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Abstract A class of one-dimensional parabolic optimal boundary control problems
is considered. The discussion includes Neumann, Robin, and Dirichlet boundary con-
ditions. The reachability of a given target state in final time is discussed under box
constraints on the control. As a mathematical tool, related exponential moment prob-
lems are investigated. Moreover, based on a detailed study of the adjoint state, a
technique is presented to find the location and the number of the switching points of
optimal bang-bang controls. Numerical examples illustrate this procedure.

Keywords Linear parabolic equation · Optimal boundary control problem ·
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1 Introduction

In this paper, we consider aspects of controllability for optimal parabolic boundary
control problems of the type

minJ (y,u) := 1

2

∫ 1

0
(y(x,T ) − yd(x))2 dx (1.1)

subject to the one-dimensional heat equation

yt (x, t) = yxx(x, t), (x, t) ∈ (0,1) × (0, T ],
yx(0, t) = 0, t ∈ (0, T ],
(By)(t) = βu(t), t ∈ (0, T ],
y(x,0) = 0, x ∈ (0,1),

(1.2)
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and to the pointwise control constraints

|u(t)| ≤ 1 for almost all t in [0, T ]. (1.3)

In this setting, T > 0 and β > 0 are fixed constants, B denotes a certain differential
operator specified below, and yd is a fixed function of L2(0,1). The function u ∈
L∞(0, T ) is the unknown boundary control.

We shall be concerned with the following three types of boundary conditions:

(By)(t) = yx(1, t), β = 1 (Neumann), (1.4)

(By)(t) = yx(1, t) + αy(1, t), 0 < α = β (Robin), (1.5)

(By)(t) = y(1, t), β = 1 (Dirichlet), (1.6)

and we will denote the optimal control problems associated with the particular choice
(1.4), (1.5) and (1.6) by (PN), (Pα) and (PD), respectively.

Our interest to reconsider this very standard optimal control problem arouse from
numerical computations for Dirichlet boundary conditions, which were approximated
by Robin boundary controls. This approximation process generated quite unexpected
results. To interprete them, we had to answer the question whether the target function
yd was reached or not. From an analytical point of view, the answer is clear: yd

is reached, if ‖y(., T ) − yd‖L2(0,1) = 0. Numerically, however, always ‖y(., T ) −
yd‖L2(0,1) > 0 is obtained, no matter if yd is reachable or not.

In the case of Robin or Neumann control, it is well known that the optimal con-
trol is of bang-bang type if the optimal value of the functional J is positive, i.e. if
the optimal state y(·, T ) does not reach yd . If the optimal control is not bang-bang,
then yd is attainable by controls satisfying the restrictions (1.3). This is the case of
(restricted) reachability.

There is an extensive list of publications devoted to controllability of parabolic
equations. We briefly sketch this issue in Sect. 4. However, we did not find results
which could be applied to answer the question of restricted controllability for con-
crete examples.

In this paper, we discuss some ways to check numerically, if the target yd is reach-
able or not. This is a delicate issue, and we are able to give only some partial an-
swers. In Sect. 3 we verify by a numerical method, combined with precise estima-
tions, that there is an optimal bang-bang control in a neighborhood of a computed
bang-bang control and that the optimal value must be positive. In this way, we verify
non-reachability. Moreover, we show for concrete examples that the optimal control
has only one switching point. This was an open question since years, in particu-
lar, for a well-known benchmark example by Schittkowski [20], where the function
yd(x) = (1 − x2)/2 is to be reached. We also address sufficient conditions for the
existence of optimal bang-bang controls with finitely many switching points.

In Sect. 6, we present problems, where the numerical computations strongly indi-
cate that yd is attainable. We give an application of our results to the approximation
of Dirichlet boundary controls. However, we were not able to prove that restricted
reachability really takes place. Nevertheless, we discuss this example to show the
specific difficulties of this problem.
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2 Some known results on the control problem

Our experience with numerical computations revealed that the L2-norm of the opti-
mal difference y(·, T ) − yd is very small. We usually obtained values smaller than
10−5 · · ·10−7. Therefore, finite difference or finite element methods cannot be used
for the PDE to meet the necessary precision. This would require extremely fine
meshes. Moreover, due to the accumulation of errors, we cannot trust in exact er-
ror estimates, even if the associated constants would be known.

Therefore, we applied the Fourier method to solving the heat equation, since we
have reliable estimates for terminating these series.

The weak solution y of (1.2)—also denoted by y(u) in order to stress that the state
y belongs to control u—is given by the formula

y(x, t) = β

∫ t

0
G(x,1, t − s)u(s) ds,

where G is the Green’s function associated with the parabolic boundary value prob-
lem. Expressed in this form, y is also called generalized solution. The Green’s func-
tion is given by the following infinite series:

G(x, ξ, t) =

⎧⎪⎪⎨
⎪⎪⎩

1 +∑∞
n=1yn(x)yn(ξ)e−n2π2t (Neumann b.c.),∑∞

n=1vn(x)vn(ξ)e−μ2
nt (Robin b.c.),∑∞

n=1ϕn(x)(−ϕ′
n(ξ))e−ν2

nt (Dirichlet b.c.),

(2.1)

where {μn}n∈N is the non-decreasing sequence of positive solutions of μ tan(μ) =
α, νn = (n + 1/2)π , and vn(x) := N

− 1
2

n cos(μnx), Nn := 1/2 + sin(2μn)/4μn =∫ 1
0 cos2(μnx)dx, yn(x) := √

2 cos(nπx), ϕn(x) = √
2 cos(νnx) are the complete or-

thonormal sequences of eigenfunctions of the 1-D Laplace operator corresponding to
negative eigenvalues {−λn}n∈N, λn = {n2π2,μ2

n, ν
2
n}:

−wxx = λnw in [0,1], wx(0) = 0, Bw = 0,

(see [11, 23], [21, Theorem 2.1]). Unlike the Neumann or Robin case, the symmetry
G(x,1, t) = G(1, x, t), x ∈ [0,1], t ∈ [0, T ], of the Green’s function is not true for
the problem of Dirichlet boundary control. Let us introduce the linear continuous
operator ST : L2(0, T ) → L2(0,1),

