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Abstract We present a second order image decomposition model to perform denois-
ing and texture extraction. We look for the decomposition f = u + v + w where u

is a first order term, v a second order term and w the (0 order) remainder term. For
highly textured images the model gives a two-scale texture decomposition: u can be
viewed as a macro-texture (larger scale) whose oscillations are not too large and w is
the micro-texture (very oscillating) that may contain noise. We perform mathematical
analysis of the model and give numerical examples.

Keywords Second order total variation · Image reconstruction · Denoising · Texture
analysis · Variational method

1 Introduction

The most famous variational model for image denoising is the Rudin-Osher-Fatemi
denoising model (see [1, 19]). This model contains a regularization term based on
the total variation which preserves discontinuities, which a classical H 1 -Tychonov
regularization method does not do. The observed image to recover is split into two
parts ud = u+v : u represents the oscillating component (noise or texture) while v is
the smooth part. So we look for the solution as u+v with v ∈ BV (�) and u ∈ L2(�),
where BV (�) is the functions of bounded variation space defined on an open set �

[2, 3, 16]. The regularization term deals with the so-called cartoon component v,
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while the remainder term u := ud − v represents the noise to be minimized:

(ROF) min{‖u‖L2 + �1(v) | u + v = ud,u ∈ L2(�), v ∈ BV (�)}.
Here ‖u‖L2 is the L2-norm of u and �1(v) stands for the total variation of v (we
recall the definition in next section).

A lot of people have investigated such variational decomposition models, assum-
ing that an image can be decomposed into many components, each component de-
scribing a particular property of the image ([4, 5, 20–22, 26] and references therein
for example).

In [9] we have presented a second order model where the (first order) classical
total variation term �1 was replaced by a second order total variation term �2 (using
the appropriate functional framework that we called ROF2. The use of such a model
allows to get rid of the staircasing effect that appears with the ROF denoising model,
since solutions are piecewise constant. However, we have noticed that while the stair-
casing effect disappeared, the resulting image was slightly blurred (the blur effect
was not as important as if we had used a classical low-pass filter however) since so-
lutions are now piecewise affine. To remove this undesirable effect due to the partial
ROF2, we decide to use a full second order model. More precisely, we assume that
the image can be split into three components: a smooth (continuous) part v, a piece-
wise constant cartoon part u and an oscillating part w that should involve noise and/or
fine textures. Such decompositions have already been investigated by Aujol and al.
[4, 5, 7] . These authors use the Meyer space of oscillating functions [18] instead of
the BV 2(�) space. We present these spaces in the sequel. However, the model we
propose here is different: the oscillating part of the image is not penalized but a pri-
ori included in the remainder term w = ud − u − v, while v is the smooth part (in
BV 2(�)) and u belongs to BV (�): we expect that u is a piecewise constant function
so that its jump set gives the image contours. For highly textured images as the one
of example (a) in Fig. 1, we shall see that the model gives a two-scale texture decom-
position: u can be viewed as a macro-texture (larger scale) whose oscillations are not
too large and w is the micro-texture (quite oscillating) that may contain the noise as
well.

Therefore, we look for components u, v and w that belong to different spaces:
u belongs to BV (�) (and if possible not to W 1,1(�)), v ∈ BV 2(�) and w ∈ L2(�).
This last component w = ud −u−v lies in the same space as the observed image ud .

The paper is organized as follows. We present the model and briefly give main
properties of the spaces of functions of first and second order bounded variation.
We give existence, partial uniqueness results and optimality conditions. Section 3 is
devoted to the discretization and numerical process. We present some results in the
last section.

