen index, which ensures �Uz,t gets at least one component from �Vz,t .

DE has shown excellent performance for those problems with separable functions.
However, DE can efficiently perform on a non-separable problem, if it must not ex-
hibit an extreme dependency on the principle coordinate axes. Furthermore, DE can
be rotationally invariant if the new generated individuals are irrespective of the orien-
tation of the fitness landscape [15, 18]. From the literature, it is known that DE/current
to-rand/1 is rotationally invariant [16].

In our work, we have considered this issue, i.e. DE/rand/3 has been used that does
have ability to visit more random individuals. As will be seen later, the algorithm has
the ability to consistently solve non-separable, as well as rotated problems.

2.3 A brief review and analysis

In this section, a review of DE parameters analysis, multi-strategy DE and memetic
DE are presented.

In DE, there is no single fixed value for each parameter (F , Cr and PS) that will be
able to solve all types of problems with a reasonable quality of solution. Many stud-
ies have been conducted on parameter selection. Storn and Price [6] recommended a
population size of 5–20 times the dimensionality of the problem, and that a good ini-
tial choice of F could be 0.5. Abbass [19] proposed self-adaptive operator (crossover
and mutation) for multi-objective optimization problems, where the scaling factor F

is generated using a Gaussian distribution N(0, 1). Ronkkonen et al. [20] claimed
that typically 0.4 < F < 0.95 with F = 0.9 is a good first choice, and that Cr typi-
cally lies in (0,0.2) when the function is separable, while in (0.9,1) when the func-
tion’s parameters are dependent. Qin et al. [14] proposed SaDE, where the choice
of learning strategy and the two control parameters F and Cr are not required being
pre-specified. During evolution, the learning strategy and parameter settings are grad-
ually self-adapted according to the learning experience. Brest et al. [21] proposed a
self-adaptation scheme for the DE control parameters, known as jDE. The control
parameters that have been adjusted by means of evolution were F and Cr. In jDE, a
set of F and Cr values was assigned to each individual in the population, augment-
ing the dimensions of each vector. For more details, readers are referred to Das and
Suganthan [17].

The idea of multiple strategies DE has been emerged few years ago; some of them
are mentioned here. Qin et al. [14] proposed the Self-adaptive Differential Evolution
algorithm (SaDE). They have used two mutation strategies (while we are using four),
where each individual is assigned to one of them based on a given probability. After
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evaluation of all newly generated trial vectors, the numbers of trial vectors success-
fully entering the next generation are recorded as ns1 and ns2. Those two numbers
were accumulated within a specified number of generations, called the “learning pe-
riod”. Then, the probability of assigning each individual was updated. Beside this,
their learning strategy is entirely different from ours, in which in their algorithm, a
strategy may be totally excluded from the list if its p is equal to 0. Mallipeddi et al.
[22] proposed an ensemble of mutation strategies and control parameters with DE
(EPSDE) for solving unconstrained optimization problems. In EPSDE, a pool of dis-
tinct mutation strategies, along with a pool of values for each control parameter, coex-
ists throughout the evolution process and competes to produce offspring. Mallipeddi
et al. [23] also proposed an algorithm that uses an ensemble of different constraint
handling techniques for solving constrained problems. The proposed algorithm has
shown a good performance in comparison to other algorithms. Tasgetiren et al. [24]
proposed an ensemble DE, in such a way that each individual was assigned to one of
two distinct mutation strategies or a variable parameter search (VPS). VPS was used
to enhance the local exploitation capability. However, no adaptive strategy was used
in that algorithm. Tasgetiren et al. [25] proposed a discrete DE algorithm with mix of
parameter values and crossover operators to solve a travelling salesman problem, in
which parallel populations were considered. Each parameter set and crossover opera-
tor was assigned to one of the parallel populations. Furthermore, each parallel parent
population competes with the same population’s offspring and the offspring popula-
tions generated by all other parallel populations. The algorithm has shown improved
results in comparison to other state-of-the-art-algorithms. However, the proposed al-
gorithm was computationally at least twice more expensive than other algorithms
considered in the paper. Elsayed et al. [26] proposed a mix of four different muta-
tion strategies within a single algorithm framework to solve constrained optimization
problems. In the framework, each combination of search operators (a mutation strat-
egy with a crossover operator) has its own subpopulation and the subpopulation size
varies adaptively, as the evolution progresses, depending on the reproductive success
of the search operators. However, the sum of the size of all of the sub-populations was
fixed during the entire evolutionary process. In implementing the adaptive approach,
they proposed a measure for reproductive success, based on fitness values and con-
straint violations. While running their algorithm, an operator may perform very well
at an earlier stage of the evolution process and do badly at a later stage or vice-versa.
To consider this fact, to effectively design their algorithm, they set a lower bound
on the subpopulation size. The algorithm is known as Self Adaptive Multi Operators
Differential Evolution (SAMODE). SAMODE has been tested by solving a set of
small scale theoretical benchmark constrained problems.