(ST u)(x) = β

∫ T

0
G(x,1, T − s)u(s) ds (2.2)

(see [9, 22]) and its adjoint operator S∗
T : L2(0,1) → L2(0, T ),

(S∗
T v)(t) = β

∫ 1

0
G(ξ,1, T − t)v(ξ) dξ. (2.3)

Moreover, we define the set of feasible controls

Uad := {
v ∈ L2(0, T )

∣∣ |v| ≤ 1 a.e. in [0, T ]}.
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Then we have y(x,T ) = (ST u)(x) and the optimal control problem can be written as
follows: Find ū ∈ Uad such that

‖ST ū − yd‖2
L2(0,1)

= min
u∈Uad

‖ST u − yd‖2
L2(0,1)

. (2.4)

Now, it follows by standard arguments that there exists an optimal control ū for (2.4),
and hence for the problem (1.1)–(1.3). Moreover, we deduce that this control must
satisfy the variational inequality

〈
S∗

T (ST ū − yd), u − ū
〉
L2(0,T )

≥ 0 ∀u ∈ Uad, (2.5)

where 〈·, ·〉 is used to denote scalar products. By convexity, this variational inequality
is also sufficient for optimality.

Remark 2.1 For convenience, from now on, we denote ST and S∗
T by S and S∗ re-

spectively, if it is clear from the context, which final time T is meant.

The images S∗
T v can be interpreted as generalized solutions to adjoint initial-

boundary value problems. We do not make use of this fact in our analysis, since
we only rely on the series representation (2.3) of S∗

T v. Nevertheless, we mention the
associated adjoint equations for convenience:

In the Neumann or Robin case there holds (S∗v)(t) = βp(1, t), where p ∈
L2([0,1] × [0, T ]) is the generalized solution of the adjoint equation

−pt(x, t) = pxx(x, t), (x, t) ∈ (0,1) × (0, T ],
px(0, t) = 0, (Bp)(t) = 0, t ∈ (0, T ],
p(x,T ) = v(x), x ∈ [0,1],

cf. [22]. In the Dirichlet case, it holds (S∗v)(t) = px(1, t), [13]. Inserting v = Sū −
yd = ȳ(·, T ) − yd , we deduce from (2.5) the following optimality conditions:

Theorem 2.2 A control ū ∈ Uad and its corresponding state ȳ are optimal for the
boundary control problem (1.1)–(1.3), if and only if ū satisfies the variational in-
equality

〈βp(1, ·), u − ū〉L2(0,T ) ≥ 0, ∀u ∈ Uad, (2.6)

for (Pα) and (PN), and

〈px(1, ·), u − ū〉L2(0,T ) ≥ 0, ∀u ∈ Uad, (2.7)

for (PD), where p is the generalized solution of the adjoint state equation

−pt(x, t) = pxx(x, t), (x, t) ∈ (0,1) × (0, T ],
px(0, t) = 0, t ∈ (0, T ],
(Bp)(t) = 0, t ∈ (0, T ],
p(x,T ) = ȳ(x, T ) − yd(x), x ∈ [0,1].

(2.8)
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A standard pointwise discussion of the variational inequality (2.6) shows that

ū(t) =
{

−1 when βp(1, t) > 0,

+1 when βp(1, t) < 0
(2.9)

must hold for almost all t ∈ [0, T ]. Therefore, the behavior of ū depends on the num-
ber and location of the roots of p(1, t) in [0, T ]. Analogously, (2.7) implies a.e. on
[0, T ]

ū(t) =
{

−1 when px(1, t) > 0,

+1 when px(1, t) < 0,
(2.10)

so that the roots of px(1, t) determine the form of ū. In general, the set of all as-
sociated roots might have positive measure and can be very irregular. However, for
Neumann and Robin boundary control problems, the following well known theorem
reveals the structure of this set:

Theorem 2.3 ([10]) (Countable bang-bang principle) Let ū be optimal for the Neu-
mann or Robin boundary control problem and let ȳ be the associated state. Suppose
that ‖ȳ(·, T ) − yd‖L2(0,T ) > 0. Then the function p(1, ·) has at most countably many
zeros 0 < t1 < t2 < · · · < ti < · · · < T in [0, T ], which can accumulate only at t = T .
If dp

dt
(1, ti ) �= 0 for all i ∈ N, then, either ū(t) = (−1)i or ū(t) = (−1)i+1 holds a.e.

on [ti , ti+1] for all relevant i ∈ N.

Definition 2.1 A value τ ∈ (0, T ) is said to be a switching point of a bang-bang
control u, if there exists ε > 0 such that u(t) = −u(s)∀t ∈ (τ − ε, τ ), s ∈ (τ, τ + ε).

This theorem shows that optimal Neumann or Robin boundary controls must be
of bang-bang type, unless the optimal value J (ȳ, ū) is zero. In other words, if the
optimal control is not bang-bang, then the target state yd is reachable by controls
of Uad . Therefore, if a numerically computed optimal control is not bang-bang, then
this is some indication for exact restricted controllability. However, this is not a proof,
since numerical effects might have perturbed the true optimal control. Notice that the
functional J does not contain a Tikhonov type regularization term, hence numerical
computations are not stable with respect to perturbations.

3 Verification of optimal bang-bang controls

3.1 The main theorem

In this section, we present a method, how the existence of optimal bang-bang con-
trols and the non-reachability of yd can be verified numerically. We begin with the
Neumann boundary condition, since here the Green’s function is very easy to discuss.

In a first result, we show for a concrete problem that the optimal control is bang-
bang with exactly one switching point. Later, in Sect. 5, we briefly discuss the case
of more switching points.
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Fig. 1 Assumed situation

For the numerical solution of the problem (1.1)–(1.3), the control was approxi-
mated by nt = 101 step functions, using an equidistant partition of [0, T ] into nt − 1
intervals. We truncated the infinite series (2.1) after an index N such that the remain-
der can be neglected for our purposes. In order to locate the switching point providing
the minimal value of the functional J , we made use of the bisection method.

