
Comput Optim Appl (2012) 53:91–113
DOI 10.1007/s10589-011-9452-9

Relaxed cutting plane method with convexification
for solving nonlinear semi-infinite programming
problems

Ting-Jang Shiu · Soon-Yi Wu

Received: 28 March 2011 / Published online: 13 January 2012
© Springer Science+Business Media, LLC 2012

Abstract In this paper, we present an algorithm to solve nonlinear semi-infinite pro-
gramming (NSIP) problems. To deal with the nonlinear constraint, Floudas and Stein
(SIAM J. Optim. 18:1187–1208, 2007) suggest an adaptive convexification relaxation
to approximate the nonlinear constraint function. The αBB method, used widely in
global optimization, is applied to construct the convexification relaxation. We then
combine the idea of the cutting plane method with the convexification relaxation to
propose a new algorithm to solve NSIP problems. With some given tolerances, our
algorithm terminates in a finite number of iterations and obtains an approximate sta-
tionary point of the NSIP problems. In addition, some NSIP application examples are
implemented by the method proposed in this paper, such as the proportional-integral-
derivative controller design problem and the nonlinear finite impulse response filter
design problem. Based on our numerical experience, we demonstrate that our algo-
rithm enhances the computational speed for solving NSIP problems.

Keywords Nonlinear semi-infinite programming · Convexification approximation ·
Cutting plane method · Control design problem

1 Introduction

The semi-infinite programming problem is an optimization problem with finite-
dimensional decision variables x ∈ R

n and infinite number of constraints. We are

T.-J. Shiu · S.-Y. Wu (�)
Department of Mathematics, National Cheng Kung University, Tainan, Taiwan
e-mail: soonyi@mail.ncku.edu.tw

T.-J. Shiu
e-mail: tjshiu@gmail.com

S.-Y. Wu
Taiwan and National Center for Theoretical Sciences, Tainan, Taiwan

mailto:soonyi@mail.ncku.edu.tw
mailto:tjshiu@gmail.com

92 T.-J. Shiu, S.-Y. Wu

concerned about the following nonlinear semi-infinite programming problem (NSIP)
in this paper:

(NSIP): min
x∈X

f (x)

subject to g(x, y) ≤ 0, y ∈ Y,

where X is a box constraint set in R
n with xL ≤ x ≤ xU . Both xL and xU are n-

dimensional vectors with xL < xU ; the vector inequalities are understood as compo-
nentwise. The objective function f : R

n → R is twice differentiable on X; set Y is a
fixed nonempty compact subset of R

m; and the constraint g is a twice differentiable
function with respect to x and y. A more general case where the x-dependent index
set Y(x) substitutes for the fixed index set Y is called generalized semi-infinite pro-
gramming problems (GSIP). In this paper, we focus on the case of m = 1 for the sake
of convenience. Moreover, without loss of generality, we let Y = [0,1] throughout
this paper.

The optimality condition and duality theorem for semi-infinite programming prob-
lems (SIP) have been studied since the 1960s. A complete survey on the optimality
condition and duality theory for linear, convex, and smooth SIP problems is clarified
in [22]. Many applied problems can be treated as SIP problems, such as approxima-
tion theory, economic problems, and numerous engineering problems such as optimal
control, robot trajectory planning, digital filter design, air pollution control, and pro-
duction planning. We refer to [12], an excellent review paper on SIP problem includ-
ing the theory, algorithms, and some applications. Furthermore, [19, 21] summarize
the existing and typically used algorithms for solving SIP problems.

The main difficulty in solving SIP problems is the infinite number of constraints.
In the last two decades, many algorithms have been proposed to solve SIP problems.
Among these, the most popular method for solving SIP problems is the discretization
method (cf. [19, 23, 25]). Another common approach, the reduction-based method,
is reduced locally to a finite-dimensional nonlinear programming problem (see, e.g.
[11, 18, 24]). In these two methods, the discretization method costs much compu-
tational time when the cardinality of the finite set of Y grows. Moreover, although
the reduction-based method, which utilizes an exact penalty function, yields global
convergence, it usually requires stronger assumptions and is implemented in a rather
simple form. In addition to the foregoing methods, the Karush-Kuhn-Tucker (KKT)
system of the problem (NSIP) is reformulated into a system of semi-smooth equa-
tions (cf. [15, 20, 26]). The authors then apply the smoothing, semi-smoothing New-
ton method, or Newton-type method to solve the KKT system. In the recent studies,
a branch-and-bound technique is used to generate convergent sequences of upper and
lower bounds on the SIP solution value in these articles [5, 6]. The authors focus on
finding the global solution of SIP problems and present the algorithm with feasible
iterates for SIP problems.

In addition, one of the important methods, the exchange method, is proposed in
[4, 14]. The exchange method, also called the cutting plane method, provides an outer
approximation of the feasible set of SIP problems. For each iterate, this algorithm
reduces the infinite index set Y into a finite index subset of Y . However, these authors
need to evaluate a problem called lower level optimization problem at every iteration:

maxg(x̄, y) subject to y ∈ Y, (1)

Relaxed cutting plane method with convexification for NSIP problems 93

for a given point x̄ ∈ R
n. Determining the global maximizer of problem (1) numeri-

cally may be difficult, especially in the case where g(x̄, ·) is non-convex with respect
to the variable y. In fact, the standard solver for (1) can only be expected to obtain
a local maximizer, not the global one. Nevertheless, to solve the SIP problem, where
both f (x) and g(x, ·) are convex functions, Zhang et al. [28] propose a new exchange
method. This method only requires finding some points with a certain computation-
ally easy criterion instead of finding the global optimal solution of the problem (1).

Recently, Floudas and Stein [8] propose an adaptive convex relaxation of the lower
level problem (1). The authors split Y into a finite number of subintervals, and substi-
tuted an overestimated concave function regarded as the approximate constraint for
each subinterval. They produced feasible iterates for the SIP problems. Although the
adaptive convexification method provides an idea to solve the global maximum of
the lower level problem (1) efficiently, we find that the computation may be costly
when the number of subintervals increases. Therefore, we intend to integrate the idea
of the exchange method into the adaptive convexification method, and then propose
a modified algorithm in this paper. We now denote that F is the feasible set of the
problem (NSIP) as follows:

F = {x ∈ X | g(x, y) ≤ 0, for all y ∈ Y }.
Here, we provide the first order optimality condition for the problem (NSIP)

from [22].

Theorem 1 Let x̃ ∈ F be a local minimizer of (NSIP) and Yact(x̃) := {y ∈
Y |g(x̃, y) = 0} be a nonempty set. There exists ỹk ∈ Yact(x̃), for 1 ≤ k ≤ n + 1,
and (λ0, λ1, . . . , λn+1) ∈ R × R

n+1, where λ0, λ1, . . . , λn+1 ≥ 0 such that

λ0∇f (x̃) +
n+1∑

k=1

λk∇xg(x̃, ỹk) = 0, (2)

λk · g(x̃, ỹk) = 0, 1 ≤ k ≤ n + 1, (3)

g(x̃, y) ≤ 0, ∀y ∈ Y ; (4)

hold. Furthermore, a point x̃ ∈ F is said to satisfy the extended Mangasarian-
Fromovitz constraint qualification (EMFCQ) if there exits a direction d ∈ R

n such
that ∇xg(x̃, y)�d < 0 for all y ∈ Yact(x̃). If EMFCQ is valid at x̃, we can set λ0 = 1
in (2).

The point x̃ that satisfies (2)–(4) is called the stationary point for the problem
(NSIP). Throughout this paper, we assume that EMFCQ holds at every stationary
point of the problem (NSIP). Under EMFCQ, (2)–(4) with λ0 = 1 are called KKT
optimality conditions. Regarding the result in [22], the set {λk} is nonempty and
bounded when the EMFCQ is fulfilled.

We organize this paper as follows. In Sect. 2, we introduce one kind of convex
relaxed methods: the αBB method. The algorithm used to solve the generated sub-
problem is also mentioned in this section. We propose a modified adaptive convexi-
fication algorithm in Sect. 3 and show the convergence properties in Sect. 4. Finally,

94 T.-J. Shiu, S.-Y. Wu

we apply our algorithm to some examples and present the computational efficiency
of the algorithm.

