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Abstract In this paper we introduce the LEGO (LEarning for Global Optimization)
approach for global optimization in which machine learning is used to predict the
outcome of a computationally expensive global optimization run, based upon a suit-
able training performed by standard runs of the same global optimization method.
We propose to use a Support Vector Machine (although different machine learning
tools might be employed) to learn the relationship between the starting point of an
algorithm and the final outcome (which is usually related to the function value at the
point returned by the procedure). Numerical experiments performed both on classi-
cal test functions and on difficult space trajectory planning problems show that the
proposed approach can be very effective in identifying good starting points for global
optimization.

Keywords Global optimization · Machine learning · Support vector machines ·
Space trajectory design

1 Introduction

Many instances of global optimization algorithms require the execution of a proce-
dure starting from randomly chosen points in a domain or they require choosing suit-
able initial values for a finite number of parameters. When dealing with multi-modal
problems, i.e., optimization problems with many local optima which are not global, it
is a common procedure to run several instances of the same algorithm either starting
from different points or using a different set of parameters. Usually the large amount
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of data generated during these runs is lost, as the user is typically interested in the
best run only, i.e., the one which has produced the best overall result. To the authors’
knowledge, at least in the field of global optimization, there has been no formalized
attempt of learning from the whole computational procedure. In this paper we present
a novel approach, which we call LEGO (LEarning for Global Optimization), in which
standard machine learning tools are employed in order to learn the unknown relation-
ship between the starting condition (initial point or parameters) and the final value
obtained. The idea underlying LEGO is indeed very simple: first run some instances
of an algorithm which requires an initialization; then from the results of these runs,
train a machine learning tool to be capable of estimating the outcome of future runs.
Some precursors of this idea might be found in the literature. As a quite well known
example, in [17, 18] clustering methods were employed in order to select promising
starting points for Multistart. In those approaches some form of statistical learning
was employed in order to be able to select randomly generated points as candidate
starting points for local searches. In a more deterministic setting in [7, 8, 15] meth-
ods based on using a first set of function evaluations to build convex underestimators
are introduced. Using this information, new, promising, candidate points for function
evaluation are selected. Many other methods make use of past information to build
improved approximation or surrogate models in order to select new candidates. In
[11, 12] some form of learning is embedded in evolutionary methods. However we
are not aware of previous papers dealing with the application of machine learning
to the problem of deciding a priori whether a starting point is promising or not and
which are general enough to be applicable both to simple methods like Multistart as
well as to more complex and refined global optimization algorithms. A possible ex-
ception might be [3]; however we remark that while in many cases in the literature
machine learning is used to build a suitable approximation of the objective function
which is used to guide the choice of next iteration, here the fundamental difference
is that learning is used to make inference on the relationship between starting points
and quality of the final result of an optimization run, i.e. learning is directly applied
to the feasible domain.

What we present in this paper is not a new algorithm, but a framework which
can be adopted in many computational schemes; of course this will not replace stan-
dard global optimization methods. The LEGO approach can be seen as a refinement
procedure, to be carried out in parallel with (and not as a replacement for) global
optimization. In the problems we tested, this learning procedure was successful in
improving the solutions found in previous runs and in generating bunches of very
good solutions. However it is clear that, in particular when dealing with high dimen-
sional spaces, finite sampling in the feasible region will never be dense enough to
guarantee a perfect learning. So, while retaining the generalization capabilities that
machine learning is usually able to deliver, it is clear that LEGO will not, in general,
generate completely unpredictable and radically different solutions. It will, however,
significantly accelerate the search for good solutions, quickly discarding unpromising
ones. So it can be seen as an acceleration technique.

The paper is structured as follows: in Sect. 2 the idea of the LEGO approach
will be presented and its possible application to global optimization introduced; we
remark that, although the approach is general enough to be useful for general non-
linear optimization problems, in this paper, in order to focus on the new approach,
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we choose to restrict experimentation to box-constrained problems. In Sect. 3 a brief
introduction to Support Vector Machines as learning tools will be given. In Sect. 4
we will discuss numerical results obtained with standard test functions for global op-
timization: the aim of these experiments is to show the potential of this new approach
on relatively easy test problems; in Sect. 5 we tested in a systematic way our ap-
proach on a standard set of test functions for global optimization and propose some
guidelines to choose relevant parameters; in Sect. 6 the ideas developed in this paper
are applied to a challenging optimization problem made available to the scientific
community by the Advanced Concept Team at ESA, the European Space Agency.
This problem consists in finding optimal trajectories for long range inter-planetary
space missions. The proposed approach displayed excellent behaviour for this hard
test problem.

2 General framework

Given an optimization problem

min
x∈S⊆Rn

f (x)

let:

– G() be a procedure to generate starting points (usually embedding a random com-
ponent);

– R(x) be a “refinement” procedure, which receives an input point x and returns a
point in R

n (hopefully in S), like, e.g., a standard local search procedure.

We assume that the computational cost of G is significantly lower than the com-
putational cost of R. Many heuristic techniques for solving optimization problems
are based on multiple runs of procedure R starting from points generated by proce-
dure G. Formally, the scheme is the following:

f � = +∞; /* Initial estimate of the global minimum
value */
k = 0;
repeat

xk = G(); /* generate a starting point */
yk = R(xk); /* generate a refined solution */
if f (yk) < f � then

f � = f (yk), x
� = yk ; /* current global optimum

estimate */
end
k = k + 1;

until stop condition;
return (x�, f �)

Algorithm 1: P (G,R) procedure
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The different runs of procedure R are usually independent from each other. Then,
we might wonder whether it is possible to improve the results of some runs by ex-
ploiting the results of previous runs using a machine learning-based approach.

