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Abstract Generalized Nash equilibrium problems (GNEPs) allow, in contrast to
standard Nash equilibrium problems, a dependence of the strategy space of one player
from the decisions of the other players. In this paper, we consider jointly convex
GNEPs which form an important subclass of the general GNEPs. Based on a regular-
ized Nikaido-Isoda function, we present two (nonsmooth) reformulations of this class
of GNEPs, one reformulation being a constrained optimization problem and the other
one being an unconstrained optimization problem. While most approaches in the lit-
erature compute only a so-called normalized Nash equilibrium, which is a subset of
all solutions, our two approaches have the property that their minima characterize
the set of all solutions of a GNEP. We also investigate the smoothness properties
of our two optimization problems and show that both problems are continuous un-
der a Slater-type condition and, in fact, piecewise continuously differentiable under
the constant rank constraint qualification. Finally, we present some numerical results
based on our unconstrained optimization reformulation.

Keywords Generalized Nash equilibrium problem · Jointly convex · Optimization
reformulation · Continuity · PC1 mapping · Semismoothness · Constant rank
constraint qualification

1 Introduction

This paper considers the generalized Nash equilibrium problem, GNEP for short,
with N players ν = 1, . . . ,N . Each player ν ∈ {1, . . . ,N} controls the variables
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xν ∈ R
nν , and the vector x = (x1, . . . , xN)T ∈ R

n with n = n1 + · · · + nN describes
the decision vector of all players. To emphasize the role of player ν’s variables within
the vector x, we often write (xν, x−ν) for this vector. Each player has a cost func-
tion θν : R

n → R and, in the most general setting of a GNEP, its own strategy space
Xν(x

−ν) ⊆ R
nν that depends on the other players. Typically, these sets are defined

explicitly via some constraint functions, say

Xν(x
−ν) := {xν ∈ R

nν | gν(xν, x−ν) ≤ 0} (1)

for suitable functions gν : R
n → R

mν , ν = 1, . . . ,N . Let

�(x) := X1(x
−1) × · · · × XN(x−N) (2)

be the Cartesian product of these strategy spaces. Then a vector x∗ ∈ �(x∗) is called
a generalized Nash equilibrium, or simply a solution of the GNEP, if

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν, x∗,−ν) for all xν ∈ Xν(x
∗,−ν)

holds for all players ν = 1, . . . ,N , i.e. if x∗,ν solves the optimization problem

min
xν

θν(x
ν, x∗,−ν) s.t. xν ∈ Xν(x

∗,−ν)

for all ν = 1, . . . ,N . There are just a very few papers that deal with a GNEP in this
general setting (see, in particular, [5, 6, 8, 9, 24]) where the feasible sets (besides
their dependence on the rivals’ strategies) are allowed to be different for each player.
Here we consider the special case that is often called the jointly convex case. Therein
we assume that there is a common strategy space X ⊆ R

n such that the feasible set
of player ν is given by

Xν(x
−ν) = {xν ∈ R

nν | (xν, x−ν) ∈ X}.
Throughout this paper, we assume that the following standard requirements are satis-
fied.

Assumption 1.1

(a) The cost functions θν : R
n → R are continuous and, as a function of xν alone,

convex.
(b) The set X ⊆ R

n is nonempty, closed and convex, and can be represented as X =
{x ∈ R

n | g(x) ≤ 0} with a mapping g : R
n → R

m whose component functions
gi are convex for all i = 1, . . . ,m.

Note that we do not require compactness of the set X. In view of Assumption 1.1,
the strategy space of player ν is given by

Xν(x
−ν) = {xν ∈ R

nν | g(xν, x−ν) ≤ 0}.
In the setting (1), this corresponds to the case where g1 = g2 = · · · = gN = g.
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Note that this jointly convex case is still a very challenging problem. Although a
number of methods have been developed for this problem during the last few years
(see, in particular, [5] and references therein), most of these methods find a so-called
normalized Nash equilibrium of the GNEP. Each normalized Nash equilibrium is, in
particular, a solution of the GNEP, so these methods can be used to find a generalized
Nash equilibrium, but the converse is not true in general. In fact, typically a GNEP
has many solutions, but just one normalized Nash equilibrium. Unfortunately, this
normalized Nash equilibrium is often not the solution economists, etc. are interested
in. This observation is not new, and there exists a small number of approaches which
try to deal with this problem.

One is described in the book [23], but only for the standard Nash equilibrium
problem where the strategy spaces Xν(x

−ν) do not depend on the rivals’ strategies
(making the entire problem considerably easier). The idea from [23] is to find specific
solutions of a standard Nash problem by using a bilevel formulation which results
into a mathematical program with equilibrium constraint (MPEC). Such an MPEC,
however, is rather difficult to solve.

Another approach for GNEPs is very recent, see [22], and tries to use characteri-
zations of all the solutions of a GNEP via certain parameterized variational inequality
problems. The idea is quite nice and has the advantage of giving a smooth formula-
tion, but a complete characterization of the whole solution set is not given, at least
not without additional assumptions.

A classical idea to find a characterization of all solutions of a GNEP (under certain
constraint qualifications) is to write down the KKT conditions for each player. This
results in a large mixed complementarity system that can, in principle, be attacked
by a semismooth solver, for example. However, this approach has some singularity
problems since the joint constraints appear several times (one for each player). Delet-
ing all the repeated constraints, on the other hand, gives an underdetermined system
which again causes some troubles, see, in particular, the discussion in [4]. Moreover,
this KKT approach involves both the original variables of the players and additional
Lagrange multipliers. As a consequence, it is difficult to show that suitable meth-
ods generate bounded iterates (whereas this is trivial in our case at least for X being
bounded, cf. the bounded level set result in [13]).

Another way to reformulate the GNEP in such a way that the solution sets coincide
is to use the quasi-variational inequality (QVI) approach, see [11], for example. It has
the advantage that it uses the original variables only, but a detailed discussion of this
QVI approach in the context of GNEPs is still missing. In general, however, one can
say that there are not many numerical methods known for the general QVI problem,
and it is not clear how they work in practice when applied to GNEPs. In any case,
this approach has differentiability problems due to projections onto sets that depend
on the variable x. It might be possible, however, to overcome these problems under
the assumptions that are also used in this paper for our optimization technique.

The approach we follow here was already settled in the paper [13], but not further
discussed there simply because the focus on that paper was on some other (differen-
tiable) formulations of a GNEP. The idea is to use a constrained optimization refor-
mulation of the GNEP whose minima characterize the entire set of generalized Nash
equilibria, and not only the normalized Nash equilibria. The price we have to pay is
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that this constrained optimization reformulation is nonsmooth. The precise reformu-
lation and its elementary properties will be discussed in detail in Sect. 2. There, we
also modify the constrained optimization reformulation in a suitable way to obtain
a new unconstrained optimization reformulation of the GNEP whose solutions are,
again, precisely the generalized Nash equilibria of the GNEP. The exact smoothness
properties of these two reformulations, the constrained and the unconstrained opti-
mization one, will be discussed in detail in Sects. 3 and 4, respectively. It turns out
that both formulations are continuous in those points x where a Slater-condition for
the sets �(x) holds. Moreover, it will be shown that the objective functions are PC1

mappings under the additional assumption that the constant rank constraint qualifi-
cation holds. This, in particular, implies that the functions are directionally differen-
tiable, locally Lipschitz and semismooth. This paves the way for the application of
suitable nonsmooth optimization solvers in order to find generalized Nash equilibria.
Based on the unconstrained reformulation, we therefore present some numerical re-
sults in Sect. 5 using a sampling method from [1] for nonsmooth optimization. We
then close with some final remarks in Sect. 6.

Notation: With ‖ · ‖ we denote the Euclidean norm. PX[x] is the (Euclidean) pro-
jection of a vector x ∈ R

n onto the nonempty, closed and convex set X ⊆ R
n, i.e. it is

the unique solution of

min
1

2
‖z − x‖2 s.t. z ∈ X.

A function G : R
n → R

m is called a PC1 function in a neighbourhood of a given
point x∗ if G is continuous and there exists a neighborhood U of x∗ and a finite
number of continuously differentiable functions G1,G2, . . . ,Gk defined on U such
that, for all x ∈ U , we have G(x) ∈ {G1(x),G2(x), . . . ,Gk(x)}. For a locally Lip-
schitz function H : R

m × R
n → R

n, (x, y) �→ H(x,y), we denote by ∂H(x, y) the
generalized Jacobian of H in the sense of Clarke [3], and by πy∂H(x, y) the set of all
matrices M ∈ R

n×n such that, for a matrix N ∈ R
n×m, the matrix [N,M] ∈ R

n×(m+n)

is an element of ∂H(x, y).

