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Abstract We show how the performance of general purpose Mixed Integer Pro-
gramming (MIP) solvers, can be enhanced by using the Semi-Lagrangian Relaxation
(SLR) method. To illustrate this procedure we perform computational experiments
on large-scale instances of the Uncapacitated Facility Location (UFL) problems with
unknown optimal values. CPLEX solves 3 out of the 36 instances. By combining
CPLEX with SLR, we manage to solve 18 out of the 36 instances and improve the
best known lower bound for the other instances. The key point has been that, on av-
erage, the SLR approach, has reduced by more than 90% the total number of relevant
UFL variables.

Keywords Lagrangian relaxation · Mixed integer programming · Uncapacitated
facility location (UFL) problem

This work has been partially supported by the Spanish government subsidy
MTM2009-14039-C06-03 and by the ‘Comunidad de Madrid’ subsidy S2009/esp-1594.

C. Beltran-Royo (�) · A. Alonso-Ayuso
Statistics and Operations Research, Rey Juan Carlos University, Madrid, Spain
e-mail: cesar.beltran@urjc.es

A. Alonso-Ayuso
e-mail: antonio.alonso@urjc.es

J.-P. Vial
University of Geneva, Geneva, Switzerland

J.-P. Vial
ORDECSYS, Geneva, Switzerland
url: www.ordecsys.com

mailto:cesar.beltran@urjc.es
mailto:antonio.alonso@urjc.es
http://www.ordecsys.com


388 C. Beltran-Royo et al.

1 Introduction

Implementing an exact method for large scale MIP problems usually requires devis-
ing efficient cuts, efficient branching strategies, etc. to exploit the special structure of
the problem at hand. In this paper we explore another possibility: to solve large scale
MIP problems by combining the SLR approach with a general MIP solver. The idea
is to take advantage of the steadily increasing power of general MIP codes. The aim
of combining a general MIP solver with SLR is not to obtain the fastest procedure
to solve a problem, but to enhance the performance of the MIP solver at low pro-
gramming cost. Here we use the UFL problem, as a benchmark to illustrate the SLR
approach. In order to obtain the best performance, one should use Erlenkotter type
algorithms [14], which are especially designed for the UFL problem.

The Semi-Lagrangian Relaxation (SLR) method was introduced in [5] to solve the
p-median problem. In order to solve a combinatorial problem, the SLR method has
two main advantages compared to the Lagrangian relaxation (LR): The SLR method
closes the duality gap and gives an optimal integer solution as a byproduct. The dis-
advantage of the SLR method is that the relaxed problem is more difficult to solve
than in the case of the LR.

SLR applies to problems with equality constraints. Like Lagrangian Relaxation
(LR), the equality constraints are relaxed, but the definition of the semi-Lagrangian
dual problem incorporates those constraints under the weaker form of inequalities.
On combinatorial problems with positive coefficients, it has the strong property of
achieving a zero duality gap. The method has been used with success to solve large
instances of the p-median problem. In this paper we revisit the method and apply it
to the celebrated Uncapacitated Facility Location (UFL) problem. We perform com-
putational experiments on two main collections of UFL problems with unknown op-
timal values. CPLEX solves 3 out of the 36 instances. On one collection, we manage
to solve to optimality 16 out of the 18 problems. On the second collection we solve 2
out of 18 instances. Nevertheless, we are able to improve the Lagrangian lower bound
in this collection and thereby confirm that the Hybrid Multistart heuristic of [32] pro-
vides near optimal solutions (over 99% optimal in most cases).

The UFL problem (also called the simple plant location problem) is a basic but im-
portant problem in location science [31]. See [29] for a survey. [27] and [24] improve
the famous dual-based procedure of Donald Erlenkotter [14], where the condensed
dual of the LP relaxation for the UFL problem is heuristically maximized by the co-
ordinate ascent method. This procedure is followed by a Branch-and-Bound if nec-
essary. [11] propose an projection method to improve the coordinate ascent method
in order to compute an exact optimum of the condensed dual problem. [15] adapt
Erlenkotter’s method to effectively solve the so called two-echelon location problem,
which generalizes the UFL problem.

On the other hand, after 1990 contributions to the UFL problem mainly dealt with
heuristic methods. Some of the most successful methods are: Tabu search in [16, 33],
a combination of Tabu search, Genetic Algorithm and Greedy Randomized Adapta-
tive Search in [26] and Hybrid Multistart heuristic in [32]. Other contributions have
investigated enhanced versions of the UFL problem, as the two-stage UFL [28] or
have investigated new computational techniques applied to the UFL problem, as par-
allel interior point methods [12].
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Lagrangian relaxation [20] has also been used to solve the UFL problem, though
with less success than the LP dual-based procedures. For example [19] proposes to
strengthen the Lagrangian relaxation (equivalent to the LP relaxation) by using Ben-
ders inequalities. From a more theoretical point of view, [30] studies the duality gap
of the UFL problem. A complete study of valid inequalities, facets and lifting theo-
rems for the UFL problem can be found in [8–10].

This paper is organized as follows: In Sect. 2 we review the main properties of
the SLR and discuss two algorithms to solve its associated dual problem: Proximal-
ACCPM and the dual ascent algorithm. In Sect. 3, we apply the SLR to the UFL
problem, develop some related theoretical properties and detail a specialization of
the dual ascent algorithm for the UFL case. Section 4 reports our empirical study.
Our conclusions are given in a last section.

2 Semi-Lagrangian relaxation

The concept of semi-Lagrangian relaxation was introduced in [5]. In this section, we
summarize the main results obtained in that paper and simplify the proofs given there.

Consider the problem, to be named “primal” henceforth.

z∗ = min
x

cT x

s.t. Ax = b, (1a)

x ∈ S ⊂ X ∩ N
n. (1b)

Assumption 1 The components of A ∈ R
m × R

n, b ∈ R
m and c ∈ R

n are nonnega-
tive.

Assumption 2 X is a polyhedral set, 0 ∈ S and (1) is feasible.

Assumptions 1 and 2 together imply that (1) has an optimal solution.
The semi-Lagrangian relaxation consists in adding the inequality constraint Ax ≤

b and relaxing Ax = b only. We thus obtain the dual problem

max
u∈Rm

L(u), (2)

where L(u) is the semi-Lagrangian dual function defined as

L(u) = min
x

cT x + uT (b − Ax) (3a)

s.t. Ax ≤ b, (3b)

x ∈ S. (3c)

Note that with our assumptions the feasible set of (3) is bounded. We also have that
x = 0 is feasible to (3); hence (3) has an optimal solution. L(u) is well-defined, but
the minimizer in (3) is not necessarily unique. With some abuse of notation, we write

x(u) = arg min
x

{cT x + uT (b − Ax) | Ax ≤ b, x ∈ S} (4)
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to denote one such minimizer. With this notation we may write L(u) = (c −
AT u)T x(u) + bT u. We denote U∗ the set of optimal solutions of problem (2). Fi-
nally, given two sets S1 and S2, its addition corresponds to S1 + S2 = {s1 + s2 : s1 ∈
S1 and s2 ∈ S2}.
Theorem 1 The following statements hold [5].