2 The mixed second order model

2.1 Spaces BV (�) and BV 2(�)

Let � be an open bounded subset of R
n, n ≥ 2 (practically n = 2) smooth enough

(with the cone property and Lipschitz for example). Following [2, 3, 6] and [9, 14],
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we recall the definitions and main properties of the spaces of functions of first and
second order bounded variation. The space BV (�) is the classical space of functions
of bounded variation defined by

BV (�) = {u ∈ L1(�) | �1(u) < +∞},
where

�1(u) := sup

{∫
�

u(x) div ξ(x) dx | ξ ∈ C 1
c (�), ‖ξ‖∞ ≤ 1

}
. (1)

The space of functions with bounded Hessian, denoted BV 2(�), is the space of
W 1,1(�) functions such that �2(u) < +∞, where

W 1,1(�) = {u ∈ L1(�) | ∇u ∈ L1(�)}.
Here ∇u stands for the first order derivative of u (in the sense of distributions)) and

�2(u) := sup

{∫
�

〈∇u,div(ξ)〉Rn | ξ ∈ C 2
c (�,R

n×n),‖ξ‖∞ ≤ 1

}
< ∞, (2)

where

div(ξ) = (div(ξ1),div(ξ2), . . . ,div(ξn)),

with

∀i, ξi = (ξ1
i , ξ2

i , . . . , ξn
i ) ∈ R

n and div(ξi) =
n∑

k=1

∂ξk
i

∂xk

.

We give thereafter important properties of these spaces. Proofs can be found in [2, 3,
14, 23] for example.

Theorem 1 (Banach properties)

• The space BV (�), endowed with the norm ‖u‖BV (�) = ‖u‖L1 + �1(u), is a Ba-
nach space. The derivative in the sense of distributions of every u ∈ BV (�) is a
bounded Radon measure, denoted Du, and �1(u) = ∫

�
|Du| is the total variation

of u.
• The space BV 2(�) endowed with the following norm

‖f ‖BV 2(�) := ‖f ‖W 1,1(�) + �2(f ) = ‖f ‖L1 + ‖∇f ‖L1 + �2(f ), (3)

where �2 is given by (2) is a Banach space.

Theorem 2 (Structural properties of the derivative) Let � be an open subset of R
n

with Lipschitz boundary.

• For every u ∈ BV (�), the Radon measure Du can be decomposed into Du =
∇udx + Dsu, where ∇udx is the absolutely continuous part of Du with respect
of the Lebesgue measure and Dsu is the singular part.
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• A function u belongs to BV 2(�) if and only if u ∈ W 1,1(�) and ∂u
∂xi

∈ BV (�) for
i ∈ {1, . . . , n}. In particular

�2(u) ≤
n∑

i=1

�1

(
∂u

∂xi

)
≤ n�2(u).

We get lower semi-continuity results for the semi-norms �1 and �2:

Theorem 3 (Semi-continuity)

• The mapping u �→ �1(u) is lower semi-continuous (denoted in short lsc) from
BV (�) to R

+ for the L1(�)-topology.
• The mapping u �→ �2(u) is lower semi-continuous from BV 2(�) endowed with

the strong topology of W 1,1(�) to R
+.

Finally, we have embedding results:

Theorem 4 Embedding results Assume n ≥ 2. Then

• BV (�) ⊂ L2(�) with continuous embedding, if n = 2,
• BV (�) ⊂ Lp(�) with compact embedding, for every p ∈ [1,2), if n = 2,
• BV 2(�) ↪→ W 1,q(�) with q ≤ n

n−1 , with continuous embedding. Moreover the
embedding is compact if q < n

n−1 . In particular

BV 2(�) ↪→ Lq(�), ∀q ∈ [1,∞[, if n = 2.

In the sequel, we set n = 2 and � is a bounded, open, Lipschitz subset of R
2, so

that BV 2(�) ⊂ H 1(�) with continuous embedding and BV 2(�) ⊂ W 1,1(�) with
compact embedding.

2.2 The variational model

In a previous work [9], we have studied the following restoration variational model

inf

{
1

2
‖ud − v‖2

L2(�)
+ μ�2(v) + δ‖v‖W 1,1(�) | v ∈ BV 2(�)

}
.

which only involves a second order term �2. The motivation was to get rid of the
staircasing effect while restoring noisy data. Indeed, the original ROF model pro-
vides piecewise constant solutions [12, 24]. We infered that the use of a second order
penalization term leads to piecewise affine solutions so that there is no staircasing any
longer. However, we observed that the contours were not kept as well as we wanted
and that the resulting image was slightly blurred. To overcome this difficulty, we now
consider a full second order model involving both first and second order penalization
terms. Furthermore, we concentrate us on the extraction of the texture; indeed de-
noising can be handled in a similar way, considering that noise is a very fine texture.

