
Comput Optim Appl (2012) 52:345–371
DOI 10.1007/s10589-011-9420-4

Scaling linear optimization problems prior
to application of the simplex method

Joseph M. Elble · Nikolaos V. Sahinidis

Received: 24 April 2010 / Published online: 13 July 2011
© Springer Science+Business Media, LLC 2011

Abstract The scaling of linear optimization problems, while poorly understood, is
definitely not devoid of techniques. Scaling is the most common preconditioning
technique utilized in linear optimization solvers, and is designed to improve the con-
ditioning of the constraint matrix and decrease the computational effort for solution.
Most importantly, scaling provides a relative point of reference for absolute toler-
ances. For instance, absolute tolerances are used in the simplex algorithm to deter-
mine when a reduced cost is considered to be nonnegative. Existing techniques for
obtaining scaling factors for linear systems are investigated herein. With a focus on
the impact of these techniques on the performance of the simplex method, we ana-
lyze the results obtained from over half a billion simplex computations with CPLEX,
MINOS and GLPK, including the computation of the condition number at every it-
eration. Some of the scaling techniques studied are computationally more expensive
than others. For the Netlib and Kennington problems considered herein, it is found
that on average no scaling technique outperforms the simplest technique (equilibra-
tion) despite the added complexity and computational cost.

Keywords Scaling · Linear optimization · Condition number · Simplex method

Electronic supplementary material The online version of this article
(doi:10.1007/s10589-011-9420-4) contains supplementary material, which is available to authorized
users.

J.M. Elble
Department of Industrial and Enterprise Systems Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL, USA
e-mail: elble@uiuc.edu

N.V. Sahinidis (�)
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: sahinidis@cmu.edu

http://dx.doi.org/10.1007/s10589-011-9420-4
mailto:elble@uiuc.edu
mailto:sahinidis@cmu.edu

346 J.M. Elble, N.V. Sahinidis

1 Introduction

The main objective of scaling a linear optimization problem is to improve the condi-
tioning of the constraint matrix and ultimately the accuracy of the solution. However,
there are many potential benefits of scaling a linear optimization problem. In partic-
ular, scaling may decrease the number of iterations required to solve the problem. In
addition, scaling provides a reference point for the magnitude of static tolerances that
are an integral part of practical linear optimization solvers.

The means by which scaling is generally believed to improve numerical behavior
is by creating row and column scaling factors whose application to the constraint
matrix leads to nonzero numerical values of similar magnitude. Although matrices
with nonzero numerical values of similar magnitude are generally thought to define
good scaling [14, 17, 21, 22, 24], it remains unclear just how well scaled such a
matrix is.

Tomlin [24] presented a thesis on the rationale behind scaling linear optimiza-
tion problems and some computational results for arithmetic mean, geometric mean,
equilibration, Curtis and Reid [6], Fulkerson and Wolfe [12] scaling techniques, and
various combinations. Larsson [17] expanded on Tomlin’s study by including entropy
(attributed to Dantzig and Erlander in [17]), Lp–norm [14], and de Buchet [8] scal-
ing models. Larsson’s results on randomly generated linear optimization problems
suggest that it may be possible to use scaling to reduce the number of simplex iter-
ations. In addition, Larsson performed a small study on the condition number of the
constraint matrix before and after scaling, and suggested that the entropy model is
often able to improve the conditioning of the randomly generated linear optimization
problems. The results of Larsson’s paper were so promising that he wrote:

We have experimentally shown that it may be possible to significantly de-
crease the number of iterations in the simplex method by prescaling. The results
are so promising that it would be of interest to perform a computational study
with large-scale real-world linear programs from different applications.

Tomlin’s study [24] was limited by the quantity and diversity of real-world test
problems available to researchers in the mid 1970s. The study concentrated on six
test problems of varying sizes. The scaling paper written by Larsson [17] used more
test problems but these were generated with Gaussian random matrices of varying
sparsity. It is now well understood that Gaussian random constraint matrices are un-
likely to have any ill-conditioned bases (cf. [16]) and may, therefore, not be repre-
sentative of real problems. To date, there has been no published systematic study of
scaling algorithms on a large collection of test problems. One of the major goals of
this paper is to fill this void in the linear optimization literature.

Both Tomlin [24] and Larsson [17] discussed the objective of using scaling to re-
duce the number of simplex iterations required to solve a linear optimization problem.
Using sparse linear optimization problems from the Netlib and Kennington libraries,
in Sect. 6, we find through extensive computational experimentation that, on aver-
age, none of the scaling algorithms proposed to date is able to reduce the number of
required simplex iterations.

Scaling linear optimization problems prior to application 347

In addition to the goal of reducing the number of iterations, scaling is thought
to improve the “numerical behavior” of the simplex algorithm. While scaling is cer-
tainly able to provide a reference point for the magnitude of absolute tolerances, it is
unclear whether it improves the “numerical behavior” of the algorithm. In the face of
round-off error, a properly designed simplex-based code will contain a dozen or more
absolute tolerances [24]. These tolerances, for instance, are responsible for determin-
ing when a linear optimization problem is infeasible (taking into account possible
rounding error). A tolerance is also used to determine eligible pivot elements, i.e.,
given round-off error, the tolerance is used to determine if an element is sufficiently
different from zero. Reduced costs are also subject to absolute tolerances. A reduced
cost is said to be negative, if and only if it is less than −ε, where ε is the appropriate
tolerance.

Again, based on the results presented in Sect. 6 and an example presented in
Sect. 5, it is questionable whether scaling improves the “numerical behavior” of the
simplex algorithm. The computational results suggest that scaling can cause an in-
crease in the average condition number of the square basis matrices B in the simplex
algorithm, where the condition number is defined as κ(B) = ‖B‖‖B−1‖. Such an in-
crease will necessarily affect the accuracy of solving linear systems involving B and
BT , thereby degrading the accuracy of the potential pivot elements and the reduced
costs. In addition, the increased condition number of a given basis (or series of bases)
may necessitate a more frequent refactorization of the basis. The example offered in
Sect. 5 illustrates the potential increase in the average condition number of the square
basis matrices B due to scaling.

After mathematical preliminaries are provided in Sect. 2, the remainder of the pa-
per begins with a review of scaling techniques in Sects. 3 and 4. We classify and
interpret existing techniques based on whether or not they represent approximate
solutions to an optimization model derived from the data of the original problem.
Basic scaling techniques are presented in Sect. 3, followed by model-based scaling
techniques in Sect. 4. Every scaling technique presented herein is described using a
Gauss-Seidel iterative scheme, except for the composite-Jacobi binormalization al-
gorithm presented in Sect. 4.4. The choice of these iterative schemes is guided by
historical considerations in the former cases and by efficiency concerns in the case
of binormalization. A small problem is provided in Sect. 5 that illustrates the com-
plexity involved in properly scaling a linear optimization problem. This example is
followed by the computational results compiled from the over half a billion simplex
computations with CPLEX, MINOS and GLPK, in Sect. 6. Given the large volume
of data, many of our results are presented in the online resource. Concluding remarks
are offered in Sect. 7.

2 Mathematical and notational preliminaries

Before the scaling techniques and models are described, some necessary notation is
introduced. Let A be an m × n real matrix. It is assumed that a suitable presolve rou-
tine has removed all empty rows and columns from A. When results are discussed in
Sect. 6, “with presolve” refers to the use of CPLEX’s Presolve routine and “without

348 J.M. Elble, N.V. Sahinidis

presolve” refers to the removal of empty rows and columns only. That is, an exper-
iment “without presolve” involves setting the problem up for scaling and does not
involve more advanced presolve techniques.