1. L(u) is concave and b − Ax(u) is a subgradient at u.
2. L(u) is monotone and L(u′) ≥ L(u) if u′ ≥ u, with strict inequality if u′ > u and

u′ 	∈ U∗.
3. U∗ + R

m+ = U∗; thus U∗ is an unbounded (convex) set.
4. If x(u) is such that Ax(u) = b, then u ∈ U∗ and x(u) is optimal for problem (1).
5. Conversely, if u ∈ int(U∗), then any minimizer x(u) is optimal for problem (1).
6. The SLR closes the duality gap for problem (1).

Now, we simplify the proof given in [5].

Proof From the definition of the SLR function as a pointwise minimum, the inequal-
ity

L(u′) ≤ cT x(u) + (u′)T (b − Ax(u))

= L(u) + (b − Ax(u))T (u′ − u), (5)

holds for any pair u,u′. This shows that L(u) is concave and that (b − Ax(u)) is a
subgradient at u. This proves statement 1.

To prove statement 2, we note, in view of b −Ax(u′) ≥ 0 and u′ ≥ u, that we have
the chain of inequalities

L(u′) = cT x(u′) + (b − Ax(u′))T u′,

= cT x(u′) + (b − Ax(u′))T u + (b − Ax(u′))T (u′ − u),

≥ cT x(u′) + (b − Ax(u′))T u,

≥ cT x(u) + (b − Ax(u))T u = L(u).

This proves the first part of the third statement. If u′ /∈ U∗, then 0 /∈ ∂L(u′), the
subdifferential of L at u′ [22], and one has (b − Ax(u′))j > 0 for some j . Thus,
u < u′ implies (b − Ax(u′))T (u′ − u) > 0. Hence, L(u′) > L(u).

The third statement is an immediate consequence of the monotone property of
L(u). Furthermore, U∗ is convex since it is the optimal set of a concave function [22].

To prove the fourth statement, we note that Ax(u) = b implies 0 ∈ ∂L(u), a nec-
essary and sufficient condition of optimality for problem (2). Hence u ∈ U∗. Finally,
since x(u) is feasible to (1) and optimal for the relaxation (3) of problem (1), it is
also optimal for (1).

To prove the fifth statement, assume now u ∈ int(U∗). In this case there exists
u′ ∈ U∗ such that u′ < u; thus (b − Ax(u))T (u − u′) ≥ 0, with strict inequality if
b − Ax(u) 	= 0. In view of (5),

0 ≥ (b − Ax(u))T (u′ − u) ≥ L(u′) − L(u).
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Thus Ax(u) = b, and x(u) is optimal to (1). It follows that the original problem
(1) and the semi-Lagrangian dual problem (2) have the same optimal value (the last
statement). �

To close this section we present the two methods we use to solve the SLR dual
problem (2): The proximal analytic center cutting plane method (proximal-ACCPM)
and dual ascent method. The first one consists in choosing a theoretically and prac-
tically efficient general method for solving the semi-Lagrangian dual problem. As
for the p-median problem [5] we select the proximal analytic center cutting plane
method (proximal-ACCPM). This ensures a small number of iterations, and seems
to keep the oracle subproblem simple enough during the solution process. The other
method is a variant of the dual ascent method (e.g., [6]) based on finite increases
of the components of u. In fact, the dual ascent algorithm we use is in essence the
dual multi-ascent procedure used in [27] to solve the Erlenkotter’s ‘condensed’ dual
of the UFL problem [14]. In the case of LR, the dual multi-ascent method does not
necessarily converge. In the case of the SLR we prove finite convergence.

2.1 The proximal analytic center cutting plane method

Function L(u) in problem (2) is by construction, concave and nonsmooth (it is implic-
itly defined as the pointwise minimum of linear functions in u). Extensive numerical
experience shows that Proximal-ACCPM, is an efficient tool for solving (2). See, for
instance, [18] and references therein included; see also [5] for experiments with the
p-median problem.

In the cutting plane procedure, we consider a sequence of points {uk}k∈K in the
domain of L(u). We consider the linear approximation to L(u) at uk , given by

Lk(u) = L(uk) + sk · (u − uk)

and have

L(u) ≤ Lk(u)

for all u.
The point uk is referred to as a query point, and the procedure to compute the

objective value and subgradient at a query point is called an oracle. Furthermore, the
hyperplane that approximates the objective function L(u) at a feasible query point
and defined by the equation z = Lk(u), is referred to as an optimality cut.

A lower bound to the maximum value of L(u) is provided by:

θl = max
k

L(uk).

The localization set is defined as

LK = {(u, z) ∈ R
n+1 | u ∈ R

n, z ≤ Lk(u) ∀k ≤ K, z ≥ θl}, (6)

where K is the current iteration number. The basic iteration of a cutting plane method
can be summarized as follows:
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1. Select (u, z) in the localization set LK .
2. Call the oracle at u. The oracle returns one or several

optimality cuts and a new lower bound L(u).
3. Update the bounds:

(a) θl ← max{L(u), θl}.
(b) Compute an upper bound θu to the optimum of problem (2).

4. Update the lower bound θl and add the new cuts in the
definition of the localization set (6).

These steps are repeated until a point is found such that θu − θl falls below a
prescribed optimality tolerance. The first step in the above algorithm sketch is not
completely defined. Actually, cutting plane methods essentially differ in the way one
chooses the query point. For instance, the intuitive choice of the Kelley point (u, z)

that maximizes z in the localization set [25] may prove disastrous, because it over-
emphasizes the global approximation property of the localization set. Safer methods,
as for example bundle methods [21] or Proximal-ACCPM [2, 13, 17, 18], introduce a
regularizing scheme to avoid selecting points too “far away” from the best recorded
point. In this paper we use Proximal-ACCPM (Proximal Analytic Center Cutting
Plane Method) which selects the proximal analytic center of the localization set. For-
mally, the proximal analytic center is the point (u, z) that minimizes the logarithmic
barrier function of the localization set plus a quadratic proximal term which ensures
the existence of a unique minimizer. This point is relatively easy to compute using
the standard artillery of Interior Point Methods. Furthermore, Proximal-ACCPM is
robust, efficient and particularly useful when the oracle is computationally costly—
as is the case in this application.

2.2 A dual ascent method

We state the algorithm first and then prove finite convergence. This algorithm, at each
iteration, increases some or all of the coordinates of the dual iterate uk , by at least
� > 0.

Algorithm 1 Dual ascent algorithm (basic iteration)

1. Solve the oracle: Compute

xk = arg min
x

{cT x + (uk)T (b − Ax) | Ax ≤ b, x ∈ S},

where uk is the current dual iterate.
2. Stopping criterion: If sk := b − Axk = 0, stop.

