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Abstract The linear ordering problem consists of finding an acyclic tournament in
a complete weighted digraph of maximum weight. It is one of the classical NP-hard
combinatorial optimization problems. This paper surveys a collection of heuristics
and metaheuristic algorithms for finding near-optimal solutions and reports about
extensive computational experiments with them. We also present the new benchmark
library LOLIB which includes all instances previously used for this problem as well
as new ones.

Keywords Metaheuristics · Empirical comparison · Library

1 Introduction

Let Dn = (Vn,An) denote the complete digraph on n nodes, where Vn is the set of
nodes and An the set of arcs. A tournament T in An consists of a subset of arcs
containing for every pair of nodes i and j either arc (i, j) or arc (j, i), but not
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both. T is an acyclic tournament if it does not contain any directed cycle. Obvi-
ously, an acyclic tournament induces an ordering 〈vi1, vi2, . . . , vin〉 of the nodes (and
vice versa): node vi1 is the one with no entering arcs in T , vi2 has exactly one en-
tering arc, etc., and vin is the node with no outgoing arc. Given arc weights wij for
every pair i, j ∈ Vn, the linear ordering problem (LOP) consists of finding an acyclic
tournament T in An such that

∑
(i,j)∈T wij is maximal, or in other words, of finding

an ordering of the nodes such that the sum of the weights of the arcs compatible with
this ordering is maximal.

Alternatively, the problem can be defined as a matrix problem. Given an (n,n) ma-
trix C = (cij ) the triangulation problem is to determine a simultaneous permutation
of the rows and columns of C such that the sum of superdiagonal entries becomes as
large as possible (or equivalently, the sum of subdiagonal entries is as small as pos-
sible). Note, that it does not matter if diagonal entries are taken into account or not.
Obviously, by setting arc weights wij = cij for the complete digraph Dn, the triangu-
lation problem for C can be solved as linear ordering problem in Dn. Conversely, a
linear ordering problem for Dn can be transformed to a triangulation problem for an
(n,n)-matrix C by setting cij = wij and the diagonal entries cii = 0 (or to arbitrary
values).

The LOP can also be seen as a problem of ranking objects. Suppose there are n

objects which are to be ranked where there is a benefit cij if object i is ranked before
object j . The task of finding a linear ranking maximizing the sum of benefits w.r.t.
this ranking amounts to solving a LOP or triangulation problem.

In the following we do not distinguish between the graph and the matrix or the
ranking problem and denote the objective function coefficients by cij .

Note, that if a constant is added to both entries cij and cji or if we take diagonal en-
tries into account, the optimality of an ordering is not affected by this transformation.
However, the quality of bounds does change. If we add large constants, then every
feasible solution is close to optimal and no real comparison of qualities is possible
(which is very relevant when we are comparing heuristics). Therefore we transform
every problem matrix C to its normal form satisfying the following conditions:

i. All entries of C are integral and nonnegative,
ii. cii = 0, for all i = 1, . . . , n,

iii. min{cij , cji} = 0, for all 1 ≤ i < j ≤ n.

Note that this normal form is unique.
The LOP can be formulated as a 0/1 linear integer programming (IP) problem as

follows. We use 0/1 variables xij , for (i, j) ∈ An, stating whether arc (i, j) is present
in the tournament or not. Taking into account that a tournament is acyclic if and only
if it does not contain any dicycle of length 3, it is easily seen that the LOP can be
formulated as the 0/1-IP

max
∑

(i,j)∈An

cij xij

xij + xji = 1, for all i, j ∈ Vn, i < j,

xij + xjk + xki ≤ 2, for all i, j, k ∈ Vn, i < j, i < k, j �= k,

xij ∈ {0,1}, for all i, j ∈ Vn.
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This IP is the basis for approaches to solve the LOP to optimality. If we replace
the constraints “xij ∈ {0,1}” by “0 ≤ xij ≤ 1” then we obtain a linear programming
problem, whose optimum objective function value provides an upper bound on the
optimum value of the LOP. In cases where we do not know optimum solutions to the
benchmark problems, we will usually take this upper bound for assessing the quality
of heuristics. We will not address the computation of optimum solutions in this paper.

The LOP has been the subject of study for a long time. Applications mentioned
in the literature are, for instance, aggregation of individual preferences [11], trian-
gulation of input-output tables [8, 26], determination of ancestry relationships [15],
scheduling with preferences [4], assessment of corruption perception [1] and mini-
mizing crossing numbers in graph drawing [21].

This paper is organized as follows. In Sect. 2 we describe simple heuristic ap-
proaches for the LOP. Section 3 discusses metaheuristics summarizing the most rel-
evant work in approximate optimization for the LOP. The benchmark problems are
described in Sect. 4. In Sect. 5 we report extensive experimental results targeting both
short and medium computation time. Some final remarks and online Appendix with
the best known solution values conclude the paper.

2 Heuristics

In this section we review construction and improvement heuristics. Construction
methods obtain a solution, i.e., a linear ordering from scratch adding iteratively one
node at each step. Improvement heuristics, also called local search or ascent meth-
ods (in the case of maximization problems) start from the solution obtained with a
construction method and iteratively improve it by performing local changes usually
referred to as moves. The different types of moves and selection strategies character-
ize the various heuristics. In this section we consider the two typical moves: insertion
and exchange.

2.1 Construction method of Chenery and Watanabe

The earliest heuristic for the LOP was introduced in 1958 by Chenery and Watan-
abe [8]. It concerns an application in economy and it is a simple method to rank the
sectors of input-output tables. Sectors having a large share of outputs to other sectors
should be ranked first. We can view this method as a greedy algorithm in which the
attractiveness ai of sector i is the sum of the elements in its corresponding row, i.e.,

ai =
n∑

j=1

cij .