Specifically, we assume that the image we want to rebuild from the data can be
decomposed as ud = w + u + v where u,v and w are functions that characterize
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the various structures of ud . In the sequel ud ∈ L2(�). These functions belong to
different functional spaces:

• v is the (smooth) second order part and belongs to BV 2(�). It is expected to de-
scribe the dynamics of the image.

• u is the BV (�)-component. We conjecture that u ∈ BV (�)\BV 2(�), and could
be piecewise constant, so that its derivative is a measure supported by the contours.

• The remainder term w := ud − u − v ∈ L2 is the noise and/or fine textures.

We consider the following cost functional defined on BV (�) × BV 2(�):

Fλ,μ,δ(u, v) = 1

2
‖ud − u − v‖2

L2(�)
+ λ�1(u) + μ�2(v) + δ1

2
‖v‖2

L2(�
+ δ2�1(v),

where λ,μ, δi > 0. We are looking for a solution to the optimization problem

(Pλ,μ,δ) inf{Fλ,μ,δ(u, v) | (u, v) ∈ BV (�) × BV 2(�)}.
Let us comment the different terms of the cost functional Fλ,μ,δ :

• the first term ‖ud − u − v‖2
L2(�)

is the fitting data term,
• �1(u) is a standard total variation term widely used in image restoration,
• �2(v) penalizes the second order total variation of component v as in [9],
• δ1

2 ‖v‖2
L2(�

+ δ2�1(v) is a penalization term which is necessary to get a priori
estimates on minimizing sequences and obtain existence results.

It is a theoretical tool and δi > 0, i = 1,2 can be chosen as small as wanted.

Remark 1 We could replace the last penalization term by ‖v‖2
H 1 or ‖v‖W 1,1(�). We

have chosen an intermediate penalization term between these two possibilities. In-
deed, using the W 1,1(�) norm would add another non differentiable penalization
‖v‖2

L1 . As we already deal with �1(v) which is not differentiable either, this would
add numerical technical difficulties.

We could get rid of this δ-penalization term. Indeed, we may use Poincaré-
Wirtinger inequalities to get the appropriate a priori estimates and deduce existence
of solutions (see [8]). However, this impose to change the functional framework and
introduce additional constraints. For example, this requires that the BV -component u

has 0 mean-value and/or that the BV 2-component v vanishes on the boundary. More-
over, we would not have strict convexity any longer so that uniqueness of solutions
cannot be ensured any more. This will be precisely investigated in a future work.

The δ-part is not useful (and unjustified) from the modelling point of view. It is
only necessary to prove existence and uniqueness of the solution. Besides, as we
shall see it after, we can fix δ2 = 0 once the problem is discretized. Furthermore, we
noticed that δ1 has no influence during the execution of the numeric tests, so that we
finally chose δ1 = δ2 = 0.

We first give an existence and uniqueness result for problem (Pλ,μ,δ).

Theorem 5 Assume that λ > 0,μ > 0 and δi > 0, i = 1,2. Problem (Pλ,μ,δ) has at
a unique solution (u, v).
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Proof We first prove existence. Let (un, vn) ∈ BV (�) × BV 2(�) be a minimizing
sequence, i.e.

lim
n→+∞Fλ,μ,δ(un, vn) = inf{Fλ,μ,δ(u, v) | (u, v) ∈ BV (�) × BV 2(�)} < +∞.

The sequence (vn)n∈N is L2-bounded (with the δ1-term) and L1-bounded since �

is bounded. The sequence �1(vn) is bounded thanks to the δ2-term and �2(vn) is
bounded as well. Therefore (vn)n∈N is bounded in BV 2(�).

As (vn)n∈N is L1(�)-bounded and (un + vn)n∈N is L2(�)-bounded, this yields
that (un)n∈N is L1(�)-bounded. As (�1(un))n∈N is bounded then (un)n∈N is bounded
in BV (�).

With the compactness result of Theorem 4, we infer that (vn)n∈N strongly con-
verges (up to a subsequence) in W 1,1(�) to v∗ ∈ BV 2(�) and Theorem 3 gives the
following:

�2(v
∗) ≤ lim inf

n→+∞�2(vn).

