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Abstract We investigate the relationships between various sum of squares (SOS)
and semidefinite programming (SDP) relaxations for the sensor network localization
problem. In particular, we show that Biswas and Ye’s SDP relaxation is equivalent
to the degree one SOS relaxation of Kim et al. We also show that Nie’s sparse-SOS
relaxation is stronger than the edge-based semidefinite programming (ESDP) relax-
ation, and that the trace test for accuracy, which is very useful for SDP and ESDP
relaxations, can be extended to the sparse-SOS relaxation.

Keywords Sensor network localization · Semidefinite programming relaxation ·
Sum of squares relaxation · Individual trace

1 Introduction

In its basic form, the sensor network localization problem is that of finding the co-
ordinates of some sensors xi = (x1

i , x2
i )T ∈ R

2, i = 1, . . . ,m, given the Cartesian
coordinates of n − m points xm+1, . . . , xn (called anchors) in R

2 and the Euclidean
distances ‖xi − xj‖ for all (i, j) ∈ A, where A ⊂ {(i, j) ∈ N

2 : 1 ≤ i < j ≤ n} is
the set of edges. We say that the two points xi and xj are neighbors if (i, j) ∈ A.
In practice, measurements may be inexact so that we only know some estimated dij ,
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where

d2
ij = ‖xtrue

i − xtrue
j ‖2 + δij ∀(i, j) ∈ A,

δ = (δij )(i,j)∈A is the noise vector and xtrue
i is the true position of the ith point. When

δ = 0, we call this problem the noiseless sensor network localization problem.
The sensor network localization problem is NP-hard in general, and thus ef-

forts have been directed at solving this problem approximately. In particular, vari-
ous convex relaxations have been proposed to approximate the problem. Examples
include second-order cone programming (SOCP) relaxations [7, 18], semidefinite
programming (SDP) relaxations [3–5, 8–12, 16], edge-based semidefinite program-
ming (ESDP) relaxations [15, 19] and sum of squares (SOS) relaxations [13]. We
will describe known relationships between these relaxations in Sect. 3. In this paper,
we will add to the list a comparison between SOS relaxations and some SDP type
relaxations, and in particular, show that SOS relaxations are stronger.

The paper is organized as follows. We introduce notations in Sect. 2. In Sect. 3,
we briefly describe some existing convex relaxation approaches and their known re-
lationships. We compare SOS relaxations with some SDP type relaxations in Sect. 4.
A simple condition for testing solution accuracy is given in Sect. 5. We present some
numerical examples and simulations in Sect. 6 to illustrate the strength of SOS type
relaxations.

2 Notation

Throughout this paper, sensor positions xi are 2 × 1 vectors, S n denotes the space
of n × n real symmetric matrices, and T denotes transpose. For a vector v ∈ R

p , ‖v‖
denotes the Euclidean norm of v. For A ∈ R

p×q , aij denotes the (i, j)th entry of A.
For A,B ∈ S p , A � B means A − B is positive semidefinite. For A ∈ S p and an
index set I , AI = (

aij

)
i,j∈I denotes the principal submatrix of A comprising the

rows and columns of A indexed by I .
Any instance of the sensor network localization problem has an associated graph

structure, namely the graph G = ({1, . . . , n}, A). We will work under the standard
assumptions that every connected component of G has at least one index correspond-
ing to an anchor and that each sensor connects to at least one other sensor. The first
assumption is justified since if a connected component has no anchors, all associated
sensors are clearly not localizable, i.e. their positions are not uniquely determined
from the known distances; while the second assumption is reasonable since if a sen-
sor is only connected to anchors, determining its location can be treated as a separate
problem. We partition the set A of edges into the sets As = {(i, j) ∈ A : i < j ≤ m}
(edges from a sensor to a sensor) and Aa = {(i, j) ∈ A : i ≤ m < j} (edges from
a sensor to an anchor). The set βk will be the set of all monomials in variables
{x1

i , x2
i : i = 1, . . . ,m} with degree up to k, while for (i, j) ∈ A, the set βk

ij will denote

the set of all monomials of degree up to k in variables {x1
i , x2

i , x1
j , x2

j } if (i, j) ∈ As ,

or in variables {x1
i , x2

i } if (i, j) ∈ Aa . Let β be any set of monomials. We define ξβ to
be the column vector indexed by β with polynomial entries such that for each s ∈ β ,
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[ξβ ]s = s(x). Let � be the set of monomials obtained by taking all possible pairwise
products of the elements of β . Then

ξβξT
β =

∑

s∈�

s(x)As, (1)

for some |β|× |β| real symmetric matrices As . Given a real vector y indexed by a set
of monomials containing �, we define the moment matrix of y with respect to β as

Mβ(y) =
∑

s∈�

ysAs,

a linearization of (1).

3 Convex relaxations for sensor network localization

In this section, we discuss briefly some existing convex relaxations for the sensor
network localization problem. We remark on algorithms for solving these relaxations
at the end of this section.

3.1 SDP type relaxations

The sensor network localization can be formulated as the following optimization
problem:

min
x1,...,xm

∑

(i,j)∈A

∣∣∣‖xi − xj‖2 − d2
ij

∣∣∣ . (2)

In the SDP approach of Biswas and Ye [3, 4], letting X = (
x1 · · · xm

) ∈ R
2×m and I2

denote the 2×2 identity matrix, they considered the following SDP relaxation of (2):

υsdp := min
Z

∑

(i,j)∈A

∣∣∣�ij (Z) − d2
ij

∣∣∣

(3)

s.t. Z =
(

U XT

X I2

)
� 0,

where U = (
uij

)
1≤i,j≤m

and

�ij (Z) :=
{

uii − 2uij + ujj if i < j ≤ m;
uii − 2xT

i xj + ‖xj‖2 if i ≤ m < j.