Let us first present our general idea for the following situation: For a given prob-
lem, thanks to numerical computations, we expect that the optimal control ū is bang-
bang with only one switching point at an unknown value τ̄ ,0 < τ̄ < T . Let us assume
that ū is positive in [0, τ̄ ]. Then the optimal control should belong to the class of con-
trols u that have the form

u(t) = u(t, τ ) :=
{

1 for t < τ,

−1 for t > τ.
(3.1)

However, our assumption is based on numerical results, hence our expectation that ū

has the form (3.1) is only a conjecture. Therefore, we try to verify that among those
bang-bang controls there is really one that satisfies the optimality conditions.

Let u = u(·, τ ) be a result of the numerical optimization and denote the associated
adjoint state by p(x, ·, τ ). Our numerical experience with such problems shows that,
even for very fine discretization, the switching point of the computed control does not
exactly coincide with the root of p(x, ·, τ ). Assume that we arrived at the situation
presented in Fig. 1, which is now used to explain our main idea.

The computed adjoint state p(1, ·, τ ) in Fig. 1 has exactly one zero at t = t (τ )

located right of the switching point τ . In Fig. 2, we denote this computed switching
point τ by τ1. Assume also that, by another computation, we have found a switching
point τ2 > τ1 such that the adjoint state p(1, ·, τ2) has a single root t (τ2) located left
of τ2.

We are going to show that t (τ ) is a strongly monotone decreasing and continuous
function of τ on [τ1, τ2]. Increasing the switching point τ will decrease the root
t (τ ) of p. We have t (τ1) − τ1 > 0 and t (τ2) − τ2 < 0 so that the intermediate value



Some aspects of reachability for parabolic boundary control problems 81

Fig. 2 Illustration of the main
idea

theorem ensures the existence of a value τ̄ ∈ [τ1, τ2], where τ̄ = t (τ̄ ). The root of
p(1, ·, τ̄ ) coincides with the switching point τ̄ . If we show in addition that p(1, ·, τ̄ )

does not have any other root in (0, T ) and is negative on (0, τ̄ ), then u(·, τ̄ ) satisfies
the optimality conditions and is optimal.

Theorem 3.1 Assume the existence of values 0 ≤ T1 ≤ τ1 < τ2 ≤ T2 ≤ T with the
following properties: The function p(1, ·, ·) is continuously differentiable on D :=
(T1, T2) × [τ1, τ2],

p(1, τ1, τ1) < 0, p(1, T2, τ1) > 0, (3.2)

p(1, τ2, τ2) > 0, p(1, T1, τ2) < 0, (3.3)

∂

∂t
p(1, t, τ ) > 0 ∀(t, τ ) ∈ D, (3.4)

∂

∂τ
p(1, t, τ ) > 0 ∀(t, τ ) ∈ D. (3.5)

Then, for all τ ∈ (τ1, τ2), the function t �→ p(1, t, τ ) has a single root t (τ ) between
t (τ1) and t (τ2). There exists a unique fixed point τ̄ of the mapping τ �→ t (τ ) in
(τ1, τ2).

Proof The existence of the zeros t (τ1), t (τ2) follows from the intermediate value
theorem. Moreover

τ1 < t(τ1), t (τ2) < τ2.

Let τ ∈ I := (τ1, τ2) be given. We first show the existence of a root t (τ ) of t �→
p(1, t, τ ) between t (τ1) and t (τ2). Notice that we do not have an information on the
order of t (τ1) and t (τ2). We know that

p(1, t (τ1), τ1) = p(1, t (τ2), τ2) = 0.
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Because of τ1 < τ < τ2, the condition (3.5) of strong monotonicity yields

p(1, t (τ1), τ ) > 0 and p(1, t (τ2), τ ) < 0.

Therefore, by the intermediate value theorem, the function t �→ p(1, t, τ ) has a root
t (τ ) between t (τ1) and t (τ2), and hence in (T1, T2). This holds for all τ ∈ I . The
uniqueness of the root t (τ ) in (T1, T2) is a consequence of (3.4).

It remains to show that the mapping τ �→ t (τ ) has a fixed point in I . By definition,
t (τ ) satisfies

p(1, t (τ ), τ ) = 0 ∀τ ∈ I.

In view of assumption (3.4), we can apply the implicit function theorem to infer that
t is a continuously differentiable function of τ . From

d

dτ
p(1, t (τ ), τ ) = ∂

∂t
p(1, t (τ ), τ ) · t ′(τ ) + ∂

∂τ
p(1, t (τ ), τ ) = 0

and (3.4)–(3.5) we deduce

t ′(τ ) = −
∂
∂τ

p(1, t (τ ), τ )

∂
∂t

p(1, t (τ ), τ )
< 0.

Consider now the function g : τ �→ t (τ )− τ , g : [τ1, τ2] → R. By the differentiability
of t (·), g is differentiable. In view of our assumptions on τ1, τ2, g has different signs
in the points τ1 and τ2. Therefore, the intermediate function theorem yields the exis-
tence of a root τ̄ of g between τ1 and τ2. This is the desired fixed point. Moreover, it
holds

g′(τ ) = t ′(τ ) − 1 < 0

in I , hence the fixed point is unique. �

The above theorem is a tool to confirm the existence of optimal bang-bang con-
trols. To use it, we have to verify the differentiability of p(1, t, τ ) with respect to
both variables. Moreover, we must confirm by careful estimations that the assump-
tions (3.2)–(3.5) of the theorem are satisfied. Last but not least, we must guarantee
that p(1, t, τ ) does not have other roots in (0, T ) than t (τ ), for all τ ∈ [τ1, τ2].

We work out these details now for the case of Neumann boundary control.

3.2 Neumann boundary control

The concrete function yd we consider was introduced by Schittkowski [20], it is

yd(x) = 1

2
(1 − x2). (3.6)

This function was frequently used in the literature to set up test examples for the
numerical solution of optimal boundary control problems with Neumann or Robin
boundary conditions and different values of the final time T . The numerical methods
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delivered optimal controls of the type (3.1). But to our best knowledge it was never
confirmed that the exact optimal control has this form. It was even not clear, if the
optimal control has only finitely many switching points.

Our next goal is to answer these open questions for the particular choice (3.6).