2 Constrained and unconstrained optimization reformulation

Here we first recall a constrained optimization reformulation of the GNEP as intro-
duced in [13] and then present a new reformulation of the GNEP as an unconstrained
optimization problem.

To this end, we first define the Nikaido-Isoda function (also called Ky Fan-
function) by

�(x,y) :=
N∑

ν=1

[
θν(x

ν, x−ν) − θν(y
ν, x−ν)

]
.



Nonsmooth optimization reformulations characterizing all solutions 27

Since θν is convex in xν , it follows that �(x, .) is concave for any fixed x. Conse-
quently, the regularized Nikaido-Isoda-function

�α(x, y) :=
N∑

ν=1

[
θν(x

ν, x−ν) − θν(y
ν, x−ν) − α

2
‖xν − yν‖2

]
,

originally introduced in [10] as a technical tool for the standard Nash equilibrium
problem and afterwards used in [13–16] for the numerical solution of GNEPs, is
uniformly concave as a function of the second argument, where α > 0 denotes a
fixed parameter. Using this function, we define

Vα(x) := max
y∈�(x)

�α(x, y)

= max
y∈�(x)

N∑

ν=1

[
θν(x

ν, x−ν) − θν(y
ν, x−ν) − α

2
‖xν − yν‖2

]

=
N∑

ν=1

[
θν(x

ν, x−ν) − min
yν∈Xν(x−ν )

(
θν(y

ν, x−ν) + α

2
‖xν − yν‖2

)]
, (3)

where the maximization is taken over the set �(x) defined in (2). Note that As-
sumption 1.1 implies that all sets Xν(x

−ν) are closed and convex, hence �(x) is
also closed and convex. Therefore, Vα(x) is well-defined for all x ∈ R

n such that
�(x) 	= ∅. According to the following result, the latter condition holds at least for all
x ∈ X.

As shown in [13], there is a reformulation of the jointly convex GNEP as a con-
strained optimization problem based on the mapping Vα . The following is a summary
of the corresponding results from [13].

Theorem 2.1 Suppose that Assumption 1.1 holds. Then:

(a) x ∈ X if and only if x ∈ �(x).
(b) Vα(x) ≥ 0 for all x ∈ X.
(c) x∗ is a generalized Nash equilibrium if and only if x∗ ∈ X and Vα(x∗) = 0.
(d) For all x ∈ R

n with �(x) 	= ∅, there exists a unique vector yα(x) := (y1
α(x), . . . ,

yN
α (x)) such that, for every ν = 1, . . . ,N ,

arg min
yν∈Xν(x−ν )

[
θν(y

ν, x−ν) + α

2
‖xν − yν‖2

]
= yν

α(x).

(e) x∗ is a generalized Nash equilibrium if and only if x∗ is a fixed point of the
mapping x �→ yα(x), i.e. if and only if x∗ = yα(x∗).

Basically, this result says that finding a solution (i.e., an arbitrary generalized Nash
equilibrium) of the GNEP is equivalent to solving the constrained optimization prob-
lem

minVα(x) s.t. x ∈ X (4)
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with Vα(x) = 0. Unfortunately, it turns out that this optimization problem has a non-
smooth objective function even under very strong conditions. This observation was
already made in [13], so that this reformulation was not further investigated there.
The following example shows that Vα might even be discontinuous.

Example 2.2 Let the common strategy space of a two-player game be given by

X = {x ∈ R
3 | x2

2 + (x3 − x1)
2 − x2

1 ≤ 0,0 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10,0 ≤ x3 ≤ 20}.
The variable x1 is controlled by the first player, and the two variables x2, x3 are the
decision variables of the second player. The cost functions are defined by

θ1(x) := (x1 + 10)2 and θ2(x) := x2
2 + x2

3 ,

respectively. The corresponding Nikaido-Isoda function is given by

�α(x, y) := (x1 + 10)2 + x2
2 + x2

3 − (y1 + 10)2 − y2
2 − y2

3 − α

2
‖x − y‖2.

Its unconstrained maximum is (−20+αx1
2+α

, αx2
2+α

,
αx3
2+α

)T . Now consider the sequence

x(δ) := (10,
√

20δ − δ2, δ)T → (10,0,0)T := x∗

with δ ↓ 0 (note that x∗ belongs to X). Then an elementary calculation shows that,
for all α > 0 and all δ > 0 sufficiently small, we have

yα

(
x(δ)
)=
(

10,
α
√

20δ − δ2

2 + α
,

αδ

2 + α

)T

→ (10,0,0) for δ ↓ 0.

On the other hand, for the parameter α = 2 or, more generally, for an arbitrary para-
meter α ∈ (0,2], it can be shown that yα(x∗) = (0,0,0)T , hence the function yα is
not continuous in (10,0,0)T . Furthermore, we have

Vα

(
x(δ)
)= �α

(
x(δ), yα(x(δ))

)= 20δ

(
1 − α2

(2 + α)2
− α

2

(
1 − α

2 + α

)2
)

→ 0,

whereas Vα(x∗) = 202 − 102 − α
2 102 	= 0, which shows that Vα is not continuous in

(10,0,0)T . This example also shows that the Slater condition for the set X, i.e. the
existence of an interior point of X, is not sufficient for continuity of Vα , since for
example x̂ := (2,1,2)T is a Slater point.

Besides this negative observation, it turns out that the function Vα is continuous
and even a PC1 mapping under fairly mild conditions. This will be discussed in
more detail in Sect. 3. Here, we now modify the previous approach and present a new
unconstrained optimization reformulation of the GNEP which also characterizes all
solutions of the GNEP.

In order to present an unconstrained reformulation of the GNEP which is close
to the previous constrained one, we have to find a way to define the function
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Vα(x) := maxy∈�(x) �α(x, y) for those points x ∈ R
n where �(x) is empty. So far,

we only know that �(x) 	= ∅ for all x ∈ X. This fact will now be exploited in the
following definition where, for an arbitrary x ∈ R

n (not necessarily belonging to X),
we maximize over the set �(PX[x]) instead of �(x).

Definition 2.3 For all x ∈ R
n and α > 0, we define

ȳα(x) := arg max
y∈�(PX[x])

�α(x, y) and

V̄α(x) := max
y∈�(PX[x])

�α(x, y) = �α(x, ȳα(x)).

Given two parameters 0 < α < β , we then define

V̄αβ(x) := V̄α(x) − V̄β(x)

for all x ∈ R
n (where ȳβ(x) and V̄β(x) are defined in an obvious way).

For all x ∈ X, we obviously have ȳα(x) = yα(x) and V̄α(x) = Vα(x), so we
leave the functions unchanged on X. On the other hand, for x 	∈ X, all func-
tions are still well-defined since our previous discussion shows that, in particular,
PX[x] ∈ �(PX[x]), hence �(PX[x]) 	= ∅ and, therefore, ȳα(x) is well-defined and
unique.

The next lemma will be crucial to prove that we get an unconstrained reformula-
tion of the GNEP by the function V̄αβ .

Lemma 2.4 For all x ∈ R
n, the following inequalities hold:

β − α

2
‖x − ȳβ(x)‖2 ≤ V̄αβ(x) ≤ β − α

2
‖x − ȳα(x)‖2.

Proof We have ȳα(x) ∈ �(PX[x]) and ȳβ(x) ∈ �(PX[x]). Therefore

V̄β(x) = �β(x, ȳβ(x)) = max
y∈�(PX[x])

�β(x, y) ≥ �β(x, ȳα(x)), (5)

V̄α(x) = �α(x, ȳα(x)) = max
y∈�(PX[x])

�α(x, y) ≥ �α(x, ȳβ(x)). (6)

On the one hand, this implies

V̄αβ(x) = V̄α(x) − V̄β(x)
(5)≤ �α(x, ȳα(x)) − �β(x, ȳα(x)) = β − α

2
‖x − ȳα(x)‖2,

and, on the other hand, we obtain

V̄αβ(x) = V̄α(x) − V̄β(x)
(6)≥ �α(x, ȳβ(x)) − �β(x, ȳβ(x)) = β − α

2
‖x − ȳβ(x)‖2

for all x ∈ R
n. �

We are now in a position to show that the function V̄αβ provides an unconstrained
optimization reformulation of the GNEP.
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Theorem 2.5 The following statements hold:

(a) V̄αβ(x) ≥ 0 for all x ∈ R
n.