When m is large, SDP relaxation (3) can be hard to solve. In [19], Wang et al. further
relaxed (3) to the so-called ESDP relaxation, by requiring only the principal 4 × 4
submatrices of Z associated with As to be positive semidefinite. Specifically, the
ESDP relaxation takes the form
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υesdp := min
Z

∑

(i,j)∈A

∣∣
∣�ij (Z) − d2

ij

∣∣
∣

(4)

s.t.

⎛

⎝
uii uij xT

i

uij ujj xT
j

xi xj I2

⎞

⎠ � 0 ∀(i, j) ∈ As ,

where Z stands for the matrix
(

U XT

X I2

)
.

Let P ⊆ R
2×m be the set of minimizers of problem (2). Let Ssdp and Sesdp de-

note the solution set of (3) and (4) respectively and let Psdp and Pesdp be the set of
corresponding recovered sensor positions X. Then it is obvious from the definition
of ESDP relaxation that Psdp ⊆ Pesdp in the noiseless case. Furthermore, it is sug-
gested by [19, Example 1] that the inclusion is strict in general. In other words, in the
noiseless case, SDP relaxation can be strictly stronger than ESDP relaxation. In the
noisy case, one cannot expect inclusion of solution sets but it is not hard to see that
υsdp ≥ υesdp.

We next present a simple example to illustrate the above relaxations.

Example 1 Let n = 4 and m = 2. The anchors are x3 = (−1,0)T and x4 = (1,0)T ,
and the true positions of the sensors are x1 = (0,0)T and x2 = (0,1)T . We set A =
{(1,2), (1,3), (1,4)}. Since there are only two sensors, ESDP and SDP relaxations
coincide.

According to (2), the sensor network localization problem is formulated as

min
x1,x2

|‖x1 − x2‖2 − 1| + |‖x1 − x3‖2 − 1| + |‖x1 − x4‖2 − 1|. (5)

By definition, �12(Z) = u11 − 2u12 + u22, �13(Z) = u11 + 2x1
1 + 1 and �14(Z) =

u11 − 2x1
1 + 1. Hence, the ESDP relaxation of (5) is given by

min |u11 − 2u12 + u22 − 1| + |u11 + 2x1
1 | + |u11 − 2x1

1 |

s.t.

⎛

⎝
u11 u12 xT

1
u12 u22 xT

2
x1 x2 I2

⎞

⎠ � 0.

Before ending this subsection, we would like to mention that an SDP relaxation
other than (3) can be derived by considering an Euclidean distance matrix (EDM)
completion problem; see for example [1, 2, 9–12]. The derivation starts by treating
anchors the same as sensors, and the resulting relaxation is equivalent to the above
Biswas-Ye SDP relaxation in the sense that they give the same set of Z. In other
words, the Biswas-Ye SDP relaxation is essentially equivalent to the classical EDM
relaxations used in the literature. We refer the readers to [12, Sect. 5] for a detailed
discussion.

3.2 SOCP relaxation

SOCP relaxation was proposed in [7] and extensively studied in [18]. In this ap-
proach, one replaces the absolute value in (2) by the function (·)+ := max{·,0}, yield-
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ing a convex optimization problem:

υsocp := min
x1,...,xm

∑

(i,j)∈A

(
‖xi − xj‖2 − d2

ij

)

+ . (6)

It is shown in [18] that (6) can be reformulated into a standard SOCP.
Let Ssocp denote the solution set of (6) and let Psocp denote the set of correspond-

ing recovered sensor positions X. In [18, Proposition 3.1], it is shown that in the
noiseless case, Psdp ⊆ Psocp. Following essentially the same line of arguments, it is
shown in [19, Theorem 4.5] that Pesdp ⊆ Psocp in the noiseless case. This last in-
clusion is in general strict. To see this, recall from [18, Proposition 6.2] that, in the
noiseless case, if some sensor is not in the convex hull of other points, Psocp is not a
singleton set. However, using the same proof as [20, Theorem 2.2], we see that Pesdp
is a singleton set for any d-trilateration graphs such that {xtrue

1 , . . . , xtrue
n } are generic1

and that the first d + 1 points in the trilateration ordering are anchors, when there is
no noise in the distance measurements. Thus, there are cases where sensor positions
can be recovered by solving ESDP relaxation but not SOCP relaxation. Combining
the discussion in this and the previous subsection, we have in the noiseless case that

P ⊆ Psdp ⊆ Pesdp ⊆ Psocp, (7)

where the third inclusion can be strict in general from the above discussion, and [19,
Example 1] suggests that the second inclusion can also be strict in general.

In the noisy case, it is proved in [18, Proposition 6.2] that υsdp ≥ υsocp and in
[19, Theorem 4.5] that υesdp ≥ υsocp. Hence, combining with the discussion in the
previous subsection, we have in the noisy case that

υsdp ≥ υesdp ≥ υsocp. (8)

3.3 SOS type relaxations

There are two different SOS relaxations, based on different formulations of the sensor
network localization problem.

An SOS relaxation is proposed in [8], where the original problem is formulated as
in (2) and a degree one SOS relaxation is used. More specifically, let

‖xi − xj‖2 − d2
ij =:

∑

s∈β2

p
ij
s s(x) ∀(i, j) ∈ A.