From a general point of view, machine learning deals with the development of al-
gorithms and techniques that learn from observed data by constructing mathematical
models that can be used for making predictions and decisions.

Here we focus on supervised learning of classification functions, that is on the
problem of learning an unknown function g : S → {−1,1} given a set of training
examples {xi, di} ∈ S × {−1,1}, where the label di denotes the class of the input
vector xi .

With reference to our context, we assume that there exists an unknown relationship
between the starting point xk generated by G and the final point yk determined by R.
We associate the label dk = +1 to the input vector xk if the final function value
f (yk) is “sufficiently low” and the label dk = −1 otherwise. In this paper, we used
a threshold T to identify sufficiently low function values; this threshold might be
chosen either through prior knowledge on the value of the global minimum or, as it
will be shown later, through a cross-validation procedure.

A starting point xk with associated label dk = +1 represents a “good” starting
point.

We devote a fixed number of runs to generate pairs composed of initial points and
final function values (xk, f (yk)) through the execution of G and R, and hence to con-
struct the corresponding training set {xk, dk}, where the label dk ∈ {−1,1} indicates
if, given the starting point xk , the refinement procedure leads to a final point yk whose
function value is, respectively, higher or lower than the threshold T . The training set
obtained this way can then be used for training a classifier CLS which, given in input
a point x, returns “yes” (+1) if point x is accepted and “no” (−1) otherwise.

Formally, we might employ Algorithm 2.

3 A brief introduction to classification via SVM

In this section, in order to have a self-contained description of our approach, we
briefly present the Support Vector Machine (SVM) classifiers used in our experi-
ments. For a general introduction to SVM theory we cite, for example, [4, 19, 20].

We refer to the standard classification problem to construct (train) a classifier to
distinguish between two disjoint point sets in a Euclidean space.

Consider the training set

T S = {(xi, di), xi ∈ R
n, di ∈ {−1,1}, i = 1, . . . ,N}

and assume it is linearly separable, that is, there exists a separating hyperplane

H(w,b) = {x ∈ R
n : wT x + b = 0}

such that

wT xi + b ≥ 1 ∀xi : di = +1,

wT xi + b ≤ −1 ∀xi : di = −1.
(1)
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f � = +∞, k = 0;
T S = ∅; /* training set initialization */
let T ∈ R; /* choose a threshold */
repeat

xk = G();
yk = R(xk);
if f (yk) ≤ T then

T S = T S ∪ {(xk,+1)}
else

T S = T S ∪ {(xk,−1)}
end
if f (yk) < f � then

f � = f (yk), x
� = yk ;

end
k = k + 1;

until stop condition for training;
CLS = train(T S); /* train a classifier on data T S */
repeat

xk = G();
if CLS(xk) = +1 then /* is xk accepted by the

classifier? */
yk = R(xk); /* execute the algorithm from accepted

starting points */
if f (yk) < f � then

f � = f (yk), x
� = yk ;

end
k = k + 1;

end
until stop condition;
return (x�, f �)

Algorithm 2: P ′(G,R,CLS) scheme

The margin ρ(w,b) of a separating hyperplane H(w,b) is the distance from the
hyperplane to the closest training points, i.e.,

ρ(w,b) = min
i=1,...,N

|wT xi + b|
‖w‖ .

Linear SVM approach picks out, among linear classifiers, the optimum separat-
ing hyperplane (i.e., the hyperplane having maximum margin). The basic training
principle of SVM, motivated by statistical learning theory [20], is that the expected
classification error for unseen test samples is minimized, so that SVM defines a good
predictive model. The optimum hyperplane can be determined by solving the follow-
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ing quadratic programming problem

min
w∈Rn,b∈R

1

2
‖w‖2,

di(w
T xi + b) ≥ 1 i = 1, . . . ,N.

(2)

In practice linear classifiers may perform poorly when the data are not linearly
separable, and we need classifiers that produce nonlinear discriminants. The idea un-
derlying nonlinear SVM is to map the input vectors into a high-dimensional space,
called feature space, where the optimal separating hyperplane is constructed. For-
mally, denoting by φ : Rn → H , a nonlinear map from the input space to the feature
space, the problem is

min
w∈H,b∈R,ξ∈RN

1

2
‖w‖2 + C

N∑

i=1

ξ i,

di(w
T φ(xi) + b) ≥ 1 − ξi i = 1, . . . ,N,

ξi ≥ 0 i = 1, . . . ,N,

(3)

where ξi for i = 1, . . . ,N are the slack variables, and the term
∑N

i=1 ξi is an upper
bound on the training error. The regularization parameter C > 0 trades off margin
size and training error.

Using Wolfe’s dual theory it is possible to construct the nonlinear SVM classi-
fier without having to consider the mapping φ in explicit form but only requiring
the knowledge of the inner product in the feature space (the inner product kernel).
Common kernels are

– Polynomial k(x, z) = (xT z + γ )p, where p ≥ 1 and γ ≥ 0,
– Gaussian k(x, z) = exp(−γ ‖x − z‖2), with γ > 0.

The regularization parameter C > 0 and kernel parameters are usually determined
by a standard cross-validation tuning procedure, which is a widely employed tech-
nique to prevent overfitting.