(b) x∗ is a generalized Nash equilibrium if and only if x∗ is a minimum of V̄αβ with
V̄αβ(x∗) = 0.

Proof Lemma 2.4 (left inequality) shows that V̄αβ(x) ≥ β−α
2 ‖x − ȳβ(x)‖2 ≥ 0 for all

x ∈ R
n, hence statement (a) holds.

In order to verify the second statement, first assume that x∗ is a generalized Nash
equilibrium. Then x∗ ∈ �(x∗), and Theorem 2.1 (a) implies x∗ ∈ X. This, in turn,
gives PX[x∗] = x∗, and together with the fixed point characterization of Theorem
2.1 (e), we get x∗ = yα(x∗) = ȳα(x∗). Lemma 2.4 (right inequality) then implies
V̄αβ(x∗) ≤ 0. In view of part (a), we therefore have V̄αβ(x∗) = 0.

Conversely, assume that V̄αβ(x∗) = 0 for some x∗ ∈ R
n. Then we obtain

0 = V̄αβ(x∗) ≥ β − α

2
‖x∗ − ȳβ(x∗)‖2 ≥ 0

from Lemma 2.4. Consequently, we have x∗ = ȳβ(x∗) ∈ �(PX[x∗]), i.e.

x∗,ν ∈ Xν((PX[x∗])−ν) = {xν | (xν, (PX[x∗])−ν) ∈ X}
for all ν = 1, . . . ,N . Let ν̄ ∈ {1, . . . ,N} be arbitrarily given.

Then we have (x∗,ν̄ , (PX[x∗])−ν̄ ) ∈ X and

‖x∗ − (x∗,ν̄ , (PX[x∗])−ν̄ )‖2 =
N∑

ν=1,ν 	=ν̄

‖x∗,ν − (PX[x∗])ν‖2

≤
N∑

ν=1

‖x∗,ν − (PX[x∗])ν‖2 = ‖x∗ − PX[x∗]‖2.

Since the projection PX[x∗] onto the nonempty, closed and convex set X is the unique
solution of the problem

min
1

2
‖x∗ − z‖2 s.t. z ∈ X,

we must have x∗,ν̄ = (PX[x∗])ν̄ . Since ν̄ ∈ {1, . . . ,N} was arbitrarily chosen, this is
true for all components and hence x∗ = PX[x∗], i.e. x∗ ∈ X. Thus we get yβ(x∗) =
ȳβ(x∗) = x∗. Therefore, x∗ is a generalized Nash equilibrium by the fixed point char-
acterization from Theorem 2.1 (e). �

This theorem shows that the generalized Nash equilibria x∗ are exactly the minima
of the function V̄αβ satisfying V̄αβ(x∗) = 0. We therefore have the unconstrained
optimization reformulation

min V̄αβ(x), x ∈ R
n, (7)
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in order to find solutions of a GNEP. Again, the minima of this problem (with zero
objective function value) characterize all solutions of the GNEP (not only the nor-
malized Nash equilibria). However, similar to the constrained reformulation, also this
unconstrained one is nondifferentiable in general. The smoothness properties of this
unconstrained problem will be discussed in more detail in Sect. 4.

3 Smoothness properties of the constrained reformulation

Here we come back to the constrained reformulation (4) of the GNEP with the objec-
tive function Vα from (3). Knowing that this objective function is nondifferentiable,
we take a closer look at the smoothness properties of this mapping. Our aim is to
show the following statements:

• Vα is continuous at x ∈ X provided that �(x) satisfies a Slater condition;
• Vα is a PC1 function provided that g and θν are twice continuously differentiable

and, in addition to the Slater condition, also a constant rank constraint qualification
holds.

In order to verify the continuity of Vα , we need some terminology and results from
set-valued analysis. Let us begin with the following well known definitions.

Definition 3.1 Suppose X ⊆ R
n,Y ⊆ R

m, and � : X ⇒ Y is a point-to-set mapping.
Then � is called

(a) lower semicontinuous in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and
all y∗ ∈ �(x∗), there exists a number m ∈ N and a sequence {yk} ⊆ Y such that
yk ∈ �(xk) for all k ≥ m and yk → y∗;

(b) closed in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and all sequences
yk → y∗ with yk ∈ �(xk) for all k ∈ N sufficiently large, we have y∗ ∈ �(x∗);

(c) lower semicontinuous or closed on X if it is lower semicontinuous or closed in
every x ∈ X.

The definition of a lower semicontinuous set-valued mapping is in the sense of
Berge. Alternative names used in the literature are “open mapping” (see [17]) and
“inner semicontinuous mapping” (see [27]). A useful result for our subsequent analy-
sis is the following one which is an immediate consequence of [17, Corollaries 8.1
and 9.1].

Lemma 3.2 Let X ⊆ R
n arbitrary, Y ⊆ R

m convex, and f : X × Y → R be concave
in y for fixed x and continuous on X ×Y . Let � : X ⇒ Y be a point-to-set map which
is closed in a neighborhood of x̄ and lower semicontinuous in x̄, and �(x) convex in
a neighbourhood of x̄. Define

Y(x) :=
{
z ∈ �(x) | sup

y∈�(x)

f (x, y) = f (x, z)
}

and assume that Y(x̄) has exactly one element. Then the point-to-set mapping x �→
Y(x) is lower semicontinuous and closed in x̄.
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We can use Lemma 3.2 to prove continuity of Vα .

Theorem 3.3 Suppose that Assumption 1.1 holds and that the point-to-set mapping
x → �(x) from (2) is closed on X and lower semicontinuous in x ∈ X. Then the
functions yα and Vα are continuous at x ∈ X.

Proof Assumption 1.1 implies that the function �α(x, .) is concave for fixed x and
continuous on R

n × R
n. By Theorem 2.1 (a), �(x) is nonempty for all x ∈ X,

and Theorem 2.1 (d) shows that the sets Yα(x) := {z ∈ �(x) | supy∈�(x) �α(x, y) =
�α(x, z)} consist of exactly one element for all x ∈ X, namely yα(x). Taking into ac-
count the convexity of �(x), Lemma 3.2 therefore implies that x → {yα(x)}, viewed
as a point-to-set mapping, is lower semicontinuous and closed at x ∈ X. This implies
that the single-valued function x �→ yα(x) is continuous at x. Hence, the composition
Vα(x) = �α(x, yα(x)) is also continuous at x. �

Theorem 3.3 shows that the continuity of the functions yα and Vα follows immedi-
ately if we can show that the set-valued mapping x �→ �(x) is lower semicontinuous
and closed. The following result states that this mapping is always closed on X.

Lemma 3.4 Suppose that Assumption 1.1 holds. Then the point-to-set mapping x �→
�(x) is closed on X.

Basically, Lemma 3.4 follows from the fact that X is closed. We therefore skip the
proof of Lemma 3.4.

Next we want to show that the point-to-set mapping x �→ �(x) is also lower semi-
continuous. To this end, it will be useful to define the function

h : R
n × R

n → R
mN by h(x, y) :=

⎛

⎜⎝
g(y1, x−1)

...

g(yN , x−N)

⎞

⎟⎠ ,

where g is the mapping from Assumption 1.1. The function h has the following ob-
vious properties:

• h is locally Lipschitz continuous (since all gi are convex);
• The component functions hi(x, ·) are convex in y for any given x;
• For any given x, we have y ∈ �(x) ⇐⇒ h(x, y) ≤ 0.

In view of Theorem 3.3 and (the Counter-) Example 2.2, it is clear that we cannot
expect lower semicontinuity of x �→ �(x) without any further condition. The missing
assumption is the Slater condition for the set �(x) = {y ∈ R

n | h(x, y) ≤ 0} saying
that, for the given vector x, there exists a vector ŷ ∈ R

n with h(x, ŷ) < 0.