2 Preliminaries

2.1 The αBB method

Based on the convergence properties of the existing global optimization algorithms,
these algorithms can be categorized into deterministic and stochastic. One of the de-
terministic global optimization algorithms, the αBB (α-based Branch and Bound)
method, offers mathematical guarantees for convergence to find a point arbitrarily
close to the global minimum for the twice-differentiable nonlinear programming
problems. In the αBB method, a convex underestimator of a nonconvex function
is constructed by decomposing it into a numerous sum of nonconvex terms (cf.
[1, 2, 7]). We mention in Sect. 1 that obtaining the global maximizer of the lower level
optimization problem (1) may be difficult. Therefore, the concept of the αBB method
is used to construct the concave overestimator for the nonconvex constraint g(x, y).
We now divide Y into N subintervals with Y = ⋃N

j=1[ηL
j , ηU

j], where ηL
1 = 0, ηU

N = 1

and ηL
j < ηU

j = ηL
j+1, for j = 1,2, . . . ,N − 1. The single semi-infinite constraint,

g(x, y) ≤ 0, y ∈ Y , can be considered N semi-infinite constraints under the dis-
cretization

g(x, y) ≤ 0, y ∈ Yj , for j = 1,2, . . . ,N,

where Yj = [ηL
j , ηU

j]. With the obvious modification, we construct a concave over-
estimator by adding a quadratic relaxation function ψ for a nonconcave function
g : [ηL

j , ηU
j] → R, a C2-function on an open neighborhood of [ηL

j , ηU
j]. Set

ψ(y : αj , η
L
j , ηU

j) = αj

2
(y − ηL

j)(ηU
j − y),

and define gj (x, y), for j = 1,2, . . . ,N , by

gj (x, y) = g(x, y) + ψ(y : αj , η
L
j , ηU

j), for y ∈ Yj . (5)

Note that if αj > 0, the function gj (x, y) is greater than g(x, y) except for the
boundary points ηL

j and ηU
j , i.e., g(x, y) ≤ gj (x, y) for x ∈ X, y ∈ Yj . To ensure

that gj (x, y) is a concave function with respect to y on the subinterval Yj , αj must
satisfy the following condition:

αj > max
(x,y)∈X×Yj

∂2

∂y2
g(x, y),

and αj must be positive. Thus,

αj > max

(
0, max

(x,y)∈X×Yj

∂2

∂y2
g(x, y)

)
. (6)

Relaxed cutting plane method with convexification for NSIP problems 95

We call αj , which satisfies (6), as the convexification parameter corresponding to Yj ,
and denote the vector of the convexification parameters by α = (α1, . . . , αN). The
maximal separation distance between g(x, y) and gj (x, y) on X × Yj is defined by
the maximum of the difference of these functions; i.e., for any x ∈ X

dαBB(y;αj) := max
y∈Yj

(
gj (x, y) − g(x, y)

) = αj

8
(ηU

j − ηL
j)2. (7)

Clearly, the distance will converge to zero as (ηU
j − ηL

j) → 0.

Next, we define some notation. Let E = {Yj = [ηL
j , ηU

j]| j = 1, . . . ,N} be the
set of collections of subintervals and the vector α = (α1, α2, . . . , αN) be the cor-
responding convexification parameters on E, where αj , defined in (6), is the j -th
component of α, i.e., αj is the convexification parameter corresponding to Yj , for
j = 1,2, . . . ,N . The approximate feasible set FαBB(E,α) is then defined as

FαBB(E,α) = {x ∈ X|gj (x, y) ≤ 0, for y ∈ Yj , Yj ∈ E},

where gj (x, y) = g(x, y) + αj

2 (y − ηL
j)(ηU

j − y) is an approximate concave function
on the subinterval Yj . Obviously, FαBB(E,α) is a subset of F . Furthermore, we
replace the single semi-infinite constraint g(x, y) ≤ 0 by N semi-infinite constraints,

gj (x, y) ≤ 0, y ∈ Yj , for j = 1,2, . . . ,N.

With the substitution of the single semi-infinite constraint, we obtain an approximate
problem (NSIPαBB(E,α)) for problem (NSIP):

(NSIPαBB(E,α)): min
x∈X

f (x)

subject to gj (x, y) ≤ 0, y ∈ Yj , j = 1,2, . . . ,N.

Yj ∈ E.

The inequality (6) is strict, and thus the problem (NSIPαBB(E,α)) has a finite
number of strict concave constraints gj (·, y). Therefore, for any fixed point x̄ ∈ X and
each concave constraint function gj (x̄, y), j = 1,2, . . . ,N , the lower level problem

maxgj (x, y) subject to y ∈ Yj ,

has an unique global optimal solution ȳj . We can obtain ȳj without difficulty. Next,
we will present a method to solve the problem (NSIPαBB(E,α)).

2.2 The cutting plane method

In this subsection, we introduce the cutting plane method to solve the problem
(NSIPαBB(E,α)). The cutting plane method is commonly used when solving SIP
problems. Let J = {1,2, . . . ,N} be the index set of the collection of subintervals,
where N is the number of subintervals in E. We present the cutting plane method to
solve the problem (NSIPαBB(E,α)) in the following algorithm.

96 T.-J. Shiu, S.-Y. Wu

Algorithm 1 The cutting plane method for solving the problem (NSIPαBB(E,α))

Step 1: For each Yj ∈ E, choose a finite set T 1
j = {yj,1, . . . , yj,k1

j
} such that T 1

j ⊂ Yj .

Let T 1 = ⋃
j∈J T 1

j and p = 1.
Step 2: Solve the nonlinear programming problem (NSIPαBB(T p)) to obtain the op-

timal solution x̃p , where

(NSIPαBB(T p)): min
x∈X

f (x)

subject to gj (x, yj,i) ≤ 0, for i = 1,2, . . . , k
p
j , j ∈ J.

Step 3: For each j ∈ J , find the optimal solution ỹj for the following problem:

maxgj (x̃
p, y) subject to y ∈ Yj .

If gj (x̃
p, ỹj) ≤ 0 for all j ∈ J , we stop the algorithm and output x̃p as the optimal

solution. Otherwise, define the set T
p+1
j by

T
p+1
j =

{
T

p
j ∪ {ỹj } if gj (x̃

p, ỹj) > 0;
T

p
j if gj (x̃

p, ỹj) ≤ 0.

Let k
p+1
j = |T p+1

j | be the cardinal number of reference set on Yj at (p + 1)-
iteration for j ∈ J . Set p := p + 1, and go to Step 2.

Associating with each finite subset T p at p-iteration, the problem
(NSIPαBB(E,α)) is reduced to a finite dimensional nonlinear programming prob-
lem. Therefore, we can solve it using a common NLP solver to obtain the optimal
solution x̃p . We subsequently check the feasibility for each constraint gj (x̃

p, y) on
Yj , for Yj ∈ E. Next, we add the worst infeasible point to T

p
j if there is an infeasible

point on Yj . The algorithm terminates when no infeasible point exists in all subin-
tervals in E. The convergence proof for Algorithm 1 can be found in [19, 27]. The
convergence proof in [19, 27] is satisfied for every point in a fixed interval, and thus
the convergence result of Algorithm 1 naturally holds. Therefore, we omit the proof
here.

3 Modified convexification algorithm

The main idea of our algorithm is to modify the adaptive convexification algorithm
proposed by Floudas and Stein [8]. They solved the problem (NSIPαBB(E,α)) and re-
fined some of the subintervals to approach the stationary point of the problem (NSIP).
Let any given predefined set E0 be the collection of some subintervals in Y defined
by

E0 = {Y 0
k |k = 1,2, . . . ,m0},

where Y 0
k is a subinterval of Y with lower bound η

L,0
k and upper bound η

U,0
k , for

k = 1,2, . . . ,m0, and m0 := |E0| denotes the cardinal number of E0. Note that

Relaxed cutting plane method with convexification for NSIP problems 97

E0 only collects some of the subintervals of Y , not all of the subintervals. That is,⋃m0
k=1 Y 0

k � Y . The convexification parameter α0
k on Y 0

k is defined in (6):

α0
k > max

(
0, max

(x,y)∈X×Y 0
k

∂2

∂y2
g(x, y)

)

Let α0 = (α0
1, . . . , α0

m0
) be the corresponding convexification parameter on E0.