Let Ni = {j | aij �= 0} for i = 1, . . . ,m, Mj = {i | aij �= 0} for j = 1, . . . , n, and
Z = {(i, j) | aij �= 0}. Let ni and mj be the cardinality of the sets Ni and Mj , re-
spectively. Let r be an m-vector and s be an n-vector, where ri is the scale for row i

and sj is the scale for column j . The scaled matrix is expressed as X = RAS, where
R = diag(r1 . . . rm) and S = diag(s1 . . . sn). The scaling methods presented in this pa-
per are all of the same type, in that they all involve a scaling of the rows and then the
columns. The process by which these row and column scales are applied is iterative.
Let X(0) = A. Then, each iteration is given by

X(k+1/2) = R(k+1)X(k),

X(k+1) = X(k+1/2)S(k+1),

where

R =
t∏

k=1

R(k),

S =
t∏

k=1

S(k),

and t is the number of iterations needed to obtain an optimal scaling. The term opti-
mal scaling refers to the scaled matrix to which a specific scaling model converges.
This is not to be confused with the problem of optimal scaling [1], which refers to
finding R and S such that κ(RAS), the condition number of RAS, is minimized. The
formulation of this optimization problem is

(S) min κ(RAS)

s.t. ri > 0 ∀i ∈ [1,m]
si > 0 ∀i ∈ [1, n],

with a suitable definition of κ(RAS) for matrices that are not necessarily square or of
full rank. The condition number of RAS could be computed from its singular value
decomposition [13], but this is expensive for sparse matrices. No scaling algorithm
solves this idealistic goal.

In practice, once the scaling matrices R and S have been obtained by a scaling
technique, it is sometimes beneficial to use the nearest power of two rather than the
scaling factors obtained by the algorithm. This is referred to as power-of-two scal-
ing and affords exact machine representation of the resultant matrix elements, thus
avoiding round-off error. For instance, a constraint matrix with a large number of
+1 and −1 coefficients may benefit from power-of-two scaling. Scaling two rows by
very slightly different scaling factors will cause these coefficients to slightly differ
from one another. In factorization algorithms, these coefficients (left unscaled) might
result in cancellation. However, if scaling factors were applied that cause these num-
bers to differ in magnitude by a very small amount, this cancellation will not occur.

Scaling linear optimization problems prior to application 349

Indeed, Tomlin [24] found that scaling might also bias the pivot choice in such a way
as to reduce cancellation. GLPK [19] recently afforded users access to power-of-two
scaling in Library Package 4.31. In addition, dividing by a power of two amounts to
a mere shift operation (an increase/decrease in the exponent of a floating-point num-
ber), thus improving the computational efficiency and identification of termination.
Whether or not power-of-two scaling is used should depend on the characteristics of
the nonzero elements in the problem.

We assume, without loss of generality, that the elements of A are nonnegative.
This assumption is made merely to simplify the presentation of the subsequent scal-
ing techniques. That is, the nonnegativity assumption permits the presentation of for-
mulae without the otherwise obligatory absolute values.

3 Basic scaling techniques

3.1 Equilibration

Equilibration scaling and the effect of equilibration on the condition number of square
matrices was studied by van der Sluis [25, 26]. In equilibration scaling, each row is
scaled to make its largest nonzero entry of magnitude one. This is followed by a
similar column scaling. It is well known that equilibration can generate small round-
off errors. In other scaling procedures, it is common for solvers to offer a power-of-
two scaling option to avoid round-off error. While it is possible to use power-of-two
scaling in conjunction with equilibration, such a scaling would not by definition lead
to an equilibration scaling. Using power-of-two scaling, there is no way to ensure that
the largest nonzero entry is of magnitude one.

3.2 Geometric mean

Geometric mean scaling is a technique designed to decrease the variance between
the nonzeros in the matrix. In geometric mean scaling, the row scaling factor ri is
calculated as follows:

r
(k+1)
i =

(
max
j∈Ni

x
(k)
ij min

j∈Ni

x
(k)
ij

)−1/2

.

This row scaling procedure is followed by a similar column scaling. The column
scaling factor sj is

s
(k+1)
j =

(
max
i∈Mj

x
(k+1/2)
ij min

i∈Mj

x
(k+1/2)
ij

)−1/2

.

These scaling factors are not the true geometric mean, rather an approximation sug-
gested by Tomlin [24].

350 J.M. Elble, N.V. Sahinidis

3.3 Arithmetic mean

Like geometric mean, arithmetic mean also aims to decrease the variance between
the nonzeros in the matrix. The row scaling factor in arithmetic mean scaling is the
inverse of the mean of all nonzero elements for each row, or the nearest power of two.
Like the other scaling techniques presented thus far, a similar column scaling follows
the row scaling. The row and column scales according to this method are

r
(k+1)
i =

(
ni/
∑

j∈Ni

x
(k)
ij

)
, ∀i, and

s
(k+1)
j =

(
mj/
∑

i∈Mj

x
(k+1/2)
ij

)
, ∀j,

respectively.

3.4 Combination

It is quite common to see either geometric and arithmetic mean scaling followed by
equilibration.

3.5 Dynamic scaling: IBM’s MPSX

Originally proposed by Benichou et al. [2], the following scaling technique was later
adopted by IBM for use in IBM’s MPSX (Mathematical Programming System Ex-
tended), which was developed to solve linear optimization problems. This dynamic
scaling algorithm utilized a combination of geometric mean and equilibration scaling.
Geometric mean scaling is performed four times or until

1

|Z|

⎡

⎢⎣
∑

(i,j)∈Z

a2
ij −
⎛

⎝
∑

(i,j)∈Z

∣∣aij

∣∣

⎞

⎠
2/∣∣Z
∣∣

⎤

⎥⎦< ε,

whichever is fewer, where |Z| is the number of nonzero entries in A and ε is a tol-
erance, typically set below ten, often at four. After the geometric scaling phase is
complete and the variance between the nonzeros in the matrix has been decreased
sufficiently, equilibration scaling is performed.

4 Model-based scaling techniques

4.1 Lp-norm scaling model

The Lp-norm scaling model is formulated as

min
r,s>0

⎧
⎨

⎩
∑

(i,j)∈Z

∣∣log
(
aij risj

)∣∣p
⎫
⎬

⎭

1/p

.

Scaling linear optimization problems prior to application 351

The classical version of this model was introduced by Hamming [14] and has p = 1.
By minimizing the sum of the absolute value of the logarithm of each scaled

nonzero, this scaling model seeks to minimize the relative divergence of the nonzero
elements of the problem from one. The sensitivity to the largest and smallest absolute
nonzero matrix entries depends on p, where p is a positive integer. An equivalent
unconstrained optimization problem is

min
ρ,σ>0

⎧
⎨

⎩
∑

(i,j)∈Z

∣∣αij + ρi + σj

∣∣p
⎫
⎬

⎭

1/p

,

where αij = log(aij), ρi = log(ri) and σj = log(sj). If ρi and σj are rounded to the
nearest integer and the log base two is used to calculate αij , ρi , and σj , then power-
of-two multipliers are obtained. The optimization problem above is equivalent to the
problem of finding a best Lp-approximate solution to the over-determined system of
linear equations ρi + σj = −αij . This problem was studied in [5] for the cases p = 1
and p = ∞, and in [7] for the case p = 2. The focus of the remainder of this section
will be on these three cases.