Memetic differential evolution has appeared in the literature over the last few
years, but with very limited analysis. Gao and Wang [27] introduced memetic differ-
ential evolution modified by initialization and local searching, in which the stochastic
properties of a chaotic system were used to spread the individuals in search spaces as
much as possible, the simplex (Nelder-Mead method) search method was employed
to speed up the local exploitation and the DE operators helped the algorithm to jump
to a better point. The algorithm has been tested on 13 high dimensional continu-
ous problems with improved results. Tirronen et al. [28] proposed a hybridization
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of a DE framework with the Hooke-Jeeves Algorithm (HJA) and a Stochastic Local
Searcher (SLS). Its local search mechanisms are coordinated by means of a novel
adaptive rule which estimates the fitness diversity among the individuals of a popu-
lation. Caponio et al. [29] proposed a fast adaptive memetic algorithm (FAMA) that
uses DE with a dynamic parameter setting and two local search mechanisms that are
adaptively launched, either one by one or simultaneously, according to the needs of
the evolution. The employed local search methods are: the Hooke-Jeeves method and
the Nelder-Mead simplex. The Hooke-Jeeves method is executed only on the elite
individual while the Nelder-Mead simplex is carried out on 11 randomly selected in-
dividuals. This algorithm has been compared to another well-known algorithm, and
obtained better results for the problem of permanent magnet synchronous motors.
Caponio et al. [30] proposed the super-fit memetic differential evolution algorithm,
which is a DE framework hybridized with three meta-heuristics, each having differ-
ent roles and features. Particle Swarm Optimization assists the DE in the beginning
of the optimization process by helping to generate a super-fit individual. The two
other meta-heuristics are local search mechanisms adaptively coordinated by means
of an index measuring the quality of the super-fit individual with respect to the rest of
the population. The choice of the local search mechanisms and its application is then
executed by means of a probabilistic scheme which makes use of a generalized beta
distribution.

3 Self-adaptive differential evolution incorporating a heuristic mixing of
operators

In this section, the proposed algorithms are presented, followed by the improvement
scheme and the constraint handling technique that we use in this research.

3.1 DE/HMO/1

In the evolution process, for a given problem, the relative performance of the search
operators may vary with the progression of generations. This means that one mutation
or crossover may work well in the early stages of the search process and may perform
poorly at the later stages, or vice-versa. So, it is inappropriate to give equal emphasis
on all the operators throughout the entire evolution process when multiple search
operators are used. To give a higher emphasis on the better performing operators, it is
proposed here to change the subpopulation sizes, through dynamic adaptation, based
on the relative performances of the operators. So, DE/HMO/1 starts with a random
initial population, using the following equation:

xz,j = Lj + rand × (Uj − Lj). (5)

The population is then divided into four subpopulations of equal size. Each sub-
population evolves with its own mutation to generate new decision vectors. Each sub-
population is then divided into two groups of individuals. Each group uses a differ-
ent crossover to modify the mutated individuals that are evaluated according to their
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fitness function value and/or the constraint violation of the problem under consider-
ation. An improvement index for each subpopulation is calculated using the method
as discussed below. Based on the improvement index, the subpopulation’s size and
crossover group’s size are either increased or decreased or kept unchanged. As this
process may abandon certain operators which may be useful at later stages of the
evolution process, a minimum subpopulation size/group size of each operator is set.
To speed up the convergence and to prevent the algorithm from being stuck in a local
minimum due to the exponential crossover, especially in high dimensional problems
[7], a random individual is selected from the whole population and a local search tech-
nique is applied to it with a given maximum number of fitness evaluations FEsmax

LS .
In the local search, a variable of the selected vector is selected randomly, and then a
random Gaussian number, as a step size, is added and subtracted to decide the desired
direction, according to the fitness function. If the step is successful at finding an im-
proved point, then the value is updated. This process continues until all the variables
are selected, or the maximum fitness evaluations for the local search procedure are
reached. Also, after every few generations (indicated as window size—WS), the best
solutions among the subpopulations are exchanged, and if an exchanged individual is
redundant, then it will be replaced by a random vector. The algorithm continues until
the stopping criterion is met. The basic steps of DE/HMO/1 are presented in Table 1.

3.2 DE/HMO/2

In DE/HMO/2 a random initial population is divided into four subpopulations of
equal size. Each subpopulation evolves with its own mutation and generates new de-
cision vectors. Also, based on the improvement index, the subpopulation’s sizes are
either increased or decreased or kept unchanged, in the next generation. Then, these
sub-populations are merged together to form a new single population. The new pop-
ulation is divided randomly into two groups of equal size, in which each group uses a
different crossover to modify the mutated individuals. Like DE/HMO/1, DE/HMO/2
also sets the minimum sizes for sub-populations and groups, uses a local search,
exchanges elite individuals between sub-populations at a regular interval, and re-
places redundant individuals with a randomly generated vector. The basic steps of
DE/HMO/1 are presented in Table 2.