According to a standard k-fold cross-validation strategy, the training data is di-
vided into k subsets of equal size. Sequentially, one subset is used as validation set
and the remaining k − 1 subsets are employed to train the classifier. In this way,
each training vector is predicted once and the cross-validation accuracy is given by
the percentage of training vectors which are correctly classified. The cross-validation
accuracy so defined is computed in correspondence to a finite set of SVM parame-
ter vectors. The vector yielding the best cross-validation accuracy is selected and is
used to train the classifier. Note that the cross-validation prediction accuracy can re-
flect the performance on classifying unknown data. In our computational experiments
described later we used Libsvm [6], a simple, easy to use, and efficient software
for SVM classification and regression. In particular we proceed to the SVM train-
ing using Gaussian kernel; in some tests we performed a cross-validation procedure
based on a grid search to estimate the best values of the parameters, i.e., C and γ .
According to this procedure, a dyadic coarse grid search in the parameters space
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(i.e., C = [20,21, . . . ,210] and γ = [20,21, . . . ,24]) is performed and the pair (C,γ )

yielding the best cross-validation accuracy is selected.
Finally we remark that we employed nonlinear SVM classifiers based on Gaussian

kernel in order to tackle problems which may require separations with complex
boundaries. However, in some cases it would be preferable (in terms of prediction
accuracy) to adopt a simpler classifier, e.g. a linear SVM, or other kernel functions.
Choosing what kind of classifier to use deserves in practice particular attention, and
can be performed using again a cross-validation approach. This practical issue has not
been investigated in the numerical experiments, whose aim has been that of pointing
out the validity of the methodology.

4 Numerical experiments

Although the proposed approach can be applied to different optimization problems
and algorithms, we focused our attention on Global Optimization (GO) problems.
Within this field, we considered two approaches, namely the standard Multistart (MS)
and the Monotonic Basin Hopping (MBH) (see, e.g., [9, 13]), which is a local explo-
ration procedure similar to Iterated Local Search (see, e.g., [14]). The basic structure
of these algorithms (also related with the notation of Algorithm 1) is the following:

Multistart (MS) uniformly samples the feasible set (using a suitable operator G) and
then starts a local search from each sampled point (which represents the refinement
procedure R in this case);

Monotonic Basin–Hopping (MBH) randomly generates an initial local minimizer
(operator G); performs at each iteration a perturbation of the current local mini-
mizer x̄; starts a standard local search: if the resulting local minimizer improves the
objective function in x̄, it substitutes x̄, otherwise x̄ is left unchanged. Note that the
perturbation phase is usually characterized by a perturbation radius r which has to
be tuned carefully, being the main responsible of the global exploration capability
of MBH. MBH usually terminates when for a certain number of iterations (denoted
by MaxNoImprove) no improvement has been observed. In this case the refinement
procedure R is a whole MBH run.

We might apply this approach to any global optimization problem, provided a
suitable random generator of feasible starting points and a local optimization method
are available. However, in order to give more evidence to the proposed approach, we
choose to apply LEGO to box-constrained optimization problem only.

In this section we show in detail how LEGO can be applied to a pair of well known
test functions. In the next section we will then perform a more systematic application
on a wider test set.

We performed experiments with the Rastrigin and the Schwefel test functions. The
aim of these experiments is that of checking whether the distribution of the values
returned after training is better than the distribution of the values returned during the
training phase.

In all the computational experiments, the Libsvm package for SVM classification
and regression has been used (see for details [6]). The procedure used for training is
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a standard one proposed by the authors of the package. In particular, we first scale the
data set to the interval [−1,1]; then we proceed to the SVM training, using Gaussian
kernel and a grid search to estimate the best values to be used as parameters in the
training phase. All these operations can be easily performed by means of the Libsvm
package.

In the following sections, the ratio between the percentages of points (of the
whole data set) included in the training and validation sets respectively, is denoted
as %tr/%val.

4.1 Experiments with the Rastrigin test function

The n-dimensional Rastrigin test is defined as

min
x∈Rn

10n +
n∑

i=1

(x2
i − 10.0 cos(2πxi)),

xi ∈ [−5.12,5.12] ∀i ∈ 1, . . . , n,

with the global optimum at the origin, with value 0.
The very high number of local minimizers of this function represents a serious

challenge for the classical Multistart approach, while the problem becomes trivial
when solved by means of MBH.

We started with a few experiments with n = 2. For these experiments, we ran 1 000
Multistart iterations, using L-BFGS-B [5] as a local descent method; the resulting set
of 1 000 starting points and 1 000 local optimum values were used to train a SVM
using a data set partitioned as 75%/25%. Setting the threshold value for acceptation
equal to 1, we obtained 61 (out of 750) positive samples. In Fig. 1 we show the level
curves of the 2-dimensional Rastrigin function. Crosses (×) represent positive points
(i.e., starting points leading to a local optimum of value less than the threshold 1),
stars (�) are negative points. The darker region around the center of the picture repre-
sents the set of starting points which are accepted by the trained SVM.

From the figure it can be seen that training is quite accurate in identifying a set
which, very likely, will lead L-BFGS-B to the global minimizer.

We then performed 10 000 Multistart runs at dimension n = 10, using a threshold
40 for considering a starting point a positive one and generated 10 000 acceptable
starting points after training. In Fig. 2 we report the empirical cumulative distribu-
tion function (ECDF) of the optima found starting a local search from each of the
10 000 points accepted by LEGO versus the empirical distribution function obtained
running 10 000 local searches from random starting points. We recall that at point x,
the value of an ECDF represents the percentage of observations with value less than
or equal to x. From the figure it is evident how training significantly improves in
obtaining better starting points; the best local optimum observed from points gener-
ated by LEGO has value 4.9748 while in 10 000 generic Multistart runs the record
was 6.96474. Taking into account the threshold used for training, the percentage of
LEGO runs leading to an optimum value not larger than 40 was 56.5%, while for
standard Multistart these values were observed in 6.9% cases.