We substitute E0 for E and propose a modified subproblem (NSIPαBB(E0, α0)):

(NSIPαBB(E0, α0)): min
x∈X

f (x)

subject to g0
k (x, y) ≤ 0, y ∈ Y 0

k , for k = 1,2, . . . ,m0,

Y 0
k ∈ E0,

where g0
k (x, y) = g(x, y) + α0

k

2 (y − η
L,0
k)(η

U,0
k − y). We solve the problem

(NSIPαBB(E0, α0)) to obtain the stationary point x0 and verify whether x0 is a sta-
tionary point of the problem (NSIP). If x0 is not a stationary point of the problem
(NSIP), we apply the refinement step to formulate a new subproblem until x0 is the
stationary point of the problem (NSIP). Before moving on to discuss the refinement
step, y0

k denotes the optimal solution to the following lower level optimization prob-
lem

maxg0
k (x

0, y) subject to y ∈ Y 0
k ,

and the existence of y0
k is unique because of the strict concavity of g0

k (·, y) on Y 0
k .

Recall the definition that the point y0
k ∈ Y 0

k is called an active point at x0 if
g0

k (x
0, y0

k) = 0. Furthermore, we say that the subinterval Y 0
k is an active interval

at x0 if g0
k (x

0, y0
k) = 0 for y0

k ∈ Y 0
k . Define

Eact(x
0) = {Y 0

k ∈ E0|Y 0
k is an active interval at x0}, (8)

and

YαBB
act (x0) = {y|g0

k (x
0, y) = 0, for y ∈ Y 0

k and Y 0
k ∈ Eact(x

0)}. (9)

Clearly, Eact(x
0) is a subset of E0, and YαBB

act (x0) collects the active points in⋃m0
k=1 Y 0

k at x0 with respect to the αBB convexification. We can then conclude that
the cardinal numbers of Eact(x

0) coincides with that of YαBB
act (x0) because g0

k (x
0, y)

is strictly concave with respect to y on Y 0
k . The purpose of the refinement step is to

divide the active intervals in Eact(x
0). For the numerical technique, we introduce the

definition of ε∪-active interval within a given tolerance. The definition of ε∪-active
interval and the refinement step are modified from the ideas in [8].

Definition 1 Given ε∪ > 0, Y 0
k is an ε∪-active interval if Y 0

k is an active interval and

min{y0
k − η

L,0
k , η

U,0
k − y0

k } > ε∪ · (ηU,0
k − η

L,0
k) (10)

holds. Moreover, the active point y0
k ∈ Y 0

k is an ε∪-active point if (10) holds.

98 T.-J. Shiu, S.-Y. Wu

Here, we specify the refinement step for the ε∪-active intervals. The refine-
ment step checks all the subintervals in E0. We have two conditions when Y 0

k

is an active interval. One is that Y 0
k is the ε∪-active interval, the refinement step

divides Y 0
k into two subintervals, Y 0

k,1 and Y 0
k,2; and also generates a set Ẽ0 =

{Y 0
1 , . . . , Y 0

k,1, Y
0
k,2, Y

0
k+1, . . . , Y

0
m0

}. We then check the interval Y 0
k+1 at the next it-

eration of the refinement step. Otherwise, Definition 1 shows that, the active interval
Y 0

k is not an ε∪-active interval if either the length of Y 0
k,1 or that of Y 0

k,2 is too small.
Under this condition, we do not divide the active interval since the active point is suf-
ficiently close to one of the endpoints. In our algorithm, this definition will assist us
to save computational time when we solve the problem (NSIP). Moreover, due to the
property in [7], we have g0

k,i (x, y) ≤ g0
k (x, y) on X × Y 0

k,i and α0
k,i ≤ α0

k for i = 1,2.

Therefore, the new concave functions g0
k,i (x, y) are closer to the constraint function

g(x, y) on Y 0
k . Now, we summarize the steps of the refinement step as the following

algorithm.

Algorithm 2 The refinement step for the ε∪-active intervals

Step 0 Input E0 = {Y 0
1 , Y 0

2 , . . . , Y 0
m0

}, α0, and YαBB
act (x0), where m0 = |E0|. Set

k = 1, Ẽ0 = E0, and α̃0 = α0.
Step 1 If Y 0

k = [ηL,0
k , η

U,0
k] is an ε∪-active interval and y0

k ∈ YαBB
act (x0) is the respec-

tive ε∪-active point on Y 0
k , go to the Inner-Step 1 of inner loop; otherwise, go to

Step 2.

Inner-Step 1: Define Y 0
k,1 = [ηL,0

k , y0
k] and Y 0

k,2 = [y0
k , η

U,0
k]. Find the corre-

sponding convexification parameters on Y 0
k,1 and Y 0

k,2, respectively, α0
k,1 and

α0
k,2, which satisfy

α0
k,1 > max

(
0, max

(x,y)∈X×Y 0
k,1

∂2

∂y2
g(x, y)

)

and

α0
k,2 > max

(
0, max

(x,y)∈X×Y 0
k,2

∂2

∂y2
g(x, y)

)
.

Moreover, define

g0
k,1(x, y) = g(x, y) + α0

k,1

2
(y − η

L,0
k)(y0

k − y)

g0
k,2(x, y) = g(x, y) + α0

k,2

2
(y − y0

k)(η
U,0
k − y)

as the concave function on Y 0
k,1 and Y 0

k,2, respectively.

Inner-Step 2: Denote that Ẽ0 is the new collection of subintervals by substituting
Y 0

k as Y 0
k,1 and Y 0

k,2, i.e., Ẽ0 = {E0 \ {Y 0
k }} ∪ {Y 0

k,1} ∪ {Y 0
k,2}, and replace the

Relaxed cutting plane method with convexification for NSIP problems 99

constraint

g0
k (x, y) ≤ 0, for y ∈ Y 0

k ,

by the two new constraints

g0
k,i(x, y) ≤ 0, for all y ∈ Y 0

k,i , i = 1,2.

Furthermore, let α̃0 be the corresponding convexification parameter on Ẽ0,
where α̃0 is the vector by replacing the entry α0

k of α0 by two new entries α0
k,1

and α0
k,2. Go to Step 2.

Step 2 Terminate the algorithm when k = m0 and output Ẽ0, and α̃0. Otherwise, let
k = k + 1, E0 = Ẽ0, and α0 = α̃0. Go to Step 1.

Referring to Theorem 1, we can conclude that the stationary point x0 for the prob-
lem (NSIPαBB(E0, α0)) satisfies

∇f (x0) +
m0∑

k=1

λ0
k∇xg

0
k (x

0, y0
k) = 0, (11)

λ0
k · g0

k (x
0, y0

k) = 0, k = 1,2, . . . ,m0, (12)

g0
k (x

0, y) ≤ 0, for y ∈ Y 0
k and k = 1,2, . . . ,m0, (13)

where λ0
1, . . . , λ

0
m0

are the corresponding Lagrange multipliers. Let y0 = (y0
1 , . . . ,

y0
m0

) and λ0 = (λ0
1, . . . , λ

0
m0

). Thus, (x0, y0, λ0) satisfies (11)–(13). Clearly, (2) also

holds at (x0, y0, λ0) since ∇xg
0
k (x, y) = ∇xg(x, y) for all (x, y) ∈ X ×Y 0

k . However,
(x0, y0, λ0) may not satisfy (3) because

λ0
kg(x0, y0

k) = −λ0
kα

0
k

2
(y0

k − η
L,0
k)(η

U,0
k − y0

k)

for k = 1,2, . . . ,m0. Therefore, when λ0
k > 0, λ0

kg(x0, y0
k) = 0 only happens in the

case of either y0
k − η

L,0
k = 0 or η

U,0
k − y0

k = 0. However, achieving this condition is
difficult. Hence, relaxing the complementarity slackness condition for the numerical
algorithm is crucial. We make the following definition of the given tolerance ε.