Similarly, the compactness embedding of BV (�) in L1(�) (Proposition 2) gives
the existence of a subsequence still denoted (un)n∈N and u∗ ∈ BV (�) such that un

strongly converges in L1(�) to u∗, and

�1(u
∗) ≤ lim inf

n→+∞�1(un).

Finally

Fλ,μ,δ(u
∗, v∗) ≤ lim inf

n→+∞Fλ,μ,δ(un, vn) = min
(u,v)∈BV (�)×BV 2(�)

Fλ,μ,δ(u, v).

The pair (u∗, v∗) is a solution to (Pλ,μ,δ). Uniqueness is straightforward with the
strict convexity of Fλ,μ,δ . �

It is easy to see that (u∗, v∗) is a solution to (Pλ,μ,δ) if and only if

u∗ = argmin

{
1

2
‖ud − v∗ − u‖2 + λ�1(u),u ∈ BV (�)

}
,

v∗ = argmin

{
1

2
‖ud − u∗ − v‖2 + δ1

2
‖v‖2

L2 + δ2�1(v) + μ�2(v), v ∈ BV 2(�)

}
.

(4)

and we may derive optimality conditions in a standard way:

Theorem 1 (u∗, v∗) is a solution to (Pλ,μ,δ) if and only if

ud − u∗ − v∗ ∈ λ∂�1(u
∗), (5a)

ud − u∗ − (1 + δ1)v
∗ ∈ μ∂�2(v

∗) + δ2∂�1(v
∗). (5b)

Here ∂�(w) denotes the subdifferential of � at w (see [3, 15] for example). The
proof is straightforward since �1 and �2 are convex and continuous and variables u

and v can be decoupled.
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3 The discretized problem

This section is devoted to numerical analysis of the previous model. We first (briefly)
present the (standard) discretization process.

3.1 Discretization process

We assume that the image is rectangular with size N × M . We note X := R
N×M �

R
NM endowed with the usual inner product and the associated Euclidean norm

〈u,v〉X :=
∑

1≤i≤N

∑
1≤j≤M

ui,j vi,j , ‖u‖X :=
√ ∑

1≤i≤N

∑
1≤j≤M

u2
i,j . (6)

We set Y = X × X. It is classical to define the discrete total variation with finite
difference schemes as following (see for example [6]): the discrete gradient of the
numerical image u ∈ X is ∇u ∈ Y computed by the forward scheme for example:

(∇u)i,j = (
(∇u)1

i,j , (∇u)2
i,j

)
, (7)

where

(∇u)1
i,j =

{
ui+1,j − ui,j if i < N

0 if i = N,
and (∇u)2

i,j =
{

ui,j+1 − ui,j if j < M

0 if j = M.

The (discrete) total variation corresponding to �1(u) is given by

J1(u) = 1

NM

∑
1≤i≤N

∑
1≤j≤M

∥∥(∇u)i,j
∥∥

R2, (8)

where

∥∥(∇u)i,j
∥∥

R2 =
∥∥∥(

∇u1
i,j ,∇u2

i,j

)∥∥∥
R2

=
√(

∇u1
i,j

)2 +
(
∇u2

i,j

)2
.

The discrete divergence operator −div is the adjoint operator of the gradient operator
∇:

∀(p,u) ∈ Y × X, 〈−divp,u〉X = 〈p,∇u〉Y .

To define a discrete version of the second order total variation �2 we have to
introduce the discrete Hessian operator. For any v ∈ X, the Hessian matrix of v,
denoted Hv is identified to a X4 vector:

(Hv)i,j =
(
(Hv)11

i,j , (Hv)12
i,j , (Hv)21

i,j , (Hv)22
i,j

)
.

We refer to [9] for the detailed expressions of these quantities. The discrete second
order total variation corresponding to �2(v) writes

J2(v) = 1

NM

∑
1≤i≤N

∑
1≤j≤M

∥∥(Hv)i,j
∥∥

R4, (9)
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with ∥∥(Hv)i,j
∥∥

R4 =
√

(Hv11
i,j )

2 + (Hv12
i,j )

2 + (Hv21
i,j )

2 + (Hv22
i,j )

2 .