4.1.1 L1-norm scaling model

In [17], Larsson describes the optimal scaling for the case p = 1. The necessary and
sufficient conditions for optimality of X are given below for the L1-norm scaling
model.

– Necessary Condition (L1-norm): Let k+
i = |{j | xij > 1}| for i = 1, . . . ,m, and

k−
i = |{j | 0 < xij < 1}| for i = 1, . . . ,m; and let l+j and l−j be similarly defined

for the columns. The matrix X is an optimal solution if k+
i = k−

i , ∀i and l+j = l−j ,
∀j .

– Sufficient Condition (L1-norm): Let X be an optimal solution to the L1-norm
scaling model. Let k0

i = |{j | xij = 1}|, ∀i and l0
j = |{i | xij = 1}|, ∀j . Then

k0
i ≥ |k+

i − k−
i | and l0

j ≥ |l+j − l−j | hold for all i and j .

Prior to the introduction of these optimality criteria in [17], the literature on scaling
had not yet addressed such criteria for the L1-norm model. For further insight into
their origin, the reader is referred to [17].

The L1-norm scaling model’s row and column scaling factors at each iteration
are chosen based on the necessary and sufficient conditions provided. The optimal-
ity conditions are satisfied by dividing each row and column by the median of the
absolute value of the nonzero entries:

rk+1
i = 1/median

{
x

(k)
ij |j ∈ Ni

}
, ∀i, and

sk+1
j = 1/median

{
x

(k+1/2)
ij |i ∈ Mj

}
, ∀j.

352 J.M. Elble, N.V. Sahinidis

4.1.2 L2-norm scaling model

A model similar to the L2-norm scaling model was originally proposed by Ham-
ming [14] and later enhanced by Curtis and Reid [6], who suggested using a spe-
cialized conjugate-gradient method to solve for the optimal scaling factors. Curtis
and Reid’s approach allowed for one or more matrix entries to be zero, while Ham-
ming’s closed form solution for the scaling factors required that all matrix entries be
nonzero. This model gained further popularity after the experiments in [24] suggested
that the Curtis-Reid scaling method was generally superior to the earlier Fulkerson
and Wolfe’s scaling method [12], which is equivalent to the L∞-norm model dis-
cussed below. The L2-norm model is stated as

min
r,s>0

⎧
⎨

⎩
∑

(i,j)∈Z

{
log
(
aij risj

)}2
⎫
⎬

⎭

1/2

,

which is equivalent to

min
r,s>0

∑

(i,j)∈Z

{
log
(
aij risj

)}2
.

The solution to this model is optimal if and only if the product of the nonzero matrix
entries in each row and column of X = RAS equals one.

The row and column scaling factors for the L2-norm model are realized by taking
the reciprocal of the geometric mean of the nonzero elements:

r
(k+1)
i = 1

/(
∏

j∈Ni

x
(k)
ij

)1/ni

, ∀i, and

s
(k+1)
j = 1

/(
∏

i∈Mj

x
(k+1/2)
ij

)1/mj

, ∀j.

It is important to note that, while the scaling factors for the L2-norm model are
the inverses of the geometric means, the geometric mean scaling method presented
in Sect. 3.2 does not have the same scaling factors, rather those suggested by Tom-
lin [24]. Next, we shall see that the L∞-norm model corresponds to the geometric
mean method, with the exception that L∞-norm possesses a termination criterion
based on the optimization model and its optimality conditions.

The scaling factors and optimality conditions are presented in this section, while
detailed derivations are offered in [9].

4.1.3 L∞-norm scaling model

The L∞-norm model is formulated as

min
r,s>0

{
max

(i,j)∈Z

∣∣log(aij risj)
∣∣
}

,

Scaling linear optimization problems prior to application 353

and can be shown to be equivalent to

min
r,s>0

max(i,j)∈Z(aij risj)

min(i,j)∈Z(aij risj)
.

This reformulation of the L∞-norm model was first investigated in [12].
In the case of the L∞-norm model, [17, 23, 27] described the following necessary

and sufficient condition for optimality. Let X = RAS be a solution to the L∞-norm
model and w = max(i,j)∈Z | logxij |. Then X is optimal if and only if there exists a
cycle {(i1, j1), (i1, j2), (i2, j2), . . . , (it−1, jt), (it , jt), (it , j1), (i1, j1)} of entries in
X alternately taking the values exp (w) and exp (−w).

Since X is optimal for the L∞-norm model if and only if it contains a cycle of al-
ternating exp (w) and exp (−w), the row and column scaling factors should be based
on the reciprocal of the product of the smallest and largest absolute elements in a
given row or column. The row and column scales, respectively, are

r
(k+1)
i = 1

/{(
max
j∈Ni

x
(k)
ij

)(
min
j∈Ni

x
(k)
ij

)}1/2

, ∀i

s
(k+1)
j = 1

/{(
max
i∈Mj

x
(k+1/2)
ij

)(
min
i∈Mj

x
(k+1/2)
ij

)}1/2

, ∀j.

At this point, it is clear that one iteration of the L∞-norm model corresponds to
geometric mean scaling as described in Sect. 3.2.

4.2 The entropy scaling model

The first use of the entropy scaling model is attributed to Dantzig and Erlander by
Larsson [17]. This technique seeks to identify a scaling X, with all xij �= 0 of order
unity, by solving the following model:

min
∑

(i,j)∈Z

xij

(
log
(
xij /aij

)− 1
)

s.t.
∑

j∈Ni

xij = ni i = 1, . . . ,m

∑

i∈Mj

xij = mj j = 1, . . . , n

xij ≥ 0 ∀(i, j) ∈ Z.

It follows from the model itself that the optimality conditions are the prescribed mul-
tiplicative structure X = RAS. This is a direct consequence of the chosen objective
function and constraints. A proof of the optimality conditions for this model, as well
as many other models presented herein, is contained in [9].

It is possible to use any algorithm that solves entropy problems in order to ob-
tain the entropy scaling matrices. However, it is recommended, if for no purpose

354 J.M. Elble, N.V. Sahinidis

other than uniformity, that one should apply iteratively the following row and column
scales:

r
(k+1)
i = ni/

∑

j∈Ni

x
(k)
ij , ∀i, and

s
(k+1)
j = mj/

∑

i∈Mj

x
(k+1/2)
ij , ∀j.

For more details, the reader is referred to [17].

4.3 The de Buchet scaling model

The de Buchet model, like the scaling models presented before it, is based on the
relative divergence from one:

min
r,s>0

⎡

⎣
∑

(i,j)∈Z

{
aij risj + 1/

(
aij risj

)}p
⎤

⎦
1/p

.

As in the Lp-norm model, a positive integer p can be varied to make the model more
and less sensitive to the extreme values. This model was introduced in [8] for the case
p = 2. In comparison to the Lp-norm models, the de Buchet scaling models are easier
to implement because of the relative ease with which one can check the optimality
conditions for the p = 1 and p = 2 cases.

While the p = ∞ case of Lp-norm and de Buchet scalings are identical, this is not
true of the other two cases discussed. Lp-norm and de Buchet’s objective functions
are minimized when their arguments (the nonzero elements of constraint matrix) are
one. Consider the case of p = 1. The objective function of L1-norm scaling is the
sum of the absolute value of the logarithm of the scaled nonzeros. The absolute value
of the logarithm is minimized at one. Similarly, de Buchet’s objective function at
p = 1 is the sum of the scaled nonzeros and their inverses. The sum of a positive real
number and its inverse is minimized at one. The variation in the objective function
between Lp-norm and de Buchet models results in different optimality conditions
and different iterates.