3.2.1 Fourier expansion for p(1, t, τ )

We first mention the formula
∞∑

n=1

(−1)n

n2
cos(nπx) = π2

4

(
x2 − 1

3

)
,

which is essential for two reasons: First, we use it later in the estimations. Second,
this series is very slowly convergent so that the knowledge of its exact value avoids
a numerical evaluation, which is not useful to reach the high precision we need. We
obtain for u = u(t, τ )

(Su)(x)

=
∫ T

0

[
1 + 2

∞∑
n=1

(−1)n cos(nπx)e−n2π2(T −s)

]
u(s) ds

= 2τ − T + 2
∞∑

n=1

(−1)n cos(nπx)

[∫ τ

0
e−n2π2(T −s) ds −

∫ T

τ

e−n2π2(T −s) ds

]

= 2τ − T + 2
∞∑

n=1

(−1)n

n2π2
cos(nπx)

[
2e−n2π2(T −τ) − e−n2π2T − 1

]

= 2τ − T − 1

2

(
x2 − 1

3

)
+ 2

∞∑
n=1

(−1)n

n2π2
cos(nπx)

[
2e−n2π2(T −τ) − e−n2π2T

]
.

Notice that all infinite series in this representation are rapidly converging for τ < T .
To compute p(1, t) = p(1, t, τ ) = S∗(Su(·, τ ) − yd)(t), we have to apply S∗ on

Su and yd :

S∗(Su)(t) =
∫ 1

0

[
1 + 2

∞∑
n=1

(−1)n cos(nπξ)e−n2π2(T −t)

]
(Su)(ξ) dξ

=
∫ 1

0

{
2τ − T − 1

2

[
ξ2 − 1

3

]

+ 2
∞∑

n=1

(−1)ne−n2π2(T −t)

∫ 1

0
cos(nπξ)(Su)(ξ)

}
dξ

= 2τ − T +
∞∑

n=1

e−n2π2(T −t)

[
(−1)n+1

∫ 1

0
cos(nπξ)ξ2 dξ

+ 2

n2π2

(
2e−n2π2(T −τ) − e−n2π2T

)]
,
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where we used the orthogonality of the system {cos(nπ ·)}n∈N and∫ 1
0 cos(nπx)dx = 0. Thus

S∗(Su)(t) = 2τ −T + 2
∞∑

n=1

1

n2π2
e−n2π2(T −t)

[
2e−n2π2(T −τ) − e−n2π2T − 1

]
. (3.7)

Along with (3.7) and

S∗yd(t) = 1

2

∫ 1

0

[
1 + 2

∞∑
n=1

(−1)n cos(nπx)e−n2π2(T −t)

]
(1 − ξ2) dξ

= 1

2

∫ 1

0
(1 − ξ2) dξ +

∞∑
n=1

(−1)ne−n2π2(T −t)

∫ 1

0
cos(nπξ)(1 − ξ2) dξ

= 1

3
− 2

∞∑
n=1

e−n2π2(T −t)

n2π2
,

we finally obtain

p(1, t, τ ) = 2τ −T − 1

3
+2

∞∑
n=1

1

n2π2
e−n2π2(T −t)

[
2e−n2π2(T −τ) − e−n2π2T

]
︸ ︷︷ ︸

=:Bn(t,τ )

. (3.8)

It is easy to confirm that p(1, ·, ·) is continuous in the set {(t, τ ) |0 ≤ t ≤ T ,

0 ≤ τ ≤ T } and continuously differentiable in its interior.
Moreover, ∂p

∂τ
and ∂p

∂t
are positive in this set, hence p(1, t, τ ) is strictly monotone

increasing with respect to t and τ . This is a very strong property that only holds for
the Neumann boundary condition, cf. also the illustration in Fig. 3. The discussion
in the Robin case is more delicate, since the monotonicity of p will only hold in a
neighborhood of the switching point.

Summarizing up, in the Neumann case the assumptions (3.4)–(3.5) of Theorem 3.1
are met for the function yd defined in (3.6). It remains to verify the other assumptions
of this theorem in concrete examples. We demonstrate this next.

3.2.2 Application of Theorem 3.1 to Neumann boundary control

We consider the following concrete setting:

Example 1 We consider (PN) with yd given by (3.6) and T = 1.

Let us apply Theorem 3.1 to this example. To verify its assumptions, we take

τ1 = 0.66, τ2 = 0.6665, T1 = 0 and T2 = T .

The situation is illustrated in Fig. 3. Our numerical computations delivered the
switching point 0.66639. This point was computed for a discretization of the opti-
mal control problem with nt = 101.
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Fig. 3 p(1, ·, τ ) computed for
N = 5, τ = 0.66, 0.6665 and
τ = τMin = τ̄

In the estimations below, we use the terms Bn introduced in (3.8).

Verification of (3.2) It is easy to confirm that Bn > 0 ∀n ≥ 1. For t = T2 = T we
obtain from (3.8), along with 2τ1 − T − 1

3 = 1.32 − 1 − 1
3 = − 4

300 , that

p(1, T , τ1) ≥ 2τ1 − T − 1

3
+ 2B1(T , τ1) = − 4

300
+ 2

π2

[
2e−π2(1−0.66) − e−π2]

> − 4

300
+ 2

π2
· 0.0697 > 0.

Conversely, for t = τ1 there holds

2
∞∑

n=1

Bn(τ1, τ1) = 2
∞∑

n=1

e−n2π2(T −τ1)

n2π2

[
2e−n2π2(T −τ1) − e−n2π2T

]

< 2
∞∑

n=1

e−n2π2(T −τ1)

n2π2
2e−n2π2(T −τ1)

≤ 4e−2π2(T −τ1)

∞∑
n=1

1

n2π2
= 2

3
e−2π2(1−0.66) <

4

300
,

hence p(1, τ1, τ1) < 0. Since p(1, ·, τ1) is continuous on (τ1, T ), there exists t (τ1) ∈
(τ1, T ) with p(1, t (τ1), τ1) = 0.