The method (CW) successively constructs an ordering by selecting in each step the
most attractive sector among the sectors not ranked so far.

2.2 Construction methods of Aujac and Masson

Aujac and Masson [2] also rank sectors based on coefficients. The output coefficient
bij of a sector i with respect to another sector j is defined as

http://dx.doi.org/10.1007/s10589-010-9384-9
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bij = cij
∑

k �=i cik

.

The first method (AM-O) intends to rank sector i before sector j whenever bij > bji .
Since this is impossible in general, it heuristically tries to find a linear ordering with
few contradictions to this principle. Similarly, the second method (AM-I) defines
input coefficients, where cij is divided by the sum of the entries in the corresponding
column, and ranks sectors according to them.

2.3 Construction methods of Becker

Becker [3] proposed a construction method (Bci) related to the previous ones in that
it calculates special quotients to rank the sectors. For each sector i the number

qi =
∑

k �=i cik
∑

k �=i cki

is computed. The sector with the largest quotient qi is then ranked highest. Its corre-
sponding rows and columns are deleted from the matrix, and the procedure is applied
to the remaining sectors.

Becker also proposed a second construction method (Bcr) based on rotations,
which seems a local search method. Starting from a random ordering, at each iteration
this method tries to improve the current ordering O = 〈i1, i2, . . . , in〉 by evaluating
all orderings 〈im+1, im+2, . . . , in,1,2, . . . , im〉, for m = 1,2, . . . , n − 1. If the best
one among them improves O , the method takes it as the new current ordering and
continues, otherwise it stops.

2.4 Construction methods based on insertions

We have included two further constructive methods, BI1 and BI2, based on inser-
tions. They basically select an arbitrary unassigned object and insert it into the partial
solution at the currently best possible position. Let 〈i1, . . . , ik〉 be the current partial
ordering. BI1 computes for every object l not ranked so far coefficients

qt =
t−1∑

j=1

cij l +
k∑

j=t

clij ,

for 1 ≤ t ≤ k, and inserts l at the position with maximum coefficient. Alternatively,
BI2 uses coefficients

qt =
t−1∑

j=1

cij l +
k∑

j=t

clij −
t−1∑

j=1

clij −
k∑

j=t

cij l .

2.5 Improvement methods based on insertions

Removing a node from the current ordering and inserting it at a different position
is a simple possibility for searching for an improvement. Laguna et al. [24] define
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move(Oj , i) as the modification which deletes Oj from its current position j in per-
mutation O and inserts it at position i (i.e., between the objects currently in positions
i − 1 and i). The move value is the difference between the objective function values
after and before the move. The method LSi scans the list of nodes (in the order given
by the current permutation) in search for the first node whose movement results in an
strictly positive move value.

A different approach based on insertions is the method known as k-opt, which
basically selects k elements of a solution and locally optimizes with respect to these
elements (i.e., considers all subsets of k objects Oi1, . . . ,Oik in the current permuta-
tion and finds the best assignment of these objects to the positions i1, . . . , ik). Since
the number of possible new assignments grows exponentially with k, we have only
implemented 2-opt and 3-opt.

2.6 Improvement based on exchanges

This heuristic checks whether the objective function can be improved if the posi-
tions of two objects in the current ordering are exchanged. All such possibilities are
checked and the method stops when no further improvement is possible this way.

In [24] a limited version of this improvement method (LSe) is considered. The
authors tested a method in which only contiguous sectors are considered for exchange
(swap) and concluded that better solutions can be obtained with general insertions.
However, as far as we know, general exchanges (between any pair of sectors) have
never been tested. We will consider them in our computational comparison.

2.7 Kernighan and Lin improvement

Kernighan and Lin [22] introduced compound moves as a series of simple moves. In
contrast to pure improvement heuristics, they allow that some of the simple moves
(such as insertions or exchanges) are not improving. However, it is required that the
composition produces an improvement. Algorithm KL1 considers sequences of up
to n exchange moves. Each of the simple moves is the best available one, but it can
be a non-improving. If the composition of k moves, for some 1 ≤ k ≤ n, results in an
improvement, then it is performed. Otherwise the moves are discarded and the origi-
nal solution is restored. Variant KL2 works in the same way composing sequences of
insertion moves.

2.8 Local enumeration

This heuristic chooses windows 〈ik, ik+1, . . . , ik+L−1〉 of a given length L of the cur-
rent ordering 〈i1, i2, . . . , in〉 and determines the optimum subsequence of the respec-
tive objects by enumerating all possible orderings. The window is moved along the
complete sequence until no more improvements can be found. We implemented this
method, denoted LE, with length L = 8.
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3 Metaheuristics

In recent years, a series of methods have appeared under the name metaheuristics, a
term coined by Glover [14] in 1986. Basically, we consider a metaheuristic as com-
bination of simple heuristics with some scheme of randomization and additional fea-
tures, which can be interpreted as learning mechanism and systematic exploration of
search spaces. The following approaches fall into this category. We give only short
descriptions of these procedures here because they are discussed in depth in the recent
book by Martí and Reinelt [27].

3.1 KLM—Kernighan and Lin multi-start method

Multi-start procedures exploit a local or neighborhood search procedure by applying
it from multiple random initial solutions. It is well known that search methods based
on local optimization that aspire to find global optima usually require some type of
diversification to overcome local optimality. Without diversification, such methods
can reduce to tracing paths that are confined to a small area of the solution space,
making it almost impossible to find a global optimum. We apply the Kernighan and
Lin method from different initial random solutions until a pre-specified time limit is
reached.