(xk, uk) is an optimal primal-dual point.
3. Update the dual iterate: For j = 1, . . . , n, set

uk+1
j =

{
uk

j + δk
j if sk

j > 0,

uk
j otherwise,

where δk
j ≥ �.
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We now prove finite convergence of the above algorithm.

Theorem 2 The following statements hold.

1. Algorithm 1 is a dual ascent method when applied to solve the SLR dual problem:
for any two consecutive iterates uk and uk+1 we have L(uk+1) > L(uk).

2. Let us suppose that u0 ≥ 0 and that U∗ 	= ∅. Algorithm 1 converges to an optimal
dual point u ∈ U∗ after finitely many iterations.

Proof Let us prove statement 1 first. The updating procedure of Algorithm 1 consists
in increasing some components of the current dual point uk (step 3). Thus, uk+1 > uk

and by Theorem 1.2 we have that L(uk+1) > L(uk).
The proof of statement 2 goes as follows. Let us consider the sequence {sk} of

subgradients generated by the algorithm. We have two exclusive cases.
Case 1: There exists k0 such that sk0 = 0. Then 0 ∈ ∂L(uk0) and uk0 ∈ U∗.
Case 2: At least for one component of sk , say the 1st, there exists a subsequence

{ski

1 } ⊂ {sk
1 } such that s

ki

1 	= 0 for all i = 0,1,2, . . . . We will prove by contradiction
that this case cannot happen.

By definition of the algorithm we will have:

u
ki

1 ≥ u
k0
1 + i�. (7)

Let us show that the subsequence {L(uki )} is unbounded from above which con-
tradicts the hypothesis U∗ 	= ∅. Let us define J ki = {j | s

ki

j > 0}. Since x is a binary
vector, it implies, by Assumption 1, that there exists an absolute constant η > 0 such
that

min
j

min
x

{sj = (b − Ax)j | (b − Ax)j > 0} = η.

Thus s
ki

j ≥ η for all j ∈ J ki and for all i.

Using the fact that cT x ≥ 0 and that uki ≥ 0, we have

L(uki ) = cT x(uki ) + (b − Ax(uki ))T uki

= cT x(uki ) + (ski )
T
uki

≥ (ski )
T
uki

=
∑

j∈J ki

s
ki

j u
ki

j

≥ u
ki

1 η

≥ (u
k0
1 + i�)η.

Thus limi→∞ L(uki ) = +∞. �
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3 SLR applied to the UFL problem

In the Uncapacitated Facility Location (UFL) problem we have a set of ‘facilities’
indexed by I = {1, . . . ,m} and a set of ‘clients’ indexed by J = {1, . . . , n}. The pur-
pose is to open facilities relative to the set of clients, and to assign each client to
a single facility. The cost of an assignment is the sum of the shortest distances cij

from a client to a facility plus the fixed costs of opened facilities fi . The distance
is sometimes weighed by an appropriate factor, e.g., the demand at a client node.
The objective is to minimize this sum. The UFL problem is NP-hard [29] and can be
formulated as follows.

z∗ = min
x,y

z(x, y) (8a)

s.t.
m∑

i=1

xij = 1, j ∈ J, (8b)

xij ≤ yi, i ∈ I, j ∈ J, (8c)

xij , yi ∈ {0,1}, (8d)

where

z(x, y) =
m∑

i=1

n∑
j=1

cij xij +
m∑

i=1

fiyi . (9)

xij = 1 if facility i serves the client j , otherwise xij = 0 and yi = 1 if we open facility
i, otherwise yi = 0.

Following the ideas of the preceding section, we formulate the semi-Lagrangian
relaxation of the UFL problem. We obtain the dual problem

max
u∈Rn

L(u) (10)

and the oracle (note that, now, we keep the equality constraint (8b) as an inequality)

L(u) = min
x,y

f (u, x, y) (11a)

s.t.
m∑

i=1

xij ≤ 1, j ∈ J, (11b)

xij ≤ yi, i ∈ I, j ∈ J, (11c)

xij , yi ∈ {0,1}, (11d)

where

f (u, x, y) =
m∑

i=1

n∑
j=1

cij xij +
m∑

i=1

fiyi +
n∑

j=1

uj

(
1 −

m∑
i=1

xij

)

=
m∑

i=1

n∑
j=1

(cij − uj )xij +
m∑

i=1

fiyi +
n∑

j=1

uj . (12)
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As in the previous section, we denote (x(u), y(u)) an optimal point for the oracle
(11). The associated Lagrangian relaxation that we use in this paper, corresponds to
formulation (11) without constraints (11b).

3.1 Properties of the SLR dual problem

In this section we show that, in order to solve the SLR dual problem, we can re-
strict our dual search to a box. To this end, we define for each client j , its best
combined costs as c̃j := mini{cij + fi}. The vector of best combined costs is thus
c̃ := (c̃1, . . . , c̃n). Furthermore, for each client j , we sort its costs cij , and get the
sorted costs

c1
j ≤ c2

j ≤ · · · ≤ cm
j .

Theorem 3 u ≥ c̃ ⇒ u ∈ U∗ and u > c̃ ⇒ u ∈ int(U∗).

Proof Consider the oracle

min
x

m∑
i=1

(fiyi +
n∑

j=1

(cij − uj )xij ) +
n∑

j=1

uj

m∑
i=1

xij ≤ 1, ∀j

xij ≤ yi, ∀i, j

xij , yi ∈ {0,1}.
Assume u ≥ c̃. If there exists an optimal solution of the oracle such that

∑
i xij =

1, ∀j , then, by Theorem 1, this solution is optimal for the original problem. Assume
we have an oracle solution with

∑
i xij = 0 for some j . Let ik be such that c̃j =

fik + cikj . By hypothesis, c̃j − uj ≤ 0. Thus, fik + (cikj − uj ) ≤ 0 and one can set
xikj = 1 and yik = 1 without increasing the objective value. The modified solution is
also optimal. Hence, there exists an optimal oracle solution with

∑
i xij = 1, ∀j and

u ∈ U∗. The second statement of the theorem follows from c̃ ∈ U∗ and statement 3
of Theorem 1. �

Theorem 4 If u ∈ int(U∗), then u ≥ c1.

Proof Let us assume that uj0 < c1
j0

for some j0 ∈ J and see that this contradicts

u ∈ int(U∗). If uj0 < c1
j0

then ck
j0

− uj0 > 0 for all k ∈ I . Any optimal solution x(u)

is such that xij0(u) = 0, for all i ∈ I . Hence, 1 − ∑
i∈I xij0(u) = 1 and by Theorem

1, u is not in int(U∗). �

Corollary 1 Let us consider the scalar ε > 0, the vector ε̄, where each component is
equal to ε, and the box

B := {u ∈ R
n | c1 < u ≤ c̃ + ε̄}.
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Then, for the UFL problem one has

int(U∗) ∩ B 	= ∅.