The relaxation is given by

υ1
mom := min

y

∑

(i,j)∈A

∣∣∣∣∣∣

∑

s∈β2

p
ij
s ys

∣∣∣∣∣∣

s.t. Mβ1(y) � 0,

y1 = 1,

(9)

1We say that the points {xtrue
1 , . . . , xtrue

n } are generic if there does not exist a non-zero polynomial h :
R

2×n → R with integer coefficients such that h(xtrue
1 , . . . , xtrue

n ) = 0.
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where Mβ1(y) is the moment matrix generated by moment vector y = (ys)s∈β2 .
Instead of (2), the sensor network localization can also be formulated as the fol-

lowing polynomial optimization problem:

min
x1,...,xm

p(x) :=
∑

(i,j)∈A
(‖xi − xj‖2 − d2

ij )
2. (10)

This is an unconstrained polynomial optimization problem and can be relaxed using
sum of squares, as proposed in [13] by Nie:

υsos := max
qi ,γ

γ

s.t. p(x) − γ = ∑r
i=1 qi(x)2,

(11)

where qi(x) are arbitrary polynomials. It is well known that this problem can be
reformulated as the following SDP

υsos := max
W,γ

γ

s.t. p(x) − γ = ξT
β2Wξβ2 , W � 0.

(12)

Write p(x) = ∑
s∈β4 pss(x), the dual of (12) can then be written as

υmom := min
y

∑

s∈β4

psys

s.t. Mβ2(y) � 0, (13)

y1 = 1,

where y is a real vector indexed by β4. The solution set of (13) is denoted by Smom
and the sensor xi is recovered from a solution y ∈ Smom by setting xi = (yx1

i
, yx2

i
)T .

The set of all sensor positions (each sensor position is denoted by a 2 × 1 vector)
obtained this way is denoted by Pmom ⊆ R

2×m.
In view of the special structure of (10), Nie proposed the following sparse-SOS

relaxation:

υspsos := max
Wij ,γ

γ

s.t. p(x) − γ =
∑

(i,j)∈As

ξT

β2
ij

Wij ξβ2
ij
, (14)

Wij � 0 ∀(i, j) ∈ As .

This corresponds to demanding not only that p(x) − γ is a sum of squares, but also
that each of its summands is the square of a polynomial depending only on xi and xj ,
for some (i, j) ∈ As . The dual of (14) is

υspmom := min
y

∑

(i,j)∈A

∑

s∈β4
ij

p
ij
s ys
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s.t. Mβ2
ij
(y) � 0 ∀(i, j) ∈ As , (15)

y1 = 1,

where

(‖xi − xj‖2 − d2
ij )

2 =:
∑

s∈β4
ij

p
ij
s s(x) ∀(i, j) ∈ A.

Note that Mβ2
ij
(y) � 0 for (i, j) ∈ As implies Mβ2

ij
(y) � 0 for (i, j) ∈ Aa , since each

sensor is connected to at least one other sensor. The solution set of (15) is denoted
by Sspmom. The sensor xi is recovered from a solution y of (15) by setting xi =
(yx1

i
, yx2

i
)T . The set of all sensor positions obtained this way is denoted by Pspmom ⊆

R
2×m. It was shown in [13, Theorem 3.4] that υspsos = υspmom and it is easy to see

that, in the noiseless case, P ⊆ Pmom ⊆ Pspmom and that Smom ⊆ Sspmom. A general
study of these sparse SOS relaxations can be found in [14].

We next present an example to illustrate Nie’s sparse-SOS relaxation.

Example 2 Consider the network in Example 1. Since there are only two sensors,
sparse-SOS and SOS relaxations coincide.

According to (10), the sensor network localization problem is formulated as

min
x1,x2

(‖x1 − x2‖2 − 1)2 + (‖x1 − x3‖2 − 1)2 + (‖x1 − x4‖2 − 1)2. (16)

The corresponding objective function in sparse-SOS relaxation (15) is obtained by
expanding the objective function in (16) and replacing polynomials s by variables ys .
Hence, sparse-SOS relaxation of (16) is

υ1 := min
y

f (y)

s.t. Mβ2(y) � 0,

y1 = 1,

(17)

where

f (y) = 1 − 2y(x2
2 )2 + y(x2

2 )4 − 2y(x1
2 )2 + 2y(x1

2x2
2 )2 + y(x1

2 )4 + 4yx2
1x2

2
− 4yx2

1 (x2
2 )3

− 4yx2
1 (x1

2 )2x2
2
− 2y(x2

1 )2 + 6y(x2
1x2

2 )2 + 2y(x2
1x1

2 )2 − 4y(x2
1 )3x2

2
+ 3y(x2

1 )4

+ 4yx1
1x1

2
− 4yx1

1x1
2 (x2

2 )2 − 4yx1
1 (x1

2 )3 + 8yx1
1x2

1x1
2x2

2
− 4yx1

1 (x2
1 )2x1

2
+ 6y(x1

1 )2

+ 2y(x1
1x2

2 )2 + 6y(x1
1x1

2 )2 − 4y(x1
1 )2x2

1x2
2
+ 6y(x1

1x2
1 )2 − 4y(x1

1 )3x1
2
+ 3y(x1

1 )4 .

While the relationships for SOCP, ESDP and SDP relaxations in the noiseless case
(as described in (7)) are well-known, up to now there were no such results relating
them to SOS relaxations. In the next section we fill in this gap, by establishing rela-
tionships between SOS and SDP relaxations.