Verification of (3.3) In the same manner, we have p(1,0, τ2) < 0, p(1, τ2, τ2) > 0.
Using 2τ2 − T − 1

3 = 1.333 − 1 − 1
3 = − 1

3000 , we get for t = T1 = 0,

2
∞∑

n=1

Bn(0, τ2) = 2
∞∑

n=1

e−n2π2

n2π2

[
2e−n2π2(1−0.6665) − e−n2π2]

≤ 4
∞∑

n=1

e−n2π2

n2π2
e−n2π2(1−0.6665)

≤ 4
∞∑

n=1

e−π2

n2π2
e−π2(1−0.6665) = 2

3
e−π2(2−0.6665) <

1

3000
,
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and for t = τ2 = 0.6665,

p(1, τ2, τ2) ≥ 2τ2 − T − 1

3
+ 2B1(τ2, τ2)

= − 1

3000
+ 2e−π2(1−0.6665)

π2

[
2e−π2(1−0.6665) − e−π2]

> − 1

3000
+ 5.6 · 10−4 > 0.

Once again, from the continuity of p(1, ·, τ2) on (0, τ2) we deduce the existence of
t (τ2) ∈ (0, τ2), with p(1, t (τ2), τ2) = 0.

The inequalities (3.4) and (3.5) follow easily from the strong monotonicity of
p(1, ·, τ ) and p(1, t, ·) for every τ ∈ [τ1, τ2] and t ∈ (0, T ). Hence t (τ1), t (τ2) are
unique.

From Theorem 3.1, we obtain a unique value τ̄ ∈ (τ1, τ2) with p(1, τ̄ , τ̄ ) = 0.
For τ̄ , the switching point of u(·, τ̄ ) and the root of p(1, t, τ̄ ) coincide. Moreover,
since t �→ p(1, t, τ̄ ) is strongly monotone on (0, T ), the root of p(1, ·, τ̄ ) is unique.
Consequently, there is no need to check that p(1, ·, τ̄ ) does not have roots different
from τ̄ .

Thanks to these facts, we may now state the following result:

Theorem 3.2 With T = 1 and yd(x) = 1
2 (1 − x2), the Neumann boundary control

problem (PN) admits an optimal bang-bang control ū of the form (3.1) with one
single switching point τ̄ in [0.66,0.6665].

Numerically we found τ̄ at 0.66639.

Remark 3.3 Though we found an optimal bang-bang control ū for the problem (PN ),
it is still possible that J (ū) = 0, i.e. the case of exact restricted reachability might
happen. However, from Theorem 4.5 it follows that yd given by (3.6) is not attainable
by controls satisfying (1.3). Therefore, J (ū) > 0 and ū is unique, since there cannot
exist two different optimal bang-bang controls.

3.3 Robin boundary control

For a Robin boundary condition, the situation is more delicate. Let us investigate a
similar setting as in the Neumann case. We use again the target function yd defined
in (3.6), the same set Uad but a different final time.

3.3.1 Fourier expansion for p(1, t, τ )

We have to consider now the second formula in the expression (2.1) of the Green’s
function. It is known that (see, for instance, Krabs [11])

0 < μn < π

(
n − 1

2

)
, nπ < μn+1, (3.9)
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and

lim
n→∞[μn − (n − 1)π] = 0.

Following the treatment of the Neumann boundary control problem, let u = u(t, τ )

be a bang-bang control of the form (3.1). Then

(Su)(x) = α

∞∑
n=1

vn(1)vn(x)

[∫ τ

0
e−μ2

n(T −s) ds −
∫ T

τ

e−μ2
n(T −s) ds

]

= α

∞∑
n=1

1

μ2
n

vn(1)vn(x)
[
2e−μ2

n(T −τ) − e−μ2
nT − 1

]

= α

∞∑
n=1

1

μ2
n

vn(1)vn(x)
[
2e−μ2

n(T −τ) − e−μ2
nT
]− 1, (3.10)

where we used the explicit representation

α

∞∑
n=1

μ−2
n vn(1)vn(x) ≡ 1.

Next, we derive the expression for p(1, t, τ ) = S∗(Su(·, τ ) − yd)(t). Applying S∗
to Su, we obtain from (3.10)

S∗(Su)(t) = α

∫ 1

0
G(1, ξ, T − t)(Su)(ξ) dξ

= α

∞∑
n=1

vn(1)e−μ2
n(T −t)

∫ 1

0
vn(ξ)

×
[
α

∞∑
m=1

1

μ2
m

vm(1)vm(ξ)
[
2e−μ2

m(T −τ) − e−μ2
mT

]− 1

]
dξ.

The orthogonality of the system {vn(.)}n yields

S∗(Su)(t) = α2
∞∑

n=1

1

μ2
n

v2
n(1)e−μ2

n(T −t)
[
2e−μ2

n(T −τ) − e−μ2
nT
]

− α

∞∑
n=1

vn(1)e−μ2
n(T −t)

∫ 1

0
vn(ξ) dξ

= α2
∞∑

n=1

1

Nnμ2
n

cos2(μn)e
−μ2

n(T −t)
[
2e−μ2

n(T −τ) − e−μ2
nT − 1

]
, (3.11)
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according to the definition of vn and by μn sin(μn) = α cos(μn). By the identity

∫ 1

0
cos(μnξ)(1 − ξ2) dξ = 2

sin(μn) − μn cos(μn)

μ3
n

, (3.12)

we get for yd(x) = (1 − x2)/2

(S∗yd)(t) = α

∞∑
n=1

1

Nnμ3
n

cos(μn)e
−μ2

n(T −t)[sin(μn) − μn cos(μn)]

=
∞∑

n=1

1

Nn

cos2(μn)e
−μ2

n(T −t)

[
α2

μ4
n

− α

μ2
n

]
, (3.13)

where again μn sin(μn) = α cos(μn) was used. Finally, it follows from (3.11) and
(3.13) that

p(1, t, τ )

= α2
∞∑

n=1

1

Nnμ2
n

cos2(μn)e
−μ2

n(T −t)
[
2e−μ2

n(T −τ) − e−μ2
nT − 1

]

−
∞∑

n=1

1

Nn

cos2(μn)e
−μ2

n(T −t)

[
α2

μ4
n

− α

μ2
n

]

= α2
∞∑

n=1

1

Nnμ2
n

cos2(μn)e
−μ2

n(T −t)
[
2e−μ2

n(T −τ) − e−μ2
nT − μ−2

n − 1 + α−1].
(3.14)

Since the series in (3.14) converges rapidly, only the first few terms have to be evalu-
ated numerically.