This corollary implies that the search for an optimal dual point can be confined
to a box. In particular, taking u = c̃ + ε̄ and solving the oracle for u, yields a primal
optimal solution in one step. As pointed out earlier, it is likely to be impractical
because the oracle is too difficult at that u. It is also, likely that there is a smaller
u∗ ∈ U∗, for which the oracle subproblem would be easier (with less binary variables)
and hopefully tractable by an integer programming solver. This justifies the use of
dual methods that increase the dual iterates in small steps.

3.2 Structure of the oracle: the core subproblem

In this section, we study the structure of the UFL oracle as a function of the dual
variable u. We shall show how some primal variables xij can be set to zero when uj is
small enough. This operation, which reduces the size of the oracle, is quite common
in Lagrangian relaxation applied to combinatorial optimization. There, using some
appropriate argument, one fixes some variables of the oracle and obtains a reduced-
size oracle called the core subproblem. (See, for instance, [1, 7].)

We now define the core UFL subproblem in the SLR case. Let c(u) be the matrix
of reduced costs such that c(u)ij = cij − uj . Let G = (V × W,E) be the bipartite
graph associated to the UFL problem, such that each node in V (W ) represents a
facility (client) and the edge eij exists if facility i can serve client j . c(u)ij is thus
the reduced cost associated to eij . Let E(u) ⊂ E be the subset of edges with strictly
negative reduced cost for a given dual point u. Let V (u) ⊂ V and W(u) ⊂ W be the
adjacent vertices to E(u). Let G(u) = (V (u) × W(u),E(u)) be the induced bipartite
subgraph. We call G(u) the core graph.

It is easy to see that for any c(u)ij ≥ 0 there exists x(u) such that x(u)ij = 0.
Therefore, we can restrict our search to the core graph G(u) to compute x(u). The
advantage of solving oracle (11) with core graph G(u) is that in G(u) we may have
much less edges (variables xij ) and facility nodes (variables yj ), as we will see in
Sect. 4.6. A further advantage of solving the core subproblem is that, even though G

is usually a connected graph, G(u) may be decomposable into independent subgraphs
and then we can decompose the core subproblem into smaller (easier) subproblems.

We now study the inverse image of the mapping G(u). In other words, we wish to
describe the set of u’s that have the graph G as a common image through the mapping
G(u). It is easy to see that it is a simple box.

To define an elementary box, we use the sorted costs to partition the domain of
each coordinate uj into intervals of the form ]ck

j , ck+1
j ], with the convention that

cm+1
j = +∞. Note that some boxes may be empty (if ck

j = ck+1
j ). These coordinate

partitions induce a partition of the box B into elementary boxes. It is not difficult
to show that, there is a bijection between core graphs G(u) and elementary boxes.
Therefore, it is enough to restrict the dual search to one representative point per el-
ementary box. The dual ascent algorithm to be presented in the next section will
exploit this structure.
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3.3 The dual ascent algorithm to solve the SLR dual problem

We now present a specialized version of the dual ascent method (Algorithm 1) for the
UFL problem. We know by Corollary 1, that the dual search can be confined to the
box B. The discussion of the previous section shows that B can be partitioned into
elementary boxes and that it is enough to restrict the dual search to one representative
point per elementary box. Our choice is to take this representative point, as small as
possible within each elementary box. Since an elementary box is determined by the
intervals ]ck

j , ck+1
j ], we choose the representative point to be uj = c

l(j)
j + ε (j =

1, . . . , n), for some fixed ε > 0.
Our algorithmic scheme is as follows: Take a small ε > 0 and for each client j ,

take some l(j) ∈ I (see Sect. 4.1 for details). Start the dual search at u0
j := c

l(j)
j + ε

(each client node will have exactly l(j) core edges). Query the oracle, and if the
current dual iterate is not optimal, update it. To maintain the number of core edges
as low as possible, at each iteration, we add at most one edge per client, that is,
we update uj from c

l(j)
j + ε to c

l(j)+1
j + ε, for some l(j) ∈ I . We only update the

coordinates of the dual iterate uk whose corresponding subgradient coordinate is not
null. The details of this simple procedure are as follows.

Algorithm 2 Dual ascent algorithm (UFL case)

1. Initialization: Set k = 0 and ε > 0. For each client j ∈ J = {1, . . . , n}, set
(a) u0

j = c
l(j)
j + ε for some l(j) ∈ I = {1, . . . ,m},

(b) c̃j = mini{cij + fi},
(c) cm+1

j = +∞.

2. Oracle call: Compute L(uk), (x(uk), y(uk)) and sk where

sk
j = 1 −

m∑
i=1

xk
ij ,

for all j ∈ J . (Note that sk
j ∈ {0,1}.)

3. Stopping criterion: If sk = 0 then stop. The pair (uk; (x(uk), y(uk)) is a primal-
dual optimal point.

4. Multiplier updating: For each j ∈ J such that sk
j = 1, set

uk+1
j = min{cl(j)+1

j , c̃j } + ε and l(j) = min{l(j) + 1, n}.
5. Set k = k + 1 and go to Step 2.

By construction, the iterates are monotonic with at least one strictly increasing
coordinate. The algorithm converges in a finite number of iterations. The semi-
Lagrangian dual function is also monotonic, which makes the algorithm a dual-
ascent.
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4 Computational experiments

The objective of our numerical test is twofold: first, we study the quality of the so-
lution given by the semi-Lagrangian relaxation (SLR) and second we study the SLR
performance in terms of CPU time. The CPU time limit is set to 7200 seconds. First,
we compare our combined SLR-CPLEX approach to the plain CPLEX. Second, we
compare our results to the results reported in [32] and in the Uncapacitated Facility
Location Library (UflLib) [23].

4.1 Parameter setting for the algorithms

Programs have been written in MATLAB 7.0 and run on a PC (Pentium-IV, 3.0 GHz,
with 3 GB of RAM memory) under the Windows XP operating system. The reader
should bear in mind that results reported in [32] were found on a different machine
(SGI Challenge with 28 196-MHz MIPS R10000 processors, although each execution
was limited to a single processor) and programs were implemented in C++.

In our context and using the terminology of oracle based optimization [2], to call
or to solve an oracle means to compute L(uk): Oracle 1 for the Lagrangian relax-
ation and Oracle 2 for the semi-Lagrangian relaxation. To solve Oracle 2 (a large-
scale mixed integer program) we have intensively used CPLEX 9.1 (default settings)
interfaced with MATLAB [3].

The dual ascent algorithm is implemented as stated in the previous section with-
out parameter tuning (ε = 10−3). Proximal-ACCPM is used in its generic form as
described in [2] with some tuning. We use Proximal-ACCPM in a two phase scheme:
in the first phase we solve the Lagrangian relaxation (LR) dual problem. In the second
phase we solve the semi-Lagrangian relaxation (SLR) dual problem. The Proximal-
ACCPM parameter setting is as follows: In the LR phase, we use a proximal weight
ρ that at each Proximal-ACCPM iteration is updated within the range [10−6,104]
and the required precision is 10−6. In the SLR phase, we choose to fix the reference
proximal point at the initial point u0. As pointed out in [5], an optimal LR dual point
u∗

LR is a good starting point u0 for the SLR method. To be more precise, in our UFL

computational experiments, for each client j , we take the c
l(j)
j which is the closest to

u∗
LRj

and define u0
j := c

l(j)
j + ε, for some small ε > 0 (as we saw in Algorithm 2).