616 J. Gouveia, T.K. Pong

3.4 Algorithms

All the aforementioned relaxations can be recast into standard SDPs, which can then
be solved by standard interior point solvers such as SeDuMi [17]. Besides, there are
methods specialized to solve some of these relaxations.

For SOCP relaxation (6), in [18], a fast distributed algorithm (SCGD algorithm)
has been proposed, exploiting the partial separable structure of the problem. Dis-
tributed algorithms have also been proposed in [4, 5] for SDP relaxation (3). On the
other hand, in [15], a fast distributed algorithm (LPCGD algorithm) has been pro-
posed to solve a variant of ESDP relaxation (the ρ-ESDP), which exploits its partial
separable structure. Specialized algorithms exploiting the clique structure of the net-
work have been proposed in [10, 11] for SDP relaxation (3),2 and in [8] for SDP
relaxation (3) and degree one SOS relaxation (9). In contrast to the many specialized
algorithms developed for these relaxations, for the SOS relaxations proposed by Nie,
there is currently no specialized algorithm exploiting the structure of the problems.

4 Relationship between SOS and SDP relaxations

In this section, we study the relationship between SOS and SDP relaxations. Our first
result shows that SDP relaxation (3) is equivalent to degree one SOS relaxation (9),
regardless of distance measurement noise. The proof presented is a simplification of
the original argument by the second author and is due to Paul Tseng. We also note
that part (b) of the theorem was already proved in [8].

Theorem 1

(a) Let Z be a feasible solution of (3), then there is a vector y indexed by β2 that is
feasible for (9) and has the same objective value.

(b) If y is a feasible solution of (9), then there exists Z that is feasible for (3) and
has the same objective value.

Proof (a) Let Z = (
U XT

X I2

)
, where X = (x1 . . . xm). Define y by setting y1 = 1,

yxk
i

= xk
i , yx1

i xk
j

= x1
i xk

j and yx2
i x2

j
= uij − x1

i x1
j for all i, j = 1, . . . ,m and k = 1,2.

Let vk be the vector (xk
1 . . . xk

m), for k = 1,2, then we have

Mβ1(y) =
⎛

⎝
1
vT

1
vT

2

⎞

⎠ (1 v1 v2) +
(

0 0
0 U − XT X

)
.

The first matrix is positive semidefinite of rank 1 while the second matrix is positive
semidefinite since, by (3) and a basic property of Schur complement, U − XT X � 0.

2As remarked earlier, these works consider an equivalent SDP relaxation obtained via an Euclidean dis-
tance matrix completion problem.
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Thus y is a feasible solution of (9) and it is easy to check that y gives the same
objective value as Z.

(b) Consider the submatrices U1 and U2 of Mβ1(y) indexed by {1, x1
1 , . . . , x1

m} and
{1, x2

1 , . . . , x2
m} respectively. Let wk = (yxk

1
. . . yxk

m
), k = 1,2. By the same property

of Schur complement as above, we have Uk � wT
k wk for k = 1,2. Let U = U1 + U2

and X = ( w1
w2

)
, then

U = U1 + U2 � wT
1 w1 + wT

2 w2 = XT X,

hence Z = (
U XT

X I2

)
is a feasible solution of (3). Again, it is easy to check that Z gives

the same objective value as y. �

Our next result shows that, in the noiseless case, sparse-SOS relaxation is stronger
than ESDP relaxation.

Theorem 2 In the noiseless case, Pspmom ⊆ Pesdp.

Proof Take any X = (x1 . . . xm) ∈ Pspmom and the corresponding y ∈ Sspmom.
Then for each (i, j) ∈ As , it holds that Mβ2

ij
(y) � 0. Hence, both M{1,x2

i ,x2
j }(y) and

M{1,x1
i ,x1

j }(y), being principal submatrices of Mβ2
ij
(y), are positive semidefinite. For

(i, j) ∈ As , define ukl := yx1
k x1

l
+ yx2

k x2
l

for k, l ∈ {i, j}. We claim that

⎛

⎝
uii uij xT

i

uij ujj xT
j

xi xj I2

⎞

⎠ � 0.

To see this, it suffices to show that the Schur complement of I2,
(

uii uij

uij ujj

)
−

(‖xi‖2 xT
i xj

xT
i xj ‖xj‖2

)
,

is positive semidefinite. But this matrix is the sum of the Schur complement of 1 in
M{1,x1

i ,x1
j }(y), which is

(
y(x1

i )2 − (x1
i )2 yx1

i x1
j
− x1

i x1
j

y(x1
j )2 − x1

i x1
j yx1

i x1
j
− (x1

j )2

)

,

and the Schur complement of 1 in M{1,x2
i ,x2

j }(y), which is

(
y(x2

i )2 − (x2
i )2 yx2

i x2
j
− x2

i x2
j

y(x2
j )2 − x2

i x2
j yx2

i x2
j
− (x2

j )2

)

.

Both matrices are positive semidefinite since M{1,x2
i ,x2

j }(y) and M{1,x1
i ,x1

j }(y) are.

Hence, the claim follows.
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Define Z := (
U XT

X I2

)
. Then Z is feasible for (4). We shall show that Z ∈ Sesdp. To

this end, let qij be a column vector such that

‖xi − xj‖2 − d2
ij =:

∑

s∈β2
ij

q
ij
s s(x) ∀(i, j) ∈ A.