3.3 Improvement measure

To measure the improvement of each combination in a given generation, we consider
both the feasibility status and the fitness value, where the consideration of any im-
provement in feasibility is always better than any improvement in the infeasibility.
For constrained problems, for any generation t > 1, there arises one of three scenar-
ios. These scenarios, in order from least desirable, to most desirable, are discussed
below.

– Infeasible to infeasible: For any combination i, the best solution was infeasible at
generation t − 1, and is still infeasible in generation t , then the improvement index
is calculated as follows:

VIi,t = |V best
i,t − V best

i,t−1|
avg.Vi,t

= Ii,t (6)
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Table 1 The Main steps for DE/HMO/1 algorithm

STEP 1: In generation t = 1, generate an initial random population of size PS. The variables in each
individual (z) must be within the range as shown in Eq. (5).

STEP 2: Divide PS into Divide PS into a number of subpopulation (pi ) (this number depends on the
number of the mutation operators). All pi are of equal size, and each one is with ni individuals.

STEP 3: For each pi , all the individuals are evolved through their own mutation type.
STEP 4: For each ni , divide it into two equal subpopulations npi , where each npi has its own crossover

type. For each npi , apply the specified crossover.
STEP 5: If (t > 1); then Update ni and npi sizes according to Eqs. (10) and (11), respectively.
STEP 6: If t % WS = 0 and t > 1; then (here % is the Modulus arithmetic operator. This operator returns

the remainder after the divisor is divided into the dividend an integral number of times)

6.1. Replace the worst three individuals in each subpopulation (pi ) with the other three best
solutions (the best solution in each other subpopulation).

6.2. If there is any redundant decision vector (Oz), then replace it by generating a random
vector; and go to STEP 7.

Else, go to STEP 7.
STEP 7: Select a random vector Oz from PS, and set the current evaluations for the local search FEsLS =

0.
For all variables (j) in Oz (the order of the selection of the variables is random)

– Calculate a Gaussian random value Δ0 = G(0, 1
t2 ), with mean (μ = 0), and standard devia-

tion (δ = 1/t).
– If FEsLS is less than FEsmax

LS
do (where FEsmax

LS
is the maximum fitness evaluations as-

signed to the local search procedure).

– Add /subtract Δ to O
j
z , and evaluate the fitness function and/or constraint violation, and

decide which direction.

– If the move is successful, then Δ1 = τ
m+

0 Δ0; else; Δ1 = τ
m−

0 Δ0, where τ = 2, m+ and
m− are random numbers ∈ [0,1] and [−1,0], respectively. Accept the move if the individual
is improved.

– Update FEsLS and FEs.

This process continues until all the variables are selected, or the maximum fitness evaluations
for the local search procedure have been reached.

STEP 8: Stop if the termination criterion is met; else set t = t + 1 and go to STEP 3.

where V best
i,t is constraint violation of the best individual at generation t , avg.Vi,t is

the average violation. Hence VIi,t = Ii,t above represents a relative improvement
as compared to the average violation in the current generation. As we are using the
ε-constraint handling technique, we may accept a new individual that has a larger
violation than its donor, if both of them are infeasible and their violations are less
than ε value, in this case we set VIi,t = 0 in this case.

– Feasible to feasible: For any combination i, the best solution was feasible at gen-
eration t − 1, and was still feasible in generation t , then the improvement index
is:

Ii,t = max
i

(VIi,t ) + ∣∣Fbest
i,t − Fbest

i,t−1

∣∣ × FRi,t (7)

where Ii,t is the improvement for combination i at generation t , Fbest
i,t is the objec-

tive function for the best individual at generation t , the feasibility ratio of operator
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Table 2 The Main steps for DE/HMO/2 algorithm

STEP 1: In generation t = 1, generate an initial random population of size PS. The variables in each
individual (z) must be within the range as shown in Eq. (5)

STEP 2: Divide PS into four equal subpopulations pi , with ni individuals, where i is the ith subpopula-
tion.

STEP 3: For each pi , all the individuals are evolved through their own mutation operator.
STEP 4: Group all pi into a new P ′.
STEP 5: Divide P ′ into two subpopulations p′

i
.

STEP 6: for each p′
i
, apply the corresponding crossover and update the decision vectors in each pi with

those corresponding vectors obtained by the crossover operator.
STEP 7: If (t > 1); then Update ni and p′

i
sizes according to Eq. (10).

STEP 8: If t % WS = 0 and t > 1; then

8.1. Replace the worst three individuals in each sub-population (pi ) with the other three best
solutions (the best solution in each other subpopulation (pi )).

8.2. If there is any redundant decision vector, then replace it by generating a random vector;
and go to STEP 9.

Else, go to STEP 9.
STEP 9: Select a random vector Oz from PS, and set the current evaluations for the local search FEsLS =

0. For all variables (j) in Oz (the order of the selection of the variables is random)

– Calculate a Gaussian random value Δ0 = G(0, 1
t ), with mean (μ = 0), and standard devia-

tion (δ = 1/t).
– If FEsLS is less than FEsmax

LS
do (where FEsmax

LS
is the maximum fitness evaluations as-

signed to the local search procedure).