The proximal weight ρ has been fixed, by tuning, to 10−4 for the Barahona-Chudak
instances and to 10−3 for the Koerkel-Ghosh instances.

4.2 Instance description

For our test we use 36 unsolved UFL instances that can be obtained in the UFL library
UflLib (see Table 1). The first set, with 18 instances, is called Barahona-Chudak [4].
In the Euclidian plane n points are randomly generated in the unit square [0,1] ×
[0,1]. Each point simultaneously represents a facility and a client (m = n), with
n = 500,1000, . . . ,3000. The connection costs cij are determined by the Euclidian
distance. In each instance all the fixed costs fi are equal and calculated by

√
n/l

with l = 10,100 or 1000. All values are rounded up to 4 significant digits and made
integer [23]. We use the label n − l to name these instances.
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Table 1 Instance description: For the Barahona-Chudak instances, the fixed cost is the same for all facil-
ities. For the Koerkel-Ghosh instances the fixed cost is randomly chosen for each facility according to a
uniform distribution

Barahona-Chudak Nb. of Fix Koerkel-Ghosh Nb. of Fix

instances clients cost instances clients cost

500-1000 500 224 gs00250a-1 250 U [100,200]

500-100 500 2236 gs00250b-1 250 U [1000,2000]

500-10 500 22361 gs00250c-1 250 U [10000,20000]

1000-1000 1000 316 gs00500a-1 500 U [100,200]

1000-100 1000 3162 gs00500b-1 500 U [1000,2000]

1000-10 1000 31623 gs00500c-1 500 U [10000,20000]

1500-1000 1500 387 gs00750a-1 750 U [100,200]

1500-100 1500 3873 gs00750b-1 750 U [1000,2000]

1500-10 1500 38730 gs00750c-1 750 U [10000,20000]

2000-1000 2000 447 ga00250a-1 250 U [100,200]

2000-100 2000 4472 ga00250b-1 250 U [1000,2000]

2000-10 2000 44721 ga00250c-1 250 U [10000,20000]

2500-1000 2500 500 ga00500a-1 500 U [100,200]

2500-100 2500 5000 ga00500b-1 500 U [1000,2000]

2500-10 2500 50000 ga00500c-1 500 U [10000,20000]

3000-1000 3000 548 ga00750a-1 750 U [100,200]

3000-100 3000 5477 ga00750b-1 750 U [1000,2000]

3000-10 3000 54772 ga00750c-1 750 U [10000,20000]

The second set of UFL instances is called Koerkel-Ghosh. In these instances,
the connection costs cij are drawn uniformly at random from [1000,2000]. The
fixed costs fi are drawn uniformly at random from [100, 200] in class ‘a’, from
[1000,2000] in class ‘b’ and from [10000,20000] in class ‘c’. Furthermore symmet-
ric and asymmetric connection matrices are created. UflLib provides instances of the
3 largest sizes presented in [16] with n = m = 250,500 and 750. Of the 90 instances
proposed in the UflLib, we took 18 representative ones. We use the label gX00YZ-1
to name these instances, where X can be either ‘s’ or ‘a’ for the symmetric or asym-
metric case respectively. Y is equal to ‘n’ and Z is the class (a, b or c).

4.3 CPLEX performance

In Table 2 we report the results obtained with CPLEX 9.1 (default settings and 7200
seconds as CPU time limit). Barahona-Chudak instances: We observe that CPLEX
has solved the first three instances. However, the remaining 15 instances have become
too large, even to solve their LP relaxation. Koerkel-Gosh instances: CPLEX has
given an integer solution and a lower bound in most of the cases. Cases gs00750a-1
and ga00750a-1 have become too large at the beginning of the B&B process (CPLEX
has been able to solve their LP relaxation and compute an integer solution). For the
other 4 instances with 750 points, CPLEX has not even solved the LP relaxation
within 7200 seconds.
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Table 2 CPLEX performance: ‘UB’ stands for upper bound, ‘LB’ for lower bound. Larger instances have
produced an ‘Out of memory’ either before CPLEX solved the LP relaxation or after (‘Before LP’ and
‘After LP’)

Instance UB LB B&B gap (%) CPLEX time (sec.) Out of memory

500-1000 99169 99169 0.00 12

500-100 326790 326790 0.00 4

500-10 798577 798577 0.00 35

1000-1000 – – – – Before LP

1000-100 – – – – Before LP

1000-10 – – – – Before LP

1500-1000 – – – – Before LP

1500-100 – – – – Before LP

1500-10 – – – – Before LP

2000-1000 – – – – Before LP

2000-100 – – – – Before LP

2000-10 – – – – Before LP

2500-1000 – – – – Before LP

2500-100 – – – – Before LP

2500-10 – – – – Before LP

3000-1000 – – – – Before LP

3000-100 – – – – Before LP

3000-10 – – – – Before LP

gs00250a-1 257999 257803 0.08 7200

gs00250b-1 276892 274324 0.94 7200

gs00250c-1 332935 324142 2.71 7200

gs00500a-1 512237 510446 0.35 7200

gs00500b-1 654860 533027 22.86 7200

gs00500c-1 746506 601986 24.01 7200

gs00750a-1 785232 762565 2.97 5023 After LP

gs00750b-1 – – – 7200

gs00750c-1 – – – 7200

ga00250a-1 257991 257778 0.08 7200

ga00250b-1 276556 274112 0.89 7200

ga00250c-1 334735 324892 3.03 7200

ga00500a-1 512071 510614 0.29 7200

ga00500b-1 649226 533339 21.73 7200

ga00500c-1 747626 602861 24.01 7200

ga00750a-1 783973 762464 2.82 5707 After LP

ga00750b-1 – – – 7200

ga00750c-1 – – – 7200
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4.4 Dual solution quality

In Table 3 we report the dual solution quality. We observe an important result: the
semi-Lagrangian relaxation closes the duality gap (if convergence is reached). Col-
umn (3.a) reports the best known upper bound (UB) to the optimal primal cost. In
the remaining 6 columns we report the results concerning the Lagrangian relaxation
(LR) and the semi-Lagrangian relaxation (SLR) bounds.

In column (3.b) we have the LR lower bound (obtained with Proximal-ACCPM).
In column (3.c) we give the LR duality gap (in fact we give an upper bound to the
true duality gap since in some cases we do not know the true primal optimum but an
upper bound). In the remaining 4 columns (3.d–g), we report the SLR lower bound
information, obtained either with the dual ascent method o with Proximal-ACCPM.
We also give the optimality gap of these dual values. Optimal SLR dual bounds have
been written in boldface. In the remaining cases, the SLR procedure was stopped
before reaching optimality because of the CPU time limit (7200 seconds).