The discretized problem stands

inf
(u,v)∈X×X

1

2
‖ud − u − v‖2

X + λJ1(u) + μJ2(v) + δ1

2
‖v‖2

X + δ2J1(v). (10)

Theorem 6 Assume λ ≥ 0,μ ≥ 0, δ2 ≥ 0 and δ1 > 0. Problem (10) has a unique
solution.

Proof The proof is obvious since the cost functional is strictly convex and coercive
because of the data-fitting term and the δ1-term. �

In the sequel we set λ > 0,μ > 0, δ := δ1 > 0 and δ2 = 0.

3.2 Numerical realization and algorithm

Let (u∗, v∗) be the unique solution to

(Pλ,μ,δ) inf
(u,v)∈X×X

1

2
‖ud − u − v‖2

X + λJ1(u) + μJ2(v) + δ

2
‖v‖2

X.

Using the subdifferential properties and decoupling u∗ and v∗ gives the following
necessary and sufficient optimality conditions:

Proposition 1 (u∗, v∗) is a solution to (Pλ,μ,δ) if and only if

ud − u∗ − v∗ ∈ λ∂J1(u
∗), (11a)

ud − u∗ − (1 + δ)v∗ ∈ μ∂J2(v
∗). (11b)

We can perform an explicit computation to get the following result:

Theorem 2 (u∗, v∗) is a solution to (Pλ,μ,δ) if and only if

u∗ = ud − v∗ − ΠλK1

(
ud − v∗) , (12a)

v∗ = 1

1 + δ

(
ud − u∗ − ΠμK2

(
ud − u∗)) , (12b)

where K1 and K2 are the following convex closed subsets:

K1 = {divp | p ∈ X2,
∥∥pi,j

∥∥
R2 ≤ 1,∀i = 1, . . . ,N, j = 1, . . . ,M}, (13a)

K2 = {H ∗p | p ∈ X4,
∥∥pi,j

∥∥
R4 ≤ 1,∀i = 1, . . . ,N, j = 1, . . . ,M}, (13b)

and ΠKi
denotes the orthogonal projection on Ki .
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Proof Following [9, 13], relations (11a), (11b) are equivalent to

u∗ ∈ ∂J ∗
1

(
ud − u∗ − v∗

λ

)
= ∂ιK1

(
ud − u∗ − v∗

λ

)
, (14a)

v∗ ∈ ∂J ∗
2

(
ud − u∗ − (1 + δ)v∗

μ

)
= ∂ιK2

(
ud − u∗ − (1 + δ)v∗

μ

)
, (14b)

where J ∗ is the Fenchel-Legendre transform of J , and ιK is the indicatrix function
of K :

ιK(x) =
{

0 if x ∈ K

+∞ else.

Let ΠK be the orthogonal projection on a closed convex set K . Recall that

λ ∈ ∂ιK(u) ⇐⇒ λ = c

(
u + λ

c
− ΠK

(
u + λ

c

))
⇐⇒ u = ΠK

(
u + λ

c

)
,

for every c > 0. Then relation (14a) with c = λ is equivalent to

ud − v∗ − u∗ = λΠK1

(
ud − v∗

λ

)
= ΠλK1

(
ud − v∗) ,

since ΠK(u
c
) = 1

c
ΠcK(u). Similarly (14b) with c = μ

1+δ
is equivalent to

ud − u∗ − (1 + δ)v∗

μ
= ΠK2

(
ud − u∗

μ

)
= 1

μ
ΠμK2

(
ud − u∗) . �

We may write relations (12a), (12b) as a fixed point equation (u, v) = G(u,v),
where

G : X2 → X2

(u, v) �→
(

ud − v − ΠλK1 (ud − v)

1
1+δ

(
ud − u − ΠμK2 (ud − u)

)
)

.
(15)

Let us introduce Gα defined by

Gα(u, v) =
(

u

v

)
+ α

(
G(u,v) −

(
u

v

))
.