Lemma 3.5 Suppose that Assumption 1.1 holds. Then the point-to-set mapping
x �→ �(x) is lower semicontinuous in every x ∈ X where �(x) satisfies the Slater
condition.
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Proof Let x∗ ∈ X be given, such that the Slater condition holds with ŷ ∈ �(x∗),
i.e. h(x∗, ŷ) < 0. Consider an arbitrary sequence {xk} ⊆ X converging to x∗, and
let y∗ ∈ �(x∗) and hence h(x∗, y∗) ≤ 0 be given. To prove lower semicontinuity of
x �→ �(x) in x = x∗, we have to show the existence of a sequence {yk} converging
to y∗ with yk ∈ �(xk) for k sufficiently large. To this end, let us define yk := tkŷ +
(1 − tk)y

∗ with a suitable sequence {tk} ↓ 0. Then we obviously obtain yk → y∗.
By convexity and the local Lipschitz property of the function h, we obtain for all
i = 1, . . . ,mN

hi(x
k, yk) = hi

(
xk, tkŷ + (1 − tk)y

∗)

≤ tkhi(x
k, ŷ) + (1 − tk)hi(x

k, y∗)

= tk

(
hi(x

k, ŷ) − hi(x
∗, ŷ)
)

+ tkhi(x
∗, ŷ)

+ (1 − tk)
(
hi(x

k, y∗) − hi(x
∗, y∗)

)
+ (1 − tk)hi(x

∗, y∗)

≤ tkL
1
i ‖xk − x∗‖ + tkhi(x

∗, ŷ) + (1 − tk)L
2
i ‖xk − x∗‖

+ (1 − tk) hi(x
∗, y∗)︸ ︷︷ ︸
≤0

≤ L‖xk − x∗‖ + tkhi(x
∗, ŷ),

where L1
i and L2

i are the two local Lipschitz constants of hi around (x∗, ŷ) and
(x∗, y∗), respectively, and L := max{max{L1

i ,L
2
i } | i = 1, . . . ,mN}. Since xk → x∗

and h(x∗, ŷ) < 0, we have

tk := −2L
‖xk − x∗‖

maxi hi(x∗, ŷ)
↓ 0.

Using this particular sequence {tk} in the previous calculations, we get

hi(x
k, yk) ≤ −L‖xk − x∗‖ ≤ 0,

for all i = 1, . . . ,mN and, therefore, yk ∈ �(xk). �

Taking these two lemmas and Theorem 3.3 together, we immediately get the fol-
lowing continuity result.

Corollary 3.6 Suppose that Assumption 1.1 holds. Then the functions yα and Vα are
continuous in x∗ ∈ X provided the Slater condition holds for �(x∗).

Hence the optimization reformulation (4) of the GNEP is at least a continuous
problem. Continuity alone, however, is not sufficient for the application of suitable
nonsmooth optimization solvers to this problem. What is typically needed is at least
the local Lipschitz continuity of the objective function and, if possible, the semi-
smoothness of this mapping. Our next aim is therefore to show that these additional
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properties hold under fairly mild conditions. In fact, we will prove the stronger prop-
erty that Vα is a PC1 mapping.

To this end, we need a stronger smoothness property in addition to Assump-
tion 1.1.

Assumption 3.7 The functions θν : R
n → R and g : R

n → R
m are twice continu-

ously differentiable.

Note that Assumption 3.7 implies that the function h is twice continuously differ-
entiable. Hence yα(x) is the unique solution of the twice continuously differentiable
optimization problem

max
y

�α(x, y) s.t. h(x, y) ≤ 0. (8)

Let
I (x) := {i ∈ {1, . . . ,mN} | hi(x, yα(x)) = 0}

be the set of active constraints. Consider, for a fixed subset I ⊆ I (x), the problem
(which has equality constraints only)

max
y

�α(x, y) s.t. hi(x, y) = 0 (i ∈ I ). (9)

Let

LI
α(x, y,λ) := −�α(x, y) +

∑

i∈I

λihi(x, y)

be the Lagrangian of the optimization problem (9). Then the KKT-system of this
problem reads

∇yL
I
α(x, y,λ) = −∇y�α(x, y) +

∑

i∈I

λi∇yhi(x, y) = 0,

hi(x, y) = 0 ∀i ∈ I. (10)

This can be written as a nonlinear system of equations

�I
α(x, y,λ) = 0 with �I

α(x, y,λ) :=
(∇yL

I
α(x, y,λ)

hI (x, y)

)
, (11)

where hI consists of all components hi of h with i ∈ I . The function �I
α is contin-

uously differentiable since �α and g are twice continuously differentiable, and we
have

∇�I
α(x, y,λ) =

(∇2
yxL

I
α(x, y,λ)T ∇2

yyL
I
α(x, y,λ) ∇yhI (x, y)T

∇xhI (x, y) ∇yhI (x, y) 0

)
.

Therefore, we obtain

∇(y,λ)�
I
α(x, y,λ) =

(∇2
yyL

I
α(x, y,λ) ∇yhI (x, y)T

∇yhI (x, y) 0

)
.

Then we have the following result whose proof is standard so we skip it.
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Lemma 3.8 Suppose that Assumption 3.7 holds, that ∇2
yyL

I
α(x, y,λ) is positive

definite and that the gradients ∇yhi(x, y) (i ∈ I ) are linearly independent. Then
∇(y,λ)�

I
α(x, y,λ) is nonsingular.

Note that the assumed positive definiteness of the Hessian ∇2
yyL

I (x, y,λ) is an
assumption that can easily be relaxed in Lemma 3.8, but that this condition au-
tomatically holds in our situation, so we do not really need a weaker assumption
here. Furthermore, we stress that the assumed linear independence of the gradients
∇yhi(x, y) (i ∈ I ) is a very strong condition for certain index sets I , however, in our
subsequent application of Lemma 3.8, we will only consider index sets I where this
assumption holds automatically, so this condition is not really crucial in our context.

We next introduce another assumption that will be used in order to show that our
objective function Vα is a PC1 mapping.

Assumption 3.9 The (feasible) constant rank constraint qualification (CRCQ) holds
at x∗ ∈ X if there exists a neighbourhood N of x∗ such that for every subset I ⊆
I (x∗) := {i | hi(x

∗, yα(x∗)) = 0}, the set of gradient vectors {∇yhi(x, yα(x)) | i ∈ I }
has the same rank (depending on I ) for all x ∈ N ∩ X.

Note that the previous definition requires the same rank only for those x ∈ N

which also belong to the common strategy space X; this is important in our case
since for x 	∈ X, the vector yα(x) is not necessarily defined. Moreover, this is the only
difference compared to the standard CRCQ as introduced in [18] and the reason why
we call this assumption the feasible CRCQ, although, in our subsequent discussion,
we will often speak of the CRCQ condition when we refer to Assumption 3.9. This
feasible CRCQ has also been used before in [7], for example, where the authors
simply call this condition the CRCQ.

The following result is motivated by [26] (see also [16]) and states that both yα

and Vα are piecewise continuously differentiable functions.

Theorem 3.10 Suppose that Assumptions 1.1 and 3.7 hold, let x∗ ∈ X be given, and
suppose that the solution mapping yα : X → R

n of (8) is continuous in a neighbour-
hood of x∗ (see Corollary 3.6 for a sufficient condition). Then there exists a neigh-
bourhood N̂ of x∗ ∈ X such that yα is a PC1 function on N̂ ∩ X provided that the
(feasible) CRCQ condition from Assumption 3.9 holds at x∗.

Proof We divide the proof into several steps.

Step 1: Here we introduce some notation and summarize some preliminary statements
that will be useful later on.

First let x∗ ∈ X be fixed such that Assumption 3.9 holds in a neighbourhood N of
x∗. Recall that I (x) := {i | hi(x, yα(x)) = 0} for all x ∈ N ∩X. Furthermore, for any
such x ∈ N ∩ X, let us denote by

M(x) := {λ ∈ R
mN | (yα(x), λ) is a KKT point of (8)}
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the set of all Lagrange multipliers of the optimization problem (8). Since CRCQ holds
at x∗, it is easy to see that CRCQ also holds for all x ∈ X sufficiently close to x∗.
Without loss of generality, let us say that CRCQ holds for all x ∈ N ∩ X with the
same neighbourhood N as before. Then it follows from a result in [18] that the set
M(x) is nonempty for all x ∈ N ∩ X. This, in turn, implies that the set

B(x) := {I ⊆ I (x) | ∇yhi(x, yα(x)) (i ∈ I ) are linearly independent and

supp(λ) ⊆ I for some λ ∈ M(x)
}

is also nonempty for all x in a sufficiently small neighbourhood of x∗, say, again, for
all x ∈ N ∩X (see [16] for a formal proof), where supp(λ) denotes the support of the
nonnegative vector λ, i.e. supp(λ) := {i | λi > 0}. Furthermore, it can be shown that,
in a suitable neighbourhood of x∗ (which we assume to be N once again), we have
B(x) ⊆ B(x∗), see, e.g., [16, 26].