– Add /subtract Δ to O
j
z , and evaluate the fitness function and/or constraint violation, and

decide which direction.

– If the move is successful, then Δ1 = τ
m+

0 Δ0; else; Δ1 = τ
m−

0 Δ0, where τ = 2, m+ and m−
are random numbers ∈ [0,1] and [−1,0], respectively. Accept the move if the individual is
improved.

– Update FEsLS and FEs.

This process continues until all the variables are selected, or the maximum fitness evaluations
for the local search procedure have been reached.

STEP 10: Stop if the termination criterion is met; else set t = t + 1 and go to STEP 3.

i at generation t :

FRi,t = Number of feasible solutions

combination size at iteration t
. (8)

To assign a higher index value to the subpopulation with a higher feasibility ratio,
we multiply the improvement in fitness value by the feasibility ratio. To differ-
entiate between the improvement index of feasible and infeasible subpopulations,
we add a term maxi (VIi,t ) in Eq. (7). If all the best solutions are feasible, then
maxi (VIi,t ) will be zero.

– Infeasible to feasible: For any combination i, the best solution was infeasible at
generation t − 1, and it is feasible in generation t , then the improvement index is:

Ii,t = max
i

(VIi,t ) + ∣∣V best
i,t−1 + Fbest

i,t − Fbv
i,t−1

∣∣ × FRi,t (9)

where Fbv
i,t−1 = fitness value of the least violated individual in generation t − 1.
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To assign a higher index value to an individual that changes from infeasible to
feasible, we add V best

i,t−1 with the change of fitness value in Eq. (9). We also keep the
first term as in Eq. (7).

After calculating the improvement index for each subpopulation, the subpopula-
tion sizes are calculated according to the following equation:

ni,t = MSS + Ii,t∑Nopt

i=1 Ii,t

× (PS − MSS × Nopt) (10)

where, ni,t is the subpopulation size for the ith operator at generation t , MSS is the
minimum subpopulation size for each operator i at generation t , PS is the population
size, Nopt = number of operators

npi,t = MSSC + Ii,t∑NC
i=1 Ii,t

× (ni,t − MSSC × NC) (11)

where MSSC is the minimum subpopulation size for each crossover operator, NC
is the number of crossover operators, and ni,t is the subpopulation size. Note that
previous equation is used only in DE/HMO/1.

3.4 Constraint handling

In this paper, we consider the selection of the individuals for the purposes of a tourna-
ment (Deb et al., 2000) as follows: (i) between two feasible solutions, the fittest one
(according to fitness function) is better, (ii) a feasible solution is always better than
an infeasible one, (iii) between two infeasible solutions, the one having the smaller
sum constraint violation is preferred. The equality constraints are also transformed to
inequalities of the form, where ε is a small value.

∣∣he(�x)
∣∣ − ε ≤ 0, for e = 1, . . . ,E. (12)

Although this rule is widely used for constraint handling which is implemented
during the selection process and it has no influence on the search operator once the
selection is done. In our algorithm, in addition to the basic rule applied in the se-
lection process, a self-adaptive parameters selection mechanism is derived based on
the feasibility status as well as the quality of fitness. These parameters influence the
search operator in guiding the search in an effective manner.

3.5 Mutations operators, F and Cr parameters

As of the literature, the DE variants “rand/ */ *” perform better, because it finds the
new search directions randomly [7]. The investigation, by Chuan-Kang and Chih-
Hui [31], confirmed the benefit of using more than one difference vector (DV) in
DE. Interestingly, two or three DV are good enough, but more than this may lead to
premature convergence.

1. Mutation 1 (rand/ 3):

�Vz,t = xr1,t + Fz.
(
(xr2,t − xr3,t ) + (xr4,t − xr5,t ) + (xr6,t − xr7,t )

)
. (13)
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2. Mutation 2 (best/ 3):

�Vz,t = xbest,t + Fz.
(
(xr1,t − xr2,t ) + (xr3,t − xr4,t ) + (xr5,t − xr6,t )

)
. (14)

3. Mutation 3 (rand-to-current/ 2):

�Vz,t = xr1,t + Fz.
(
(xr2,t − xz,t ) + (xr3,t − xr4,t )

)
. (15)

4. Mutation 4 (rand-to-best and current/ 2):

�Vz,t = xr1,t + Fz.
(
(xbest,t − xr2,t ) + (xr3,t − xz,t )

)
. (16)

The 1st mutation is well-known and is able to investigate the search space. The
2nd mutation is used because it is popular and it is good choice for both separable
and non-separable unimodal test problems [7]. The 3rd variant is selected as it is able
to reach the good region for the non-separable unimodal and multimodal problems
[7], while the 4th variant showed encouraging results, as presented in [32].

In this research, more difference vectors than Abbass [19] and Omran [33] are
used, for the same reason that has been applied to Eqs. (13)–(16). The calculation of
F and Cr is described below:

– For each individual in the population, generate two Gaussian numbers N(0.5,0.15)

one for amplification factor, while the other number represents a crossover rate.
The rationale behind using this Gaussian number value is to give more probability
to values surrounding 0.5 and hence to provide a relatively fair chance for both the
perturbed individual and the original individual to be selected as the new offspring
[33].