3.2 CK—Chanas and Kobilansky multi-start method

Chanas and Kobylanski [8] proposed a multi-start method, called CK, based on the
following symmetry property. If the permutation O = 〈O1,O2, . . . ,On〉 is an opti-
mum solution to the maximization problem, then an optimum solution to the min-
imization problem is O∗ = 〈On,On−1, . . . ,O1〉. The method utilizes this property
to escape local optimality: once a local optimum solution O is found, the process is
re-started from the permutation O∗ (REVERSE operation).

In a global iteration, CK performs insertions as long as the solution improves.
Given a solution, the algorithm explores move(Oj , i) for all Oj and i in O , and
performs the best one. When no further improvement is possible, it generates a new
solution by applying the REVERSE operation from the last solution obtained, and
performs a new global iteration. The method halts when the best solution found can-
not be improved further in the current global iteration.

3.3 GRASP—greedy randomized adaptive search procedure

Each GRASP iteration [12] consists of constructing a trial solution and then applying
an improvement procedure to find a local optimum (i.e., the final solution for that
iteration). In [5] we can find several GRASP algorithms embedded in a scatter search
procedure for the LOP. The best one combines a randomized adaptive construction
based on the greedy evaluation e, with a local search based on a best insertion (i.e.,
move to the best solution in the neighborhood defined by insertion moves). The eval-
uation e(i) of object i is the sum of the elements in its corresponding matrix row:

e(i) =
n∑

j=1

cij .
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3.4 TS—tabu search

Tabu search [16] is a metaheuristic that guides a local search procedure to explore
the solution space beyond local optimality by allowing non-improving moves in the
local search. The basic tabu search algorithm proposed in [24] implements a short-
term memory structure alternating two phases: intensification and diversification. It
is based on insertions as the improvement phase of the GRASP algorithm described
above. However, instead of scanning the objects in search for a move in their original
order, they are randomly selected in the intensification phase based on a measure of
influence.

The basic method is complemented with a long-term intensification based on
the path relinking methodology [25], and with a long-term diversification based on
the REVERSE operation proposed in CK. Both long-term strategies incorporate fre-
quency information (memory structures) recorded during the application of the short-
term phase.

3.5 SS—scatter search

Scatter search is an evolutionary or population based method [25] that operates on a
relatively small set of solutions, called reference set, combining them to obtain new
and hopefully better solutions. In [5] an SS algorithm is described in which solutions
are generated with a diversification method, combined with a min-max method based
on a voting scheme, and improved with the local search method employed in the
GRASP method referenced above.

Some preliminary tests [5] disclose the best strategies to implement these three
methods. We can highlight the use of a frequency-based procedure as the diversifica-
tion generator method and the combination of multiple solutions.

3.6 VNS—variable neighborhood search

Variable neighborhood search [20] is based on a simple and effective idea: a sys-
tematic change of the neighborhood within a local search algorithm. In [13] a VNS
algorithm is proposed based on neighborhoods Nk , k = 1, . . . , n, where the neigh-
borhood of the solution p, Nk(p), is the set of solutions that are obtained when we
apply k − 1 insertion moves to p.

The VNS algorithm applies three steps: shaking, in which the current solution is
perturbed, improving, in which a local optimum with respect to the current neighbor-
hood is obtained, and updating, in which a change in the neighborhood is performed.
The authors proposed in [13] a hybrid algorithm in which VNS is combined with
memory structures for improved outcomes.

3.7 GA and MA—genetic and memetic algorithms

In [31] a genetic algorithm coupled with a local search procedure, called memetic al-
gorithm, is developed. As in SS above, it basically consists of generating, improving,
and combining solutions. In the initialization, a population of individuals is obtained
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by first generating a set of random permutations (solutions) and then applying a local
search procedure, based on insertions, to each of them.

In each iteration of the algorithm, called generation, new solutions are generated
by applying crossover and mutation to randomly selected solutions in the population
(according to a uniform distribution). Local search is applied again to improve each
new solution. The new population is created by merging the best solutions in the
population and the new improved solutions. It is worth mentioning that the authors
consider four different crossover operators: DPX (similar distance from parents), CX
(cycle crossover), OB (order based crossover) and RANK (computing the average
ranking of the elements). In computational experiments CX and OB performed best.

In [19] a similar method based on combining a classical GA with a local search
is presented. It is called hybrid genetic algorithm (HGA) and it is very similar to
the method in [31]. The local search is also based on exchanges. Additionally, this
method also applies the CX and OB crossover operators. However, instead of DPX
and RANK, it applies PMX (partially matched crossover).

3.8 SA—simulated annealing

Simulated annealing proceeds in the same way as ordinary local search, but incor-
porates some randomization in move selection to avoid getting trapped in a local
optimum by means of non-improving moves. The moves are accepted according to
probabilities taken from the analogy with the annealing process. As far as we know
there is no previous implementation of SA for the LOP although some methods, such
as the noising algorithm by Charon and Hudry [7] are based on the same principle.
We implemented an SA method based on insertion moves like the other local search
based metaheuristics in this section.

3.9 ILS—iterated local search

In [31] an iterated local search algorithm is proposed. This method iterates between
local search phases by applying three main steps: perturb a locally optimal solution
with exchange moves, apply the local search based on insertions to the perturbed
solution, and determine the new solution to be perturbed based on the search history.
The authors perform a comparison in this paper which favors the memetic algorithm.