3.3.2 Application of Theorem 3.1 to the example by Schittkowski

Example 2 As in Schittkowski [20], we choose in (Pα) the function yd as in (3.6),
T = 1.58 and α = 1.

The numerical result of the optimization method is very close to a bang-bang
control with switching point at 1.3293 and optimal objective value of the order 10−5,
cf. Fig. 10. To verify that the exact optimal control is of the type (3.1), we apply our
method with

τ1 = 1.329, τ2 = 1.3294, T1 = 1.2 and T2 = 1.42.

We shall discuss this choice below and verify the assumptions of Theorem 3.1. Two
main difficulties occur, cf. also Fig. 4. Here, p(1, t) is not monotone. Moreover, we
have to verify the p(1, t) remains positive after T2, in particular at t = T .
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Fig. 4 p(1, ·, τ ) computed for
α = 1, N = 5, τ = 1.329,
1.3294 and τ = τMin = τ̄

Table 1 μn for n = 1, . . . ,5

n 1 2 3 4 5

μn 0.86033359 3.42561846 6.43729818 9.5293344 12.6452872

For α = 1, (3.14) reduces to

p(1, t, τ ) =
∞∑

n=1

N−1
n μ−2

n cos2(μn)e
−μ2

n(T −t)︸ ︷︷ ︸
Cn(t)

[
2e−μ2

n(T −τ) − e−μ2
nT − μ−2

n︸ ︷︷ ︸
Dn(τ)

]
.

Notice that Cn(t) is always nonnegative, while, for τ < T , Dn(τ) is nonnegative for
the first few n and negative for all other n, as we shall see below. Moreover, the Dn

do not depend on t . All this will be heavily used in the sequel.

Some preparatory inequalities From

Nn = 1

2
+ sin(2μn)

4μn

= 1

2
+ 2 sin(μn) cos(μn)

4μn

= 1

2
+ 2 sin2(μn)

4
≥ 1

2
(3.15)

and (3.9) we get for all n ∈ N

Cn(t) = cos2(μn)

Nnμ2
n

e−μ2
n(T −t) ≤ 2

(n − 1)2π2
e−(n−1)2π2(T −t). (3.16)

We have to evaluate the infinite series for p(1, t, τ ) numerically. To gain precise
information on its sign, we shall split this series into the sum of the first three items
and the remainder. This remainder will be estimated, which is a little bit tedious but
fairly easy. For the convenience of the reader who wants to check our estimates, the
values of μn are given in Table 1, for n = 1, . . . ,5.
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Next, we derive some useful estimates for Dn(τ) and Cn(t) for n ≥ 4, t ∈ [T1, T2]
and τ ∈ [τ1, τ2]. As a conclusion of (3.16), we obtain

Cn(t) ≤ 2

9π2

(
e−3π2(T −t)

)n−1 = 2

9π2
qn−1
t ∀n ≥ 4, ∀t ∈ [0, T ),

where qt := e−3π2(T −t) < 1. Further,

Dn(τ) = 2e−μ2
n(T −τ) − e−μ2

nT − μ−2
n < 0 ∀n ≥ 4, ∀τ ∈ [τ1, τ2]. (3.17)

Certainly, it suffices to show 2e−μ2
n(T −τ) − μ−2

n < 0. Applying the logarithm, this is
equivalent to 2 ln(μn) < μ2

n(T − τ) − ln(2). The right-hand side satisfies, for n ≥ 4,

μ2
n(T − τ) − ln(2) ≥ μn(n − 1)π(1.58 − 1.3294) − ln(2)

≥ μn

3π

4
− ln(2) > 2μn − ln(2).

The left-hand side can be estimated by

2 ln(μn) ≤ 2(μn − 1) = 2μn − 2 < 2μn − ln(2).

This shows (3.17). Moreover

|Dn(τ)| ≤ e−μ2
nT + 1

μ2
n

≤ e−9π21.58 + 1

9π2
< 1.13 · 10−2 ∀n ≥ 4, ∀τ ∈ [τ1, τ2].

(3.18)
Now we are able to estimate the remainder: From (3.16) and (3.18) we obtain

∞∑
n=4

Cn(t)|Dn(τ)| ≤ 2.26

9π2
· 10−2 ·

∞∑
n=3

qn
t = c0 ·

[
1

1 − qt

− 1 − qt − q2
t

]
, (3.19)

where c0 := 2.26
9π2 · 10−2 < 2.545 · 10−4. Evaluating this estimate at t = T1, τ1, τ2 and

T2, we get

∞∑
n=4

Cn(t)|Dn(τ)| <

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5.345e − 19, t = T1,

5.285e − 14, t = τ1,

5.477e − 14, t = τ2,

1.727e − 10, t = T2.

(3.20)

Verification of (3.2) and (3.3) The values in (3.20) are so small that
∑3

n=1 Cn(t)Dn(τ)

determines the sign of p(1, t, τ ). We obtain

3∑
n=1

Cn(t)Dn(τ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

< −2.4583e − 04, τ = τ1, t = τ1,

> 1.6444e − 05, τ = τ1, t = T2,

< −5.6792e − 05, τ = τ2, t = T1,

> 5.6764e − 05, τ = τ2, t = τ2.
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In view of (3.20), this shows

p(1, τ1, τ1) < 0, p(1, T2, τ1) > 0, p(1, T1, τ2) < 0 and p(1, τ2, τ2) > 0.

Since p(1, ·, ·) is continuous on D := (T1, T2) × [τ1, τ2] there exists at least one root
t (τi) for p(1, ·, τi), i = 1,2.