4.5 Primal solution quality

In Table 4 we report the primal solution quality. Column (4.a) reports the best known
lower bound. In column (4.b), we have the upper bounds (UB) to the UFL optima,
reported in literature. In the first half of this column, we have the results for the
Barahona-Chudak instances reported in [32], (they were obtained as the average of
several runs). In the second half of this column, we have the results for the Koerkel-
Ghosh instances as reported in UflLib (the results reported in [32] for these instances
do not correspond to single instances but for groups of 5 instances). In columns (4.d)
and (4.f) we have the UB obtained in the framework of the dual ascent method and
Proximal-ACCPM, respectively.

In this section, the important result is that the SLR approach has been able to
solve 18 instances of the 36 previously unsolved ones. These 18 instances have been
solved by Proximal-ACCPM. On the other hand, the dual ascent method has been
able to solve 16 UFL instances.

For the unsolved instances we have reported the upper bound obtained by the fol-
lowing simple heuristic which computes a primal feasible solution. At each iteration
of the SLR method the oracle solution y(uk) proposes to open a set of facilities. To
complete the solution, each client is assigned to its closest open facility. If the SLR
method fails to converge, we take the best heuristic solution as the primal SLR so-
lution. In general, the sophisticated heuristic used in [32] performs better than our
simple primal heuristic. At the same time, the SLR procedure combined with this
simple heuristic, has given better primal solutions than CPLEX.

4.6 Instance reduction

Very often, Lagrangian relaxation is used to decompose difficult problems. The de-
composition induced by SLR is more coarse-grained than the Lagrangian relaxation
one. Thus for example, in the UFL problem, after Lagrangian relaxation, one has one
subproblem per facility. However, after SLR, one may have from several to only one
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Table 3 Dual solution quality: ‘UB’ stands for upper bound, ‘LB’ for lower bound, ‘PACCPM’ for
Proximal-ACCPM, ‘DA’ for dual ascent. Optimal lower bounds are in boldface

Instance UB LB

Lagrangian Semi-Lagrangian Semi-Lagrangian

(PACCPM) (Dual ascent) (PACCPM)

Bound Dual Bound Optimality Bound Optimality

gap (%) gap (%) gap (%)

(3.a) (3.b) (3.c) (3.d) (3.e) (3.f) (3.g)

500-1000 99169 99160 0.0091 99169 0 99169 0

500-100 326790 326790 0 326790 0 326790 0

500-10 798577 798577 0 798577 0 798577 0

1000-1000 220560 220559 0.0003 220560 0 220560 0

1000-100 607878 607814 0.0105 607878 0 607878 0

1000-10 1434154 1433389 0.0534 1434154 0 1434154 0

1500-1000 334962 334944 0.0054 334962 0 334962 0

1500-100 866454 866453 0.0001 866454 0 866454 0

1500-10 2000801 1999284 0.0758 2000696 0.0052 2000801 0

2000-1000 437686 437678 0.0018 437686 0 437686 0

2000-100 1122748 1122746 0.0002 1122748 0 1122748 0

2000-10 2558118 2557753 0.0143 2558118 0 2558118 0

2500-1000 534405 534395 0.0019 534405 0 534405 0

2500-100 1347516 1347494 0.0016 1347516 0 1347516 0

2500-10 3100225 3096856 0.1087 3097647 0.0831 3097647 0.0831

3000-1000 643463 643432 0.0048 643463 0 643463 0

3000-100 1602335 1601652 0.0426 1602063 0.0170 1602120 0.0134

3000-10 3570766 3570752 0.0004 3570766 0 3570766 0

Partial average 1200367.0 1199985 0.0184 1200203 0.0059 1200212 0.0054

gs00250a-1 257964 257639 0.1259 257899 0.0252 257964 0

gs00250b-1 276761 273693 1.1085 275363 0.5051 275574 0.4289

gs00250c-1 332935 322696 3.0753 329135 1.1414 330559 0.7137

gs00500a-1 511229 510408 0.1606 510408 0.1606 510408 0.1606

gs00500b-1 537931 533020 0.913 534029 0.7254 533477 0.8280

gs00500c-1 620041 601962 2.9158 607260 2.0613 609333 1.7270

gs00750a-1 763671 762562 0.1453 762562 0.1452 762562 0.1452

gs00750b-1 797026 790334 0.8396 790917 0.7665 790917 0.7665

gs00750c-1 900454 875340 2.789 879430 2.3348 879343 2.3445

ga00250a-1 257957 257618 0.1315 257882 0.0291 257957 0

ga00250b-1 276339 273296 1.1012 275080 0.4556 275200 0.4122

ga00250c-1 334135 322958 3.3451 329839 1.2857 331171 0.8871

ga00500a-1 511422 510587 0.1632 510587 0.1633 510587 0.1633

ga00500b-1 538060 533334 0.8784 534416 0.6772 533837 0.7849

ga00500c-1 621360 602852 2.9787 608518 2.0668 609975 1.8323

ga00750a-1 763576 762462 0.1459 762462 0.1459 762462 0.1459

ga00750b-1 796480 790112 0.7995 790631 0.7344 790630 0.7345

ga00750c-1 902026 875593 2.9304 880301 2.4085 879601 2.4861

Partial average 555520.4 547581 1.3637 549818 0.8795 550087 0.8089

Global average 877943.7 873783 0.6910 875010 0.4427 875149 0.4071
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Table 4 Primal solution quality: ‘SLR’ stands for semi-Lagrangian relaxation, ‘PACCPM’ for Proximal-
ACCPM, ‘Opt.’ for optimality, ‘LB’ for lower bound, ‘UB’ for upper bound and ‘DA’ for dual ascent. [32]
obtains an upper bound by a heuristic method. Optimal costs for the UFL problem are in boldface

Instance LB UB

[32] % Opt. DA % Opt. PACCPM % Opt.