Definition 2 The point x0 ∈ F is called stationary with ε-complementarity for the
problem (NSIP) if there exists y0

k such that (11) and

−λ0
k · ε ≤ λ0

kg(x0, y0
k) ≤ 0. (14)

are fulfilled simultaneously.

We emphasize that even though g(x, y) ≤ g0
k (x, y) for all (x, y) ∈ X × Y 0

k , a fea-
sible point x0 of the problem (NSIPαBB(E0, α0)) cannot imply x0 ∈ F . For this rea-
son, the feasibility on the unconsidered subintervals of Y may not hold at x0. That

100 T.-J. Shiu, S.-Y. Wu

is, let Yc be an arbitrary unconsidered subinterval of Y . Then we have Yc /∈ E0. The
concave function gc(x

0, y) with (5) on Yc may not be less than or equal to zero for
all y. To develop an algorithm to find the stationary point with ε-complementarity
of the problem (NSIP), we check the feasibility on the unconsidered subintervals
and refine the ε∪-active intervals simultaneously to ensure that the feasibility and the
ε-complementarity slackness condition (14) hold in the end. Moreover, for a given
small number γ > 0, we demonstrate that the point x0 is γ -infeasible if there exists
an index c, such that gc(x

0, y) > γ for some y ∈ Yc. The aforementioned index c is
called the index of γ -infeasibility. Furthermore, denote c0 as the index of maximal
γ -infeasibility at x0 if

max
y∈Yc0

gc0(x
0, y) ≥ max

y∈Yc

gc(x
0, y),

for all indices of γ -infeasibility c. Therefore, we conclude our idea in the following
algorithm.

Algorithm 3 The relaxed cutting plane method with convexification

Step 0: Split Y into N disjoint subintervals Y1, Y2, . . . , YN which Y = ⋃N
j=1 Yj and

|Yj | = 1
N

. Let the set E := {Y1, Y2, . . . , YN } be the correction of the subintervals.
Determine the convexification parameter α with (6) on E, and define the approx-
imate concave functions gj on Yj with (5). Let ᾱ := maxi{αi}.

Step 1: Set ν = 1. Choose arbitrary subintervals, Y 1
1 , Y 1

2 , . . . , Y 1
m1

, in E with
m1 < N . Let E1 = {Y 1

1 , Y 1
2 , . . . , Y 1

m1
} and α1 = {α1

1, . . . , α1
m1

} be the correspond-
ing convexification parameter on E1. Give adaptive small real numbers ε, γ > 0,
and let ε∪ := 2ε · min{1,1/ᾱ}. Let Ec

1 = E \ E1 be the collection of remain
subintervals.

Step 2: Solve the problem (NSIPαBB(Eν,αν)) using Algorithm 1 to obtain the sta-
tionary point xν and the corresponding active point set YαBB

act (xν).
Step 3: Evaluate the values of

max
y∈Yj

gj (x
ν, y),

for all Yj ∈ Ec
ν . Denote cν as the index of maximal γ -infeasibility, and go to

Step 4 if cν exists. If cν does not exist, and for every k, the inequalities −λν
k · ε ≤

λν
kg(xν, yν

k) ≤ 0 hold, and then STOP and output xν as an approximate stationary
point of the problem (NSIP). Otherwise, go to Step 5.

Step 4: If there exists at least one ε∪-active point yν
k ∈ YαBB

act (xν), apply Algorithm 2
to Eν , αν and YαBB

act (xν). Define Eν+1 = Ẽν ∪ {Ycν }, αν+1 = (α̃ν, αcν), and
Ec

ν+1 = Ec
ν \ {Ycν }, where Ẽν and α̃ν are generated by Algorithm 2. Otherwise,

in the case of no ε∪-active point, define Eν+1 = Eν ∪ {Ycν }, αν+1 = (αν,αcν),
and Ec

ν+1 = Ec
ν \ {Ycν }. Set mν+1 = |Eν+1| and ν = ν + 1 and go to Step 2.

Step 5: Apply Algorithm 2 to Eν , αν , and YαBB
act (xν). Define Eν+1 = Ẽν , αν+1 =

α̃ν , and Ec
ν+1 = Ec

ν . Set mν+1 = |Eν+1|. Let ν = ν + 1, and go to Step 2.

Relaxed cutting plane method with convexification for NSIP problems 101

Note here, Eact(x
ν) and YαBB

act (xν) are defined in a similar way by substituting the
index 0 for ν in (8) and (9). This shows that Ec

ν ⊂ E for every ν. However, Eν is
not a subset of E when Algorithm 2 is applied once in the previous iteration. More
remarks on Algorithm 3 are listed as follows.

Remark 1

(i) Notice that in Step 2 of Algorithm 3, we check the γ -feasibility on the
subintervals in Ec

ν and also determine whether xν is the stationary point
with ε-complementarity of the problem (NSIP). If there exists a γ -infeasible
subinterval Ycν , we add a new concave constraint gcν (x, y) to the problem
(NSIPαBB(Eν,αν)) in Step 4. Consequently, Algorithm 3 outputs a stationary
point with ε-complementarity and γ -feasibility.

(ii) The γ -feasibility check on Ec
ν is an easy task since the functions gj (·, y) are

concave on Yj for Yj ∈ Ec
ν . Therefore, there are various numerical methods that

can find the value of maxgj (x
ν, y) for y ∈ Yj quickly.

(iii) In Step 3, we refine the ε∪-active intervals and substitute two new approximate
concave constraints for the original concave constraint on ε∪-active interval.
The constraint functions on the rest of the subintervals in Eν are maintained.
Certainly, the ε∪-active interval may not exist. If both ε∪-active interval and cν

do not exist, according to Lemma 2 described in next section, Algorithm 3 will
satisfy the stopping criteria.

(iv) To avoid confusion, we rearrange the indices of the subintervals in Eν+1 be-
fore go to Step 2. For the sake of convenience, let Y ν

1 be the unique ε∪-active
interval and the index of maximal γ -infeasibility cν exist at ν-th iterate. Then
Eν+1 = Ẽν ∪ {Ycν } is defined in Step 4, where Ẽν = {Y ν

1,1, Y
ν
1,2, Y

ν
2 , . . . , Y ν

mν
}.

Therefore, Eν+1 = {Y ν
1,1, Y

ν
1,2, Y

ν
2 , . . . , Y ν

mν
, Ycν }. We then rearrange the indices

of the subintervals in Eν+1 as

Eν+1 = {Y ν+1
1 , Y ν+1

2 , . . . , Y ν+1
mν+1

},

by letting Y ν+1
1 = Y ν

1,1, Y ν+1
2 = Y ν

1,2, . . . , Y
ν+1
mν+1

= Ycν . It is similar to the rear-

rangement for the indices of αν+1. We can find that Y ν+1
k may not equal Y ν

k after
the rearrangement.

Observe that we have two stopping criteria in Algorithm 3. Generally, we antic-
ipate that the feasibility on Ec

ν will hold after a few iterations. In other words, the
number of the remaining subintervals will not be zero when Algorithm 3 terminates.
We verify this result by applying some numerical examples in Sect. 5.

4 Convergence properties for algorithm

We demonstrate the finite termination and the error bound properties of Algorithm 3
in this section. Let Lν be defined as

Lν := max
{‖Y ν

k ‖ ∣∣ Y ν
k is the ε∪-active interval in Eact(x

ν)
}
, (15)

102 T.-J. Shiu, S.-Y. Wu

where ‖Y ν
k ‖ := η

U,ν
k − η

L,ν
k is the length of Y ν

k . In the following lemma, we discuss
the relationship between ‖xν+1 −xν‖ and the largest length of ε∪-active interval, Lν .
This lemma will help us analyze the convergence property of Algorithm 3. Apply the
fact that there is a point x̄ν in the open segment connecting xν and xν+1 such that

g(xν+1, y) − g(xν, y) = ∇xg(x̄ν, y)�(xν+1 − xν), (16)

for all y ∈ Y . Additionally, we make the following assumption.