Since Mβ2
ij
(y) � 0 for all (i, j) ∈ A, it follows that

⎛

⎝
1

∑
s∈β2

ij
q

ij
s ys

∑
s∈β2

ij
q

ij
s ys

∑
s∈β4

ij
p

ij
s ys

⎞

⎠ =
(

eT
1

qT

)

Mβ2
ij
(y)(e1 q) � 0

for all (i, j) ∈ A, where e1 is the vector that is one in the first entry and zero else-
where. This last relation implies

∑

s∈β4
ij

p
ij
s ys ≥

⎛

⎜
⎝

∑

s∈β2
ij

q
ij
s ys

⎞

⎟
⎠

2

=
(
�ij (Z) − d2

ij

)2 ∀(i, j) ∈ A.

Since y ∈ Sspmom, the noiseless assumption implies that
∑

(i,j)∈A(�ij (Z)−d2
ij )

2 = 0,
and hence Z solves (4). This proves that Pspmom ⊆ Pesdp. �

From the above proof, we obtain the following corollary.

Corollary 1 Consider the noiseless case. Let y ∈ Sspmom. For (i, j) ∈ As , define

xs
k := yxs

k
, ukl := yx1

k x1
l

+ yx2
k x2

l
, for s = 1,2 and k, l ∈ {i, j}. Then Z := (

U XT

X I2

) ∈
Sesdp.

Remark 1 Similarly one can show that, in the noiseless case, Pmom ⊆ Psdp.

We shall illustrate in Sect. 6 by numerical examples that the inclusions Pmom ⊆
Psdp and Pspmom ⊆ Pesdp are likely strict in general. However, we do not have ex-
plicit proofs for them. The same examples also suggest that Psdp and Pspmom are not
comparable.

5 Testing accuracy of individual sensors

As in [15, 18] and [19], one is interested in identifying sensors whose recovered
locations remain the same for all solutions since, in the noiseless case, these sensors
will turn out to be in their true position. Hence, we are interested in the following
set

Ispmom :=
{
i ∈ {1, . . . ,m} | (yx1

i
, yx2

i
) is invariant over Sspmom

}
.
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By invariance over Sspmom, we mean (yx1
i
, yx2

i
) is the same for any y ∈ Sspmom. In

order to identify elements in Ispmom, we consider a version of individual trace for
SOS relaxations.

Definition 1 For any y ∈ Sspmom, the ith individual trace of y is defined as

Tri (y) := y(x1
i )2 + y(x2

i )2 − (yx1
i
)2 − (yx2

i
)2.

Note that the trace is always nonnegative since y(xk
i )2 − (yxk

i
)2 is the determinant

of a principal submatrix of Mβ2
ij
(y), for k = 1,2. We have the following simple result,

generalizing the zero trace test to the setting of SOS relaxations. The proof parallels
that of [18, Proposition 4.1]. We include it for completeness.

Theorem 3 If Tri (y) = 0 for some y in the relative interior of Sspmom, then i ∈
Ispmom.

Proof We shall show that yx1
i

is invariant over Sspmom. The proof for yx2
i

is similar.

Note that Tri (y) = 0 implies y(x1
i )2 = (yx1

i
)2. Take any w ∈ Sspmom. Since y is in the

relative interior of Sspmom, there exists ε > 0 so that both

η := y + ε(w − y) and ζ := y − ε(w − y)

belong to Sspmom. Thus, y = η+ζ
2 and hence

0 = y(x1
i )2 − (yx1

i
)2 = 1

2
[η(x1

i )2 − (ηx1
i
)2] + 1

2
[ζ(x1

i )2 − (ζx1
i
)2] + 1

4
(ηx1

i
− ζx1

i
)2

≥ 1

4
(ηx1

i
− ζx1

i
)2 = ε2(wx1

i
− yx1

i
)2.

This shows that wx1
i
= yx1

i
and the proof is complete. �

Hence, after getting a solution y in the relative interior of Sspmom (say, by solving
the sparse-SOS relaxation using path-following interior point methods), we look at
the individual traces. If Tri (y) = 0, then the true position of the ith sensor is given by
(yx1

i
, yx2

i
)T .

It is not known whether the converse of Theorem 3 is true. Nonetheless, we are
able to establish a partial converse to the theorem in the noiseless case. This follows
from the fact that if y ∈ Sspmom, and Z ∈ Sesdp is obtained from y according to Corol-
lary 1, then the trace Tri (y) equals the ESDP trace tri (Z) defined in [19]. Then the
proofs of [15, Lemmas 2,3] follow through and we get the following result.

Lemma 1 In the noiseless case, let i ≤ m and y ∈ Sspmom be such that the corre-
sponding recovered sensor positions verify ‖xi − xj‖ = dij . Then if j > m, we have
Tri (y) = 0, and if j ≤ m, we have Tri (y) = Trj (y).

The next theorem follows from Lemma 1 by a simple induction argument.



620 J. Gouveia, T.K. Pong

Theorem 4 In the noiseless case, let i ∈ Ispmom be such that there exists a path with
nodes in Ispmom connecting xi to an anchor. Then Tri (y) = 0 for all y ∈ Sspmom.

We next illustrate Theorems 3 and 4 by an example.