(4.a) (4.b) (4.c) (4.d) (4.e) (4.f) (4.g)

500-1000 99169 99169.0 100 99169 100 99169 100

500-100 326790 326805.4 99.9953 326790 100 326790 100

500-10 798577 798577.0 100 798577 100 798577 100

1000-1000 220560 220560.9 99.9996 220560 100 220560 100

1000-100 607878 607880.4 99.9996 607878 100 607878 100

1000-10 1434154 1434185.4 99.9978 1434154 100 1434154 100

1500-1000 334962 334973.2 99.9967 334962 100 334962 100

1500-100 866454 866493.2 99.9955 866454 100 866454 100

1500-10 2000801 2001121.7 99.9840 2000801 100 2000801 100

2000-1000 437686 437690.7 99.9989 437686 100 437686 100

2000-100 1122748 1122861.9 99.9899 1122748 100 1122748 100

2000-10 2558118 2558120.8 99.9999 2558118 100 2558118 100

2500-1000 534405 534426.6 99.9960 534405 100 534405 100

2500-100 1347516 1347577.6 99.9954 1347516 100 1347516 100

2500-10 3097647 3100224.7 99.9168 3122045 99.2124 3122045 99.21237

3000-1000 643463 643541.8 99.9878 643463 100 643463 100

3000-100 1602120 1602530.9 99.9744 1602335 99.9866 1602397 99.98271

3000-10 3570766 3570818.8 99.9985 3570766 100 3570766 100

Partial average 1200212 1200420.0 99.9903 1201579 99.9555 1201583 99.9553

gs00250a-1 257964 257964 100 258137 99.9329 257964 100

gs00250b-1 275574 276761 99.5693 279416 98.6058 278337 98.9974

gs00250c-1 330559 332935 99.2812 337270 97.9698 333617 99.0749

gs00500a-1 510408 511229 99.8392 513038 99.4847 513038 99.4847

gs00500b-1 534029 537931 99.2693 551716 96.6880 551716 96.6880

gs00500c-1 609333 620041 98.2427 641659 94.6949 641659 94.6949

gs00750a-1 762562 763671 99.8545 767269 99.3827 767269 99.3827

gs00750b-1 790917 797026 99.2275 810239 97.5569 810239 97.5569

gs00750c-1 879430 900454 97.6093 971616 89.5175 971616 89.5175

ga00250a-1 257957 257969 99.9953 258363 99.8426 257957 100

ga00250b-1 275200 276339 99.5861 280695 98.0033 278442 98.8219

ga00250c-1 331171 334135 99.1050 346296 95.4329 337398 98.1197

ga00500a-1 510587 511422 99.8365 513673 99.3956 513673 99.3956

ga00500b-1 534416 538060 99.3181 546253 97.7851 546253 97.7851

ga00500c-1 609975 621360 98.1335 670597 90.0616 643140 94.5629

ga00750a-1 762462 763576 99.8539 767965 99.2783 767965 99.2783

ga00750b-1 790631 796480 99.2602 808105 97.7899 808105 97.7899

ga00750c-1 880301 902026 97.5321 1000972 86.2921 1008497 85.4373

Partial average 550193 555521 99.1952 573516 96.5397 571494 97.0326

Global average 875202 877970.5 99.5928 887547 98.2476 886538 98.4940
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subproblem. Furthermore, the number of subproblems usually is different for each
SLR iteration. For this reason, we do not report the number of subproblems at each
iteration, but its average. In Table 5, we have the average number of subproblems
(ANS) per SLR iteration. More specifically, columns (5.a) and (5.b) report the ANS
for the dual ascent method and for Proximal-ACCPM respectively. For example, in
instance 500-1000 the ANS value is 108 and 84 for the dual ascent method and for
Proximal.ACCPM, respectively. This means that the SLR method has managed to
decomposed this instance. In other 30 instances (instance 500-100 for example) the
SLR does not decompose the instance (ANS = 1). Note that the decomposition is
slightly better with the dual ascent method than with Proximal-ACCPM.

An important advantage of the SLR is that usually it drastically reduces the num-
ber of relevant variables (otherwise said, we can fix to 0 many variables). In column
(5.c) we have the total number of xij variables. For example, instance 500-1000 has
250000 xij variables, but, as we can see in column (5.d) only 0.3% are relevant in
the SLR combined with the dual ascent method (the remaining 99.7% are fixed to
0). The number of relevant xij variables in the case of Proximal-ACCPM is reported
in (5.e). The analogous results for the yi variables can be found in columns (5.f–h).
Note that the number of variables is different for each SLR iteration and therefore we
give average figures corresponding to all the SLR iterations.

On average, in this test, the SLR only uses 2.5% of the xij variables and 46% of
the yi variables when we use the dual ascent algorithm (columns (5.d) and (5.g)). In
the Proximal-ACCPM case we use a slightly higher number of variables (columns
(5.e) and (5.h)).

4.7 Performance

Finally, in Table 6 we report the performance of the dual ascent method and Proximal-
ACCPM in terms of the number of SLR iterations and CPU time. The CPU time limit
is set as follows: we stop the SLR algorithm after the first completed SLR iteration
that produces a cumulated CPU time above 7200 seconds. If that iteration, say the kth
one, goes beyond 10000 seconds, we stop the SLR procedure and report the results
of the (k − 1)th iteration.

Proximal-ACCPM reduces by 60% the average number of dual ascent iterations.
One would expect a similar reduction in the CPU time, instead of the mentioned
35%. The reason for this mismatch, as we can see in (6.e) and (6.f), is that the av-
erage CPU time per SLR iteration is greater for Proximal-ACCPM than for the dual
ascent algorithm. This is because Proximal-ACCPM perform a faster increase of the
Lagrange multiplier values, which produces a faster increase in the number of rele-
vant variables, as observed in Table 5. This produces harder (CPU time consuming)
Oracle 2’s. (See Fig. 1 and Fig. 2.)

As usual, a heuristic method reduces the CPU time of an exact method at the price
of no information about the solution quality. If we compare the best SLR results
(column (6.f)) versus the results reported in [32] (column (6.g)) we observe that: for
the Barahona-Chudak instances, the SLR CPU time is very competitive, since at the
price of an extra 64% of CPU time, we solve up to optimality 16 instances. For the
2 remaining instances we can evaluate its quality by the SLR lower bound. For the
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Table 5 Semi-Lagrangian reduction and decomposition: ‘ANS’ stands for average number of subprob-
lems per SLR iteration, ‘DA’ for dual ascent, ‘PACCPM’ for proximal-ACCPM, ‘ANX’ for average num-
ber of relevant xij variables per SLR iteration (in %) and ‘ANY’ for average number of relevant yi variables
per SLR iteration (in %)

Instance ANS Total ANX (%) Total ANY (%)

DA PACCPM Nb. of xij DA PACCPM Nb. of yi DA PACCPM

(5.a) (5.b) (5.c) (5.d) (5.e) (5.f) (5.g) (5.h)