Step 2: Here we show that, for every x ∈ N ∩X and every I ∈ B(x), there is a unique
multiplier λI

α(x) ∈ M(x) such that �I
α(x, yα(x), λI

α(x)) = 0, where N, M(x), and
B(x) are defined as in Step 1.

To this end, let x ∈ N ∩X and I ∈ B(x) be arbitrarily given. The definition of B(x)

implies that there is a Lagrange multiplier λI
α(x) ∈ M(x) with supp(λI

α(x)) ⊆ I .
Since (x, yα(x), λI

α(x)) satisfies the KKT conditions of the optimization problem
(8), [λI

α(x)]i = 0 for all i 	∈ I , and hi(x, yα(x)) = 0 for all i ∈ I (since I ⊆ I (x)),
it follows that �I

α(x, yα(x), λI
α(x)) = 0. Moreover, the linear independence of the

gradients ∇yhi(x, yα(x)) for i ∈ I shows that the multiplier λI
α(x) is unique.

Step 3: Here we claim that, for any given x∗ ∈ X satisfying Assumption 3.9
and an arbitrary I ∈ B(x∗) with corresponding multiplier λ∗, there exist open
neighbourhoods NI (x∗) and NI (yα(x∗), λ∗) as well as a C1-diffeomorphism
(yI (·), λI (·)) : NI (x∗) → NI (yα(x∗), λ∗) such that yI (x∗) = yα(x∗), λI (x∗) = λ∗
and �I

α(x, yI (x), λI (x)) = 0 for all x ∈ NI (x∗).
To verify this statement, let x∗ ∈ X be given such that the CRCQ holds, choose

I ∈ B(x∗) arbitrarily, and let λ∗ ∈ M(x∗) with supp(λ∗) ⊆ I be a corresponding
multiplier coming from the definition of the set B(x∗). Now, consider once again the
nonlinear system of equations �I

α(x, y,λ) = 0 with �I
α being defined in (11). The

function �I
α is continuously differentiable, and the triple (x∗, yα(x∗), λ∗) satisfies

this system. The convexity of θν with respect to xν implies that −�I
α(x∗, .) is strongly

convex with respect to the second argument and, therefore, ∇2
yy(−�I

α(x∗, yα(x∗))) is
positive definite. Moreover, the convexity of hi(x

∗, .) in the second argument implies
the positive semidefiniteness of ∇2

yyhi(x
∗, yα(x∗)). Since λ∗ ≥ 0, it follows that the

Hessian of the Lagrangian LI
α evaluated in (x∗, yα(x∗), λ∗), i.e. the matrix

∇2
yyL

I
α(x∗, yα(x∗), λ∗) = −∇2

yy�α(x∗, yα(x∗)) +
∑

i∈I

λ∗
i ∇2

yyhi(x
∗, yα(x∗))

is positive definite. Since, in addition, ∇yhi(x
∗, yα(x∗)) (i ∈ I ) are linearly indepen-

dent in view of our choice of I ∈ B(x∗), the matrix ∇(y,λ)�
I
α(x∗, yα(x∗), λ∗) is non-
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singular by Lemma 3.8. The statement therefore follows from the standard implicit
function theorem, where, without loss of generality, we can assume that NI (x∗) ⊆ N .

Step 4: Here we verify the statement of our theorem.
Let x∗ ∈ X be given such that CRCQ holds in x∗. Define N̂ :=⋂I∈B(x∗) N

I (x∗)
with the neighbourhoods NI (x∗) from Step 3. Since B(x∗) is a finite set, N̂ is a
neighborhood of x∗.

Choose x ∈ N̂ ∩ X arbitrarily. Step 2 shows that, for each I ∈ B(x), there
exists a unique multiplier λI

α(x) ∈ M(x) satisfying �I
α(x, yα(x), λI

α(x)) = 0. On
the other hand, Step 3 guarantees that there exists neighbourhoods NI (x∗) and
NI (yα(x∗), λ∗) and a C1-diffeomorphism yI (·), λI (·) : NI (x∗) → NI (yα(x∗), λ∗)
such that �I

α(x, yI (x), λI (x)) = 0 for all x ∈ NI (x∗). In particular, yI (x), λI (x)

is the locally unique solution of the system of equations �I
α(x, y,λ) = 0 for all

x ∈ NI (x∗). Hence, as soon as we can show that (yα(x), λI
α(x)) belongs to the neigh-

bourhood NI (yα(x∗), λ∗) for all x ∈ X sufficiently close to x∗, the local uniqueness
then implies yα(x) = yI (x) (for all I ∈ B(x) ⊆ B(x∗)).

Suppose this is not true in a sufficiently small neighbourhood. Then there is a
sequence {xk} ⊆ X with {xk} → x∗ and a corresponding sequence of index sets Ik ∈
B(xk) such that (yα(xk), λ

Ik
α (xk)) 	∈ NIk (yα(x∗), λ∗) for all k ∈ N. Since B(xk) ⊆

B(x∗) contains only finitely many index sets, we may assume that Ik is the same
index set for all k which we denote by I .

By the continuity of yα , we have yα(xk) → yα(x∗). On the other hand, for every
xk with associated yα(xk) and λI

α(xk) from Step 2, we have

−∇y�α(xk, yα(xk)) +
∑

i∈I

[λI
α(xk)]i∇yhi(x

k, yα(xk)) = 0 (12)

for all k. The continuity of all functions involved, together with the linear indepen-
dence of the vectors ∇yhi(x

∗, yα(x∗)) (which is a consequence of I ∈ B(xk) ⊆
B(x∗) and the assumed CRCQ condition) implies that the sequence {λI

α(xk)} is
convergent, say {λI

α(xk)} → λ̄I for some limiting vector λ̄I . Taking the limit in
(12) and using once again the continuity of the solution mapping yα(·) then gives
−∇y�α(x∗, yα(x∗)) +∑i∈I λ̄I

i ∇yhi(x
∗, yα(x∗)) = 0. Note that the CRCQ condi-

tion implies that λ̄I is uniquely defined by this equation and the fact that λ̄I
i = 0 for

all i 	∈ I . However, by definition, the vector λ∗ also satisfies this equation, hence we
have λI

α(xk) → λ∗. But then it follows that (yα(xk), λI
α(xk)) ∈ NI (yα(x∗), λ∗), and

this contradiction implies the desired statement. �

Thus we get the following corollary.

Corollary 3.11 Suppose that Assumptions 1.1 and 3.7 hold. Moreover, suppose that
Assumption 3.9 holds in x∗ ∈ X and that the sets �(x) satisfy a Slater condition for
all x ∈ X sufficiently close to x∗. Then yα and Vα are PC1 functions in a neighbour-
hood of x∗.



38 A. Dreves, C. Kanzow

Proof From Corollary 3.6, we obtain the continuity of yα , whereas Theorem 3.10
implies the PC1 property of yα near x∗. Hence the composite mapping Vα(x) =
�α(x, yα(x)) is also continuous and a PC1 mapping in a neighbourhood of x∗. �

4 Smoothness properties of the unconstrained reformulation

Here we consider the unconstrained reformulation (7) with the objective function V̄αβ

from Definition 2.3. We will show that the smoothness properties of the constrained
reformulation can be transfered to the unconstrained one. This means we can prove
continuity under a Slater-type condition and, moreover, that V̄αβ is a PC1 function
provided g and θν are twice continuously differentiable and a constant rank constraint
qualification holds. Although the proofs for these results are similar to the analysis
from the previous section, there are also some significant differences. In order to keep
this section as short as possible, we will, more or less, only stress those points where
these differences occur.

For the unconstrained reformulation, we first define the function

h̄ : R
n × R

n → R
mN by h̄(x, y) :=

⎛

⎜⎝
g(y1, (PX[x])−1)

...

g(yN , (PX[x])−N)

⎞

⎟⎠

which is the analogue of the mapping h used in the previous section. Then we have

y ∈ �(PX[x]) ⇐⇒ h̄(x, y) ≤ 0

for any given x ∈ R
n. Note, however, that in contrast to the mapping h, the function

h̄ is nondifferentiable in general, even if g itself is differentiable, simply because
the projection mapping is nonsmooth. However, h̄ is continuously differentiable with
respect to y, at least under the smoothness condition from Assumption 3.7.