– To generate the new offspring, for variants mutation 1 and 2, the overall F and Cr
is calculated according to formulas (17) and (18), while the same parameters are
calculated according to formulas (19) and (20) for the other two variants. Note that
the difference between amplification values is multiplied by a Gaussian number
N (0.0, 0.5) according to [33].

F = Fr1,G + N(0,0.5) × (Fr2,G − Fr3,G) + N(0,0.5) × (Fr4,G − Fr5,G)

+ N(0,0.5) × (Fr6,G − Fr7,G). (17)

Cr = Crr1,G + N(0,0.5) × (Crr2,G − Crr3,G) + N(0,0.5) × (Crr4,G − Crr5,G)

+ N(0,0.5) × (Crr6,G − Crr7,G). (18)

F = Fr1,G + N(0,0.5) × (Fr2,G − Fr3,G) + N(0,0.5) × (Fr4,G − Fr5,G). (19)

Cr = Crr1,G + N(0,0.5) × (Crr2,G − Crr3,G)

+ N(0,0.5) × (Crr4,G − Crr5,G). (20)

4 Experimental results

In this section, the computational results and analysis for the proposed algorithms
DE/HMO/1, DE/HMO/1/N (same as the DE/HMO/1, but without local search),
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DE/HMO/2 and DE/HMO/2/N (same as the DE/HMO/2, but without local search)
are presented. The algorithm have been firstly tested on a set of 36 test instances (18
problems each with 10 and 30 dimensions) introduced in CEC2010 [11]. The prop-
erties of these test problems are shown in Table 3. In a later section, the best variants
are used to solve another set of test problems. All the algorithms have been coded
using visual C#, and have been run on a PC with a 3 GHz Core 2 Duo processor,
3.5G RAM, and windows XP.

The algorithms have been run 25 times for each test problem, where the stopping
criterion is to run up to 200K fitness evaluation (FEs) for 10D instances, and 600K
FEs for 30D. The parameter settings are set as follows: PS = 80 individuals for 10D
and 100 for 30D test problems. MSS = 0.1 × PS, MSSC = 0.1 × pi , WS = 50 gener-
ation, ε = 0.0001, m+

q , m−
q are random numbers ∈ [0,1] and ∈ [−1,0], respectively,

and FEsmax
LS = 20. The detailed results (best, median, average, standard deviation

(St. d) and the feasibility ratio) are presented in Appendix A and Appendix B, for
10D and 30D test problems, respectively. Please note that all the appendices can be
found on: http://seit.unsw.adfa.edu.au/staff/sites/rsarker/Saber-COA.pdf.1

4.1 Comparison between DE/HMO/1 and DE/HMO/1/N

In this subsection, a comparison between DE/HMO/1 and DE/HMO/1/N is provided,
based on the solution quality. The difference between these two variants is that the
second one does not use a local search procedure.

The detailed results are shown in Appendices A and B. The summary of compar-
isons, with respect to the best and average fitness values, is given in Table 4.

It is also possible, to study the difference between any two stochastic algorithms in
a more meaningful way. To do this, statistical significant testing has been performed.
A non-parametric test, the Wilcoxon Signed Rank Test [34], has been used. This test
allows us to judge the difference between paired scores when it cannot make the
assumption required by the paired-samples t test, such as that the populations should
be normally distributed. The best and average fitness values are presented in Table 4.
As there are 18 test problems, we have 18 best and 18 average fitness values (one for
each problem out of its 25 runs). In this table, the numbers for better, equal, and worse
solutions are reported for the first algorithm with respect to the second algorithm. In
this table, W = w− or w+ is the sum of ranks based on the absolute value of the
difference between the two test variables. The sign of the difference between the 2
independent samples is used to classify cases into one of samples: differences below
zero (negative rank w−), above zero (positive rank w+). As a null hypothesis, it is
assumed that there is no significant difference between the best and/or mean values of
two samples. Whereas the alternative hypothesis is that there is significant difference
in the best and/or mean fitness values of the two samples, the number of test problems
N = 18 for both 10D and 30D, and 5 % is the significance level. Based on the test
results /rankings, one of three signs (+, −, and ≈) is assigned for the comparison of
any two algorithms (shown in the last column), where the “+” sign means the first

1If the link does not work for any technical problem, feel free to contact the first author on
s.elsayed@adfa.edu.au.

http://seit.unsw.adfa.edu.au/staff/sites/rsarker/Saber-COA.pdf
mailto:s.elsayed@adfa.edu.au
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Table 3 Properties of the CEC2010 test problems. D is the number of decision variables, p = |F |/|S|
is the estimated ratio between the feasible region and the search space, I is the number of inequality
constraints, E is the number of equality constraints