Machine learning for global optimization 287

Fig. 1 Training a 2-dimensional Rastrigin function. X: positive points, ∗: negative points, shaded area:
acceptance region of the trained SVM

4.2 Experiments with the Schwefel test function

Let us consider now the n-dimensional Schwefel test problem:

min
x∈Rn

n∑

i=1

−xi sin(
√|xi |),

xi ∈ [−500,500] ∀i ∈ 1, . . . , n.

This is a classical test function whose global optimum value is −418.9829n, attained
at xi = 420.9687, i ∈ 1, . . . , n. From the point of view of global optimization, also
this problem is quite trivial, as it is a separable one and thus it is sufficient to solve
it for n = 1 and to replicate the one-dimensional optimum in order to find the global
one. However this test turns out to be quite a hard benchmark for those methods
which are unable to exploit separability. In particular, it has been observed in some
papers, like, e.g., in [2], that MBH has serious difficulties in solving this problem, in
particular when the dimension n increases. Examination of the graphs of Schwefel
function for n = 1 or n = 2 reveals that this problem has a multiple funnel structure,
so that simple, repeated, executions of MBH searches started from randomly selected
points are doomed to fail as n increases, unless the number of restarts is prohibitively
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Fig. 2 Empirical distribution function for 10 000 runs with the Rastrigin function at n = 10

large. Of course different strategies should be employed in order to solve a problem
like this, but our aim in this section is not to develop a new method for the Schwefel
test function, but to show that machine learning is useful in improving the quality of
an optimization method. What we would like to show is that after having executed
MBH for a fixed number of times, a learning tool like LEGO might be successfully
employed in order to generate promising starting points for MBH. As an illustrative
example, we show in Fig. 3 the region of acceptable starting points for LEGO after a
suitable training.

4.2.1 The Schwefel-10 data

We begin with the analysis of the relatively easy case n = 10. In order to choose
the perturbation radius r for MBH, we performed 1 000 randomly started MBH runs
with MaxNoImprove set to 1 000. We observed that the global optimum was found
with a quite low success rate both for relatively small values of the radius r and
with significantly larger ones. This is not a surprise, as the multi-funnel structure of
this function makes it hard to optimize with MBH. After these initial experiments
we decided to fix the value r = 130 (26% of the box). We performed 1 000 runs to
collect pairs of first local optima—final value (a choice made in order to exploit the
correlation between start and end points). The data set was partitioned as 75%/25%.
After training the LEGO SVM with threshold −3700, the situation in the training
and validation data sets was that reported in Table 1.

We obtained a trained SVM which, for the validation set of 250 runs, gave us
76.45% accuracy, i.e., correct prediction of 191 out of 250 instances. The trained
SVM has then been used to generate 1 000 starting points for MBH. The execution of
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Fig. 3 Acceptance region of LEGO for the Schwefel function with n = 2

Table 1 Training and
validation sets for Schwefel
10-dim function, T = −3700

Set Positive (%) Negative Total

Train 342 (45.6%) 408 750

Valid 113 (45.2%) 137 250

Total 455 (45.5%) 545 1000

these 1 000 runs lead to the global optimum only twice, the same frequency observed
running MBH from randomly generated starting points. However, with the chosen
threshold −3700, it was observed that, after training, the percentage of MBH runs
which terminate at an acceptable local optimum (i.e., one with function value not
greater than the threshold) grows from the original 46% to 76%.

In order to check the influence of the threshold on the SVM prediction capabilities,
we repeated the test lowering the threshold first to −3800, obtaining the result as in
Table 2, and then pushing down further to −3900, with the result reported in Table 3.
The trend already observed with threshold −3700 gets more and more accentuated;
in particular, with threshold −3800 the global minimum is found in 9 out of 1 000
trials and the percentage of runs leading to a final value which is below the threshold
changes from 22% to 69%. Pushing the threshold further to −3900 this trend goes
to quite astonishing results: not only the percentage of successful MBH runs (those
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Table 2 Training and
validation sets for Schwefel
10-dim function, T = −3800

Set Positive (%) Negative Total

Train 174 (23.2%) 576 750

Valid 48 (19.2%) 202 250

Total 222 (22.2%) 778 1000

Table 3 Training and
validation sets for Schwefel
10-dim function, T = −3900

Set Positive (%) Negative Total

Train 59 (7.9%) 691 750

Valid 14 (5.6%) 236 250

Total 73 (7.3%) 927 1000

Fig. 4 Empirical distribution function of MBH and LEGO optimal values for the Schwefel 10-dim func-
tion

leading to a final value not greater than −3900) grows from 7% to 75%, with 98%
of runs below the original threshold of −3700, but also the global minimum is found
as many as 83 times (in 1 000 runs), compared to the original 2 times. All of these
results are reported in Fig. 4 where the empirical cumulative distribution functions
for the non trained MBH and the LEGO runs with different thresholds are compared.