Assumption 1 There exists an index ν̄ such that for each ε∪-active point yν
k ∈

YαBB
act (xν), there is a small positive number δ that satisfies the following assumptions

for all ν ≥ ν̄:

(a) ‖∇xg(x̄ν, y)‖ ≥ δ for all y, where x̄ν is the point in (16), and
(b) |∇xg(x̄ν, yν

k)�(xν+1 − xν)| ≥ δ‖xν+1 − xν‖.

We note that Assumption 1 can be checked in each iteration of the algorithm.
Clearly, Assumption 1(a) can be achieved easily. Assumption 1(b) states that the an-
gle between ∇xg(x̄ν, yν

k) and xν+1 − xν are not too close to being orthogonal. It
is known that ∇xg(x̄ν, yν

k)∇xg(x̄ν, yν
k)� is a positive semi-definite matrix. There-

fore, if the smallest eigenvalue of ∇xg(x̄ν, yν
k)∇xg(x̄ν, yν

k)� is greater than δ2, then
Assumption 1(b) naturally holds. Next, we present the following lemma, which is
important in our convergence proof.

Lemma 1 Assume that, for each ν ≥ ν̄, there is at least one ε∪-active interval. At
least one of the subintervals of ε∪-active interval is an active interval in the next
iteration. Suppose that Assumption 1 holds at ε∪-active points. Then, for each ν ≥ ν̄,
there exists a bounded real number bν such that

‖xν+1 − xν‖ ≤ bνL
2
ν.

Proof Let Y ν
k be the ε∪-active interval that satisfies the assumption in this lemma and

yν
k ∈ YαBB

act (xν) be the ε∪-active point. Hence, we have gν
k (xν, yν

k) = 0 and

g(xν, yν
k) = −αν

k

2
(yν

k − η
L,ν
k)(η

U,ν
k − yν

k) < 0.

As Y ν
k is the ε∪-active interval, Y ν

k will be divided into Y ν
k,1 = [ηL,ν

k , yν
k] and

Y ν
k,2 = [yν

k , η
U,ν
k] in the next iteration. Without loss of generality, we assume that

the subinterval Y ν
k,1 = [ηL,ν

k , yν
k] is the active interval in the next iteration, ν + 1.

Therefore, gν
k,1(x

ν+1, yν+1
k,1) = 0, where yν+1

k,1 is the maximizer in the following opti-
mization problem:

maxgν
k,1(x

ν+1, y) subject to y ∈ Y ν
k,1.

The function gν
k,1(x, y) is defined by

gν
k,1(x, y) = g(x, y) + αν

k,1

2
(yν

k − y)(y − η
L,ν
k). (17)

Relaxed cutting plane method with convexification for NSIP problems 103

Clearly, according to (17),

g(xν+1, yν
k) = gν

k,1(x
ν+1, yν

k)

≤ gν
k,1(x

ν+1, yν+1
k,1) = 0.

Thus, we have

g(xν+1, yν
k) − g(xν, yν

k)

< −g(xν, yν
k) = αν

k

2
(yν

k − η
L,ν
k)(η

U,ν
k − yν

k)

≤ ᾱ

8
(η

U,ν
k − η

L,ν
k)2, (18)

since αν
k ≤ ᾱ for all k. We know that both gν

k,1(x
ν+1, yν+1

k,1) and ∂
∂y

gν
k,1(x

ν+1, yν+1
k,1)

are equal to zero; therefore,

g(xν+1, yν
k) − g(xν, yν

k)

≥ gν
k,1(x

ν+1, yν
k) − gν

k,1(x
ν+1, yν+1

k,1)

≥ ∂

∂y
gν

k,1(x
ν+1, yν

k)(yν
k − yν+1

k,1) (since gν
k,1(x, y) is concave on Y ν

k,1)

= ∂

∂y
gν

k,1(x
ν+1, yν

k)(yν
k − yν+1

k,1) − ∂

∂y
gν

k,1(x
ν+1, yν+1

k,1)(yν
k − yν+1

k,1)

= ∂2

∂y2
gν

k,1(x
ν+1, ȳν+1

k,1)(yν
k − yν+1

k,1)2, (19)

where yν+1
k,1 ≤ ȳν+1

k,1 ≤ yν
k . However, the value of ∂2

∂y2 gν
k,1(x

ν+1, ȳν+1
k,1) is bounded on

X × Y ν
k,1 for all ν. Hence, we have a positive number b∗ such that ∂2

∂y2 gν
k,1(x, y) ≥

−b∗ for all ν. Equation (19) implies that g(xν+1, yν
k) − g(xν, yν

k) > −b∗(ηU,ν
k −

η
L,ν
k)2 since η

U,ν
k − η

L,ν
k > yν

k − yν+1
k,1 . Combining (18) and (19), and then applying

the mean value theorem, we obtain

−b∗(ηU,ν
k − η

L,ν
k)2 ≤ ∇xg(x̄ν, yν

k)�(xν+1 − xν) ≤ ᾱ

8
(η

U,ν
k − η

L,ν
k)2, (20)

where x̄ν is the point on the line segment between xν and xν+1. Consequently, we
have the following result from both (20) and Assumption 1(b)

δ2‖xν+1 − xν‖2 < (xν+1 − xν)�∇xg(x̄ν, yν
k)∇xg(x̄ν, yν

k)�(xν+1 − xν)

≤ max

(
ᾱ2

64
, (b∗)2

)
(η

U,ν
k − η

L,ν
k)4.

104 T.-J. Shiu, S.-Y. Wu

As the inequality holds for the ε∪-active subinterval, this implies

δ2‖xν+1 − xν‖2 ≤ max

(
ᾱ2

64
, (b∗)2

)
L4

ν.

Hence, ‖xν+1 − xν‖ ≤ bνL
2
ν when setting bν = max(ᾱ

8 , b∗)/δ. Here, bν is bounded
by a constant for all ν ≥ ν̄. �

Lemma 1 shows that the value of ‖dν‖ := ‖xν+1 − xν‖ is concerned with the
length of ε∪-active intervals. We present a lemma modified directly from [8].

Lemma 2 If no γ -infeasible subinterval and no ε∪-active interval exist, Algorithm 3
terminates.

Proof According to the result of Lemma 4.5 in [8], if there is no ε∪-active interval,
Algorithm 3 generates a stationary point with ε-complementarity. Combined with
the fact of having no γ -infeasible subinterval, Algorithm 3 terminates because of the
satisfaction of these two stopping criteria. �

The next theorem presents that the maximum length of ε∪-active interval tends
to 0.

Lemma 3 Let {Lν} be the sequence defined by (15), and suppose that Algorithm 3
does not terminate. Then,

lim
ν→∞Lν = 0.

Proof In Algorithm 3, we divide interval Y into N subintervals Y1, . . . , YN in Step 0,
and choose m1 subintervals to start our algorithm. Let I be the set of the index of
iterations for Algorithm 3, and let Iγ = {ν1, ν2, . . . , νl} ⊂ I be the collection for
the index of the iteration with γ -infeasibility, where l ∈ N. This indicates that, for
i = 1,2, . . . , l, cνi exists at the νi -th iteration. Since the number of unconsidered
subintervals is bounded by N − m1, we have 0 ≤ l ≤ N − m1. Moreover, from
Lemma 2 and for each ν ∈ I \ Iγ , at least two new subintervals, Y ν

k,1 and Y ν
k,2, are

generated from Y ν
k for some k. Therefore, if Y ν

k is an ε∪-active interval, then the
result

max{‖Y ν
k,1‖,‖Y ν

k,2‖} ≤ (1 − ε∪)‖Y ν
k ‖ ≤ (1 − ε∪) · 1

N

follows from the definition of ε∪-active interval. Note that all the subintervals in Eν

are at most divided once for each ν, and the length of ε∪-active interval is mono-
tonically decreasing. Hence, given any integer p ∈ N, there exists a corresponding
sufficiently large iterate ν̃ ∈ I \ Iγ such that Lν is bounded by (1 − ε∪)p · 1

N
for

ν > ν̃ because Algorithm 3 does not terminate. Thus, we obtain limν→∞ Lν = 0 by
letting p → ∞. �

Relaxed cutting plane method with convexification for NSIP problems 105

The result in Lemma 3 directly implies that ‖dν‖ approaches 0 as ν goes to infin-
ity. The next theorem shows that Algorithm 3 converges to a stationary point of the
problem (NSIP) with ε-complementarity and γ -feasibility after finite iterations.