Prob. Search
range

Objective
type

Number of constraints Feasibility region p

E I 10D 30D

C01 [0,10]D Non Separable 0 2 Non Separable 0.997689 1.0000

C02 [−5.12,5.12]D Separable 1 Separable 2 Separable 0.0000 0.0000

C03 [−1000,1000]D Non Separable 1 Separable 0 0.0000 0.0000

C04 [−50,50]D Separable 2 Non Separable,
2 Separable

0 0.0000 0.0000

C05 [−600,600]D Separable 2 Separable 0 0.0000 0.0000

C06 [−600,600]D Separable 2 Rotated 0 0.0000 0.0000

C07 [−140,140]D Non Separable 0 1 Separable 0.505123 0.503725

C08 [−140,140]D Non Separable 0 1 Rotated 0.379512 0.375278

C09 [−500,500]D Non Separable 1 Separable 0 0.0000 0.0000

C10 [−500,500]D Non Separable 1 Rotated 0 0.0000 0.0000

C11 [−100,100]D Rotated 1 Non Separable 0 0.0000 0.0000

C12 [−1000,1000]D Separable 1 Non Separable 1 Separable 0.0000 0.0000

C13 [−500,500]D Separable 0 2 Separable,
1 Non Separable

0.0000 0.0000

C14 [−1000,1000]D Non Separable 0 3 Separable 0.003112 0.006123

C15 [−1000,1000]D Non Separable 0 3 Rotated 0.003210 0.006023

C16 [−10,10]D Non Separable 2 Separable 1 Separable,
1 Non Separable

0.0000 0.0000

C17 [−10,10]D Non Separable 1 Separable 2 Non Separable 0.0000 0.0000

C18 [−50,50]D Non Separable 1 Separable 1 Separable 0.00001 0.0000

Table 4 Comparison of DE/HMO/1 with DE/HMO/1/N, where Dec. is the statistical decision. The num-
bers shown in this table are for the first algorithm in column 1

Comparison Criteria 10D 30D

better Equal worse w− w+ Dec. better Equal worse w− w+ Dec.

DE/HMO/1
– to –
DE/HMO/1/N

Best 0 18 0 0 0 ≈ 14 3 1 103 3 +
Average 11 7 0 66 0 + 15 1 2 125 11 +

algorithm is significantly better than the second, the “−” sign means that the first
algorithm is significantly worse, and the “≈” sign means that there is no significant
difference between the two algorithms. Considering this non-parametric test, as is
shown in Table 4, DE/HMO/1 is clearly superior to DE/HMO/1/N in regard to the
average results in 10D and both the best and the average results for the 30D test
problems. Note that the average solution is a better indicator to judge the performance
of stochastic algorithms. From these comparisons, the addition of the local search
procedure clearly improves the performance of the algorithm, especially in the 30D
test problems.
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Table 5 Comparison of DE/HMO/2 with DE/HMO/2/N, where Dec. is the statistical decision. The num-
bers shown in this table are for the first algorithm in column 1

Comparison Criteria 10D 30D

better Equal worse w− w+ Dec. better Equal worse w− w+ Dec.

DE/HMO/2
– to –
E/HMO/2/N

Best 1 17 0 1 0 ≈ 15 3 0 120 0 +
Average 7 7 4 47 19 ≈ 16 1 1 145 8 +

Table 6 Comparison of DE/HMO/1/N with DE/HMO/2/N, where Dec. is the statistical decision. The
numbers shown in this table are for the first algorithm in column 1

Comparison Criteria 10D 30D

better Equal worse w− w+ Dec. better Equal worse w− w+ Dec.

DE/HMO/1/N
– to –
E/HMO/2/N

Best 1 17 0 1 0 ≈ 5 2 11 38 98 ≈
Average 6 5 7 54 51 ≈ 8 1 9 67 69 ≈

4.2 Comparison between DE/HMO/2 and DE/HMO/2/N

Following the same comparison, as was described in the previous subsection, a com-
parison between “DE/HMO/2” and “DE/HMO/2/N” is provided. Again the differ-
ence between these two variants is that the second variant does not use the local
search procedure.

Based on the best and average fitness values, the summary of comparisons, with
respect to the best and average fitness values, is given in Table 5, i.e. considering the
10D test problems, DE/HMO/2 is better than DE/HMO/2/N for 1 test problem and
both of them are able to obtain the same best results for the other 17 test problems.

Considering the Wilcoxon test, adding the local search in (DE/HMO/2) is better
than DE/HMO/2/N for the 30D test problems (as is shown in Table 5).

From these comparisons, the addition of a local search procedure is consistently
improving the performance of the algorithm, specifically for high dimensional test
problems.

4.3 Comparison between DE/HMO/1/N and DE/HMO/2/N

Considering the results that are obtained, the summary of comparison between
DE/HMO/1/N and DE/HMO/2/N is provided in Table 6. For example, in Table 6,
for the 30D test problems and considering the best results, DE/HMO/1/N is better
than DE/HMO/2/N for 5 test problems and it is worse for 11 test problems, while
both of them are able to obtain the same results for 2 test problems.

Based on the statistical test, there is no significant difference between DE/HMO/
1/N and DE/HMO/2/N, as is shown in Table 6.