4.2.2 The Schwefel-50 test function

In order to further test the effectiveness of the learning mechanism, we ran simi-
lar tests at higher dimension, testing MBH with the Schwefel function at dimension
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n = 50. This is a very hard test case for the MBH method and the global minimum
cannot in general be found. We performed also in this case 1 000 independent MBH
runs, with the same parameters chosen for the case n = 10; this seemed to be a cor-
rect choice, as the symmetry and separability of the objective functions lead us to
believe that the same kind of perturbation should perform similarly for any dimen-
sion. This has been indeed confirmed by running MBH with different perturbation
radii and, although the procedure never found the global minimum, it displayed the
best results (−19527.9) for r = 130; we recall that in this case the global minimum is
−20949.145. We kept MaxNoImprove equal to 1 000. Indeed, extending MaxNoIm-
prove from 1 000 to 5 000 the best value observed was again the same. Performing
more MBH runs can give some improvement: the best result after 10 000 runs is
−19764.8 which is quite a small improvement if compared with a ten-fold increase
in computational effort. These experiments once again confirm that due to the multi-
funnel structure of this test problem, MBH is not the best algorithm. By the way, we
notice that a pure Multistart method is in this case even worse: considering the fact
that 1 000 MBH runs required 2 906 000 local searches, we ran 3 000 000 Multistart
local optimizations, but the best observed value was just −15678.0, thus confirming
the strong superiority of MBH over Multistart in these problems.

We started with a threshold value of −18 500, which represents a 23% percentile
of the frequency distribution of the observed local optima values (for n = 10 the 22%
percentile gave a reasonable rate of success). From the trained SVM we obtained the
following statistics:

Set Positive (%) Negative Total

Train 169 (25.5%) 581 750
Valid 58 (23.2%) 192 250

Total 227 (22.7%) 773 1000

The results are not particularly impressive in this case: in Fig. 5, a slight improve-
ment is visible, but the behaviour of the trained method is quite similar to the un-
trained one. This might be due to the much higher difficulty of this test case as well
as to the fact that a 50-dimensional box is enormously larger than a 10-dimensional
one, so that learning from a data set containing the same number, 1 000, of instances
might be too optimistic. However, we tried to exploit the information contained in
the data set and we lowered the threshold to −19 000 (a 3.3% percentile); as quite
expected, the trained SVM turned out to be a trivial one (always refuse). We thus
exploited the possibility to give more weight to some observations during the train-
ing phase. We choose to assign weight 5 to positive instances and 1 to negative ones;
moreover, in order to avoid the case of a validation set with no positive instances, we
split the data set evenly (i.e., 50%/50%). The obtained accuracy of the trained SVM
has been 96.8% in the validation set, which, however, was not trivial. With this SVM
we generated 1 000 starting local optima and run MBH from these. Using LEGO we
obtained an improvement in the best local optimum observed. In particular we ob-
tained in one case −19883.2, in 2 instances −19764.8 and in 11 the value −19646.3.
So we were able to observe, for as many as 14 times, an improvement over the best
observed value. This is remarkable because one of the possible critic to this approach
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Fig. 5 Empirical distribution function for Schwefel n = 50

is that it only allows to replicate the best results of the training phase. This is not the
case: the acceptance region is large enough to include points from which improve-
ments can be attained. Moreover, the behaviour of the method systematically leads to
low function values, as can be seen in Fig. 5 where the results of this experiment are
compared with those of MBH.

More in general, if the selected algorithm during the training phase often reaches a
good region without hitting the global minimum, then through learning we might be
able to reach the global minimum or, at least to improve with respect to the training
phase, if the region of improvement (i.e., the region containing starting points for the
selected algorithm leading to better results) is not “too far” from the region where
good starting points have been detected in the training phase (which is confirmed
by the improvements attained in the MBH runs over Schwefel-50 but also by the
improvements attained by Multistart reported in the following Sect. 5). On the other
hand, we also need to point out that the detection of the global minimizer might be
impossible if this lies in a region completely unrelated with the good starting points
detected during the training phase.

5 Systematic numerical experiments

In order to gain confidence on the feasibility of the proposed approach, in this section
we observe the behaviour of LEGO on standard global optimization test sets. These
experiments will also give us the possibility of outlining a general procedure for
choosing the most relevant parameter of the approach, namely the threshold T used
to distinguish between negative and positive examples.
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Table 4 Test problems and
related percentage of successes
for Multistart

Problem n % succ Problem n % succ

ack 10 0.00 em_10 10 0.00

exp 10 100.00 fx_10 10 0.00

gw_20 20 8.69 h6 6 68.58

lm2_10 10 3.79 mgw_10 10 1.00

mgw_20 20 0.14 ml_10 10 0.00

nf3_10 10 100.00 nf3_15 15 100.00

nf3_20 20 100.00 nf3_25 25 100.00

nf3_30 30 100.00 pp 10 100.00

ptm 9 1.99 rb 10 83.80

rg_10 10 0.00 sal_10 10 0.03

sin_10 10 15.98 sin_20 20 4.98

xor 9 60.87 zkv_10 10 100.00

zkv_20 20 100.00

For what concerns standard test functions for global optimization, the situation in
the literature is quite unsatisfactory. There are indeed collections of test problems, but
most of them are by far too easy to solve by means of modern global optimization
techniques. In order to test the capabilities of the approach proposed in this paper
we looked for a test set which was reasonably difficult to be a challenge for global
optimization methods, but not too difficult to prevent any possibility of learning from
a first, small, set of runs.

After browsing the literature, and discarding the test sets proposed by some of
the authors of this paper, we choose the test set cited in [22]. Of these tests, we
decided to exclude all non differentiable ones as well those with too few (less than
or equal to 5) or too many (more than 50) variables. After this selection we were
left with 25 box constrained test problems. Almost all these problems were trivially
solved with standard MBH runs. So the decision was taken to test the effectiveness of
LEGO with Multistart. We performed a first set of 10 000 Multistart trials for each test
function, using LBFGS-B as a solver. The results are summarized in Table 4, where
problem names refer to those published in [22] and column “% succ” represents the
observed percentage or runs leading to the global minimum, from which it is easy to
derive the estimated probability of getting to the global minimum with a single local
search. From this table it is evident how easy it is for the most elementary method for
global optimization to find the global optimum in most cases; we can thus observe
the absolute inadequacy of standard global optimization test problems. In order to
run significant experiments, we choose to run LEGO only for the most difficult tests,
namely for 8 instances for which Multistart had at most 1% success rate.