Example 3 Consider sparse-SOS relaxation (17) in Example 2. Since p(x) is a sum
of squares, we have υ1 ≥ 0. By letting ȳ1 = 1 and ȳs = s(xtrue

1 , xtrue
2 ) for all s ∈ β2,

we obtain that ȳ is feasible for (17) and f (ȳ) = 0. Thus, υ1 = 0 and ȳ ∈ Sspmom.
Let y� ∈ Sspmom and let f1(y) and f2(y) be the linearization of (‖x1 − x2‖2 − 1)2

and (‖x1 − x3‖2 − 1)2 + (‖x1 − x4‖2 − 1)2 respectively, obtained by replacing s

with ys . Since these polynomials are sums of squares, it follows easily that f1(y) ≥ 0
and f2(y) ≥ 0 for any y feasible for (17). Using these facts, υ1 = 0, the expression
of f2(y) and the optimality of y�, we obtain in particular that

f2(y
�) = 2y�

(x2
1 )4 + 8y�

(x2
1 )2 + 4y�

(x1
1x2

1 )2 + 2y�
(x1

1 )4 = 0. (18)

It follows from (18) and M(y�) � 0 that y�
x1

1
= y�

x2
1

= y�
(x1

1 )2 = y�
(x2

1 )2 = 0. Hence,

(y�
x1

1
, y�

x2
1
)T has to equal (0,0)T , the true position of the first sensor.

On the other hand, consider ŷ1 = 1 and ŷs = s(xtrue
1 ,−xtrue

2 ) for all s ∈ β2. Ob-

viously, this is also a solution to (17). Thus, y∗ := ȳ+ŷ
2 also solves (17). However,

(y∗
x1

2
, y∗

x2
2
)T = (0,0)T , which is not the true position of the sensor. Computing the

trace for this sensor, since y∗
(x1

2 )2 = 0 and y∗
(x2

2 )2 = 1, we get Tr2(y
∗) = 1 > 0, and

so Theorem 4 would already guarantee us that this sensor position is not uniquely
determined.

6 Numerical comparison

6.1 Numerical examples

Theorem 2 says that in the noiseless case, sparse-SOS relaxation is at least as
strong as ESDP relaxation. We illustrate this fact in Example 4, which is taken from
[19, Example 1]. In [19], the same example was used to illustrate that SDP relax-
ation is stronger than ESDP relaxation. All computations presented were done with
SeDuMi1.1R3 [17] interfaced in Matlab7.8.0 (2009a), on Dell POWEREDGE 1950
equipped with Debian 5.0.6 (Linux). The Matlab codes that construct the problem
data in SeDuMi format are written based on the SDP and ESDP codes sent to Paul
Tseng by Yinyu Ye in a private communication in 2006. We used the default tolerance
of SeDuMi.

Example 4 Let n = 6 and m = 3. The anchors are x4 = (−0.4,0)T , x5 = (0.4,0)T

and x6 = (0,0.4)T , and the true positions of the sensors are x1 = (−0.05,0.3)T , x2 =
(−0.08,0.2)T and x3 = (0.2,0.3)T . We set A = {(1,2), (1,3), (1,4), (1,6), (2,3),

(2,4), (2,6), (3,5), (3,6)}.
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Fig. 1 The top left figure shows the anchor (“�”) and the solution found by solving ESDP relaxation (4).
Each sensor position (“∗”) found is joined to its true position (“◦”) by a line. The top right figure shows the
same information for the solution found by solving sparse-SOS relaxation (14). The bottom figure shows
the location of the points (“•”) and the edges

First we solve ESDP relaxation (4); the result is inaccurate, as is shown in Fig. 1,
with RMSD being 6e–2; where RMSD stands for Root Mean Square Deviance, de-
fined by

RMSD =
(

1

m

m∑

i=1

‖xi − xtrue
i ‖2

) 1
2

.

However, sparse-SOS relaxation seems to provide an accurate solution, as is shown
in the figure, with RMSD 2e–4. This is also suggested by the small individual traces
of the solution obtained by solving sparse-SOS relaxation: 1e–6, 4e–6 and 4e–6. By
Theorem 3, the sensors are likely accurately positioned, since SeDuMi likely returns
a relative interior solution. On the other hand, the individual traces of the solution
obtained by solving ESDP relaxation turn out to be much larger: 1e–3, 7e–3 and
5e–3, so the solution is less likely to be accurate.

How does SOS relaxation compare with SDP relaxation? The next example shows
a network that is not localizable by solving SDP relaxation, yet is likely localizable by
solving SOS relaxation. This implies that the underlying graph has a unique realiza-
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tion in R
2, but does not have a unique realization if we relax the dimension restriction.

It is surprising that SOS relaxation is strong enough to restrict the dimensionality of
the realization. Note that since this example only has two sensors, ESDP and SDP are
equivalent, and so are SOS and sparse-SOS, thus it also provides numerical evidence
for the relative strength of those methods.

Example 5 Let n = 5 and m = 2. The anchors are x3 = (0,0)T , x4 = (0.5,1)T and
x5 = (1,0)T , and the true positions of the sensors are x1 = (0.4,0.7)T and x2 =
(0.6,0.7)T . We set A = {(1,2), (1,4), (1,5), (2,3), (2,4)}.

First we solve SDP relaxation (3); the result is inaccurate, as is shown in Fig. 2,
with RMSD being 1e–1. It can also be shown manually that the solution to SDP relax-
ation is not unique. However, SOS relaxation seems to provide an accurate solution,
as is shown in the figure, with RMSD 1e–4. This is also suggested by the individual
traces of the solution obtained by solving SOS relaxation: both less than 2e–5.