Theorem 2 Suppose that for each iteration ν, the corresponding Lagrange multipli-
ers are uniformly bounded by a constant M . Moreover, the assumptions in Lemma 1
hold. Let {xν} be a sequence generated by Algorithm 3. Algorithm 3 will then gener-
ate a stationary point of the problem (NSIP) with ε-complementarity and γ -feasibility
after finite iterations.

Proof The KKT condition for the problem (NSIPαBB(Eνs , ανs)) can be reformulated
as

∇f (xνs) +
∫

Y

∇xg(xνs , y) dμνs = 0, (21)

mνs∑

k=1

∫

Y
νs
k

g
νs

k (xνs , y) dμνs = 0, (22)

gν
k (xν, y) ≤ 0, for all y ∈ Y ν

k , k = 1,2, . . . ,mν, (23)

where μνs (y) is a discrete measure defined on Y by

μνs (y) =
{

λ
νs

k if y = y
νs

k ;
0 elsewhere.

As X and Y are compact sets, there exists a subsequence {xνs } converging to the ac-
cumulation point x∗, and {μνs (y)} converges to μ∗(y) weakly, as s → ∞. Moreover,
by continuity of ∇f (x) and ∇xg(x, y), (21) is satisfied for all s. These facts imply
that ‖∇f (x∗) + ∫

Y
∇xg(x∗, y) dμ∗‖ = 0 directly.

Next, we show that x∗ is a stationary point with ε-complementarity. We claim that
for k = 1,2, . . . ,mνs , −λ

νs

k · ε ≤ λ
νs

k g(xνs , y
νs

k) ≤ 0 when s is sufficiently large. The
case for λ

νs

k = 0 is trivial; therefore, we focus our attention on λ
νs

k > 0. Even though
the number of subintervals mνs increases monotonically, in view of Carathéodory’s
theorem, the number of positive Lagrange multipliers is at most n + 1, where n is
the dimension of x. In other words, without loss of generality, let the Lagrange mul-
tipliers λ

νs

1 , λ
νs

2 , . . . , λ
νs

m′ be positive, where m′ ≤ n + 1. Hence, the corresponding
subintervals Y

νs

k , with respect to λ
νs

k for k = 1,2, . . . ,m′, are active intervals. How-
ever, we have two cases. First, if the subinterval is an ε∪-active interval, then

1

2
‖ανs

k (y
νs

k − η
L,νs

k)(η
U,νs

k − y
νs

k)‖ ≤ 1

8
α

νs

k ‖ηU,νs

k − η
L,νs

k ‖2 ≤ 1

8
ᾱL2

νs
,

where ᾱ is a constant defined in Step 0 of Algorithm 3. Since Lνs → 0, we can find
an integer s2 and the inequality 1

8 ᾱL2
νs

≤ ε is valid for s > s2. Otherwise, if Y
νs

k is not
an ε∪-active interval. From the definition of ε∪ = 2ε · min{1,1/ᾱ}, we obtain

1

2
‖ανs

k (y
νs

k − η
L,νs

k)(η
U,νs

k − y
νs

k)‖ ≤ ε∪ᾱ‖ηU,νs

k − η
L,νs

k ‖2 ≤ ε

N2
< ε,

106 T.-J. Shiu, S.-Y. Wu

where 1/N is the length of the initial discretized subinterval in Algorithm 3. More-
over, g(xνs , y

νs

k) = −(α
νs

k /2)(y
νs

k − η
L,νs

k)(η
U,νs

k − y
νs

k). Consequently, for all s > s2,
we can obtain −λ

νs

k · ε ≤ λ
νs

k g(xνs , y
νs

k) ≤ 0.
Finally, we present that g(x∗, y) ≤ 0 for y ∈ Y is true. Suppose that the collection

of the remaining subinterval Ec
νs

is nonempty for s = 1,2, Otherwise, the proof
is achieved if Ec

νs
is empty for some s. Let Yr be a subinterval in Ec

νs
for all s. We

denote that

y∗
r ∈ arg max

y∈Yr

gr(x
∗, y) and yνs

r ∈ arg max
y∈Yr

gr(x
νs , y),

where gr(x, y) is the approximate concave function with (5) on Yr . Assume that, by
contradiction, gr(x

∗, y∗
r) ≥ κ , for some κ > 0. Since gr is a continuous differentiable

function with respect to variable x, there is an index sκ ∈ N such that gr(x
νs , y∗

r) ≥
κ/2, for all s ≥ sκ . This concludes that

gr(x
νs , yνs

r) ≥ gr(x
νs , y∗

r) ≥ κ/2, for all s ≥ sκ .

Since Yr ∈ Ec
νs

for all s ∈ N, there must exist an index of maximal γ -infeasibility cνs

and the corresponding subinterval Ycνs
∈ Ec

νs
such that

gcνs
(xνs , ycνs

) > gr(x
νs , yνs

r) ≥ κ/2,

where ycνs
∈ arg maxy∈Ycνs

gcνs
(xνs , y) and gcνs

(x, y) is the concave function with
(5) on Ycνs

. Hence, we conclude that gcνs
(x, y) is the new member of the constraints

in the problem (NSIPαBB(Eνs+1, ανs+1)). This implies that

gcνs
(xνs+1, y) ≤ 0 for y ∈ Ycνs

where xνs+1 is the stationary point of the problem (NSIPαBB(Eνs+1, ανs+1)). There-
fore, we have

gcνs
(xνs , ycνs

) − gcνs
(xνs+1, ycνs

) ≥ κ/2.

Thus, ‖∇xgcνs
(x̄νs , ycνs

)‖‖dνs ‖ ≥ κ/2 for some point x̄νs lies between the segment
generated by xνs and xνs+1. From Lemma 1, we know that ‖dνs ‖ → 0. This contra-
dicts the inequality. Consequently, we obtain

lim
s→∞gr(x

νs , y) = gr(x
∗, y) ≤ 0,

for all y ∈ Yr Therefore, given any γ > 0, there is s3 ∈ N such that gr(x
νs , y) ≤ γ

for y ∈ Yr and for all Yr ∈ Ec
νs

when s > s3. Let s̄ = max{s1, s2, s3}. Then xνs̄ is
a stationary point with ε-complementarity and γ -feasibility. Therefore, our proof is
complete. �

We choose ε∪ to be a small positive number for the numerical implementa-
tion in Algorithm 3. In the end, we make our numerical solution satisfy the ε-
complementarity slackness condition since the complementarity slackness condition

Relaxed cutting plane method with convexification for NSIP problems 107

(3) is difficult to satisfy. In Theorem 2, −λν
k · ε ≤ λν

kg(xν, yν
k) ≤ 0 holds if the ac-

tive point yν
k is not an ε∪-active point. Hence, the existence of the ε∪-active interval

helps us avoid dividing the unnecessary active intervals. In conclusion, the ε∪-active
interval plays an important role in the numerical experiment.

We prove that Algorithm 3 terminates in a finite number of iterations for any given
tolerances ε > 0 and γ > 0. Let the point xν∗(ε,γ) be generated by Algorithm 3 when
the algorithm terminates with ε-complementarity and γ -feasibility. In the following
theorem, we show that any accumulation point of xν∗(ε,γ) as ε, γ → 0 is the station-
ary point of the problem (NSIP).

Theorem 3 Let xν∗(ε,γ) be the stationary point with ε-complementarity and γ -
feasibility of the problem (NSIP) generated by Algorithm 3. Then,

(a) For a fixed tolerance ε > 0, every accumulation point xν∗(ε) of xν∗(ε,γ) as γ → 0
is a stationary point with ε-complementarity of the problem (NSIP).

(b) Every accumulation point xν∗
of xν∗(ε) as ε → 0 is a stationary point of the

problem (NSIP).