4.3.1 de Buchet p = 1

The optimality conditions for the case p = 1 were first given in [17] and state
that R and S is an optimal scaling if and only if X = RAS satisfies

∑
j∈Ni

xij =∑
j∈Ni

1/xij , ∀i and
∑

i∈Mj
xij =∑i∈Mj

1/xij , ∀j .
The iterative updates in de Buchet scaling models are suggested by their optimality

conditions. These row and column scaling factors are given by

r
(k+1)
i =

⎧
⎨

⎩

⎛

⎝
∑

j∈Ni

1/x
(k)
ij

⎞

⎠
/⎛

⎝
∑

j∈Ni

x
(k)
ij

⎞

⎠

⎫
⎬

⎭

1/2

, ∀i

Scaling linear optimization problems prior to application 355

s
(k+1)
j =

⎧
⎨

⎩

⎛

⎝
∑

i∈Mj

1/x
(k+1/2)
ij

⎞

⎠
/⎛

⎝
∑

i∈Mj

x
(k+1/2)
ij

⎞

⎠

⎫
⎬

⎭

1/2

, ∀j.

For derivations of the optimality conditions, the reader is referred to [9].

4.3.2 de Buchet p = 2

The optimality conditions for the case p = 2 were first given in [8] and state that
R and S is an optimal scaling if and only if X = RAS satisfies

∑
j∈Ni

(xij)
2 =∑

j∈Ni
1/(xij)

2, ∀i and
∑

i∈Mj
(xij)

2 =∑i∈Mj
1/(xij)

2, ∀j .
Again, the optimality conditions suggest the following appropriate row and col-

umn scaling factors for the de Buchet p = 2 scaling model:

r
(k+1)
i =

⎧
⎨

⎩

⎛

⎝
∑

j∈Ni

1/
(
x

(k)
ij

)2
⎞

⎠
/⎛

⎝
∑

j∈Ni

(
x

(k)
ij

)2
⎞

⎠

⎫
⎬

⎭

1/4

, ∀i, and

s
(k+1)
j =

⎧
⎨

⎩

⎛

⎝
∑

i∈Mj

1/
(
x

(k+1/2)
ij

)2
⎞

⎠
/⎛

⎝
∑

i∈Mj

(
x

(k+1/2)
ij

)2
⎞

⎠

⎫
⎬

⎭

1/4

, ∀j.

For derivations of the optimality conditions, the reader is referred to [9].

4.3.3 de Buchet p = ∞

The de Buchet model for the p = ∞ model is equivalent to the L∞-norm model [17],
and is formulated as

min
r,s>0

[
max

(i,j)∈Z

{
aij risj + 1/aij risj

}
]

.

Given this model’s equivalence to the L∞-norm model, it will not be discussed fur-
ther.

4.4 Non-square binormalization (NBIN)

Binormalization algorithms seek to find R and S such that κ(RAS), the condition
number of RAS, is likely to be minimized, i.e., they seek an approximate solution of
model S. The principal motivation behind binormalization algorithms is the Forsythe-
Straus theorem [11], which implies that matrices satisfying a certain property and
that have diagonal entries of order unity also have minimum condition number with
respect to all their scaled counterparts. In order to obtain matrices of minimum con-
dition number, the binormalization algorithm presented in [18] scales all the diagonal
entries of AAT to one. In general, the Non-square BINormalization (NBIN) algo-
rithm has relatively fast convergence (usually converges in the first few iterations)
and is effective at reducing the condition number of a rectangular matrix. However,

356 J.M. Elble, N.V. Sahinidis

each iteration is time consuming compared to the scaling techniques presented in the
previous sections. The NBIN algorithm presented in [18] is based on a composite-
Jacobi relaxation. While slower than many of the scaling techniques presented herein,
this scaling algorithm is made competitive for dense linear systems using a graphics
processing unit in [10]. In [4], the author reviews binormalization algorithms and de-
velops approximate binormalization algorithms that access a matrix only by matrix-
vector products.

The remainder of this section is used to present an abbreviated derivation of the
binormalization algorithm. The algorithm is initially formulated for a real symmetric
n×n matrix A. For such a linear system, the binormalization algorithm seeks a scaled
matrix X = RAR that satisfies

ρ ≡
n∑

j=1

X2
ij =

n∑

j=1

r2
i A2

ij r
2
j , i = 1, . . . , n, (1)

where ρ is a constant in R
+. Let βi = ∑{j |rj >0} A2

ij r
2
j , i = 1, . . . , n and B =

diag(β1, . . . , βn). The solution r of the system

Br = be, (2)

where b > 0 is arbitrary and e = (1, . . . ,1)T , is the solution to (1). Equivalently,
(

In − 1

n
eeT

)
Br = be − 1

n
eeT be = 0. (3)

If a positive solution exists to (3), then A is said to be scalable. Livne and Golub
proposed using a Gauss-Seidel-Newton iterative scheme to solve (3).

In this paper, attention is necessarily focused on their generalization of the bi-
normalization algorithm to a general m × n matrix A. The scaled matrix X has
the form X = RAS, where R = diag(r1, . . . , rm) and S = diag(s1, . . . , sn). Let
Bij = A2

ij , λi = r2
i , μi = s2

i , βi =∑n
j=1 Bijμj and γj =∑m

i=1 Bijλi . In addition,
define B(μ) = diag(β1(μ), . . . , βm(μ)) and C(λ) = diag(γ1(λ), . . . , γn(λ)). The so-
lution (r, s) to the asymmetric binormalization equation also solves the system

B(μ)λ = be and C(λ)μ = ce (4)

for any b, c > 0. Notice that system (4) is analogous to system (2). Again, equiva-
lently,

(
Im − 1

m
ẽ ẽT

)
B(μ)λ = 0 and

(
In − 1

n
eeT

)
C(λ)μ = 0 (5)

where e = (1, . . . ,1)T is an n-vector and ẽ = (1, . . . ,1)T is an m-vector. Notice again
that system (5) is analogous to system (3). Livne and Golub propose a composite-
Jacobi (CJ) relaxation to solve (5). Each CJ iteration updates the approximate solution
(λ,μ), and consists of

λi = 1/βi, i = 1, . . . ,m

Scaling linear optimization problems prior to application 357

γ = BT λ

μi = 1/γj , j = 1, . . . , n

β = Bμ.

5 Optimal scaling and an instructive example

The scaling factors R and S obtained by the various scaling techniques described
above can be interpreted as (approximate) solutions to various optimization models.
The optimality conditions of these models were invoked as a means of finding optimal
or nearly-optimal scaling factors. Naturally, one would like to know what is the best
scaling model to use. For instance, is it best to minimize variance of the nonzero
elements of rows/columns of the matrix or is it best to minimize a measure of the
deviation of all elements from 1.0?

In the case of solving a square system of equations, one can make the argument
that scaling should seek to minimize the condition number of the matrix, as doing so
would increase the accuracy of the results. The latter is the problem of optimal scaling
described above in model S and is widely recognized as the true scaling problem in
the literature pertaining to the solution of linear systems. Many of the scaling models
and techniques used to scale linear optimization problems were originally designed
to scale systems of linear equations. Some of the scaling techniques presented herein
provably decrease the condition number of matrices with certain properties.