For what concerns training, we choose to use the following procedure, which we
adopted consistently for the 8 difficult instances:

1. build the data set from 10 000 Multistart runs using the (uniform random) starting
point associated with the local optimum value found by the local optimization
method employed

2. normalize the data, by means of the svm-scale tool
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Table 5 Statistics on the optimal values found from 5 000 points accepted by LEGO and from 5 000
refused ones

Problem set Min. 1st Quartile Median Mean 3rd Quartile Max

ack Accepted 2.04 4.54 4.85 4.74 5.04 5.36

ack Refused 4.59 5.66 6.03 6.06 6.41 7.97

em_10 Accepted −8.88 −6.13 −5.24 −5.16 −4.25 −0.488

em_10 Refused −8.68 −4.96 −4.18 −4.12 −3.31 0.002

fx_10 Accepted −10.21 −2.13 −1.48 −1.97 −1.48 −1.28

fx_10 Refused −10.21 −1.48 −1.48 −1.58 −1.48 −1.15

mgw_10 Accepted 4.4e−16 3.9e−03 8.9e−03 1.9e−02 1.8e−02 3.63

mgw_10 Refused 4.4e−16 1.7e−02 3.2e−02 4.0e−02 5.0e−02 3.63

mgw_20 Accepted −1.3e−15 7.9e−03 2.5e−02 7.4e−02 9.7e−02 7.80

mgw_20 Refused −1.3e−15 2.2e−02 4.4e−02 8.4e−02 1.1e−01 9.42

ml_10 Accepted −1.7e−22 −3.8e−86 −1.0e−132 1.7e−22 3.6e−94 8.6e−19

ml_10 Refused −8.3e−81 −1.2e−160 1.9e−279 1.6e−74 1.2e−152 8.2e−71

rg_10 Accepted 6.96 44.77 57.71 57.54 68.65 127.40

rg_10 Refused 9.95 64.67 80.59 81.15 96.51 224.90

sal_10 Accepted 2.1e−16 13.80 15.10 14.47 16.10 20.90

sal_10 Refused 1.2e−14 17.60 18.90 18.65 20.40 26.60

3. split the data set as 75%/25%;
4. for every possible choice of the threshold parameter T from the 70% to the 90%

percentile (in steps of 5) and for every choice of the weight for positive instances
(as already shown for Schwefel-50 test function), ranging from 2 to 10, svm-
train was run with default parameters;

5. after this grid search in the space of parameters, the classification error was com-
puted on the validation set. A score was obtained through a weighted sum of false
positives and false negatives, with weight 1 for false positives and weight 2 for
false negatives (this way we considered a more dangerous error discarding a good
starting point than accepting a bad one). Using this score, the best pair of values
for the threshold and the weight was retained.

After training, for each of the 8 test functions we uniformly generated points until
we obtained 5 000 starting points accepted by svm-predict and 5 000 refused.
After this sampling, we ran Multistart from both sets and collected the results. Some
statistics about such results are reported in Table 5.

It is quite evident from the table that starting a local search from points which are
accepted from the trained svm delivers significantly better results than starting from
points which are refused. It seems, from the table, that only for problem ml_10 the
situation is unclear. Indeed this problem is extremely peculiar, as it consists of an
objective function which is pretty constant and close to 0 in most of the feasible set,
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with the exception of a very small region around the global optimum, where function
values go to −0.965. In this case it is reasonable to guess that no learning is possible,
as finding the global minimum is just a matter of guessing the correct starting point
within a region of attraction whose volume is almost negligible. We note in passing
that for the ack and rg test cases the best optimum found from accepted starting
points is strictly lower than that found in the training and validation sets.

In order to confirm our impression on the clear advantage in using trained starting
points, we performed a one-sided Kolmogorov–Smirnov test on the empirical distri-
bution function of the 5 000 results obtained starting from accepted and from refused
points. The null hypothesis we tested was that the optima obtained from accepted
points are stochastically smaller than those obtained from refused ones or, equiva-
lently, that the cumulative distribution function of the optima obtained from accepted
values is pointwise greater than that of optima obtained from refused ones. The test
is based on the statistics

D+ = max
u

(FAcc(u) − FRef (u))

where F(·) indicates the empirical distribution function and the subscripts Acc and
Ref refer to points which are respectively accepted or refused by LEGO. The result
of the test is the following:

Problem ack em_10 fx_10 mgw_10 mgw_20 ml_10 rg_10 sal_10

D+ 0.9564 0.3338 0.433 0.4928 0.2762 0.423 0.4486 0.741

In all 8 cases the p-value was negligible (< 2.2e−16) so that the results are different
with very high level of significance. Repeating a similar test between accepted points
versus all the sample gave the following statistics:

Problem ack em_10 fx_10 mgw_10 mgw_20 ml_10 rg_10 sal_10

D+ 0.767 0.2093 0.3809 0.2371 0.1226 0.3009 0.3249 0.5198

where, again, the test confirmed significant difference between the distributions.
From the test reported in this table it is seen that learning produces significantly
different results with respect to a general algorithm, while the results in the previous
table support the evidence that not only among accepted points many are indeed good
starting points, but also that refused ones are in general particularly bad.