4 The library of benchmark problems

We have compiled a comprehensive set of benchmark instances including all prob-
lem instances that have so far been used for conducting computational experiments.
Furthermore we have included new instances. In their original definition, some prob-
lem instances are not in normal form. For the computations documented here, all
instances have been transformed to normal form. We give a brief description of the
origin and the characteristics of the groups of instances.
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4.1 Input/output matrices

This is a well-known set of instances, first used in [18]. It contains 50 real-world
linear ordering problems taken from input-output tables from various sources. They
are comparatively easy and are thus more of interest for economists than for the
assessment of approximate methods for hard problems. The original entries in these
tables were not necessarily integral, but for the Linear Ordering Library LOLIB they
were scaled to integral values.

4.2 SGB instances

These instances were used in [24] and are taken from the Stanford GraphBase [23].
They are random instances with entries drawn uniformly distributed from [0,25000].
The set has a total of 25 instances with n = 75.

4.3 Random instances of type A

This is a set with 175 random instances that has been widely used for experiments.
Problems of type I (called RandomAI) are generated from a [0,100] uniform distribu-
tion. This type of problems was proposed in [29] and generated in [5]. Problems were
originally generated from a [0,25000] uniform distribution in [24] and modified af-
terwards, sampling from a significatively more narrow range (i.e., [0,100]) to make
them harder to solve. Sizes are n = 100, 150, and 200, and there are 25 instances
in each set giving a total of 75. We have extended this set including 25 additional
instances with size n = 500.

Instances of type II (called RandomAII) are generated by counting the number of
times a sector appears in a higher position than another in a set of randomly generated
permutations. This type of instances was proposed in [6] and generated in [5]. For a
problem of size n, n

2 permutations are generated. There are 25 instances for each n,
where n = 100, 150, and 200.

4.4 Random instances of type B

For these random instances, the superdiagonal entries are drawn uniformly distributed
from [0,U1] and the subdiagonal entries from [0,U2], where U1 ≥ U2. For the prob-
lems p40-i with n = 40, we set U1 = 100 and U2 = 100 + 4(i − 1). For n = 44 and
50 we set U1 = 100 and U2 = 100 + 2(i − 1) for the problems p44-i and p50-i,
respectively.

4.5 Instances of Mitchell and Borchers

These instances have been used in [28]. They are random matrices where the subdi-
agonal entries are uniformly distributed in [0,99] and the superdiagonal entries are
drawn uniformly from [0,39]. Finally, a certain percentage of the entries was set to
zero.
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4.6 Instances of Schiavinotto and Stützle

Some further benchmark instances have been used in [31]. These instances were gen-
erated from the real-world input-output tables of Sect. 4.1 by replicating them to
obtain larger problems. Thus, the distribution of numbers in these instances some-
how reflects real input-output tables, but otherwise they behave more like random
problems. That data set has been called XLOLIB; instances with n = 150 and 250 are
available. For each original input-output instance, two instances, one of size n = 150
and another one of size n = 250 were generated. The original set contains 98 in-
stances (49 with size 150 and 49 with size 250). We have removed 20 of these in-
stances because there entries were so large that the sum of entries was not repre-
sentable as a four byte integer. Therefore, this set finally has 78 instances.

4.7 Further special instances

We included some further problem instances that were used for experiments in some
publications.

– EX instances
These instances were used in particular in [9] and [10].

– econ instances
The problems instances econ36 through econ77 were generated from the ma-
trix usa79. They turned out not to be solvable as linear program using only
3-dicycle inequalities.

– atp instances
These instances were created from the results of ATP tennis tournaments in
1993/1994. Nodes correspond to a selection of players and the weight of an arc
(i, j) is the number of victories of player i against player j .

– Paley graphs
Paley graphs have been used in [17] to prove results about the acyclic subdigraph
polytope. They are a special class of tournaments where adjacency comes from an
algebraic definition. They are constructed from the members of a suitable finite
field by connecting pairs of elements that differ in a quadratic residue.

Table 1 summarizes the number of instances (#Instances) in each set described
above. Moreover, it specifies the number of instances where the optimum is known
(#Optima) or where only an upper bound is known (#Upper Bounds). In the compu-
tational experiments we call OPT-I to the set of 229 instances where the optimum is
known, and UB-I to the set of 255 instances where only an upper bound is known.

LOLIB is available at the web sites

– http://comopt.ifi.uni-heidelberg.de/software/LOLIB
– http://heur.uv.es/optsicom/LOLIB

Also the constants eliminated by the transformation to normal form can be found
there. In online Appendix we list all problems with their optimum solution values or
currently known best lower and upper bounds.

http://comopt.ifi.uni-heidelberg.de/software/LOLIB
http://heur.uv.es/optsicom/LOLIB
http://dx.doi.org/10.1007/s10589-010-9384-9
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Table 1 Number of instances in
each set Set #Instances #Optima #Upper bounds

IO 50 50 –

SGB 25 25 –

RandomAI 100 – 100

RandomAII 75 25 50

RandomB 90 70 20

MB 30 30 –

XLOLIB 78 – 78

Special 36 29 6

Total 484 229 255

5 Computational comparison

We divide our experimentation into three parts according to the classification of the
instances and methods introduced in previous sections.

In the first experiment we consider the 229 instances of OPT-I and the simple
heuristics described in Sect. 2. In this experiment for each instance and each method
we compute the relative deviation Dev (in percent) between the best solution value
Value obtained with the method and the optimal value for that instance. For each
method, we also report the number of instances #Opt for which an optimum solution
could be found. In addition, we calculate the so-called score statistic [30] associated
with each method. For each instance, the nrank of method M is defined as the number
of methods that found a better solution than the one found by M. In the event of ties,
the methods receive the same nrank, equal to the number of methods strictly better
than all of them. The value of Score is the sum of the nrank values for all the instances
in the experiment, thus, the lower the Score the better the method.

Tables 2 and 3 report about our results for 7 constructive and 7 improving heuris-
tics respectively on the OPT-I set. We do not report running times in these tables
because these methods are very fast and their running times are extremely short (be-
low 1 millisecond).