Proof We first show (a). Since X is a compact subset of R
n, there exists a point

xν∗(ε,γ) ∈ X such that xν∗(ε,γ) → xν∗(ε) as γ → 0. Furthermore, according to the
proof in Theorem 2, the result in (a) follows immediately. Next, we show (b). Fol-
lowing the result in (a), we obtain xν∗(ε) ∈ F . As F is a compact subset of R

n, there
exists an accumulation point xν∗ ∈ F of xν∗(ε) as ε → 0. Let y

ν∗(ε)
1 , y

ν∗(ε)
2 , . . . , y

ν∗(ε)
m′′ ,

m′′ ≤ n + 1, be the points satisfying the KKT conditions (11)–(13) with positive La-
grange multipliers λ

ν∗(ε)
1 , λ

ν∗(ε)
2 , . . . , λ

ν∗(ε)
m′′ at xν∗(ε). Thus, we have

∇f (xν∗(ε)) +
m′′∑

k=1

λ
ν∗(ε)
k ∇xg(xν∗(ε), yν∗(ε)

k) = 0, (24)

for all ε > 0. Hence, (24) converges to (11) when ε → 0. Moreover, define

δν∗(ε) := max
1≤k≤m′′{−g(xν∗(ε), yν∗(ε)

k)}.

Therefore, 0 ≤ δν∗(ε) ≤ ε is obtained according to the stopping criterion of Algo-
rithm 3 and limε→0 δν∗(ε) = 0. Let ε → 0. Due to the continuity of function g, we
obtain the result (b).

�

Remark 2 Since ε∪ → 0 as ε → 0, Lemma 3 may not hold. Hence, this fact leads to
the failure of the convergence proof in Theorem 2. We can not show the result of (b)
in Theorem 3 by letting ε → 0 and applying Theorem 2.

5 Numerical experience

In this section, we apply Algorithm 3 to some examples. We implement Algorithm 3
in Matlab 7.0 and use the routine fmincon in Matlab, with default tolerances as the

108 T.-J. Shiu, S.-Y. Wu

black box NLP solver in Step 2 of Algorithm 1. In particular, the tolerance for con-
straint violation is 1e − 6. All the experiments were run on a personal computer with
AMD(R) Phenom II(R) CPU 3.0 GHz and 2 GB RAM.

Example 1 Among all control design techniques, the Proportional-Integral-Deriva-
tive (PID) controller design problem is the most widely used. The PID controller
design problem is formulated as an SIP problem in [9]. More recently, the authors
in [3] applied the semi-infinite programming technique to solve the optimal worst-
case H2 design of the PID controller for uncertain nonminimum-phase plants. The
first example was taken from [9] and was implemented in [13, 25]. The PID controller
design problem minimizes the cost function given by

f (x) = x2(122 + 17x1 + 6x3 − 5x2 + x1x3) + 180x3 − 36x1 + 1224

x2(408 + 56x1 − 50x2 + 60x3 + 10x1x3 − 2x2
1)

,

and subject to the constraint

g(x, y) = �(T (x, y)) − 3.33(�(T (x, y)))2 + 1 ≤ 0, for all y ∈ Y,

where

x = (x1, x2, x3)
� ∈ X, for X = [0,100] × [0.1,100] × [0,100] ⊂ R

3; and

T (x, y) = 1 + H(x,yj)G(yj); H(x, s) = x1 + x2

s
+ x3s;

G(s) = 1

(s + 3)(s2 + 2s + 2)
,

with Y = [10−6,30], j = √−1. �(a) and �(a) represent the imaginary and real part
of complex number a, respectively. To start our algorithm, we have to determine the
value of α first. Generally, the estimation of α is not easy. Here, we evaluate the
explicit form of the second derivative of the constraint function and then set α =
3.4763. The calculation of α costs time; thus we let αν

k = 3.4763 be a constant for
all k and ν. We initialize our algorithm with the tolerances ε = 1e − 4 and γ =
1e − 6. For comparison, we implement different values of m1, where m1 denotes the
number of chosen subintervals in the initial step (Step 0) of Algorithm 3. Create a
modified Algorithm 3, denoted Algorithm 3.a, by setting m1 = N in Step 0 of the
Algorithm 3. That is, we select all the discretized subintervals in the initial step and
need not to check the γ -feasibility in each iteration. We also use Algorithm 1 to solve
the subproblem generated by Algorithm 3.a. Moreover, the subroutine for solving the
SIP problem in Matlab called fseminf is also implemented for comparison with our
results. The following table lists the numerical results for Example 1.

Table 1 shows opt-val as the computed optimal value, cpu-t as the computation
time, #iter as the iteration number taken in two algorithms, and #re-int as the number
of remaining subintervals in Algorithm 3. Moreover, maxg denotes the optimal value
of the constraint function g at the terminated solution over Y . In Table 1, the number
of infeasible subintervals is few, and we add five infeasible subintervals to both cases.
Since the number of constraints in Algorithm 3 is less than that in Algorithm 3.a,

Relaxed cutting plane method with convexification for NSIP problems 109

Table 1 Numerical results for Example 1

Algorithm N m1 opt-val cpu-t #iter #re-int maxg

3.a 100 100 0.174759 8.0525 18 – −4.0823e-8

3 100 10 0.174711 4.2261 29 85 −3.1748e-6

3.a 300 300 0.174640 18.4632 11 – −1.1776e-5

3 300 30 0.174632 6.8447 21 265 −4.9648e-6

fseminf – – 0.174627 106.8047 – – 1.8152e-9

Fig. 1 Constraint and concave
approximation at the terminated
step in Example 1

Algorithm 3 at least saves half of the time in computation. Although the number of
iterations for Algorithm 3 is greater than that in Algorithm 3.a, the total CPU time
spent is less than that in Algorithm 3.a. In the case of N = 100, the average CPU
time of Algorithm 3 for each iteration, 0.5538 s, is much less than the average time
of Algorithm 3.a, 0.1735 s. Therefore, selecting some of the subintervals instead of
involving all the subintervals makes the computation more efficient. We can also
find in Fig. 1 that the subintervals we refine concentrate on the neighborhood of the
active point. Furthermore, the terminated solution of Algorithm 3 is feasible to this
example. As g(x, y) ≤ gj (x, y) and gj (x, y) = g(x, y) + αj

2 (y − ηL
j)(ηU

j − y) ≤ γ

for all y ∈ Yj and for all Yj ∈ Ec
ν at each iteration ν, the terminated solution generated

by Algorithm 3 solution may be feasible.

Example 2 Let Y = YP ∪YS be the union of disjoint closed design frequency interval
of a filter, where YP = [0, yp] and YS = [ys,π] represent the passband and stopband,
respectively. 0 < yp < ys < π are well-defined frequencies. A desired prescription
for the frequency response of the filter is given by

D(y) =
{

e−jyτ0 , for y ∈ YP ;
0, for y ∈ YS,

(25)

110 T.-J. Shiu, S.-Y. Wu

where τ0 is the given constraint group delay and j = √−1. The Finite Impulse Re-
sponse (FIR) filter design problem considers the best approximation of a given mag-
nitude response by that of a FIR filter. The most recent approach consists of solving
the complex Chebyshev approximation problem [10, 17]

ρ∗
CA := min

x∈Rn
max
y∈Y

W(y)
∣∣|D(y)| − |H(x,y)|∣∣ (26)

where x := (x1, . . . , xn)
� ∈ R

n is the vector containing the coefficients of the unit
impulse response, and

H(x,y) :=
n∑

k=1

xke
−jy(k−1).

Problem (26) is equivalent to the nonlinear SIP problem

max
(x,δ)∈Rn+1

δ

subject to W(y)
∣∣|D(y)| − |H(x,y)|∣∣ − δ ≤ 0, for all y ∈ Y.

In [16, 17], the authors suggest some new algorithms for the solution of problem
(26) in the case that problem (26) is a convex SIP problem. More general formulations
of the design approximation problems in the frequency domain are presented in [10].
The authors in [10] proposed serval non-convex SIP models for the FIR filter design
and solved serval specific design problems. In Example 2, we implement one of the
non-convex SIP models in [10].