In the context of the simplex method, the condition number of a basis provides
a good measure of how far the corner is from being flat, where a ‘flat corner’ is a
corner with incident edges forming angles of nearly 180 degrees. For instance, if one
perturbs A by an appropriate Gaussian random matrix, then it is unlikely that any
basis of A has a poor condition number [16]. Such a perturbation would bound the
angles in each corner away from being flat. Unfortunately, if one scales the constraint
matrix and the condition numbers of individual bases are increased, then the angles in
each of these corners of the polytope are made increasingly flat. Intuition and reason
would imply that flattening the corners of the polytope is not desirable for the simplex
algorithm, rather reasonable progress is made when the corners of the polytope are
not too flat. Therefore, it is possible for scaling to degrade the performance of the
simplex algorithm by increasing the condition number of individual bases that may be
encountered by the algorithm. To demonstrate this possibility, the following example
is offered:

min −w −x −5y −0.75z

s.t. 999,999w +7.5y = 7.5
9w +2x +2.5y +4z = 11
4w +3x +1.5y = 10.5

w,x, y, z ≥ 0.

In this problem, the condition number of the basis (columns 2, 3, and 4) at the solution
is 3.3. When scaled, using ten iterations of binormalization scaling, the basis at the
solution has a condition number of 6.6 × 103. When scaled, using ten iterations of
geometric mean scaling, the basis at the solution has a condition number of 3.48 ×

358 J.M. Elble, N.V. Sahinidis

103. Using ten iterations of arithmetic mean scaling leads to a solution basis with a
condition number of 3.22×104. In fact, all scaling techniques studied herein lead to a
relatively ill-conditioned solution basis. Furthermore, if element (1,1) of the matrix
were larger than 999,999, the conditioning of the basis at the solution would be
worse than that of the current linear optimization problem. It should now be clear that
poorly scaled elements in columns that might never enter the basis could affect the
conditioning of a basis that is factored in the course of solving a linear optimization
problem using the simplex algorithm.

It follows from the above discussion that a simple decrease in the condition num-
ber of the constraint matrix is not necessarily beneficial for linear optimization. When
a linear optimization problem is scaled prior to the application of the simplex algo-
rithm, the concern is minimization of the condition number of every feasible basis.
Since every feasible basis is not known a priori, the condition number of every basis,
regardless of feasibility, would need to be minimized to address this concern. It can
be argued that current scaling techniques use surrogate models to approximate this
objective. One of the main objectives of the experimentation in the next section is to
assess the impact of these scaling techniques on the condition number of all bases
encountered in the course of the simplex algorithm, when the latter is applied to a
number of linear optimization test problems.

6 Computational results

6.1 Problems and algorithms considered

In an effort to understand the difficulty involved in scaling linear optimization prob-
lems and to determine effective scaling methods or models, nearly a half billion ex-
ecutions of various linear optimization solvers were performed in the course of this
study, using CPLEX, MINOS and GLPK. Most of the calculations were performed
with CPLEX (version 12.2) [15] and were distributed across 22 processors. In all
cases, the problems were scaled before they were passed to CPLEX for solution and
CPLEX’s scaling routine was turned off. In addition to CPLEX, MINOS (version
5.51) [20] and GLPK (Library Package 4.26) [19] were used to verify the results
exhibited by CPLEX. The results of these runs are compiled in this section.

First, each scaling method and model was used in the scaling of 85 Netlib and
16 Kennington linear optimization problems. Table 1 provides a complete list of the
problems solved, along with information on their size and number of nonzeros. In
the table, a † denotes that this problem is considered part of the Kennington library,
while all other problems are considered part of the Netlib library. A 	 denotes that this
problem was randomly selected among manageably small problems to participate in
the condition number study that is subsequently presented. Lastly, a ‡ denotes that
this problem is poorly scaled. This final demarcation is described in more detail later
in this section. There were several problems that were excluded from the condition
number study because of the computational effort required to compute the condition
number of these bases at every single iteration. For instance, it was not feasible to
compute the condition number of every basis for problems with more than 100,000

Scaling linear optimization problems prior to application 359

Table 1 Netlib and Kennington problems solved with their dimensions and number of nonzeros

Problem m n Z Problem m n Z

80bau3b ‡ 2262 9799 21002 osa-14 † ‡ 2337 52460 314760

adlittle 	 ‡ 56 97 383 osa-30 † ‡ 4350 100024 600138

afiro 	 27 32 83 osa-60 † ‡ 10280 232966 1397793

agg2 	 ‡ 516 302 4284 pds-02 † 2953 7535 16390

agg3 	 ‡ 516 302 4300 pds-06 † 9881 28655 62524

agg 	 ‡ 488 163 2410 pds-10 † 16558 48763 106436

bandm 	 ‡ 305 472 2494 pds-20 † 33874 105728 230200

beaconfd 	 173 262 3375 perold 	 ‡ 625 1376 6018

bnl1 	 ‡ 643 1175 5121 pilot ‡ 1441 3652 43167

bnl2 ‡ 2324 3489 13999 pilot4 	 ‡ 410 1000 5141

boeing1 	 ‡ 351 381 3485 pilot87 ‡ 2030 4883 73152

boeing2 	 ‡ 166 143 1196 pilotnov ‡ 975 2172 13057

bore3d 	 ‡ 233 315 1429 recipe 	 ‡ 91 180 663

brandy 	 ‡ 220 249 2148 sc105 	 105 103 280

capri 	 ‡ 271 353 1767 sc205 	 205 203 551

cre-a † ‡ 3516 4067 14987 sc50a 	 50 48 130

cre-b † ‡ 9648 72447 256095 sc50b 	 50 48 118

cre-c † ‡ 3068 3678 13244 scagr25 	 427 500 1554

cre-d † ‡ 8926 69980 242646 scagr7 	 ‡ 129 140 420

cycle 	 ‡ 1903 2857 20720 scfxm1 	 ‡ 330 457 2589

czprob 	 ‡ 929 3523 10669 scfxm2 	 ‡ 660 914 5183

d2q06c ‡ 2171 5167 32417 scfxm3 	 ‡ 990 1371 7777

d6cube ‡ 415 6184 37704 scorpion	 388 358 1426

degen2 	 444 534 3978 scrs8 	 490 1169 3182

degen3 1503 1818 24646 scsd1 	 77 760 2388

e226 	 ‡ 223 282 2578 scsd6 	 147 1350 4316

etamacro 	 ‡ 400 688 2409 scsd8 	 397 2750 8584

fffff800 	 ‡ 524 854 6227 sctap1 	 300 480 1692

finnis 	 ‡ 497 614 2310 sctap2 	 1090 1880 6714

fit1d 	 ‡ 24 1026 13404 sctap3 	 1480 2480 8874

fit1p 	 ‡ 627 1677 9868 seba ‡ 515 1028 4352

fit2d ‡ 25 10500 129018 share1b 	 ‡ 117 225 1151

fit2p ‡ 3000 13525 50284 share2b 	 ‡ 96 79 694

ganges 	 1309 1681 6912 shell 	 536 1775 3556

greenbea 2392 5405 30877 ship04l 	 402 2118 6332

greenbeb 2392 5405 30877 ship04s 	 402 1458 4352

grow15 	 300 645 5620 ship08l 	 778 4283 12802

grow22 	 440 946 8252 ship08s 	 779 2387 7114

grow7 	 140 301 2612 ship12l 	 1151 5427 16170

israel 	 ‡ 174 142 2269 ship12s 	 1151 2763 8179

kb2 	 ‡ 43 41 286 stair 	 356 467 3856

360 J.M. Elble, N.V. Sahinidis

Table 1 (Continued)