Table 2 shows results for:

– CW: Chenery and Watanabe algorithm
– AM-O: Aujac and Masson algorithm (output coefficients)
– AM-I: Aujac and Masson algorithm (input coefficients)
– Bcq: Becker algorithm (based on quotients)
– Bcr: Becker algorithm (based on rotations)
– BI1: Best Insertion algorithm (variant 1)
– BI2: Best Insertion algorithm (variant 2)

In Table 3 the results obtained with the following improvement methods (started
with a random initial solution) are given:

– LSi: Local Search based on insertions
– 2opt: Local Search based on 2-opt
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Table 2 Constructive methods
on OPT-I instances CW AM-O AM-I Bcq Bcr BI1 BI2

IO

Dev(%) 19.07 32.94 31.45 4.07 30.19 3.24 4.18

Score 231 291 266 101 289 89 104

#Opt 0 0 0 0 0 0 0

SGB

Dev(%) 12.83 26.15 26.15 3.57 31.56 3.89 3.03

Score 100 125 125 54 175 56 40

#Opt 0 0 0 0 0 0 0

RandomAII

Dev(%) 2.60 36.50 36.55 1.57 37.75 1.09 1.26

Score 100 135 136 68 162 34 48

#Opt 0 0 0 0 0 0 0

RandomB

Dev(%) 10.13 24.69 24.69 7.04 26.41 5.24 4.87

Score 276 368 368 194 454 124 106

#Opt 0 0 0 0 0 0 0

MB

Dev(%) 8.40 43.37 43.37 2.90 40.30 2.49 2.27

Score 120 178 178 80 154 52 48

#Opt 0 0 0 0 0 0 0

Special

Dev(%) 12.05 34.16 33.11 4.58 27.86 5.01 5.41

Score 110 161 156 56 153 64 65

#Opt 2 1 2 2 2 1 2

OPT-I

Avg. Dev(%) 10.85 32.97 32.55 3.95 32.35 3.49 3.50

Sum #Opt 2 1 2 2 2 1 2

– 3opt: Local Search based on 3-opt
– LSe: Local Search based on exchanges
– KL1: Kernighan-Lin based on exchanges
– KL2: Kernighan-Lin based on insertions
– LE: Local enumeration

Results in Table 2 clearly indicate that OPT-I instances pose a challenge for the
simple heuristics with average percentage deviations ranging from 3.49% to 32.97%.
On the other hand, the improvement methods are able to obtain better solutions with
average percentage deviations (shown in Table 3) ranging from 0.57% to 2.30%. We
have not observed significant differences when applying the improvement method
from different initial solutions. For example, as shown in Table 3 the LSi method
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Table 3 Improvement methods
on OPT-I instances LSi 2opt 3opt LSe KL1 KL2 LE

IO

Dev(%) 1.08 0.64 0.23 1.73 1.35 4.24 0.01

Score 243 181 125 295 239 232 49

#Opt 0 1 4 0 1 0 43

SGB

Dev(%) 0.16 0.81 0.53 1.35 0.63 0.28 1.09

Score 42 122 84 154 100 63 135

#Opt 1 0 0 0 0 1 0

RandomAII

Dev(%) 0.16 0.77 0.38 0.62 0.61 0.09 0.54

Score 46 161 81 134 134 29 112

#Opt 0 0 0 0 0 0 0

RandomB

Dev(%) 0.79 4.04 2.13 3.78 3.51 0.61 3.56

Score 124 400 232 387 359 95 362

#Opt 1 0 0 0 0 1 0

MB

Dev(%) 0.02 0.57 0.14 3.10 0.40 0.01 0.17

Score 64 178 113 210 149 41 83

#Opt 0 0 0 0 0 4 3

Special

Dev(%) 1.19 3.30 2.05 3.21 2.40 0.89 3.52

Score 69 144 82 138 120 49 156

#Opt 4 2 2 2 3 3 3

OPT-I

Avg. Dev(%) 0.57 1.69 0.91 2.30 1.49 1.02 1.48

Sum #Opt 5 3 6 2 4 8 49

exhibits a Dev value of 0.16% on the RandomAII instances when it is started from
random solutions. When it is run from the CW or the Bcr solutions, it obtains a Dev
value of 0.17% and 0.18% respectively.

We applied the non-parametric Friedman test for multiple correlated samples to
the best solutions obtained by each of the 7 constructive methods. This test com-
putes, for each instance, the rank value of each method according to solution quality
(where rank 7 is assigned to the best method and rank 1 to the worst one). Then, it
calculates the average rank values of each method across all the instances solved. If
the averages differ greatly, the associated p-value or significance will be small. The
resulting p-value of 0.000 obtained in this experiment clearly indicates that there
are statistically significant differences among the 7 methods tested. Specifically, the
rank values produced by this test are 6.2 (BI2), 6.2 (BI1), 5.6 (Bcq), 3.9 (CW),
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2.2 (AM-I), 2.1 (AM-O) and 1.9 (Bcr). Heuristics BI1, BI2 and Bcq consistently
provide the best solutions among the constructive heuristics. Considering that BI1
and BI2 obtain very similar rank values, we compared both with two well-known
nonparametric tests for pairwise comparisons: the Wilcoxon test and the Sign test.
The former one answers the question: Do the two samples (solutions obtained with
BI1 and BI2 in our case) represent two different populations? The resulting p-value
of 0.857 indicates that the values compared could come from the same method. On
the other hand, the Sign test computes the number of instances on which an algorithm
supersedes another one. The resulting p-value of 0.792 indicates that there is no clear
winner between BI1 and BI2 when we consider all the instances in the OPT-I set.
If we apply these two pairwise tests to compare BI1 and Bcq we obtain a p-value
of 0.000 (in both tests) indicating that there are significant differences between these
constructive methods.