Our first aim is to show continuity of V̄αβ . Similar to the constrained reformula-
tion, the continuity of ȳα (hence of V̄αβ ) follows directly from the point-to-set map-
ping x �→ �(PX[x]) being lower semicontinuous and closed. The proofs for this
mapping being lower semicontinuous and closed are along the lines of the proofs of
Lemmas 3.4 and 3.5 by using the continuity and Lipschitz property of the projec-
tion mapping. Hence Corollary 3.6 transfers to the unconstrained reformulation and
shows continuity of ȳα and V̄αβ , i.e. we have the following result.

Corollary 4.1 Suppose that Assumption 1.1 holds. Then ȳα and V̄αβ are continuous
in every x∗ ∈ R

n where �(PX[x∗]) satisfies the Slater condition.

Hence the unconstrained reformulation (7) of the GNEP is also a continuous prob-
lem. Now we want to show that the function V̄αβ is a PC1 mapping. To this end, recall
that ȳα(x) is the unique solution of

max
y

�α(x, y) s.t. h̄(x, y) ≤ 0. (13)
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The function h̄ is not continuously differentiable, but it is a PC1 function if the
projection mapping itself is a PC1 mapping. This PC1 property of the projection
mapping is shown in [25] under the smoothness conditions of Assumption 3.7 and a
constant rank constraint qualification. Hence, we first define the constant rank con-
straint qualification in a way it will be used within this section.

Assumption 4.2 The constant rank constraint qualification (CRCQ) holds at x∗ ∈
R

n if there exists a neighbourhood N of x∗ such that for every subset I ⊆ Ī (x∗) :=
{i | h̄i (x

∗, ȳα(x∗)) = 0}, the set of gradient vectors {∇yh̄i(x, ȳα(x)) | i ∈ I } has the
same rank (depending on I ) for all x ∈ N .

Note that there are some minor differences between Assumptions 3.9 and 4.2:
Here we use h̄ and ȳα instead of h and yα , respectively. Furthermore, we assume
the same rank for all x ∈ N , whereas in Assumption 3.9 is was enough to consider a
feasible neighbourhood N ∩X. The latter is not possible in our context now since we
use an unconstrained reformulation here, so x could be any vector from R

n.
To get an analogous result to Theorem 3.10, we need an implicit function theorem

for PC1 functions.

Theorem 4.3 Assume H : R
m × R

n → R
n is a PC1 function in a neighborhood

of (x̄, ȳ) with H(x̄, ȳ) = 0 and all matrices in πy∂H(x̄, ȳ) have the same nonzero
orientation. Then there exists an open neighborhood U of x̄ and a function g : U →
R

n which is a PC1 function on U such that g(x̄) = ȳ and H(x,g(x)) = 0 for all
x ∈ U .

Proof We will derive this implicit function theorem from an inverse function theorem
in [7]. To do so, define

F : R
m × R

n → R
m × R

n by F(x, y) :=
(

x − x̄

H(x, y)

)
.

Then we have

∂F (x̄, ȳ) ⊆
(

Im 0
πx∂H(x̄, ȳ) πy∂H(x̄, ȳ)

)
,

and all elements in ∂F (x̄, ȳ) have the same nonzero orientation, because the matrices
in πy∂H(x̄, ȳ) have. With H also the function F is a PC1 function in a neighborhood
of (x̄, ȳ). By Lemma 2.2 in [19], we get for the index ind(F, (x̄, ȳ)) ∈ {+1,−1}.
Now we can use the inverse function theorem from [7, Theorem 4.6.5] which implies
the existence of open neighborhoods V of (x̄, ȳ) and W of (0,0) = F(x̄, ȳ) such
that F : V → W is a homeomorphism and the local inverse G : W → V is a PC1

function. Define the set

U := {x ∈ R
n | (x − x̄,0) ∈ W }.

U is nonempty and open (in R
n) since (0,0) ∈ W and W is open. Let x ∈ U ar-

bitrarily be given. Then we have (x − x̄,0) ∈ W and hence, by the definition of
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a homeomorphism, we obtain the existence of a unique y with (x, y) ∈ V and
F(x, y) = (x − x̄,0). Thus we have H(x,y) = 0. Since y depends on x, we write
y =: g(x) which defines a function g : U → R

n such that H(x,g(x)) = 0 for each
x ∈ U . Therefore we have

F(x,g(x)) =
(

x − x̄

H(x, g(x))

)
=
(

x − x̄

0

)

for all x ∈ U . Applying the inverse function G on both sides, we obtain (x, g(x)) =
G(x − x̄,0) for all x ∈ U . Since g coincides with some component functions of the
PC1 function G, it is a PC1 function itself which completes the proof. �

Now we are able to show an analogous result to Theorem 3.10.

Theorem 4.4 Suppose that Assumptions 1.1 and 3.7 hold. Let x∗ ∈ R
n be given and

suppose that the solution mapping ȳα : R
n → R

n of (13) is continuous in a neigh-
bourhood of x∗ (see Corollary 4.1 for a sufficient condition). Then ȳα is a PC1

function in a neighbourhood of x∗ provided that the CRCQ condition from Assump-
tion 4.2 holds at x∗.

Proof We follow the proof of Theorem 3.10 by dividing the proof into four steps.
Rather than giving all the details, however, we more or less only mention the differ-
ences.

Step 1: Similar to the discussion in Sect. 3, let us introduce the sets

Ī (x) := {i | h̄i (x, ȳα(x)) = 0},
M̄(x) := {λ ∈ R

mN | (ȳα(x), λ) is a KKT point of (13)}
and

B̄(x) := {I ⊆ Ī (x) | ∇yh̄i(x, ȳα(x)) (i ∈ I ) are linearly independent and

supp(λ) ⊆ I for some λ ∈ M̄(x)
}
.

Then Assumption 4.2 implies that there is a neighbourhood N of x∗ such that
M̄(x) 	= ∅, B̄(x) 	= ∅ and B̄(x) ⊆ B̄(x∗) for all x ∈ N .

Step 2: For an arbitrary vector x ∈ R
n and an index set I ⊆ Ī (x), consider the opti-

mization problem

max
y

�α(x, y) s.t. h̄i (x, y) = 0 (i ∈ I ).

The corresponding Lagrangian is given by

L̄I
α(x, y,λ) := −�α(x, y) +

∑

i∈I

λi h̄i (x, y),
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so that the KKT conditions can be rewritten as

�̄I
α(x, y,λ) = 0 with �̄I

α(x, y,λ) :=
(∇yL̄

I
α(x, y,λ)

h̄I (x, y)

)
.

Using this notation, it follows as in the proof of Theorem 3.10 that, for every
x ∈ N and every I ∈ B̄(x), there is a unique multiplier λI

α(x) ∈ M̄(x) such that
�̄I

α(x, ȳα(x), λI
α(x)) = 0, where N, M̄(x), and B̄(x) are the sets defined in Step 1.

Step 3: Here we have the main difference to the proof of Theorem 3.10 since the
mapping �̄I

α defined in Step 2 is only a PC1 function, but not continuously dif-
ferentiable (in contrast to the mapping �I

α from the previous section which was
continuously differentiable). Therefore, we have to use an implicit function theorem
for PC1 functions instead of the standard implicit function theorem. Let any x∗ ∈ R

n

satisfying Assumption 4.2 and an arbitrary I ∈ B̄(x∗) with corresponding multiplier
λ∗ be given. Since �̄I

α(x, y,λ) is continuously differentiable with respect to y and
λ, it follows that π(y,λ)∂�I

α(x∗, ȳα(x∗), λ∗) has only one element, whose nonsingu-
larity can be shown as in the proof of Theorem 3.10. In particular, the same nonzero
orientation of all the elements is guaranteed. Using the PC1 implicit function Theo-
rem 4.3, we get the existence of open neighbourhoods NI (x∗) and NI (ȳα(x∗), λ∗)
as well as a PC1 function (yI (·), λI (·)) : NI (x∗) → NI (ȳα(x∗), λ∗) such that
yI (x∗) = ȳα(x∗), λI (x∗) = λ∗ and �I

α(x, yI (x), λI (x)) = 0 for all x ∈ NI (x∗).