We get

Gα(u, v) =
(

(1 − α)u + α(ud − v − �λK1 (ud − v))

(1 − α)v + α
1+δ

(ud − u − �μK2 (ud − u))

)
. (16)
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This leads to the following fixed-point algorithm:

Algorithm A0

1. Initialization step. Choose u0 and v0 (for example u0 = 0 and v0 = ud ) and
0 < α < 1/2.
2. Iteration. Define the sequences ((un, vn))n as

⎧⎨
⎩

un+1 = un + α
(
ud − vn − ΠλK1 (ud − vn) − un

)
vn+1 = vn + α

1 + δ

(
ud − un − ΠμK2 (ud − un) − (1 + δ)vn

)
.

3. Stopping test.

Theorem 7 For every α ∈ (0,1/2), the sequence (un, vn) converges to the (unique)
fixed point of G.

Proof It is sufficient to prove that Gα = (G1
α,G2

α) is strictly contracting. Let be α >

0. For every (u1, v1), (u2, v2) ∈ X2, we have

∥∥∥G1
α(u1, v1) − G1

α(u2, v2)

∥∥∥
X

+
∥∥∥G2

α(u1, v1) − G2
α(u2, v2)

∥∥∥
X

≤ |1 − α|‖u1 − u2‖X + 2α‖v1 − v2‖X + |1 − α|‖v1 − v2‖X + 2α

1 + δ
‖u1 − u2‖X

≤ max

(
|1 − α|,2α,

2α

1 + δ

)
(‖u1 − u2‖X + ‖v1 − v2‖X) .

If α ∈ (0 1/2), then max(|1 − α|,2α, 2α
1+δ

) < 1, and Gα is contracting. Therefore, the
sequence (un+1, vn+1) = Gα(un, vn) converges to the fixed point of Gα . Moreover
G and Gα have the same fixed points. �

For the numerical realization a (standard) relaxed version of the algorithm is used.

Algorithm (A)

1. Initialization step. Choose u0 and v0 (for example u0 = 0 and v0 = ud ) and
0 < α < 1/2.
2. Iteration. Define the sequences ((un, vn))n as

⎧⎨
⎩

un+1 = un + α
(
ud − un − vn − ΠλK1 (ud − vn)

)
vn+1 = vn + α

1 + δ

(
ud − un+1 − (1 + δ)vn − ΠμK2 (ud − un+1)

)
.

3. Stopping test. We can prove similarly that for any α ∈ (0,1/2), the sequence
generated by (A) converges to the fixed point of G.
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Fig. 1 Examples

4 Numerical results

We have performed numerical experimentation on the three (natural) images of Fig. 1:

• Image (a) is a picture of an old damaged wall which can be considered as pure
texture.

• Image (b) involves both sharp contours and small details.
• The third image (c) is a micro-tomographic image of tuffeau (stone): the image is

one slice extracted from a 3D tomographic image of a tuffeau sample. The image
is 2048 × 2048 pixels, the pixel size is 0.28 µm with resin, silica (opal sphere),
air bubble in the resin (caused by the impregnation process), silica (quartz crystal),
calcite and phyllosilicate. The segmentation of such an image is a hard challenge
[17].

We have computed the total variation J1 and the second order total variation J2 of
every image and reported them in Table 1.
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Table 1 Total variation J1, second order total variation J2 and G-norm for tests images—the last column
is the “normalized” G-norm

Image ud J1(ud ) J2(ud ) ‖ud‖G ‖ud‖
L2 ‖ud‖G/‖ud‖

L2

Wall (a) 23.27 43.07 7.62 0.5277 14.4408

Butterfly (b) 10.27 11.14 12.11 0.5463 22.1659

Tuffeau (c) 27.62 43.79 2.76 0.4978 5.555

Table 2 G-norm and total variation of components for different parameters λ,μ—ū is the mean value
of u—We recall that ‖ud‖G = 7.62 for image (a) (wall), ‖ud‖G = 12.11 for image (b) (butterfly) and
‖ud‖G = 2.76 for image (c) (tuffeau)