Regarding the improvement methods, LSi and KL2 seem the best ones, although
the differences among methods are smaller than in the constructive procedures. The
significance level of the Friedman test is 0.000 indicating that there are statistically
significant differences among the 7 methods tested, and the rank values in this test are:
5.7 (KL2), 5.4 (LSi), 4.8 (3opt), 4.1 (LE), 3.1 (KL1), 2.8 (2opt) and 2.2 (LSe).
Considering that KL2 and LSi obtain very similar rank values, we compared both
with the Wilcoxon test and the Sign test. The resulting p-value of 0.005 obtained
in the former one indicates that the values compared come from different methods
(using the typical significance level of α = 0.05 as the threshold between rejecting or
not rejecting the null hypothesis). On the other hand, the resulting p-value of 0.000
obtained in the Sign test indicates that KL2 consistently beats LSi when we consider
all the instances in the OPT-I set.

In our second experiment we consider the metaheuristics described in Sect. 3 to
solve the OPT-I instances. Table 4 reports the values Dev, #Opt and Score obtained
with the following 10 methods executed for 10 seconds on each instance:

– TS: Tabu Search
– MA: Memetic Algorithm
– VNS: Variable Neighborhood Search
– SA: Simulated Annealing
– SS: Scatter Search
– GRASP: Greedy randomized adaptive search procedure
– ILS: Iterated Local Search
– GA: Genetic Algorithm
– KLM: Kernighan-Lin multi-start
– CKM: Chanas and Kobilansky multi-start

Table 4 shows that most of the metaheuristic algorithms considered are able to
obtain all the optimal solutions within the time limit of 10 seconds considered (they
actually obtain it in around 1 second). The Friedman test indicates that there are
statistically significant difference among the methods although some rank values are
very similar: 7.15 (ILS), 7.15 (MA), 7.00 (TS), 6.80 (VNS), 6.38 (GRASP), 6.00 (SS),
5.92 (CKM), 4.30 (KLM), 2.80 (SA) and 1.51 (GA). It must be noted that ILS and MA
obtain the optimum value in all the instances but one of OPT-I and TS obtains 215
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Table 4 Metaheuristic algorithms on OPT-I instances running for 10 seconds

TS MA VNS SA SS GRASP ILS GA CKM KLM

IO

Dev(%) 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.38 0.23 0.00

Score 50 50 50 304 97 58 50 382 373 50

#Opt 50 50 50 16 42 49 50 9 10 49

SGB

Dev(%) 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.76 0.01 0.00

Score 25 25 25 222 52 33 25 245 159 77

#Opt 25 25 25 0 20 23 25 0 7 16

RandomAII

Dev(%) 0.00 0.00 0.00 0.08 0.01 0.01 .00 21.44 0.01 0.02

Score 25 25 53 222 92 136 25 250 102 136

#Opt 25 25 19 0 13 5 25 0 11 6

RandomB 70

Dev(%) 0.00 0.00 0.02 0.25 0.01 0.00 0.00 0.75 0.13 0.00

Score 70 70 109 546 123 70 70 676 381 82

#Opt 70 70 64 10 62 70 70 1 28 68

MB

Dev(%) 0.00 0.00 0.00 1.33 0.00 0.00 0.00 35.53 0.00 0.00

Score 30 30 30 270 112 80 30 300 41 169

#Opt 30 30 30 0 16 21 30 0 28 10

Special

Dev(%) 0.02 0.00 0.11 0.39 0.09 0.05 0.00 1.38 0.14 0.01

Score 77 30 75 189 126 98 30 251 158 107

#Opt 15 28 20 6 12 14 28 4 9 15

OPT-I

Dev(%) 0.00 0.00 0.02 0.35 0.02 0.01 0.00 10.04 0.09 0.01

#Opt 215 228 208 32 165 182 228 14 93 124

optima out of 229 instances. As expected, the associated p-value of the Wilcoxon and
Sign tests when comparing ILS and MA is 1, indicating that we cannot differentiate
between both methods in this case. On the other hand, both pairwise tests provide a
p-value lower than 0.05 when comparing ILS and TS, indicating that there are sig-
nificant differences between the results of these two methods (although they present
the same average percentage deviation to optima: 0.00%). We conclude that instances
in OPT-I are easy for the best metaheuristics and therefore not adequate to compare
them.

We have also computed the upper bound obtained with the linear programming
formulation (LP relaxation) described in Sect. 1 on the OPT-I instances. The percent-
age gap between the value of this relaxation and the optimal solution value provides
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a measure of its quality. Specifically, the average gap on each subset of instances is:
0.00% (IO), 0.00% (SGB), 0.08% (RandomAII), 1.47% (15 RandomB instances with
n ≤ 150), 0.00% (MB) and 0.88% (Special). We can conclude that the value of the
upper bound is close to the optimal value on the OPT-I instances.

In our third experiment we target the 255 instances in UB-I where we only have
an upper bound for comparison. We do not consider the simple heuristics anymore
(since they already had difficulties to solve the easier problems in OPT-I) and limit
this comparison to the metaheuristic algorithms considered above. In this experiment,
we first determine the best known value for all the instances in UB-I. According to
the previous experiment (Table 4) ILS, MA and TS, seem to be the best methods. We
therefore run them for one hour on each instance to determine the best known value
BestValue for the 255 instances in UB-I.