In the sequel we will use several times that

D1(τ1),D3(τ1) < 0 and D2(τ1) > 0,

D1(τ2),D3(τ2) < 0 and D2(τ2) > 0.
(3.21)

Verification of (3.4) and (3.5) The property ∂
∂τ

p(1, t, τ ) > 0 ∀(t, τ ) ∈ (0, T )2 is obvi-
ous. To obtain ∂

∂t
p(1, t, τ ) = ∑∞

n=1 C′
n(t)Dn(τ) > 0 ∀(t, τ ) ∈ D, it suffices to show

it for τ = τ1 and every t ∈ (T1, T2), since ∂
∂t

p(1, t, ·) is monotone with respect to τ .
For C′

n(t), n ≥ 4, an analogue of the estimate (3.16) is given by

C′
n(t) = cos2(μn)

Nn

e−μ2
n(T −t) ≤ 2e−(n−1)2π2(T −t) ≤ 2

(
e−3π2(T −t)

)n−1 = 2qn−1
t ,

with the above notation. As in (3.19), with the help of (3.20) and (3.21), we deduce
by some numerical calculations

∞∑
n=4

C′
n(t)|Dn(τ)| ≤

∞∑
n=4

C′
n(T2)|Dn(τ)| ≤ 2.26 · 10−2 ·

∞∑
n=3

qn
T2

< 10−7

and

3∑
n=1

C′
n(t)Dn(τ1) ≥ C

′
1(T2) · D1(τ1)︸ ︷︷ ︸

<0

+C
′
2(T1) · D2(τ1)︸ ︷︷ ︸

>0

+C
′
3(T2) · D3(τ1)︸ ︷︷ ︸

<0

> 0.4799026 · (−6.573986 · 10−4) + 0.0197722 · 0.01994057

+ 0.002518234 · (−0.0240712)

> 10−5.

Thus ∂
∂t

p(1, t, τ ) > 0, ∀(t, τ ) ∈ D, implying immediately the uniqueness of t (τi) in
[T1, T2]. Therefore, (3.4), (3.5) are verified. Notice that in all of our numerical values
the rounding w.r. to the last digit can be neglected, since it does not change the sign.

Uniqueness of t (τi), i = 1,2 The only assumption of Theorem 3.1 left to be verified
is to make sure that t (τi), i = 1,2 are unique in [0, T ]. To this aim, we next prove that
the functions p(1, ·, τi) do not have any roots on [0, T1)∪ (T2, T ], i.e. p(1, t, τi) < 0,
∀t ∈ [0, T1) and p(1, t, τi) > 0, ∀t ∈ (T2, T ], i = 1,2. Because of ∂

∂τ
p(1, ·, ·) > 0

on (0, T )2 it suffices to show that p(1, t, τ2) < 0 ∀t ∈ [0, T1) and p(1, t, τ1) > 0
∀t ∈ (T2, T ]. The first inequality is easy to show, since Cn(t) converges very fast
when n → ∞ and t is far from T . For the second one we need to perform a partition
of (T2, T ] in appropriate sub-intervals, where we can use the above techniques.
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Verification of p(1, t, τ2) < 0, ∀t ∈ [0, T1): From (3.19) and (3.20), along with the
monotonicity of Cn, we deduce

∞∑
n=4

Cn(t)|Dn(τ2)| ≤ c0

∞∑
n=3

qn
T1

< 10−15,

where again c0 = 2.26
9π2 · 10−2. With (3.21), we get

3∑
n=1

Cn(t)Dn(τ2) ≤ C1(0) · D1(τ2)︸ ︷︷ ︸
<0

+C2(T1) · D2(τ2)︸ ︷︷ ︸
>0

+C3(0) · D3(τ2)︸ ︷︷ ︸
<0

< 0.2266498 · (−1.655819 · 10−4) + 0.001685 · 0.020435335

+ 1.6922 · 10−30 · (−0.02407)

< −10−7.

Verification of p(1, t, τ1) > 0, ∀t ∈ (T2, T ] For t close to the final time T , higher in-
dexed terms of the series (3.14) becomes relevant, making the above estimations dif-
ficult for t = T . Next we split (T2, T ] into the following parts: (T2,1.5), [1.5,1.55],
(1.55,1.57] and (1.57, T ]. We present here only the estimation for the most difficult
case t ∈ (1.57, T ]. The intervals (T2,1.5), [1.5,1.55] and (1.55,1.57] are discussed
for completeness in the Appendix.

Case t ∈ (1.57, T ]: Here qT = 1, hence the only rapidly converging term is μ−2
n .

On (1.57, T ], we have

∞∑
n=4

Cn(t)|Dn(τ1)| ≤
∞∑

n=4

Cn(T )|Dn(τ1)| ≤ 1.13 · 10−2 ·
∞∑

n=4

2

μ2
n

≤ 2.26 · 10−2 ·
∞∑

n=4

1

π2(n − 1)2
≤ 2.26 · 10−2

π2
·
[
π2

6
− 1 − 1

4

]

< 9.04343 · 10−4,

while

3∑
n=1

Cn(t)Dn(τ1) ≥ C1(T ) · D1(τ1)︸ ︷︷ ︸
<0

+C2(1.57) · D2(τ1)︸ ︷︷ ︸
>0

+C3(T ) · D3(τ1)︸ ︷︷ ︸
<0

> 0.7298807 · (−6.573986 · 10−4) + 0.12949167 · 0.01994057

+ 0.04604178 · (−0.0240712)

> 9.94034 · 10−4.

Thus it holds

p(1, t, τ1) > 9.94034 · 10−4 − 9.04343 · 10−4 > 0 ∀t ∈ (1.57, T ].
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Altogether, p(1, t, τ2) < 0 ∀t ∈ [0, T1) and p(1, t, τ1) > 0 ∀t ∈ (T2, T ]. Thanks to
these facts and to the estimations in the Appendix, we are able to prove the following
result:

Theorem 3.4 With α = 1, T = 1.58 and yd = (1 − x2)/2, the Robin boundary con-
trol problem (Pα) admits a unique optimal control ū which is bang-bang and has a
single switching point τ̄ in [1.329,1.3294].

Proof In the estimations above, we have shown that there exists an optimal con-
trol ū having the bang-bang property stated in the theorem. It remains to show its
uniqueness. This holds true, if the optimal value associated with ū is positive. In that
case, the theory yields that any optimal control must be bang-bang, and this ensures
uniqueness. Therefore, we verify that the corresponding functional value is not zero.
We prove the existence of an interval E ⊂ [0,1] with positive measure, such that

|y(x,T ) − yd(x)| �= 0, (3.22)

for every x ∈ E. Since ȳ(·, T ) and yd are continuous, it suffices to verify (3.22) for a
single x ∈ [0,1]. At x = 1, it holds yd(1) = 0 and from (3.10)

ȳ(1, T ) =
∞∑

n=1

1

Nnμ2
n

cos2(μn)
[
2e−μ2

n(T −τ̄ ) − e−μ2
nT
]− 1.