Image λ μ ‖u‖G ‖v‖G ‖w‖G J1(u) J2(v) ‖w‖
L2 ū · 107

(a) 2 6 0.376 8.769 0.333 16.80 1.293 3.276 2.46

5 10 0.510 8.905 0.316 11.24 1.230 6.994 3.39

10 20 0.630 8.803 0.324 6.218 1.383 11.13 −0.17

50 100 1.476 7.905 0.452 0.160 1.632 19.88 6.87

(b) 2 6 0.262 12.11 0.225 4.018 2.402 1.996 −0.43

5 10 0.316 12.00 0.272 2.519 2.461 3.683 0.56

5 50 0.903 11.437 0.418 6.415 0.626 3.391 5.27

10 5 0.245 11.90 0.206 0.004 5.05 3.882 −1.78

10 20 0.423 11.78 0.314 1.908 2.231 5.792 4.03

50 50 0.825 11.59 0.284 0.043 2.712 11.18 −7.88

50 100 1.196 11.37 0.363 0.386 2.038 13.63 −2.54

(c) 2 6 0.277 3.089 0.258 20.20 3.68 3.3485 12.69

10 20 0.460 4.365 0.299 12.61 1.199 10.98 −10.88

20 50 0.906 6.220 0.281 8.012 0.875 16.58 −43.36

50 100 1.082 5.232 0.345 1.730 1.502 25.90 −4.07

We have also computed and the G-norm1 for every image. Recall (see [18]) that
the G-space is the dual space of B V (the closure of the Schwartz class in BV (�)):

G := {f | ∃ϕ = (ϕ1, ϕ2) ∈ (L∞(R2))2 f = divϕ},
and the ‖ · ‖G norm is defined as

‖f ‖G := inf
{∥∥∥

√
ϕ2

1 + ϕ2
2

∥∥∥∞ | f = divϕ
}
.

Though the G-norm cannot measure image oscillations (non oscillating images may
have a small G-norm) it may be an indicator on oscillations amplitude. The more the
function is oscillating, the smaller its G-norm is.

1We are very grateful to Pierre Weiss who provided the codes to compute the G-norm efficiently.
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Fig. 2 BV 2 component—v—μ = 50—ρ := λ
μ

The projections in step 2 of algorithm have been computed using a Nesterov-type
algorithm inspired by [25] which has been adapted for the projection on K2. The
stopping criterion is based on the difference between two consecutive iterates that
should be less than 10−3 coupled with a maximal number of iterations (here 175). We
give thereafter the values of the G-norm for the components u,v ,w := ud − u − w

and different pairs (λ,μ) (see Table 2).
We note that the G-norm of the BV 2 component v (few oscillations) and the L2

component w (many oscillations) are independent on the choice of λ and μ. This is
not the case for the BV component u. Moreover, though the amplitude of the BV

component may be quite large (for example, if λ = 2 and μ = 6 we get maxu � 139
and minu � −86 for image (b)) we note (at least numerically) that the mean value
of the BV component is always null. The same holds for the remainder term (though
it is less significant since it is much smaller). This confirms that the BV 2 component
involves all the image dynamic information as contrast, luminance and so on.



228 M. Bergounioux and L. Piffet

Fig. 3 BV component—u—μ = 50

We present thereafter some results2 for different values of λ and μ. All numerical
tests have been performed with δ = 0 since we noticed this parameter has no influence
on the results. We use MATLAB© software. We do not report on CPU time since our
numerical codes have not been optimized.

In what follows images have been contrasted or equalized to be more “readable”.

4.1 Sensitivity with respect to λ

We can see that the ratio ρ := λ
μ

is significant: indeed if μ � λ the second-order term

is more weighted than the first order one and the BV 2 component (see Fig. 2) has a
small second derivative. This means that there are less and less details as the ratio ρ

grows and the resulting image is more and more blurred.

2Many others examples can be found at http://web.me.com/maitine.bergounioux/PagePro/Publications.html.

http://web.me.com/maitine.bergounioux/PagePro/Publications.html
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Fig. 4 L2 component—w = ud − u − v—μ = 50—images after histogram equalization

The ratio ρ is less significant for the BV component u which is sensible to the λ

parameter (see Fig. 3). One sees that the larger λ is, the more u is piecewise constant.
This is consistent with the fact that the optimal value for �1(u) should be smaller as
λ grows.