Step 4: Repeating the arguments from Step 4 of the proof of Theorem 3.10, we obtain
ȳα(x) ∈ {yI (x) | I ∈ B̄(x∗)} for all x in a sufficiently small neighborhood of x∗. Since
all yI are PC1 functions, it follows that also ȳα is a PC1 mapping in a neighborhood
of any x∗ satisfying the CRCQ condition from Assumption 4.2. �

Thus we get the following corollary.

Corollary 4.5 Suppose that Assumptions 1.1 and 3.7 hold. Moreover, suppose that
Assumption 4.2 holds in x∗ ∈ R

n and that the sets �(PX[x]) satisfy the Slater con-
dition for all x sufficiently close to x∗. Then ȳα and V̄α are PC1 functions in a
neighbourhood of x∗.

Proof From Corollary 4.1 we obtain the continuity of ȳα . Theorem 4.4 therefore im-
plies the PC1 property of ȳα near x∗ satisfying the CRCQ condition from Assump-
tion 4.2. Hence the composite mapping V̄α(x) = �α(x, ȳα(x)) and therefore also V̄αβ

are PC1 mappings in a neighborhood of x∗. �

Thus we have shown that also the PC1 property transfers from the constrained
to the unconstrained reformulation. In particular, it follows that the objective func-
tion V̄αβ is directionally differentiable, locally Lipschitz continuous, and semismooth
under the assumptions of Corollary 4.5, cf. [2].

A good property that we would like to have is a condition which guarantees that a
Clarke stationary point is already a global minimum and, therefore, a solution of our
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GNEP, i.e. we would like to have the implication

0 ∈ ∂V̄αβ(x∗) =⇒ V̄αβ(x∗) = 0.

However, a proof of this result is difficult due to the fact that suitable estimates (like
the one from [21]) for the Clarke subdifferential of V̄αβ are by far too large. In fact,
even in very simple examples, it turns out that these estimates are equal to the entire
set R

n. It is therefore an interesting question whether (much) better estimates can be
obtained for our particular function, but this is not the scope of this paper. We stress,
however, that the numerical results in the following section indicate that our method
is usually able to find solutions of the GNEP.

5 Numerical results

Here we present some numerical results that are obtained by applying the robust gra-
dient sampling algorithm from [1] to our unconstrained optimization reformulation
using the objective function V̄αβ . The MATLAB® implementation used for our nu-
merical tests is the one written by the authors of [1] which is available online at the
following address: http://www.cs.nyu.edu/overton/papers/gradsamp. The method involves
a random sampling strategy which implies that it (usually) generates different iter-
ates (hence possibly different solutions) even if we use the same starting point. The
limit point of any sequence generated by this method is a Clarke stationary point
with probability 1. The algorithm stops if the norm of the vector with the smallest
Euclidean norm in the convex hull of the sampled gradients is less than 10−6. Apart
from using standard parameter settings, we use the two values α = 0.02 and β = 0.05
which define our objective function. In order to evaluate this objective function, we
have to compute the vectors ȳα(x) and ȳβ(x). This is done by using the fmincon
solver from the MATLAB® Optimization Toolbox. In a similar way, projections onto
the convex set X are computed by using suitable methods from the same toolbox.

Regarding the examples that are used for our numerical tests, we only took prob-
lems from the literature which are known to have multiple solutions since otherwise
the examples would be uninteresting for our method. In the first four 2-dimensional
examples all generalized Nash equilibria are known analytically. By taking 100 ran-
domly generated starting vectors in a neighbourhood of the feasible set X, we show
that the computed generalized Nash equilibria spread over the whole solution set.
Then we consider four examples with more than two players or more than one vari-
able for each player which also show that the algorithm finds different solutions.

Example 5.1 This problem is a two player game from [4]. Each player has a one-
dimensional variable xν ∈ R. The problem uses the cost functions

θ1(x) := (x1 − 1)2 and θ2(x) :=
(

x2 − 1

2

)2

and the feasible set X := {x ∈ R
2 | x1 + x2 ≤ 1}. There are infinitely many solutions

given by {(λ,1 − λ) | λ ∈ [ 1
2 ,1]}. We tested 100 random starting points in [−2,2]2.

http://www.cs.nyu.edu/overton/papers/gradsamp
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Fig. 1 Numerical results

We have convergence for all starting points in a range from 8 to 23 iterations. 77
computed solution have a marginal function value less than 1.5 ∗ 10−10, further 11
solutions a value less than 5.0 ∗ 10−7. The rest has a value less than 3.0 ∗ 10−5. The
computed solutions are displayed in Fig. 1.

Example 5.2 The following example is taken from [11]. In the game we have two
players, each controlling a single variable xi ∈ R. The objective functions are given
by

θ1(x) = x2
1 + 8

3
x1x2 − 34x1, and θ2(x) = x2

2 + 5

4
x1x2 − 24.25x2.

The common strategy set is X = {x ∈ R
2 | 0 ≤ x1 ≤ 10,0 ≤ x2 ≤ 10, x1 + x2 ≤ 15}

and the solution set is {(5,9)} ∪ {(λ,15 − λ) | λ ∈ [9,10]}. We tested 100 starting
vectors randomly distributed over [0,10]2. 99 times the algorithm converged to a
point x∗ with function value V̄αβ(x∗) < 1.6 ∗ 10−11 and the iteration number was
between 12 and 31. Once the algorithm terminates at a point which is not a solution;
48 times the algorithm converged to the isolated generalized Nash equilibrium (5,9)
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and in the other cases the computed equilibria spread over the set of solutions. The
results are displayed in Fig. 1.

Example 5.3 Here we consider a two-player game, where each player controls one
variable xi ∈ R. The example is taken from [22]. The objective functions are

θ1(x) = x2
1 − x1x2 − x1, and θ2(x) = x2

2 − 1

2
x1x2 − 2x2.

The feasible set is X = {x ∈ R
2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}. The solution set is

given by {(λ,1 − λ) | λ ∈ [0, 2
3 ]}. The algorithm was tested with 100 random starting

vectors in [0,1]2 and converged in all cases. The iteration number was between 9
and 49 and the marginal function value was less than 1.7 ∗ 10−11. Figure 1 shows the
computed solutions.

Example 5.4 This is a modification of the Example 5.3 with the same objective func-
tions but a different feasible set given by X = {x ∈ R

2 | x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 ≤ 1}.
The solution set modifies to {(λ,

√
1 − λ2) | λ ∈ [0, 4

5 ]}. This modification was al-
ready considered in [22]. The algorithm was again tested with 100 random starting
vectors in [0,1]× [0,2]. We have convergence for all starting vectors, marginal func-
tion values less than 1.7 ∗ 10−11 and iteration numbers between 9 and 22. For the
distribution of the computed solutions, see again Fig. 1.

Example 5.5 This example is the river basin pollution game, taken from [20]. There
are three players, each controlling a single variable xν ∈ R. The objective functions
are

θν(x) := xν
(
c1ν + c2νx

ν − d1 + d2(x
1 + x2 + x3)

)

for ν = 1,2,3 with certain parameters specified in [6, 20]. The strategy space X is
defined by some linear constraints, see again [6, 20] for more details. We used 100
different starting vectors, randomly distributed on [0,5]3 and found 100 different
generalized Nash equilibria. The largest marginal function value V̄αβ(x∗) was 1.6 ∗
10−11 and the number of iterations was between 21 and 38. We made a second run
with three nonrandom starting vectors, each one used three times and we found 9
different equilibria, see Table 1 for some numerical results.