We give for each instance and each method the relative deviation D.Best (in per-
cent) between the best solution value Value obtained with the method and the best
known value BestValue as well as the relative deviation D.UB (in percent) between
Value and the upper bound. For each method, we also report the number of instances
#Best for which the value of the solution is equal to BestValue. As in the previous
experiment we calculate the score statistic. Tables 5 and 6 report the values of these
four statistics on the UB-I instances when running the 10 metaheuristic algorithms
for 10 and 600 seconds respectively.

According to the differences among methods observed in Table 5, where the devi-
ations w.r.t. the best solution known range from 0.05% to 16.15%, we can conclude
that the instances in set UB-I are more difficult to solve than those in OPT-I (where
the deviations range from 0.00% to 10.04%).

Results in Table 5 show that MA is able to obtain the largest number of best so-
lutions (97 of a total of 255 instances) in short runs (10 seconds). No other method
is able to obtain more than 55 best solutions, which clearly indicates the superiority
of MA. On the other hand, considering average percentage deviations with respect to
the best solutions, the differences among the methods appear to be very small. MA and
ILS present on average a deviation of 0.05% and 0.06% respectively, while TS, SS
and VNS present averages deviations of 0.24% 0.27% and 0.29%, respectively. This
indicates that although these methods are not able to match most of the best solution
values, they obtain solutions with values very close to the best.

Considering the deviations with respect to the upper bound, most of the meth-
ods present similar values ranging from 6.66% to 7.40% (with the exception of
GA (21.98%)). The associated p-value of the Friedman test is 0.000 indicating that
there are differences among the 10 metaheuristic procedures observed in this ta-
ble. The rank values obtained with this non-parametric test are: 9.4 (MA), 8.9 (ILS)
7.3 (TS), 6.3 (VNS), 6.2 (SS), 4.9 (GRASP), 4.1 (SA), 3.6 (KLM), 3.2 (CKM) and
1.0 (GA). We perform now pairwise comparison between MA and ILS. The resulting
p-value of 0.000 obtained in both the Wilcoxon and the Sign tests clearly indicates
that there are significant differences between the results of both methods. Similarly,
we obtain a p-value of 0.000 on both tests when comparing ILS and TS, or MA and
TS.

Results in Table 6 are in line with those of Table 5 (although as expected, the
longer the run time the lower the deviations). The average percentage deviations with
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Table 5 Metaheuristic algorithms on UB-I instances running for 10 seconds

TS MA VNS SA SS GRASP ILS GA CKM KLM

RandomAI

D.Best(%) 0.12 0.05 0.47 1.77 0.27 0.42 0.09 10.59 0.76 0.98

D.UB(%) 17.81 17.75 18.10 18.88 17.92 18.05 17.79 26.28 18.34 18.45

Score 269 115 581 741 423 561 200 1000 818 792

#Best 5 33 0 0 1 0 17 0 0 0

RandomAII

D.Best(%) 0.01 0.00 0.01 0.07 0.02 0.04 0.00 35.97 0.06 0.02

D.UB(%) 0.38 0.38 0.39 0.44 0.40 0.41 0.38 36.21 0.44 0.40

Score 84 26 93 200 133 176 53 216 216 128

#Best 3 39 8 0 0 0 14 0 0 0

RandomB

D.Best(%) 0.00 0.00 0.00 0.31 0.02 0.00 0.00 0.91 0.01 0.14

D.UB(%) 3.20 3.20 3.26 3.51 3.22 3.20 3.21 4.08 3.22 3.34

Score 20 20 76 180 57 20 24 195 60 104

#Best 20 20 11 0 13 20 19 0 12 7

XLOLIB

D.Best(%) 0.64 0.14 0.44 0.56 0.71 1.17 0.15 24.01 1.76 1.95

D.UB(%) 3.21 2.72 3.01 3.13 3.27 3.72 2.73 25.96 4.30 4.48

Score 385 126 269 343 398 538 123 780 656 668

#Best 0 1 0 0 0 0 1 0 0 0

Special

D.Best(%) 0.45 0.05 0.52 2.07 0.35 0.68 0.06 9.29 0.40 0.45

D.UB(%) 9.61 9.26 9.67 11.04 9.52 9.81 9.27 17.35 9.57 9.61

Score 25 8 32 64 21 32 8 69 21 23

#Best 3 4 2 0 3 3 4 0 3 3

UB-I

D.Best(%) 0.24 0.05 0.29 0.95 0.27 0.46 0.06 16.15 0.60 0.71

D.UB(%) 6.84 6.66 6.89 7.40 6.87 7.04 6.68 21.98 7.17 7.26

#Best 31 97 21 0 17 23 55 0 15 10

respect to the best solutions of 0.05% achieved with MA in 10 seconds runs is reduced
to 0.01% in the 600 seconds runs. Similarly, the average percentage deviations with
respect to the best solutions of 0.06% and 0.24% achieved with ILS and TS in 10
seconds runs, drops to 0.03% and 0.16% respectively in the 600 seconds runs. On
the other hand, MA is able to match 205 best known solutions, while none of the
other methods obtains more than 108 best known solutions (which is the case of
the ILS method followed by TS with 65). These results confirm that MA is the best
method followed by ILS and TS. As in the previous experiment, we applied the
Friedman test, obtaining a p-value of 0.000 and the following rank values: 9.25 (MA),
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Table 6 Metaheuristic algorithms on UB-I instances running for 600 seconds