Self-adaptive differential evolution incorporating a heuristic mixing 785

Table 7 Comparison of DE/HMO/1 with DE/HMO/2, where Dec. is the statistical decision. The numbers
shown in this table are for the first algorithm in column 1

Comparison Criteria 10D 30D

better Equal worse w− w+ Dec. better Equal worse w− w+ Dec.

DE/HMO/1
– to –
DE/HMO/2

Best 0 18 0 0 0 ≈ 4 5 9 53 83 ≈
Average 9 6 3 67 21 ≈ 10 1 7 103 50 ≈

4.4 Comparison between DE/HMO/1 and DE/HMO/2

In this subsection, a comparison between DE/HMO/1 and DE/HMO/2 is provided.
Based on the results that are shown in Appendices A and B, a summary of this com-
parison is presented in Table 7. From these results, DE/HMO/1 is marginally better.

Furthermore, based on the non-parametric test (see Table 7); there is no significant
difference between both algorithms.

4.5 More analysis

To show the convergence pattern of the proposed algorithms, some sample conver-
gence plots are presented, for all variants, in Figs. 1 and 2. These figures reveal that
the convergence pattern for DE/HMO/1 and DE/HMO/2 are faster than the same for
DE/HMO/1/N and DE/HMO/2/N.

To this end, it is useful to show the benefit of the self-adaptive learning measure.
To do this, as an example, problem “C09” with 10 dimensions is analyzed for both
“DE/HMO/1” and “DE/HMO/2” regarding the changes in the subpopulation sizes.
For “DE/HMO/1”, the average subpopulation sizes (pi ) are as follows: p1 is 21 (11
for binomial crossover and 10 for exponential crossover), p2 is 19 (11 for binomial
crossover and 8 for exponential crossover), p3 is 20 (11 for the binomial crossover
and 9 for the exponential crossover), and p4 is 21 (11 for binomial crossover and 10
for exponential crossover). For the second variant “DE/HMO/2”, the subpopulation
size for each mutation type (mutation1, mutation2, mutation3, and mutation4) are 23,
21, 17 and 19, respectively, and the subpopulation size for each crossover operator
(binomial and exponential) are 51 and 29, respectively.

4.6 Comparison to the-state-of-the-art algorithm

In this subsection, we compare DE/HMO/1 and DE/HMO/2 to and εDEag [35]
(the CEC2010 competition winning algorithm). It should be mentioned here that
“DE/HMO/1” and “DE/HMO/2” are able to reach the 100 % feasible ratio for the
10D and 30D test instances, while εDEag is able to reach 100 % and 95.11 % fea-
sibility ratios for the 10D and 30D test instances, respectively. Note that, the “*”
in Appendix B for “C11” and “C12” means that it includes infeasible solutions in
calculating means and other parameters.

The summary of comparisons, with respect to the best fitness values, average fit-
ness values and standard deviations, is given in Table 8. In this table, DE/HMO/1’s
performance is firstly recorded against εDEag, then DE/HMO/2’s against εDEag. For
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Fig. 1 The convergence plot, only for feasible solutions, for problem “C09” and “C15” with 10D. Note
that y-scale is in log scale

Fig. 2 The convergence plot, only for feasible solutions, for problem “C09” and “C15” with 30D. Note
that y-scale is in log scale

example, in Table 6, the comparison between “DE/HMO/1” and εDEag, based on the
best fitness values, show that “DE/HMO/1” obtained the best values in 3, equal fit-
ness in 15 test problems for the 10D test instances. These numbers are 13, 1, and 4
for the 30D instances, respectively. With respect to the εDEag algorithm, from this
table, it is not hard to conclude that both variants are much better than it for 30D.

Considering the non-parametric test, the results are presented in Table 8. This table
reveals that both algorithms are superior to εDEag regarding the best results in 10D.
Considering the best and the average results for the 30D test problems, the proposed
algorithms are clearly better than εDEag.

4.7 Performance analysis of DE/HMO variants on the CEC2006 test problems

Here both DE/HMO/1 and DE/HMO/2 are tested on the CEC2006 test problems. the
mathematical properties of these test problems can be found in [12]. The detailed re-
sults are provided in Appendix C along with other state-of-the-art algorithms known



Self-adaptive differential evolution incorporating a heuristic mixing 787

Table 8 A comparison between DE/HMO/1 and DE/HMO/2 with the εDEag, where Dec. is the statistical
decision. The numbers shown in this table are for the first algorithm in column 1

Comparison Criteria 10D 30D

better Equal worse w− w+ Dec. better Equal worse w− w+ Dec.

DE/HMO/1
– to –
εDEag

Best 3 15 0 21 0 + 13 1 4 143 10 +
Average 8 6 5 72 19 ≈ 14 0 4 155 16 +

DE/HMO/2
– to –
εDEag

Best 3 15 0 21 0 ≈ 17 1 0 145 15 +
Average 8 3 7 96 40 ≈ 15 0 3 152 12 +

as: APF-GA [36], MDE [37], ATMES [38] and SMES [39]. The parameters settings
are set as those in the previous section.