Example 5.6 This problem is an oligopoly model for N = 5 players, each player
controlling a single variable xν ∈ R. The objective functions are highly nonlinear and
given by

θν(x) := fν(x
ν) − 50001/γ xν(x1 + · · · + xN)−1/γ

for all ν = 1, . . . ,N with

fν(x
ν) := cνx

ν + δν

1 + δν

K−1/δν
ν (xν)(1+δν)/δν
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Table 1 Results for Example 5.5

x0 It. x∗ V̄αβ(x∗)

(0,0,0) 34 (9.6424,9.5651,13.7469) 4.4 ∗ 10−13

(0,0,0) 34 (9.1568,7.7046,14.6932) 2.2 ∗ 10−12

(0,0,0) 38 (11.6080,9.1545,12.3226) 5.4 ∗ 10−13

(1,1,1) 33 (10.5010,9.4778,13.0969) 8.2 ∗ 10−13

(1,1,1) 38 (12.1166,11.6582,11.1633) 3.6 ∗ 10−13

(1,1,1) 31 (10.3501,8.8811,13.3966) 1.8 ∗ 10−12

(1,2,3) 29 (9.9927,10.6657,13.1374) 6.4 ∗ 10−14

(1,2,3) 35 (9.3339,9.8344,13.9084) 5.3 ∗ 10−14

(1,2,3) 33 (11.1988,10.8160,12.1415) 4.6 ∗ 10−13

Table 2 Results for Example 5.6

P It. x∗ V̄αβ(x∗)

75 59 (13.8905,14.5065,15.1038,15.3253,16.1811) 1.5 ∗ 10−7

75 25 (7.9908,11.5942,15.1505,18.5750,21.6896) 1.4 ∗ 10−10

100 116 (18.4518,19.5977,20.4044,20.6551,20.8941) 2.8 ∗ 10−8

100 36 (13.8988,17.2366,20.3282,23.1469,25.3894) 6.9 ∗ 10−13

150 108 (27.3865,30.2110,31.5907,31.1618,29.6528) 2.3 ∗ 10−8

150 60 (23.7846,28.2614,31.6395,33.3193,32.9956) 5.5 ∗ 10−10

200 78 (35.7400,40.4412,42.7681,42.1063,38.9446) 2.7 ∗ 10−10

200 82 (34.7850,40.2821,43.0930,42.6119,39.2279) 7.1 ∗ 10−12

for all ν = 1, . . . ,N . For the precise values of the parameters involved in these func-
tions, the reader is referred to [6, 23]. The constraints are linear:

x1 + · · · + xN ≤ P, xν ≥ 0 for all ν = 1, . . . ,N.

We tested this problem with different total production parameters P and for
each P we tested two different starting vectors x0 = (10, . . . ,10)T and x0 =
(0,5,10,15,20)T . Table 2 contains the corresponding results. The first column gives
the production parameters P , the second column the number of iterations until con-
vergence, the third column gives the computed solution, and the final column shows
the value of the marginal function V̄αβ at the computed solution x∗.

Example 5.7 Here we consider an electricity market model which is originally pro-
posed in [24] and further discussed in [22]. The details of the problem are from
the latter reference. It is a two player game where each player has six variables,
(x1, . . . , x6)

T for player 1 and (x7, . . . , x12)
T for player 2. All constraints are lin-

ear and the objective functions are quadratic. Table 3 shows the results of four test
runs with symmetric starting vectors x0 = (0, . . . ,0)T , x0 = (10, . . . ,10)T , x0 =
(100,0,0,50,0,0,100,0,0,50,0,0)T , and x0 = (50,25,25,25,12.5,12.5,50,25,

25,25,12.5,12.5)T , and three test runs with random starting vectors. The symmetric
starting vectors lead to symmetric solutions, the random ones do not.
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Table 3 Results for Example 5.7

x0 It. x∗ V̄αβ(x∗)

(0, . . . ,0) 118 (43.536,28.139,28.325,26.868,11.471,11.661, 3.3 ∗ 10−12

43.538,28.138,28.324,26.870,11.471,11.658)

(100,0,0,50,0,0, 120 (60.203,19.805,19.992,10.203,19.805,19.992, 6.3 ∗ 10−13

100,0,0,50,0,0) 60.203,19.805,19.992,10.203,19.805,19.992)

(50,25,25,25,12.5,12.5, 41 (47.703,26.055,26.242,22.703,13.555,13.742, 2.9 ∗ 10−12

50,25,25,25,12.5,12.5) 47.703,26.055,26.242,22.703,13.555,13.742)

random in [0,100]12 148 (43.207,30.734,26.059,30.435,8.8760,10.689, 3.6 ∗ 10−12

35.655,26.724,37.620,31.515,12.885,5.5999)

random in [0,100]12 157 (38.889,39.603,21.508,31.122,0.0067,18.871, 7.2 ∗ 10−12

23.997,38.693,37.311,46.804,0.9167,2.2788)

random in [0,100]12 159 (34.116,37.595,28.289,35.904,2.0147,12.081, 7.3 ∗ 10−12

36.863,39.606,23.530,33.929,0.0032,16.068)

Example 5.8 The last example is an electricity market model taken from [12]. There
are two players and the five variables (x1, . . . , x5) are controlled by player 1 and
(x6, . . . , x10) are controlled of player 2. The objective functions are given by

θ1(x) = cA
4∑

i=1

xi + e1x1 + e2(x4 + x5) + e3(x3 − x5) + e4x5 −
4∑

i=1

xiC
γ

i

(xi + xi+5)γ
,

θ2(x) = cB
4∑

i=1

xi+5 + e1x6 + e2(x6 + x7 + x8 − x10) + e3(x8 − x10) + e4x10

−
4∑

i=1

xi+5C
γ

i

(xi + xi+5)γ
.

The common strategy set is

X = {x ∈ R
10 | 0.1 ≤ xi, i = 1, . . . ,10, x5 ≤ x3, x10 ≤ x8, h(x) ≤ 0}

where

h(x) :=

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0
0 0 0 1 1 −1 −1 −1 0 1
0 0 0 −1 −1 1 1 1 0 −1
0 0 1 0 −1 0 0 1 0 −1
0 0 0 0 1 0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
x −

⎛

⎜⎜⎜⎜⎝

k1
k2
k2
k3
k4

⎞

⎟⎟⎟⎟⎠

defines the joint constraints. The parameters used are e = (5,2,5,2), k = (300,300,

300,300), C = (20000,50000,30000,50000), cA = 26, cB = 28, γ = 10/11. In all
solutions we found, six components have within a tolerance of 10−4 the same value.
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Table 4 Results for Example 5.8

x0 ∗ 10−2 It. x∗
3,5,8,10 V̄αβ(x∗)

(1, . . . ,1) 502 (176.1087,121.6257,178.3743,178.3743) −1.4 ∗ 10−11

(2, . . . ,2) 326 (176.4614,150.0000,152.5344,150.0000) 2.0 ∗ 10−14

(1,1,1,1,1,3,3,3,3,3) 477 (175.8595,117.0743,182.9243,182.9242) 3.8 ∗ 10−8

(3,3,3,3,3,1,1,1,1,1) 439 (182.7254,182.7254,151.8423,117.2746) 6.2 ∗ 10−13

(1,3,1,3,1,1,3,1,3,1) 185 (176.1012,121.4731,178.5269,178.5269) 1.8 ∗ 10−12

(1.17,3.56,1,3.28,1,1.01,3,1,3.28,1) 171 (176.1003,121.4544,178.5456,178.5456) −8.5 ∗ 10−12

random in [200,500]2 596 (176.4614,159.4029,152.5344,140.5971) −1.4 ∗ 10−13

random in [200,500]2 511 (175.8600,117.0816,182.9184,182.9183) 8.7 ∗ 10−12

random in [200,500]2 582 (182.7260,182.7259,151.8422,117.2740) 4.1 ∗ 10−11

These values are

x1 = 117.6409, x2 = 356.6286, x4 = 328.4737, x6 = 101.6896,

x7 = 300.3188, x9 = 328.4737.

Table 4 reports starting vectors x0, the number of iterations, solutions we found
for the remaining variables x∗

3 , x∗
5 , x∗

8 , x∗
10 and the corresponding marginal function

value.

The previous examples show that the method finds different solutions, in partic-
ular, it computes non-normalized solutions. Furthermore, the tests indicate that the
computed solutions spread over the whole set of solutions. Moreover, using the stan-
dard termination criterion for the software from [1], the accuracy is surprisingly high
for most test runs (or, to be more precise, the function value V̄αβ at termination is
always relatively close to zero) which is an interesting observation since the software
itself is, in general, not a fast converging method.

6 Final remarks

This paper discusses the smoothness properties of a known (see [13]) constrained
reformulation of a jointly convex GNEP as well as of a new unconstrained refor-
mulation. Both reformulations have the properties that they characterize all solutions
of the GNEP (and not just the normalized ones) and that their objective functions
are continuous under a Slater-type condition. Under an additional constant rank con-
straint qualification, the objective functions are, in fact, piecewise continuously dif-
ferentiable. This allows the application of suitable nonsmooth optimization software
in order to get a solution of GNEPs. So far, the investigations were restricted to the
jointly convex class of GNEPs. An interesting future research topic is to see whether
these results can be extended to a general (not necessarily jointly convex) GNEP.

Acknowledgement The authors would like to thank Defeng Sun for several helpful comments regarding
the smoothness properties of the projection operator. They also thank the referees for some very detailed
comments.
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