500-1000 108 84 250000 0.3 0.5 500 56 98

500-100 1 1 250000 1.2 1.2 500 66 66

500-10 1 1 250000 2.8 2.8 500 35 35

1000-1000 106 29 1000000 0.3 0.3 1000 89 94

1000-100 1 1 1000000 0.8 0.9 1000 55 61

1000-10 1 1 1000000 2.6 3.4 1000 39 51

1500-1000 11 7 2250000 0.3 0.3 1500 86 87

1500-100 1 1 2250000 0.6 0.6 1500 50 50

1500-10 1 1 2250000 1.8 2.6 1500 30 44

2000-1000 2 2 4000000 0.2 0.2 2000 82 82

2000-100 1 1 4000000 0.6 0.6 2000 50 50

2000-10 1 1 4000000 1.2 2.2 2000 25 42

2500-1000 3 3 6250000 0.2 0.2 2500 80 80

2500-100 1 1 6250000 0.5 0.6 2500 46 58

2500-10 1 1 6250000 1.7 1.7 2500 35 35

3000-1000 2 2 9000000 0.2 0.2 3000 78 78

3000-100 1 1 9000000 0.5 0.6 3000 53 56

3000-10 1 1 9000000 1.0 1.0 3000 23 23

Partial average 14 8 3791667 0.9 1.1 1750 54 61

gs00250a-1 1 1 62500 2.4 4.6 250 60 87

gs00250b-1 1 1 62500 5.6 6.3 250 50 54

gs00250c-1 1 1 62500 14.4 18.4 250 43 52

gs00500a-1 1 1 250000 1.3 1.3 500 48 48

gs00500b-1 1 1 250000 1.8 2.2 500 24 30

gs00500c-1 1 1 250000 5.1 6.1 500 23 27

gs00750a-1 1 1 562500 1.0 1.0 750 48 48

gs00750b-1 1 1 562500 1.6 1.6 750 26 26

gs00750c-1 1 1 562500 3.0 3.0 750 17 17

ga00250a-1 1 1 62500 2.5 4.3 250 62 85

ga00250b-1 1 1 62500 5.5 5.9 250 48 50

ga00250c-1 1 1 62500 13.5 16.9 250 40 47

ga00500a-1 1 1 250000 1.4 2.4 500 53 31

ga00500b-1 1 1 250000 2.4 1.4 500 31 24

ga00500c-1 1 1 250000 5.2 6.3 500 23 30

ga00750a-1 1 1 562500 1.0 1.0 750 44 44

ga00750b-1 1 1 562500 1.3 1.5 750 23 24

ga00750c-1 1 1 562500 2.9 2.7 750 16 15

Partial average 1 1 291667 4.0 4.8 500 38 41

Global average 7 4 2041667 2.5 3.0 1125 46 51
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Fig. 1 CPU time per iteration
for instance 1500-10

Fig. 2 Cumulated CPU time for
the instance 1500-10

Koerkel-Ghosh instances SLR is less competitive (quality solution and CPU time)
compared to [32]. However, for these instances and by using the SLR bounds we can
determine for the first time that, on average, the [32] solutions are at least 99.18%
optimal (Table 4).

5 Conclusions

The contributions of this paper are twofold: empirical and theoretical.

Empirical contribution: We have shown by example that the performance of a
general MIP solver, as CPLEX, can be enhanced by combining it with the semi-
Lagrangian relaxation (SLR) approach. In our computational experiments, CPLEX
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Table 6 Performance: ‘PACCPM’ stands for proximal-ACCPM and ‘DA’ for dual ascent. [32] uses an
heuristic method

Instance Nb. of completed iterations Total CPU time (sec.)

LR SLR LR LR + SLR [32]

PACCPM DA PACCPM PACCPM DA PACCPM

(6.a) (6.b) (6.c) (6.d) (6.e) (6.f) (6.g)

500-1000 128 1 1 2.7 3 4 33

500-100 100 1 1 1.9 2 2 33

500-10 177 1 1 4.1 5 5 24

1000-1000 121 1 1 3.5 6 6 174

1000-100 276 2 2 11.8 16 19 149

1000-10 535 29 5 46.1 4024 1061 142

1500-1000 128 1 1 5.0 9 10 348

1500-100 311 1 1 19.0 22 22 379

1500-10 327 24 5 19.3 7438 3156 387

2000-1000 137 1 1 7.0 12 12 718

2000-100 245 1 1 16.7 23 23 651

2000-10 408 40 4 37.7 2256 661 760

2500-1000 136 1 1 9.4 18 18 1420

2500-100 342 2 2 36.1 55 89 1128

2500-10 754 1 1 177.7 8214 8214 1309

3000-1000 160 5 3 14.0 76 63 1621

3000-100 427 10 8 64.1 7355 8428 1978

3000-10 413 1 1 60.5 90 90 2081

Partial average 285 7 2 29.8 1646 1216 741

gs00250a-1 209 11 5 7.1 8173 5765 6

gs00250b-1 165 11 3 2.9 9145 3845 8

gs00250c-1 252 37 13 5.2 7831 7929 7

gs00500a-1 195 0 0 9.5 10 10 40

gs00500b-1 191 2 1 10.2 2771 515 52

gs00500c-1 143 14 5 7.1 7241 7573 57

gs00750a-1 192 0 0 12.9 13 13 118

gs00750b-1 143 1 1 11.3 5436 5234 127

gs00750c-1 140 8 2 10.7 7274 1868 137

ga00250a-1 177 9 4 5.9 7389 6567 5

ga00250b-1 229 12 3 4.6 7283 2223 8

ga00250c-1 156 36 13 2.5 7675 7804 8

ga00500a-1 233 0 0 9.9 10 10 44

ga00500b-1 229 3 1 4.6 8899 478 53

ga00500c-1 150 16 5 5.3 7936 6604 51

ga00750a-1 199 0 0 14.1 14 14 113

ga00750b-1 137 1 1 10.6 3134 3181 126

ga00750c-1 126 10 2 7.7 9018 1554 130

Partial average 181 10 3 7.9 5514 3399 61

Global average 233 8 3 18.8 3580 2307 401
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solved 3 out of 36 Uncapacitated Facility Location (UFL) unsolved instances from
the UflLib. In contrast, by using the SLR together with two standard optimization
tools, CPLEX and Proximal-ACCPM, we solved 18 instances. For the remaining 18
still unsolved UFL instances, we have improved the best known lower bound and
confirmed, for the first time, that the Hybrid Multistart heuristic of [32] provides near
optimal solutions (over 99% optimal). The reason for this good result is that, the SLR
drastically reduced the number of UFL relevant variables. Roughly speaking, on the
average number of relevant xij variables was reduced to 3% and the average number
of relevant yi variables, was reduced to 50%.

Also from an empirical point of view, we have compared two dual optimization
methods: Proximal-ACCPM and a dual ascent method. Proximal-ACCPM has shown
a better performance than the dual ascent: it has produced similar and sometimes
better solutions with a CPU time reduction of 35%. Within the 2 hours of CPU time
limit, Proximal-ACCPM and the dual ascent method have fully solved 18 and 16 UFL
instances, respectively (from a pool of 36 unsolved instances). The advantage of the
dual ascent method is its extreme simplicity compared to Proximal-ACCPM.

Theoretical contribution: From a theoretical point of view, this paper has proposed
an extension of the Koerkel dual multi-ascent method to solve the SLR dual problem
and we have proved (finite) convergence. Furthermore, We have studied the theoreti-
cal properties of the SLR dual problem in the UFL case. We have shown that for the
UFL problem we can restrict our dual search to a box whose definition depends on
the problem costs. This property has not shown to be very useful for the dual ascent
method. In contrast, in the case of Proximal-ACCPM the explicit use of this box has
slightly improved the dual search.
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