From Appendix C, no algorithm was able to obtain any feasible solution for prob-
lems g20 and g22. For the other 22 feasible problems, DE/HMO/1, DE/HMO/2, APF-
GA, and MDE obtained the optimal solutions for 22, 22, 17, and 20 problems, respec-
tively.

In regard to the average results, DE/HMO/1 is better than APF-GA and MDE for 4
and 2 test instances, respectively. DE/HMO/1 is inferior to APF-GA and MDE for five
test problem each. For the other two algorithms, DE/HMO/1 is always able to obtain
better or same results. DE/HMO/2 is better than APF-GA for 4 test problems, while
it is inferior to APF-GA and MDE for 6 and 8 problems, respectively. DE/HMO/2 is
also better than ATMES and SMES for 7 and 8 test problems, respectively, while it is
worse for one test problem each. Finally, DE/HMO/1 is better than DE/HMO/2 for 7
test problems, while it is worse for only one test problems.

Considering the Wilcoxon test, as is shown in Table 9, in regard to the best results
both DE/HMO/1 and DE/HMO/2 are superior to APF-GA, SMES, while there is
no significant difference to all the other algorithms. Based on the average results,
both DE/HMO/1 and DE/HMO/2 are superior to ATMES and SMES. There is no
significant difference between DE/HMO/1 and APF-GA and MDE, while MDE is
superior to DE/HMO/2.

5 Conclusions and future work

During the last few decades, many evolutionary algorithms have been introduced to
solve constrained optimization problems. Most of these algorithms were designed to
use a single crossover and/or a single mutation operator. In this paper, it has been
shown that the efficiency of evolutionary algorithms can be improved by adopting a
concept of self-adaptation with an increased number of search operators (mutation
and crossover). All of the algorithms have been used to solve a set of specialized test
problems.

In the proposed algorithms, “DE/HMO/1” and “DE/HMO/2” four DE mutations
and 2 crossover operators have been used. In “DE/HMO/1”, the population was di-
vided into a number of subpopulations, each subpopulation was evolved through its
own mutation, and then these subpopulation individuals have been divided into two
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Table 9 The Wilcoxon sign rank results for DE/HMO/1 and DE/HMO/2 against APF-GA, MDE, ATMES
and SMES

Algorithms Criteria w− w+ Decision

DE/HMO/1 – to – APF-GA Best fitness 15 0 +
Average fitness 20 25 ≈

DE/HMO/2 – to – APF-GA Best fitness 15 0 +
Average fitness 23 32 ≈

DE/HMO/1 – to – MDE Best fitness 3 0 ≈
Average fitness 5 23 ≈

DE/HMO/2 – to – MDE Best fitness 3 0 ≈
Average fitness 0 36 −

DE/HMO/1 – to – ATMES Best fitness 6 0 ≈
Average fitness 36 0 +

DE/HMO/2 – to – ATMES Best fitness 6 0 ≈
Average fitness 30 6 ≈

DE/HMO/1 – to – SMES Best fitness 36 0 +
Average fitness 45 0 +

DE/HMO/2 – to – SMES Best fitness 36 0 +
Average fitness 43 2 +

DE/HMO/1 – to – DE/HMO/1 Best fitness 0 0 ≈
Average fitness 28 8 ≈

groups of individuals, where each one was evolved through its own crossover type. In
“DE/HMO/2”, the population was divided into a number of subpopulations, accord-
ing to the number of mutation operators and each subpopulation is evolved through
its own mutation. Then all of the new subpopulation individuals have been grouped
together into a new single population. This new population has then been divided
into two subpopulations to be evolved via its own crossover operator. For both algo-
rithms, a meaningful learning strategy has been used to determine the changes of the
subpopulation sizes. Those subpopulation sizes were either increased or decreased
or kept unchanged, adaptively, depending on its evolutionary success. An index for
measuring the evolution success was also introduced. At each generation, a random
individual was selected to follow the local search procedure, up to a specified stop-
ping criterion. Also, an important aspect for our variants was the adaptive selection
for all DE parameters.

To show the benefit of using the local search procedure, the proposed two al-
gorithms have been implemented without using the local search (these are variants
DE/HMO/1/N and DE/HMO/2/N). A comparative study, based on the solution qual-
ity and a non-parametric test, showed the superiority of DE/HMO/1 and DE/HMO/2
to those without the local search. Our finding confirmed that of the literature, that the
exponential crossover could affect the performance of DE algorithms on high dimen-
sional test problems. Hence the local search played an important role in speeding up
the convergence, and preventing the algorithm from becoming stuck in local minima.
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DE/HMO/1 and DE/HMO/2 were found superior to the best algorithm, so far, in the
literature

To validate the performance of the proposed algorithm, another set of 24 test prob-
lems have been solved by DE/HMO/1 and DE/HMO/2. The results showed that these
variants were competitive, if not better, to the-state-of-the-art algorithms.

For future work, we intent test these algorithms on solving real-world applications.
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