Fig. 2 The top left figure shows the anchor (“�”) and the solution found by solving SDP relaxation (3).
Each sensor position (“∗”) found is joined to its true position (“◦”) by a line. The top right figure shows
the same information for the solution found by solving SOS relaxation (12). The bottom figure shows the
location of the points (“•”) and the edges
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6.2 Numerical simulations

In this subsection, we compare ESDP, SDP and sparse-SOS relaxations on randomly
generated instances of sensor network localization problem.

As in [18], we randomly generate m points (sensors) uniformly in the unit square
[−0.5,0.5]2 and fix four anchors at (±0.45,±0.45). The measured distance is then
set to be

dij = ‖xtrue
i − xtrue

j ‖ · |1 + σεij | ∀(i, j) ∈ A, (19)

where σ ∈ [0,1] is the noise factor and εij ∼ N(0,1) for all (i, j) ∈ A.
We first consider the noiseless case, i.e., σ = 0 in (19). We consider three different

methods of constructing A:

Type I. Include (i, j) with probability p;
Type II. Include (i, j) if ‖xtrue

i − xtrue
j ‖ < radiorange;

Type III. Include (i, j) with probability 0.5 if ‖xtrue
i − xtrue

j ‖ < radiorange;

Type I was considered in [13], while Type II corresponds to the unit disc graph model
widely used in the literature; see, for example, [3]. Type III models communication
failure, where the probability of failure when both points are within the radio range
is 50%. For each problem instance generated,3 we solve the corresponding ESDP,
SDP and sparse-SOS relaxation by calling SeDuMi. We use the default tolerance of
SeDuMi, and declare the ith sensor to be accurately positioned if for the solution
obtained, ‖xi − xtrue

i ‖ ≤ 5e–3.
In Tables 1, 2 and 3, we report the number of accurately positioned sensors (#ap),

the cpu time, to the nearest integer, and the RMSD of the solution obtained, to 2
significant figures, averaged over 50 problems. We observe in Table 1 that by solving
sparse-SOS relaxation, we usually obtain a solution with the lowest RMSD and the

Table 1 Computational results for network Type I

SDP sparse–SOS ESDP

p m #ap/RMSD/cpu #ap/RMSD/cpu #ap/RMSD/cpu

0.08 60 6/2.4e–1/1 25/1.6e–1/18 1/3.3e–1/0

0.08 80 66/6.8e–2/2 73/4.8e–2/75 10/2.4e–1/2

0.08 100 99/1.8e–2/4 97/1.6e–2/471 29/1.7e–1/4

0.10 60 42/7.9e–2/1 55/3.6e–2/29 8/2.5e–1/1

0.10 80 79/1.6e–2/2 79/1.4e–2/198 39/1.2e–1/3

0.10 100 100/2.9e–3/3 100/2.0e–3/1106 83/2.7e–2/8

0.12 60 59/3.2e–2/1 59/2.5e–2/44 32/1.3e–1/1

0.12 80 80/4.7e–3/2 80/3.1e–3/423 62/4.6e–2/4

0.12 100 100/5.8e–6/3 100/1.8e–4/2092 100/5.2e–4/13

3For each instance, we remove disconnected components and check that no sensors are connected only to
anchors.
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Table 2 Computational results for network Type II; radiorange =
√

ln(n)
n r

SDP sparse-SOS ESDP

r m #ap/RMSD/cpu #ap/RMSD/cpu #ap/RMSD/cpu

0.9 60 51/2.8e–2/1 13/8.0e–2/48 7/1.0e–1/1

0.9 80 77/1.7e–2/2 21/5.9e–2/84 19/7.7e–2/2

0.9 100 97/1.6e–2/4 18/5.4e–2/135 15/7.1e–2/3

1.0 60 58/1.1e–2/1 41/2.8e–2/64 33/4.7e–2/2

1.0 80 79/5.6e–3/2 49/2.2e–2/118 49/3.3e–2/4

1.0 100 99/4.1e–3/4 59/2.0e–2/215 72/2.4e–2/7

1.1 60 60/2.4e–3/1 56/5.7e–3/99 54/1.1e–2/3

1.1 80 79/2.2e–3/2 72/6.4e–3/209 71/1.0e–2/6

1.1 100 100/1.4e–3/4 89/5.8e–3/467 95/4.3e–3/10

Table 3 Computational results for network Type III; radiorange =
√

ln(n)
n r

SDP sparse-SOS ESDP

r m #ap/RMSD/cpu #ap/RMSD/cpu #ap/RMSD/cpu

1.2 60 48/4.3e–2/1 18/9.3e–2/28 6/1.3e–1/1

1.2 80 75/2.6e–2/2 24/6.4e–2/61 11/9.7e–2/2

1.2 100 95/2.3e–2/4 22/5.5e–2/107 15/8.7e–2/3

1.3 60 57/2.7e–2/1 37/4.0e–2/37 20/7.6e–2/1

1.3 80 75/2.1e–2/2 45/4.3e–2/92 29/7.2e–2/2

1.3 100 99/1.4e–2/4 58/2.5e–2/158 48/4.4e–2/4

1.4 60 58/2.0e–2/1 53/2.3e–2/46 43/4.4e–2/2

1.4 80 79/1.3e–2/2 72/1.8e–2/123 62/3.2e–2/3

1.4 100 99/1.1e–2/4 84/1.7e–2/311 83/2.5e–2/6

largest number of accurately positioned sensors. On the other hand, in Table 2 in
which the usual disc graph model is considered, the solution obtained by solving
SDP relaxation usually has the lowest RMSD and the largest number of accurately
positioned sensors, while the solution quality achieved by solving sparse-SOS and
ESDP relaxations is comparable. Finally, in Table 3, where the graph model is a
hybrid of Type I and Type II, we see that the solution quality achieved by solving
SDP relaxation is the best (lowest RMSD and largest number of accurately positioned
sensors), followed by sparse-SOS relaxation and then by ESDP relaxation.