In order to further confirm this analysis, in Figs. 6–12 we present cumulative dis-
tribution functions for the function values returned by pure Multistart (dotted lines),
Multistart from points accepted by the classifier (dashed lines), and from points re-
fused by the classifier (solid lines). As expected, the cumulative distribution functions
for pure Multistart usually lie exactly in between those for Multistart from points ac-
cepted and refused by the classifier.
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Fig. 6 ack—Ackley function—empirical distribution plot

Fig. 7 em_10—Epistatic Michalewicz function—empirical distribution plot

6 Space trajectory design

Although the experiment made on standard test functions seem to support with strong
evidence the validity of the LEGO approach, in order to obtain further and possibly
more significative confirms, we choose to try the proposed approach on a difficult
real-life problem arising in the design of planet to planet missions. This problem
consists in finding suitable parameter values which are used to define a trajectory
for a space vehicle. The literature on this subject is quite vast—we refer the read-
ers, e.g., to [1, 10, 16, 21] for references on this subject. Here it may suffice to
say that this is a family of very hard global optimization problems with relatively
few variables (a few tens at most) but a huge amount of local optima. Moreover, in
general, no higher order information, like gradients, on the problem is available, so
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Fig. 8 fx_10—Shekel FoxHoles function—empirical distribution plot

Fig. 9 mgw_10—Modified Griewank (dim 10) function—empirical distribution plot

that either derivative-free codes have to be used or, alternatively, finite differences
have to be employed. Luckily, although function evaluation requires the numerical
solution of a system of differential equation, usually this is extremely fast, so that,
apart from the well known numerical difficulties, central or forward finite difference
derivative estimation can be employed. The Advanced Concept Team at ESA, the
European Space Agency, maintains a web site where many instances of trajectory
optimization problems are available, in the form of MATLAB or C source code (see
http://www.esa.int/gsp/ACT/inf/op/globopt.htm).

We focus here on the Tandem mission test set, which consists in 24 possible planet
sequences, ending on Saturn, for which the aim is to maximize the mass of the vehicle
at the arrival (or, equivalently, minimize the fuel mass consumption).

http://www.esa.int/gsp/ACT/inf/op/globopt.htm
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Fig. 10 mgw_20—Modified Griewank (dim 20) function—empirical distribution plot

Fig. 11 Rastrigin function—empirical distribution plot

Each sequence is then considered either as a box-constrained problems or a lin-
early constrained one, in which the overall travel time is limited to ten years and com-
puted as a sum of the intermediate trip durations. For the purpose of this paper we
made experiments on the currently best planet sequence (Earth-Venus-Earth-Earth-
Saturn) for the box constrained case. This problem has 18 variables and the current
record corresponds to a final mass of 1 606.59 kg, starting from a 2 000 kg initial
mass.

The first trials, starting from a database of 1 000 MBH runs performed as described
in [1], were prepared using the same scheme as before, with a partition of the starting
point set into 500 for training and 500 for validation. Unfortunately, with these data
the first attempts to train an SVM typically lead to a failure, which consisted in having
a SVM which refuses every point, at least for reasonable choices of the threshold
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Fig. 12 sal_10—Salomon function—empirical distribution plot

Table 6 Classification results
on 1 000 MBH run for space
trajectory optimization

Predicted Training Validation

+ − % + − %

Positive 98 3 97.02 81 15 84.38

Negative 7 392 98.25 17 387 95.79

used to distinguish acceptable from unacceptable points. Using a threshold of very
low quality (e.g., close to 0, which corresponds to 100% mass consumption, lead
to a reasonable SVM, but with only moderate usefulness in generating new starting
points. This behaviour might be linked to the fact that these MBH runs are very long
(on average roughly 2 000 steps) and, also due to the extremely rugged surface of the
objective function, there seems to be scarce correlation between starting points and
final value of the objective function. So we tried to use, for learning, the information
collected after a few (we, somewhat arbitrarily, choose 100) steps of MBH. In other
words, procedure G was implemented as a random uniform generation in the box,
followed by 100 steps of MBH. At the end of these 100 steps, we recorded the current
point and trained the SVM based upon this information, coupled with the final label
corresponding to the fact that the final optimum was below or above a threshold.
With these data we obtained the classification results reported in Table 6, using as a
threshold −1400 kg (we transformed the original mass maximization problem into
one of minimization by changing the objective function sign).

After training, we started 50 000 runs of MBH, stopping each of them after 100
iterations and checked, by means of SVM, which of those points were acceptable.
A total of 1 788 points were selected this way and, from each of them, MBH was
restarted up to the natural termination (which, both here and in training, was chosen
to happen after 500 iterations of MBH with no improvement were observed). The re-
sults obtained this way confirm what expected: starting points obtained from LEGO
tend to produce high quality final points. In Fig. 13 we report curves representing the
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Fig. 13 Comparison between function values obtained by LEGO and MBH on trajectory planning

cumulative distribution function of observed local optima; the figure reports an em-
pirical distribution function obtained from 10 000 independent executions of MBH
and the one corresponding to the 1 788 runs of MBH started from points accepted by
LEGO. It is evident from the figure that LEGO tends to generate very good points,
much better and much more frequently than standard MBH; it is seen from the figure
that only slightly more than 40% of the normal MBH runs lead to optimal values
strictly greater than 0 (which corresponds to consuming all of the mass of the space-
craft). On the contrary, it can be observed that starting from trained points leads to
a final mass higher than 1 400 kg in more than 50% of the runs. By the way, hav-
ing several good solutions, not necessarily the global one, is a characteristic usually
required by aerospace engineers, who prefer to have some possibility of choosing
among many good solutions rather than being forced to use the unique global one.