Problem m n Z Problem m n Z

ken-07 	 † 2426 3602 8404 standata	 ‡ 359 1075 3031

ken-11 † 14694 21349 49058 standgub	 ‡ 361 1184 3139

ken-13 † 28632 42659 97246 standmps	 ‡ 467 1075 3679

ken-18 † 105127 154699 358171 stocfor1	 ‡ 117 111 447

lotfi 	 ‡ 153 308 1078 stocfor2	 ‡ 2157 2031 8343

maros 	 ‡ 846 1443 9614 tuff 	 ‡ 333 587 4520

maros-r7 3136 9408 144848 vtp-base	 ‡ 198 203 908

modszk1 	 687 1620 3168 wood1p 	 ‡ 244 2594 70215

nesm ‡ 662 2923 13288 woodw ‡ 1098 8405 37474

osa-07 † ‡ 1118 23949 143694

nonzeros. CPLEX was used to compute the exact condition number at every iteration
using CPX_EXACT_KAPPA.

For each of these 101 test problems, each scaling method and model was tested us-
ing one, two, four, six, and eight iterations, except equilibration, which only requires
a single iteration. Table 2 depicts the 51 different applications of scaling, which were
applied to the 101 different test problems. In addition, the 101 problems were tested
without scaling. The condition number of the basis and the elapsed solution time
were stored at every iteration of the primal and dual simplex algorithms. The solution
time in all subsequent figures is the time it takes to solve the optimization problem,
excluding the time it takes to scale the problem. In addition, the scaling was applied
with and without presolve. In all, there were

(Nsol) × (52 scaling applications) × (Npre) × (Npro)

+ (Nsol) × (2350 scaling applications) × (Npre) × (Npro)

= 1,940,816 distinct experiments,

where Nsol equals four and represents the number of different simplex solution tech-
niques used (CPLEX’s primal and dual simplex, GLPK, and MINOS), Npre equals
two and represents the executions required to toggle presolve for each solution tech-
nique, and Npro equals 101 and represents the number of Netlib and Kennington
problems solved. In the pursuit of accurate solution and scaling times, each distinct
experiment was performed five times, and the median time was selected as the rep-
resentative time required. In order to accurately track the elapsed solution time and
condition number at every iteration, CPLEX was stopped at every iteration, and the
necessary data was calculated and stored. This resulted in an explosive growth of
processing time and I/O, which led to nearly half a billion CPLEX executions.

The reasons for using MINOS and GLPK in addition to CPLEX were three-fold.
First, as previously mentioned, they were used to verify the results obtained using
CPLEX. Second, they were used to provide access to an open-source code, so the
reader would be aware of any additional actions that were taking place in the code that
might affect the scaled problem. Lastly, each solver uses different pricing techniques.

Scaling linear optimization problems prior to application 361

Table 2 The scaling methods/models used and the associated iteration counts

k Method/Model Iter. k Method/Model Iter. k Method/Model Iter.

1 No Scaling 0 18 Entropy 2 36 L1-norm 6
2 Arithmetic Mean 1 19 Entropy 4 37 L1-norm 8
3 Arithmetic Mean 2 20 Entropy 6 38 L2-norm 1
4 Arithmetic Mean 4 21 Entropy 8 39 L2-norm 2
5 Arithmetic Mean 6 22 Equilibration 1 40 L2-norm 4
6 Arithmetic Mean 8 23 Geometric Mean 1 41 L2-norm 6
7 deBuchet p = 1 1 24 Geometric Mean 2 42 L2-norm 8
8 deBuchet p = 1 2 25 Geometric Mean 4 43 Linf-norm 1
9 deBuchet p = 1 4 26 Geometric Mean 6 44 Linf-norm 2

10 deBuchet p = 1 6 27 Geometric Mean 8 45 Linf-norm 4
11 deBuchet p = 1 8 28 IBM MPSX 1 46 Linf-norm 6
12 deBuchet p = 2 1 29 IBM MPSX 2 47 Linf-norm 8
13 deBuchet p = 2 2 30 IBM MPSX 4 48 Binormalization 1
14 deBuchet p = 2 4 31 IBM MPSX 6 49 Binormalization 2
15 deBuchet p = 2 6 32 IBM MPSX 8 50 Binormalization 4
16 deBuchet p = 2 8 33 L1-norm 1 51 Binormalization 6
17 Entropy 1 34 L1-norm 2 52 Binormalization 8

35 L1-norm 4

For instance, MINOS uses a sectional variant of Dantzig’s rule [20]. CPLEX utilizes
steepest-edge and Devex rules [3]. The GLPK package is capable of utilizing several
different pricing techniques, but its default is set to steepest-edge.

One might consider that, having tested a scaling algorithm using eight iterations, it
is unnecessary to test the same algorithm with fewer iterations. This thought process
is incorrect. Consider a two-by-two matrix containing four positive nonzeros with
large diagonal elements. Now, consider the effect of scaling all nonzero elements to
order unity using any of the scaling algorithms described above. As the system is
progressively scaled with each iteration, the system approaches singularity. There-
fore, fewer iterations are preferred in such an instance.

6.2 Measures of comparison

Four measures were used to evaluate the quality of each scaling technique: scaling
time, solution time, solution iterations, and maximum condition number. Scaling time
is a necessary measure of quality because a scaling technique that requires too much
time (in relation to, or as a fraction of the possible reduction in solution time) is
unsuccessful. The solution time and the required number of iterations are integrally
related. If a scaling technique can succeed in reducing the required number of sim-
plex iterations, then it is likely the scaling technique has contributed to a decrease
in the required solution time. If these objectives can be achieved, then the scaling
technique has contributed to the overall success of the solver. Lastly, the maximum
condition number of the bases encountered during solution is an appropriate measure
because of its relationship to accuracy and solution time. The log of the condition
number to the base ten is an upper bound on the number of decimal places lost. That
is, if the condition number were 1016, then up to 16 digits of precision may be lost

362 J.M. Elble, N.V. Sahinidis

(or all 16 decimal places available in standard double-precision floating-point). For
more information on the effect of the condition number on the solution accuracy, the
reader is referred to the section “Measuring problem sensitivity with basis condition
number” in [15]. The condition number could be periodically evaluated or approxi-
mated, and suitable numerical methods, such as refactorization or interval arithmetic,
could be invoked to ensure the required accuracy of the results, albeit at the increase
of computational time.

For any chosen method of comparison, it is necessary to rely on one or more in-
dicators that accurately reflect the success or failure of any scaling technique over a
collection of test problems. One such indicator is how well the technique performs on
average with respect to the aforementioned measures. Another indicator of success is
the standard deviation. A good scaling technique is one with predictable results either
for all problems or for a group of problems sharing a specific property. If a scaling
technique is the ‘best’ amongst all techniques studied for half of all problems but the
‘worst’ for the other half, then it may be recognized as a ‘good’ scaling technique if
a uniform property is recognized for the former half. However, if no such property is
readily recognizable, then the scaling technique should be considered erratic and un-
desirable. Without predictable results, the consumer of the software may be unwilling
to assume the risks of scaling. These risks might include poor solution accuracy and
poor solution time.