We next consider the case when distance measurements have noise. We consider
only the most commonly used network Type II. The results are reported in Tables 4
and 5. In both tables, we see that sparse-SOS relaxation is comparable to SDP relax-
ation in terms of number of accurately positioned sensors but has a larger RMSD. The
relative improvement in solution quality achieved by solving sparse-SOS relaxation
in the noisy case is due to the fact that sparse-SOS relaxation is based on (10) rather
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Table 4 Computational results for network Type II; radiorange =
√

ln(n)
n r ; σ = 0.01

SDP sparse-SOS ESDP

r m #ap/RMSD/cpu #ap/RMSD/cpu #ap/RMSD/cpu

0.9 60 9/5.4e–2/1 7/8.3e–2/44 3/1.0e–1/1

0.9 80 16/3.5e–2/2 12/6.6e–2/78 8/8.4e–2/2

0.9 100 24/3.2e–2/4 16/6.0e–2/142 11/7.3e–2/4

1.0 60 17/2.9e–2/1 21/3.7e–2/64 10/6.2e–2/2

1.0 80 28/1.8e–2/2 34/2.6e–2/164 18/4.5e–2/3

1.0 100 37/1.4e–2/5 38/2.5e–2/233 24/3.9e–2/5

1.1 60 26/1.3e–2/1 39/1.6e–2/96 16/3.7e–2/2

1.1 80 34/9.8e–3/3 50/9.1e–3/210 22/2.3e–2/4

1.1 100 41/1.0e–2/6 53/1.3e–2/402 27/2.8e–2/7

Table 5 Computational results for network Type II; radiorange =
√

ln(n)
n r ; σ = 0.05

SDP sparse-SOS ESDP

r m #ap/RMSD/cpu #ap/RMSD/cpu #ap/RMSD/cpu

0.9 60 1/7.6e–2/1 1/9.2e–2/41 1/1.0e–1/1

0.9 80 2/6.3e–2/2 3/7.9e–2/71 2/9.0e–2/2

0.9 100 3/5.3e–2/3 4/6.6e–2/124 2/7.7e–2/3

1.0 60 2/4.8e–2/1 3/5.6e–2/53 1/7.0e–2/2

1.0 80 3/4.7e–2/2 3/5.9e–2/108 2/7.4e–2/3

1.0 100 4/3.7e–2/4 5/4.1e–2/189 3/5.6e–2/4

1.1 60 2/3.6e–2/1 3/3.6e–2/76 1/5.3e–2/2

1.1 80 4/3.4e–2/2 4/3.5e–2/191 2/5.2e–2/4

1.1 100 4/3.1e–2/5 6/3.1e–2/404 3/4.9e–2/6

than (2). To confirm this, we also solved the SDP relaxation based on (10) (not shown
in the tables) and found that it usually outperforms sparse-SOS relaxation in terms of
both the number of accurately positioned sensors and RMSD.

Finally, in all experiments, we see that sparse-SOS takes significantly more time
to solve than ESDP, while ESDP and SDP are comparable in terms of speed.

7 Conclusion and further remarks

In this paper, we showed that Nie’s sparse-SOS relaxation is stronger than the edge-
based semidefinite programming (ESDP) relaxation for noiseless sensor network lo-
calization, which is also illustrated by our numerical results. We also extended the
trace test for accuracy to the sparse-SOS relaxation. Furthermore, we showed that the
SOS relaxation is stronger than the SDP relaxation proposed by Biswas and Ye. We
would like to remark that there are other ways of recovering sensor positions from
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the convex relaxations other than those considered in this paper. For example, in
[6, Sect. 4.1], for the SDP relaxation, they also considered obtaining sensor positions
via a best rank-2 approximation of Z ∈ Ssdp. This approach usually performs bet-
ter in terms of reducing the objective function considered in their work. It would be
interesting to extend our analysis to study this way of recovering sensor positions.

In view of Theorems 2 and 3, it is also worth investigating efficient algorithms
to solve for a relative interior solution of (15); from our computational results, it is
clear that applying a standard interior point solver is not efficient. Since (15) has a
partial separable structure, one direction is to look for a distributed algorithm, like
the LPCGD algorithm in [15], to solve (15). A distributed algorithm is important for
applications like real time tracking. Since each edge is related to a 15 by 15 matrix
in sparse-SOS relaxation, it should take more time to solve (15) than to solve (4).
However, sparse-SOS relaxation is stronger than ESDP relaxation by Theorem 2:
this is a tradeoff between solution accuracy and solution time.

A possible approach to save solution time and yet get higher accuracy would be
to use this stronger convex relaxation to refine the solution obtained from solving
ESDP relaxation. Taking advantage of the existing trace test for ESDP, we take an
ESDP solution, fix those sensors with small trace as new anchors, and run sparse-
SOS relaxation in the remaining reduced network. The advantage of this approach
is that we would still have an accuracy certificate for the refined solution (the trace
test), which is not common for existing refinement heuristics. Moreover, since sparse-
SOS relaxation is solved on the reduced network, the time taken to solve the problem
should be smaller compared to solving sparse-SOS relaxation on the whole network.
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