Moreover, if λ is large enough then u = 0 (Fig. 3(d)). Indeed we have noticed that
the optimal solution (u∗, v∗) satisfies (4). This means that u∗ is the solution to the
classical Rudin-Osher-Fatemi problem

u∗ = argmin

{
1

2
‖f − u‖2 + λ�1(u),u ∈ BV (�)

}

with f := ud − v∗. With a result by Meyer ([18], Lemma 3, p. 42) we conclude that
u∗ = 0 if λ > ‖ud − v∗‖G. Figure 4 shows the L2 component.
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Fig. 5 BV 2 component—v—λ = 10

4.2 Sensitivity with respect to μ

The same comments hold: the ratio ρ is the significant quantity with respect to the
behavior of the BV 2 component (see Fig. 5).

If μ � λ then the BV component u is constant (this is consistent with the fact
that λ is large enough). Once again, if μ grows (while λ is fixed) the BV component
is “less” piecewise constant. The effect of μ on the remainder term w seems more
significant than the effect of λ, see Figs. 6 and 7.

4.3 Decomposition with 3 components

We present (Figs. 8, 9, 10 and 11) the three components together for image (a) and
different values of λ and μ. This image may be considered as pure texture. We clearly
see that the BV 2 component involves the image dynamic, the BV component u ex-
tracts a macro-texture and the remainder term w a micro-structure. The scaling be-
tween u and w is tuned via parameters λ and μ (the ratio ρ := λ

μ
has no influence).

4.4 Denoising and texture extraction

We end with image (c) (Figs. 12, 13 and 14). It is quite difficult to perform segmen-
tation of such an image. Indeed, the image is noisy and there are texture areas (due
to the micritic calcite part). The denoising process should preserve the texture which
involves physical information. As we want to recover the vacuum area we have to
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Fig. 6 BV component—u—λ = 10

Fig. 7 L2 component—w = ud − u − v—λ = 10—Histogram equalization has been performed
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Fig. 8 Wall for λ = 1 and μ = 1—ρ = 1

Fig. 9 Wall for λ = 2 and μ = 6—ρ = 0.33

perform a contour segmentation and if possible regions classification to recover the
different physical components of the stone. The decomposition model we propose,
can be used as a pre-processing treatment to separate the noise and fine texture com-
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Fig. 10 Wall for λ = 5 and μ = 10—ρ = 0.5

Fig. 11 Wall for λ = 50 and μ = 100—ρ = 0.5

ponent w from the macro-texture component u and perform a classical segmentation
method on u.
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Fig. 12 Denoising and texture extraction—λ = 10,μ = 20

Fig. 13 Original and denoised image—λ = 10,μ = 20
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Fig. 14 Comparison of ROF, ROF2 and full second order model with SNR

Fig. 15 Zoom for the comparison of ROF, ROF2 and full second order model

5 Conclusion

From the denoising point of view this model provides a good compromise between
the ROF and the ROF2 [9] models as shown in Figs. 14 and 15. The signal to noise
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ratio (SNR) is computed as

SNR(usol) = 20 log10

( ‖ud‖L2

‖ud − usol‖L2

)
,

where usol is the computed solution and ud the original noisy image.
Indeed, the solution to the ROF-model is piecewise constant: this why we observe

staircasing effects. Similarly, the ROF2 model solution is piecewise affine so that
we do not get staircasing any longer but the denoised image is slightly blurred. The
use of the full second order makes it possible to keep all the advantages of the two
precedents without having the disadvantages of them.

This model seems promising to perform two-scale texture analysis. This can be
used to analyse the structure of radiographs in osteoporosis context [10, 11]. In-
deed, the choice parameters λ and μ determines the scale of the macro-texture/micro-
texture. Once this part has been isolated, it possible to perform segmentation or sta-
tistical analysis.

There are many open questions to be addressed in future works: existence an
uniqueness results without penalization terms have to be investigated together with a
sharp analysis of the continuous model. The comparison with existing models should
be extensively performed as well: one can find many comparison tests in [23].

A last we have to improve the numerical process (both discretization and algo-
rithm) to perform 3D tests in the future.
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