Since the magnitude of the performance metrics (simplex iterations, solution time,
and maximum condition number) depend on the nature and size of the problem, it
is necessary to normalize the results. For example, consider simplex iterations and
follow Example 1. For each linear optimization problem, determine the scaling tech-
nique requiring the most simplex iterations and divide the simplex iterations required
by all other scaling techniques by this maximum. Each problem will now contain
normalized simplex iterations, e.g., Table 1. To compare the average performance of
the various scaling techniques, these normalized results are averaged and their stan-
dard deviations are computed. The average is indicative of the average performance
of a scaling application over the 101 problems, and the standard deviation illustrates
the variation in performance. Error bars in each of the figures described below are
indicative of one standard deviation from the mean. Example 1 is provided below to
clarify the explanation of this normalization procedure.

Example 1 Assume the data returned by the linear optimization code is as follows:

Iterations required

Scaling technique 1 Scaling technique 2 Scaling technique 3

Problem A 1500 1450 1700

Problem B 30 32 28

Problem C 400 200 500

This example assumes that only three problems were tested and only three scaling
techniques were analyzed. First, normalize the data across each problem:

Scaling linear optimization problems prior to application 363

Iterations required

Scaling technique 1 Scaling technique 2 Scaling technique 3

Problem A 1500/1700 = 0.88 1450/1700 = 0.85 1700/1700 = 1.0

Problem B 30/32 = 0.94 32/32 = 1.0 28/32 = 0.88

Problem C 400/500 = 0.8 200/500 = 0.4 500/500 = 1.0

Then average the normalized numbers and take their standard deviation:

Scaling technique 1 = 0.87 ± 0.069

Scaling technique 2 = 0.75 ± 0.313

Scaling technique 3 = 0.96 ± 0.072

The “ratio-to-worst” value is used rather than the more typical “ratio-to-best” per-
formance metric because there exist singular outliers that adversely affect the latter.

6.3 Results and discussion

For the sake of brevity, we aggregate the data across the Netlib and Kennington data
sets. The use of a presolve routine had no discernible effect on the relative success
or failure of a given a scaling technique. The experiments that were performed with
CPLEX utilized its primal as well as dual simplex algorithm. The results for the
primal simplex algorithm are contained in the online resource, while the results for
the dual simplex algorithm are presented in this subsection. In addition, a series of
experiments investigating the performance of combinations of scaling techniques was
performed on selected problems. The results of these experiments are all contained
in the online resource, as they do not differ from the results described in this section.

The first series of experiments were designed to study the effect of individual
scaling methods. These results are presented in Figs. 1–8. The x-axis of these figures
represents the 52 different scalings normalized across the 101 different problems,
with no scaling and equilibration scaling highlighted in gray with a ∗ rather than a
• denoting the mean. In Table 2, the bolded numbers correspond to the values on
the x-axis of these figures. Each number indicates the scaling method/model and the
associated iteration count.

In Fig. 1, the normalized scaling time for the presolved problem is displayed. As
seen in this figure, scaling techniques with non-trivial termination criteria require a
greater amount of CPU time, and their CPU time varies more than those techniques
that have no termination criteria or relatively simple criteria. The proportion of scal-
ing time to the overall solution time will vary depending on the problem but should
remain relatively small in a well-designed code. That is, the normalized total solution
time (including the time to scale) does not significantly differ from the normalized
solution times (excluding the time to scale).

Figures 2, 3, and 4 display the normalized solution times exhibited by CPLEX,
MINOS, and GLPK, respectively, for each scaling technique. Some interesting points
are illustrated in these figures. A low variation in solution time should be recognized

364 J.M. Elble, N.V. Sahinidis

Fig. 1 The normalized time to scale

Fig. 2 The normalized solution time with dual simplex using CPLEX

Fig. 3 The normalized solution time using GLPK

as a desired property of a good scaling algorithm. That is, it is desirable to have a
scaling algorithm that does not woefully underperform and then incredibly outper-
form other algorithms. The figures indicate that there exist no clear “best” scaling

Scaling linear optimization problems prior to application 365

Fig. 4 The normalized solution time using MINOS

Fig. 5 The normalized solution iterations with dual simplex using CPLEX

Fig. 6 The normalized solution iterations using GLPK

technique. Within the standard deviation, the absence of scaling appears to perform
on a par with each scaling technique. At the same time, the performance of some
scaling techniques on individual problems seems to indicate that the design of an in-

366 J.M. Elble, N.V. Sahinidis

Fig. 7 The normalized solution iterations using MINOS

Fig. 8 The normalized maximum condition number with dual simplex using CPLEX

telligent scaling algorithm could lead to a lower solution time. The question remains
open as to whether such an algorithm exists and possesses a competitive scaling time.

Figures 5–7 depict the normalized solution iterations for each solver and scaling
technique. These figures tell a similar story to those of the normalized solution time.
Again, a desired property of a good scaling algorithm is to avoid wild variations in
the number of solution iterations relative to other scaling algorithms.

The normalized maximum condition numbers of the bases encountered by CPLEX
during dual simplex iterations are depicted in Fig. 8. The vertical bars in the figure
represent one standard deviation from the mean maximum condition number. The
bars in the negative direction (i.e., the mean minus one standard deviation) are not
shown in the figure, because the mean maximum condition number and the worst-
case maximum condition number are our primary concerns. The worst-case condition
number possibly plays a role in the poor solution times exhibited by some of these
algorithms.

In terms of the worst-case maximum condition number measure, IBM MPSX scal-
ing performs fairly well compared to the other scaling techniques. In Fig. 8, notice
that scaling algorithms 28–31 have relatively low worst-case maximum condition
numbers relative to other scaling techniques. Therefore, this scaling technique should

Scaling linear optimization problems prior to application 367

Fig. 9 The normalized solution time with dual simplex using CPLEX

Fig. 10 The normalized solution time using GLPK

be recognized as a potentially suitable scaling technique for use in linear optimization
codes. Most importantly, Fig. 8 confirms that there is a diminishing return to scaling
as more iterations are applied. Some scaling techniques exhibit no discernable ad-
vantage to additional scaling iterations, and some techniques even exhibit a higher
maximum condition number as more scaling iterations are applied.

The next series of experiments recognizes the fact that some problems in the Netlib
and Kennington libraries are inherently well-scaled. As it is impractical to compute
the condition number of all possible bases, it is common in linear optimization to
consider a matrix well-scaled if its elements are of similar magnitude. A ‡ is used in
Table 1 to denote problems that are poorly scaled. For this study, any matrix with an
initial variance above four is considered poorly scaled. The number four was chosen
because it was used as the termination criterion in this paper for IBM MPSX scal-
ing. Other researchers have recommended a termination criterion as high as ten [2].
Figures 9–14 correspond to Figs. 2–7 with the only difference being that well-scaled
problems have been removed from consideration. As a result, about 30% of the orig-
inal problems were removed. As seen in the figures, there is no discernible difference
in the results after removal of the well-scaled problems.

368 J.M. Elble, N.V. Sahinidis

Fig. 11 The normalized solution time using MINOS

Fig. 12 The normalized solution iterations with dual simplex using CPLEX

Fig. 13 The normalized solution iterations using GLPK

It is interesting to note that the normalized solution iterations in Fig. 12 appear
to increase when no scaling technique is used relative to employing a scaling tech-
nique. The same observation can be made for CPLEX’s primal simplex algorithm (the

Scaling linear optimization problems prior to application 369

Fig. 14 The normalized solution iterations using MINOS

results are provided in the online resource). However, GLPK and MINOS are not af-
fected as much by the absence of scaling as seen in Figs. 6 and 7. In the absence of
scaling, tolerances play a more important role in determining the performance of the
overall algorithm. The use of absolute tolerances is significantly more efficient than
the use of dynamic tolerances, which suggests that CPLEX utilizes more absolute tol-
erances than GLPK and MINOS. The utilization of more absolute tolerances would
allow CPLEX to solve the problems more rapidly, but also require that the problems
be well-scaled. In the event that problems are not well-scaled, performance will suffer
in the absence of scaling. A more extensive use of absolute tolerances would certainly
explain why CPLEX performs equilibration scaling by default.