TS MA VNS SA SS GRASP ILS GA CKM KLM

RandomAI

D.Best(%) 0.10 0.00 0.41 0.40 0.18 0.28 0.09 1.14 0.44 0.27

D.UB(%) 17.78 17.72 18.06 18.04 17.87 17.93 17.79 18.65 18.06 17.90

Score 253 103 640 679 418 492 254 895 703 488

#Best 20 97 0 0 2 2 23 0 0 15

RandomAII

D.Best(%) 0.00 0.00 0.01 0.11 0.01 0.02 0.00 0.10 0.03 0.01

D.UB(%) 0.38 0.38 0.38 0.49 0.39 0.39 0.38 0.47 0.40 0.38

Score 102 50 181 485 272 324 139 379 379 190

#Best 21 50 16 0 2 0 14 0 0 9

RandomB

D.Best(%) 0.00 0.00 0.03 0.01 0.04 0.00 0.00 0.87 0.00 0.00

D.UB(%) 3.20 3.20 3.24 3.21 3.24 3.20 3.20 4.05 3.20 3.20

Score 20 20 80 79 86 20 20 200 20 20

#Best 20 20 12 12 11 20 20 0 20 20

XLOLIB

D.Best(%) 0.42 0.02 0.37 0.63 0.84 0.59 0.04 2.18 1.15 0.59

D.UB(%) 2.99 2.61 2.94 3.20 3.40 3.16 2.62 4.70 3.70 3.15

Score 298 121 289 426 529 407 113 702 622 438

#Best 0 33 0 0 0 0 44 0 0 0

Special

D.Best(%) 0.26 0.02 0.23 1.20 0.24 0.55 0.00 2.25 0.18 0.15

D.UB(%) 9.44 9.24 9.42 10.27 9.43 9.70 9.22 11.21 9.38 9.35

Score 24 9 23 47 24 35 7 70 22 16

#Best 4 5 3 2 3 3 7 0 3 4

UB-I

D.Best(%) 0.16 0.01 0.21 0.47 0.26 0.29 0.03 1.31 0.36 0.20

D.UB(%) 6.76 6.63 6.81 7.04 6.87 6.88 6.64 7.82 6.95 6.80

#Best 65 205 31 14 18 25 108 0 23 48

8.30 (ILS), 7.67 (TS), 5.99 (KLM), 5.57 (VNS), 5.24 (GRASP), 5.02 (SS), 3.58 (SA),
3.22 (CKM) and 1.16 (GA). Pairwise comparison between best methods (MA and ILS,
MA and TS, ILS and TS) result in a p-value of 0.000 with the Wilcoxon and Sign
tests in all the cases.

Considering all the runs performed with the metaheuristic procedures in the
three previous experiments, we applied the Friedman test, obtaining a p-value of
0.000 and the following rank values overall: 8.65 (MA), 8.14 (ILS), 7.34 (TS),
6.22 (VNS), 5.75 (SS), 5.48 (GRASP), 5.13 (KLM), 3.54 (CKM), 3.53 (SA) and
1.22 (GA). We can establish three ordered groups of methods according to this rank-
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Table 7 10 replications of 10 seconds on UB-I instances

TS MA ILS

MAX MIN AVG MAX MIN AVG MAX MIN AVG

RandomAI

D.Best(%) 0.31 0.49 0.40 0.01 0.12 0.06 0.14 0.25 0.20

D. UB(%) 37.50 37.61 37.56 37.32 37.38 37.35 37.39 37.47 37.43

RandomAII

D.Best(%) 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00

D. UB(%) 0.41 0.42 0.42 0.40 0.40 0.40 0.40 0.41 0.40

XLOLIB

D.Best(%) 0.76 1.13 0.96 0.09 0.32 0.19 0.10 0.30 0.20

D. UB(%) 3.58 3.95 3.79 2.94 3.16 3.03 2.95 3.14 3.04

ing. The best methods are MA, ILS and TS. Acceptable performance is shown
by VNS, SS, GRASP and KLM, while SA, CKM and GA would be classified as
poor.

The predominant performance of MA is particularly intriguing because most of the
elements in MA are present in some of the other methods. In particular SS and GA
are also based on generating, improving and combining solutions as MA, and they
share the same local search procedure based on insertions as the improving method.
However, as described in [31], the implementation of the local search in MA is per-
formed with a pivoting rule mechanism that explores the neighborhood of a solution
in constant time. This reduces the CPU time of the local search by several orders of
magnitude, thus permitting MA to explore a significantly larger number of solutions
than the other competing methods. It seems then that the implementation details, spe-
cially the incremental computation of the move value, make an important difference
in local search based methods.

In our final experiment we test the robustness of the three best methods identified
so far: MA, ILS and TS. Specifically, we study in this experiment the behavior of the
algorithms when they are replicated (executed several times from different random
initial solutions). Table 7 shows the deviations (with respect to best solutions and
upper bounds) of the maximum value (worst result) MAX, minimum value (best
result) MIN and average value AVG of the three methods under comparison. We
perform for each method on each problem instance 10 independent runs of 10 seconds
each. We limit here the comparison to the most challenging instances: RandomAI,
RandomAII and XLOLIB.

Results in Table 7 indicate that the three methods are quite robust. We observe very
small variations between the MAX and MIN values in this table. Moreover, average
values, AVG, are very similar (slightly worse) to those reported on Table 5, which
correspond to a single run.
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6 Conclusions

A computational comparison of 24 methods for the LOP has been presented. Over-
all, experiments with 484 instances were performed to compare the procedures. This
extensive experimentation allows us to confirm that classical heuristics, mostly based
on simple ordering rules, only obtain good solutions to relatively easy instances (al-
though we can find large instances in this set). Within these heuristics, it turns out
that the improvement methods, even when applied to random solutions, clearly out-
perform the constructive procedures. When we target much more difficult instances,
we need to apply complex metaheuristics to obtain high quality solutions. Our exper-
imentation reveals that the memetic algorithm implementation MA seems best suited
for this problem closely followed by iterated local search ILS, and with the tabu
search TS ranked in third place.
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