Let n = 91, YP = [0,π/5], and YS = [π/4,π]. The desired frequency response is
given by τ0 = 120 in (25). This example approximates |D(y)| = 1 by the composed
magnitude response MQ(y)M(x, y) of both filters in YP and bounds MQ(y)M(x, y)

by a constant δS := 3.16227e − 4, where the functions are given by

M(x,y) = |H(x,y)|, and MQ(y) = |Q(jy)|;
Q(y) := 1

1 + 1.3202(y/ωg) + 0.86175(y/ωg)2 + 0.2887(y/ωg)3
,

(27)

where ωg := π/7.02832 is a constant. From [10], we know that MQ(y) is positive
for all y ∈ Y . Hence, the error function |1 − MQ(y)M(x, y)| on YP can be rewritten
as

MQ(y)

(
1

MQ(y)
− M(x,y)

)
, for y ∈ YP ,

and the other error function on YS is

|0 − MQ(y)M(x, y)| = MQ(y)M(x, y) ≤ δS, for y ∈ YS.

Thus, this problem can be interpreted as the problem (26) with the weight function
W(y) = MQ(y) and the desired magnitude response 1/MQ(y) in YP . Due to the

Relaxed cutting plane method with convexification for NSIP problems 111

Table 2 Numerical results for Example 2

Algorithm N m1 opt-val cpu-t #iter #re-int maxg

3.a 120 120 0.007810 46757.9496 150∗ – −2.0261e-6

3 120 60 0.007756 23419.6712 92 23 6.1378e-8

Fig. 2 Magnitude in Example 2

result in [10], the problem has a solution that can be computed by the following non-
convex SIP problem:

(SIPFIR) max
(x,δ)∈X

δ

subject to +1 − MQ(y)M(x, y) − δ ≤ 0, for y ∈ YP ,

−1 + MQ(y)M(x, y) − δ ≤ 0, for y ∈ YP ,

MQ(y)M(x, y) − δS ≤ 0, for y ∈ YS,

where we restrict X = [−0.3,0.3]n+1. We discretize YP into 20 subintervals and YS

into 100 subintervals to implement the (SIPFIR) problem. The parameters are set by
ε = 1e − 4 and γ = 1e − 6. After calculating, we let α = 1.901 to start the two algo-
rithms. Table 2 shows our results and Fig. 2 represents the magnitude MQ(y)M(x, y)

for y ∈ [0,π].
The symbol ∗ denotes that Algorithm 3.a reaches the maximum iteration number

we set. Therefore, Algorithm 3.a here runs for 150 iterations and does not meet the
stopping criteria. Note that fseminf failed on this example. For each iteration, we find
that the NLP solver in Matlab does not compute efficiently. Moreover, the improve-
ment for the optimal value is very torpid. Hence, if the number of initial discretization
is too small, it costs more CPU time to run this example. However, Algorithm 3 is
obviously much better than Algorithm 3.a in the FIR filter design example.

112 T.-J. Shiu, S.-Y. Wu

6 Conclusion

We propose a new algorithm and show the convergence properties of our algorithm in
this paper. We improve the algorithm proposed in [8] by combining it with the concept
of the cutting plane method. The convexification relaxation on the variable y for
the constraint function g can make the computation for the lower level optimization
problem easier. This method has an advantage in solving non-convex SIP problems,
especially when the constraint function g is complicated. Based on the numerical
results in the numerical section, Algorithm 3 implements with better efficiency in
Examples 1 and 2 than the other two methods.

Acknowledgements The authors would like to thank the associate editor and the two anonymous refer-
ees for their helpful comments and suggestions that have enabled us to improve the preliminary version of
this paper.

References

1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general
twice-differentiable constrained NLPs—I: Theoretical advances. Comput. Chem. Eng. 22, 1137–1158
(1998)

2. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for gen-
eral twice-differentiable constrained NLPs—II: Implementation and computational results. Comput.
Chem. Eng. 22, 1159–1179 (1998)

3. Bianco, C.G.L., Piazzi, A.: A hybrid algorithm for infinitely constrained optimization. Int. J. Syst.
Sci. 32, 91–102 (2001)

4. Betrò, B.: An accelerated central cutting plane algorithm for linear semi-infinite programming. Math.
Program. 101, 479–495 (2004)

5. Bhattacharjee, B., Green, W.H. Jr., Barton, P.I.: Interval methods for semi-infinite programs. Comput.
Optim. Appl. 30, 63–93 (2005)

6. Bhattacharjee, B., Lemonidis, P., Green, W.H.Jr., Barton, P.I.: Global solution of semi-infinite pro-
grams. Math. Program. 103, 283–307 (2005)

7. Floudas, C.A.: Deterministic Global Optimization, Theory, Methods and Applications. Kluwer Aca-
demic, Dordrecht (2000)

8. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-
infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)

9. Gonzaga, G., Polak, E., Trahan, R.: An improved algorithm for optimization problems with functional
inequality constraints. IEEE Trans. Autom. Control AC25, 49–54 (1980)

10. Görner, S., Potchinkov, A., Reemtsen, R.: The direct solution of nonconvex nonlinear FIR filter design
problems by a SIP method. Optim. Eng. 1, 123–154 (2000)

11. Gramlich, G., Hettich, R., Sachs, E.W.: Local convergence of SQP methods in semi-infinite program-
ming. SIAM J. Optim. 5, 641–658 (1995)

12. Hettich, R., Kortanek, K.: Semi-infinite programming: theory, methods and applications. SIAM Rev.
35, 380–429 (1993)

13. Jennings, L.S., Teo, K.L.: A computational algorithm for functional inequality constrained optimiza-
tion problems. Automatica 26, 371–375 (1990)

14. Kortanek, K., No, H.: A central cutting plane algorithm for convex semi-infinite programming prob-
lems. SIAM J. Optim. 3, 901–918 (1993)

15. Ni, Q., Ling, C., Qi, L., Teo, K.L.: A truncated projected Newton-type algorithm for large-scale semi-
infinite programming. SIAM J. Optim. 16, 1137–1154 (2006)

16. Potchinkov, A., Reemtsen, R.: FIR filter design in the complex domain by a semi-infinite program-
ming technique. I. The method. Arch. Elektron. Übertrag.tech. 48, 35–144 (1994). II. Examples: 200–
209

17. Potchinkov, A., Reemtsen, R.: The simultaneous approximation of magnitude and phase by FIR dig-
ital filters. Part 1. A new approach. Int. J. Circuit Theory Appl. 25, 167–177 (1997). Part 2. Methods
and examples: 179–197

Relaxed cutting plane method with convexification for NSIP problems 113

18. Price, C.J., Coope, C.J.: Numerical experiments in semi-infinite programming. Comput. Optim. Appl.
6, 169–189 (1996)

19. Polak, E.: Optimization, Algorithms and Consistent Approximations. Springer, Berlin (1997)
20. Qi, L., Ling, C., Tong, X.J., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite

programming. Comput. Optim. Appl. 42, 1–30 (2009)
21. Reemsten, R., Görner, S.: Numerical methods for semi-infinite programming: a survey. In: Reem-

sten, R., Rückmann, J. (eds.) Semi-infinite Programming, pp. 195–275. Kluwer Academic, Boston
(1998)

22. Shapiro, A.: Semi-infinite programming, duality, discretization and optimality condition. Optimiza-
tion 58, 133–161 (2009)

23. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Program. 91,
53–69 (2001)

24. Tanaka, Y., Fukushima, M., Ibaraki, T.: A global convergent SQP method for semi-infinite nonlinear
optimization. J. Comput. Appl. Math. 23, 141–153 (1988)

25. Teo, K.L., Yang, X.Q., Jennings, L.S.: Computational discretization algorithms for functional inequal-
ity constrained optimization. Ann. Oper. Res. 28, 215–234 (2000)

26. Wu, S.Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite
programming. Optim. Methods Softw. 20, 629–643 (2005)

27. Zhang, L.P., Hayashi, S., Wu, S.Y.: On the finite termination of an exchange method for convex and
nonlinear semi-infinite programming problems. Technique report (2010)

28. Zhang, L.P., Wu, S.Y., López, M.A.: A new exchange method for convex semi-infinite programming.
SIAM J. Optim. 20, 2959–2977 (2010)

	Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems
	Abstract
	Introduction
	Preliminaries
	The alphaBB method
	The cutting plane method

	Modified convexification algorithm
	Convergence properties for algorithm
	Numerical experience
	Conclusion
	Acknowledgements
	References