The last series of experiments investigated the use of combinations of the scal-
ing techniques described above. In these experiments, there are ten different scaling
techniques that are tested across one, two, four, six, eight iterations, and equilibra-
tion. There are 2350 different combinations of these scaling techniques and models.
Naturally, the combinations of scaling techniques are going to exhibit a higher over-
all scaling time than the single scaling techniques exhibited in the previous figures.
A corresponding reduction in solution time would be required to warrant the use of
these combinations. The results from these computations are reported in the online
resource and, once again, indicate no real trend or pattern in solution time relative to
the combinations of scaling techniques employed here. The same lack of pattern is
evident in the data collected on the normalized solution iterations.

Lastly, for the normalized maximum condition number of the bases with various
solution algorithms, the results in the online resource show, once again, the same
result as the figures for a single scaling technique (Fig. 8). That is, IBM MPSX scal-
ing is relatively efficient at controlling the maximum condition number of the bases.
However, its combination with some scaling applications proved to degrade its per-
formance relative to this measure.

7 Conclusions

This study should make the reader appreciate the complexity of the scaling problem
as it relates to linear optimization. Simply applying techniques that work well in

370 J.M. Elble, N.V. Sahinidis

practice for the solution of linear systems (i.e., for solving Ax = b, where A is an
n × n matrix and b is a column vector) is not a solution to the underlying problem
of scaling a linear optimization problem, as illustrated in Sect. 5. It should also be
apparent from the results of Sect. 6 that a viable solution to the scaling problem does
not just perform well on average, but has a satisfactory worst-case as measured by
the standard deviation of solution iterations, solution time, and maximum condition
number.

Despite the potential increase in the condition number of a basis or a series of
bases, it is difficult not to recommend performing equilibration scaling to at least pro-
vide a point of reference for absolute tolerances. It is disconcerting that if a scaling
technique causes a problem to become poorly scaled, then certain linear optimiza-
tion solvers tend to undertake a greater number of iterations relative to the absence
of scaling. Further evidence of this phenomenon is provided in the online resource,
where CPLEX’s primal simplex algorithm is studied. In addition, too many iterations
of the same scaling technique (e.g., geometric mean) can adversely affect a linear
optimization problem. Presolve followed by equilibration scaling leads to condition
numbers and simplex solution times and iterations that are competitive with those
observed using other scaling techniques.

Acknowledgements We are thankful to three reviewers, whose insights and generous comments helped
us improve the presentation of this material significantly.

References

1. Bauer, F.L.: Optimally scaled matrices. Numer. Math. 5, 73–87 (1963)
2. Benichou, M., Gauthier, J.M., Hentges, G., Ribiere, G.: The efficient solution of large-scale linear

programming problems—Some algorithmic techniques and computational results. Math. Program.
13, 280–322 (1977)

3. Bixby, R.E.: Solving real-world linear programs: A decade and more of progress. Oper. Res. 50, 3–15
(2002)

4. Bradley, A.: Algorithms for the equilibration of matrices and their application to limited-memory
quasi-Newton methods. PhD thesis, Stanford University, Stanford, California (2010)

5. Chvátal, V.: Linear Programming. W.H. Freeman, New York (1983)
6. Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination. J. Inst. Math.

Appl. 10, 118–124 (1972)
7. Dahlquist, G., Björck, Å.: Numerical Methods. Prentice Hall, Englewood Cliffs (1963)
8. de Buchet, J.: Experiments and statistical data on the solving of large-scale linear programs. In: Hertz,

D.A., Melese, J. (eds.) Proceedings of the Fourth International Conference on Operational Research,
pp. 3–13. Wiley-Interscience, New York (1966)

9. Elble, J.: Scaling linear programs: A comprehensive case study. Master’s thesis, University of Illinois
Urbana-Champaign, Urbana, IL (2007)

10. Elble, J.M., Sahinidis, N.V.: Matrix binormalization on a GPU. In: Lecture Notes in Computer Science
(2009, accepted)

11. Forsythe, G.E., Straus, E.G.: On best conditioned matrices. Proc. Am. Math. Soc. 6, 340–345 (1955)
12. Fulkerson, D.R., Wolfe, P.: An algorithm for scaling matrices. SIAM Rev. 4, 142–146 (1962)
13. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore

(1996)
14. Hamming, R.W.: Introduction to Applied Numerical Analysis. McGraw-Hill, New York (1971)
15. IBM: IBM ILOG CPLEX Optimization Studio, Version 12.2 User’s Manual, Armonk, NY (2010)
16. Kelner, J.A., Spielman, D.A.: A randomized polynomial-time simplex algorithm for linear program-

ming (Preliminary version). Electron. Colloq. Comput. Complex. 156, 1–17 (2005)

Scaling linear optimization problems prior to application 371

17. Larsson, T.: On scaling linear programs—Some experimental results. Optimization 27, 335–373
(1993)

18. Livne, O.E., Golub, G.H.: Scaling by binormalization. Numer. Algorithms 35, 97–120 (2004)
19. Makhorin, A.: GLPK—GNU linear programming kit. http://www.gnu.org/software/glpk/glpk.html

(2008)
20. Murtagh, B.A., Saunders, M.A.: MINOS 5.5 user’s guide. Technical report, Department of Operations

Research, Stanford University, Stanford, CA (1998)
21. Orchard-Hays, W.: Advanced Linear Programming Computing Techniques. McGraw-Hill, New York

(1968)
22. Pierre, D.A.: An optimal scaling method. IEEE Trans. Syst. Man Cybern. SMC-17, 2–6 (1987)
23. Rothblum, U.G., Schneider, H.: Characterizations of optimal scalings of matrices. Math. Program. 19,

121–136 (1980)
24. Tomlin, J.A.: On scaling linear programming problems. Math. Program. Stud. 4, 146–166 (1975)
25. van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14, 14–23 (1969)
26. van der Sluis, A.: Condition, equilibration and pivoting in linear algebraic systems. Numer. Math. 15,

74–86 (1970)
27. von Golitschek, M.: An algorithm for scaling matrices and computing the minimum cycle mean in a

digraph. Numer. Math. 35, 45–55 (1980)

http://www.gnu.org/software/glpk/glpk.html

	Scaling linear optimization problems prior to application of the simplex method
	Abstract
	Introduction
	Mathematical and notational preliminaries
	Basic scaling techniques
	Equilibration
	Geometric mean
	Arithmetic mean
	Combination
	Dynamic scaling: IBM's MPSX

	Model-based scaling techniques
	Lp-norm scaling model
	L1-norm scaling model
	L2-norm scaling model
	Linfty-norm scaling model

	The entropy scaling model
	The de Buchet scaling model
	de Buchet p = 1
	de Buchet p = 2
	de Buchet p = infty

	Non-square binormalization (NBIN)

	Optimal scaling and an instructive example
	Computational results
	Problems and algorithms considered
	Measures of comparison
	Results and discussion

	Conclusions
	Acknowledgements
	References