It might be argued that the total effort required in generating 50 000 points by
means of short MBH runs wipes away the savings obtained. However, a count of the
total number of local searches performed reveals this is not the case. To generate the
sample we ran 50 000 of times 100 local searches, which accounts for a total of five
million local searches. To run MBH from the selected 1 788 points we needed 1 342
local searches per run (on average). The total effort in generating points and execut-
ing MBH from those selected was 7 388 365 local searches. In contrast, the 10 000
pure MBH runs reported in Fig. 13 required a total of 10 255 863 local searches.
Thus, not only this procedure saved roughly 30% of the overall computational costs,
but also systematically produced much better optima. For what concerns CPU times,
we observe that usually points generated by means of the proposed training proce-
dure, tend to be quite good; on the contrary, starting from a random uniform point,
it is quite likely that there will be no improvements, so that the total number of local
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searches required is, in quite a high number of cases, exactly equal to the MaxNoIm-
prove parameter. Thus, starting a prefixed number of MBH runs, although requiring
more local searches, might seem to be faster than starting an equivalent number of
MBH runs from points generated by the learning method. Of course, the resulting
quality will typically be significantly different, but, in any case, one might wonder
whether the whole process is worthwhile. In the following we summarize the CPU
times (measured on an Intel Core 2 Quad CPU running at 2.66 GHz):

– Generation of 1 000 points obtained as MBH runs stopped at the 100-th iteration:
26′22′′

– Executing full MBH runs starting from those points in order to build the training
and validation sets: 665′2′′

– Training via Libsvm: 0′3′′
– Generation of 50 000 starting points through MBH runs stopped at the 100-th iter-

ation: 1343′41′′
– Executing full MBH runs from the 1 788 accepted starting points: 2427′48′′

The complete procedure, thus, required 4463′16′′. In order to make a comparison,
performing 10 000 standard MBH runs required 6837′15′′. So it is seen that the whole
procedure based upon training required 71% of the local searches and 65% of the
CPU time with respect to a standard run of MBH which consistently produced results
of much lower quality.

7 Conclusions and further developments

In this paper we proposed an innovative framework (LeGO) to be coupled with stan-
dard global optimization methods in order to increase their capability of quickly ex-
ploring promising regions. The proposed approach can be seen as an acceleration
technique capable of significantly increasing the probability of successful optimiza-
tion runs. Although the idea is indeed very simple, its success was not easy to predict.
The existence of a quite strong relationship between the starting point of a complex
optimization procedure like MBH and the final optimum value came as a surprise.
In simple minded methods like Multistart this might have been argued, as, at least
in an ideal case, a local search is a deterministic procedure which should lead to a
local optimum belonging to the same region of attraction as the starting point; so
a deterministic dependency exists between starting points and local optima values
and machine learning can be used to approximate this dependency. On the contrary,
in more refined methods like MBH, not only the path followed by the method is,
in general, “non-local” and very long steps, crossing many regions of attraction, are
usually performed, but also the relationship between starting and final point is a non
deterministic one, as random moves are performed during the algorithm. So the same
starting point might lead to radically different optima. This behaviour might in theory
be analyzed, looking at MBH as the realization of a Markov chain in the (hopefully
finite) state space of local optima. Learning can thus be seen as a method to approxi-
mate the probability that the system, started at a specific local optimum, will eventu-
ally be absorbed in a state corresponding to a local optimum whose value is below a
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threshold. We did not pursue further this analysis, but we plan to do this in the future;
here we remark that in our experiments we observed that a LEGO approach can be
applied with significant success even in this difficult probabilistic framework.

Although the experiments reported in this paper show, in our opinion, that the pro-
posed approach has a great potential, many issues remain to be addressed and will be
analyzed in future papers. One deals with LEGO training: as we saw, training usu-
ally has a negligible cost in comparison with optimization; however, as optimization
runs are performed, the size of the available data increases, so that one might wish to
re-train the SVM. However, in this case, soon or late the cost of training might be-
come very significant. It might be interesting, thus, to develop incremental techniques
which re-train an already trained SVM after new observations become available. If
re-training is efficient enough, we might think of a global optimization procedure
with two parallel processes, one composed of the original optimization method and
another one which, in parallel, trains the SVM and generates new optimization runs
from trained points. Another issue is related to the generation of starting points from
a trained SVM: we used a straightforward acceptance/rejection method, but, thanks
to the fact that the SVM has a known analytical expression, direct random generation
methods might be developed. Another research direction deals with the extension of
this approach to problems with constraints different from simple bounds on the vari-
ables: in principle, nothing changes in the approach, but the numerical difficulties in
generating good starting points might be significantly higher. Still another research
issue deals with the development of suitable methods to choose the parameters of the
SVM—actually we used a blind grid search, but in some applications knowledge of
the problem might enable us to guess reasonable values, at least for some of the para-
meters. Finally, for what concerns the application to space trajectory design, after an
initial failure, we obtained a successful LEGO method by learning from the 100-th it-
eration of MBH. The choice of these first 100 local searches was totally arbitrary and
more research should be carried on in order to obtain a reasonable guideline for fur-
ther application. One possibility which we are currently exploiting, is that of inserting
in the training set not just the starting point of MBH, but several points encountered
during the run (e.g., all points which lead to an improvement); this way the training
set can be enlarged with no effort except storage and learning the structure of MBH
might become much easier, with no need of modifying the standard LEGO approach.

In conclusion, we think this paper is a starting point for the development of new
methods which, coupled with global optimization algorithms, can significantly aug-
ment their efficacy.
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