Obviously, all terms 1
Nnμ2

n
cos2(μn)[2e−μ2

n(T −τ̄ ) − e−μ2
nT ] are nonnegative, therefore

it is enough to evaluate numerically as many terms of the series until their sum ex-
ceeds 1. In our case we may stop this procedure after the first two terms, since

2∑
n=1

1

Nnμ2
n

cos2(μn)
[
2e−μ2

n(T −τ̄ ) − e−μ2
nT
]

≥
2∑

n=1

1

Nnμ2
n

cos2(μn)
[
2e−μ2

n(T −1.329) − e−μ2
nT
]
> 1.00092.

�

The issue discussed above is very sensitive with respect to α. To our surprise, the
case α > 1 exhibited a completely different behaviour compared to what we studied
up to now. The left part of Fig. 5 shows the optimal control of the problem (Pα),
1
α

= 0.99, attained numerically by a primal-dual active set strategy on a grid with
nx = 101 equidistant points in the spatial domain [0,1] and nt = 101 equidistant
points in the time domain [0, T ] for the control discretization. We underline again
that all other numerical computations are based on the Fourier method. Obviously,
this control does not sufficiently well satisfy (2.9) in the vicinity of T ; cf. the right
part of Fig. 5.

We investigate the behaviour with respect to α in Sect. 6.

Example 3 We take all data as in Example 2 except yd , which is defined by yd(x) =
1
2 (1 − x).
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Fig. 5 1
α = 0.99, N = 5, nx = nt = 101, τMin = τ̄ ; ū and p(1, ·, τMin)

This example shows that one cannot really trust in numerical results only. A nu-
merical computation with fairly small grid delivers also a bang-bang solution with
one switching point. Refining the grid considerably, more switching points appear.
We think that many switching points exist in this second example, cf. [3].

4 Reduction to moment problems

Here, we study the attainability of yd by a theoretical tool, the well known expo-
nential moment problem whose relevance to boundary control problems for the heat
equation has been extensively studied (see Gal’chuk [8], Fattorini and Russell [7],
Schmidt [21], Krabs [11]). By reducing the control problems (PN) and (Pα) to cer-
tain exponential moment problems, we derive some useful necessary conditions for
restricted reachability.

4.1 Known results on reachability

Let {λn}n∈N be a strictly increasing, unbounded sequence of positive real numbers,
satisfying

∞∑
n=0

1

λn

< ∞. (4.1)

Given T ∈ (0,∞] and a sequence {cn}n∈N, cn ∈ R, not all equal to zero, the exponen-
tial moment problem consists of finding a function u ∈ L∞(0, T ), such that

∫ T

0
u(t)e−λi t dt = ci for each i ∈ N. (4.2)

The problem of reachability of yd , subject to the PDE (1.2), can be formulated in
terms of a exponential moment problem. Let a terminal condition

y(·, T ) = yd ∈ L2(0,1) (4.3)

be given. The question is, whether there exists a boundary control, such that the so-
lution of the state equation (1.2) also satisfies (4.3). Note that the above formulation
of the moment problem does not yet include the restriction (1.3).
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Let us consider a more general case of the state equations (1.2), where additionally
an initial temperature distribution y(·,0) = y0 ∈ L2(0,1) is given. Define the set of
reachable states

RT (y0,L
∞) := {

y(·, T )
∣∣ ∃u ∈ L∞(0, T ) with y = y(u), where y(·,0) = y0,

y(u) denotes the corresponding solution of (1.2)
}
.

A necessary and sufficient condition for solving the moment problem (4.2) is given
in [18]. As a consequence of it we have

Proposition 4.1 ([12]) The moment problem (4.2) is solvable if the sequence {cn}n∈N

is given by

cj =
N∑

k=0

akλ
−k
j ,

for some N ∈ N and a1, . . . , aN ∈ R.

Sufficient conditions for the reachability of an arbitrary yd by optimal controls of
the Dirichlet problem are discussed in [17] (see also [5]).

It is well known that RT (y0,L
∞) is dense in L2(0,1) (see [14]), that 0 ∈

RT (y0,L
∞) (a property known as null-controllability, see [17]) and that RT (y0,L

∞)

is in fact independent of T and y0 (see [4]).

Proposition 4.2 (see [18, Corollary 4]) For the Dirichlet and Robin boundary prob-
lem, every polynomial belongs to RT (0,L∞) ∀T > 0.

Thus, for arbitrary, but fixed T > 0 there exists ū ∈ L∞(0, T ), not necessarily
satisfying the control constraints (1.3), whose final state ȳ(·, T ) coincides with yd ,
i.e. J (ȳ, ū) = 0. Since the countable bang-bang principle (Theorem 2.3) does not
hold in this case, the uniqueness of ū is not granted.

Remark 4.3 Due to the regularizing effect of the heat equation, in the case of Neu-
mann or Dirichlet boundary conditions, reachable states are real-analytic, cf. [6, 7].

Notice that also the problem of null controllability falls into this class. If y0 is a
non-zero initial state, then the solution y at time t = T can be written as

y(·, T ) = (Su) + (S0y0)(·, T ),

where S0 is the mapping y0 �→ y(·, T ) for u = 0. Therefore, the problem to reach
y(·, T ) = 0 is covered by our problem for

yd = −(S0y0)(·, T ).

Clearly, this yd is very smooth. For results on null-controllability we refer to Fattorini
and Russell [7] and Gal’chuk [8].
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However, also these results do not contain precise information on the L∞(0, T )-
norm of the controls needed to reach the target yd , no matter how smooth it is.

Higher smoothness of yd , in particular of S0y0 in the case of null controllability,
does not yield an easier numerical confirmation. For instance, it would be interesting
to know, for which classes of target states the number of switching points of the
optimal bang-bang control is finite, if yd is not reachable under the given control
restrictions. We do not have an answer to this question. For instance, think of the
function yd(x) = 1

2 (1 − x) mentioned in Example 3.

4.2 Restricted reachability by Neumann boundary controls

In order to reduce the control problem to a moment problem, we first expand yd(x) =
(1 − x2)/2 in a Fourier series,

yd(x) = a0 +
∞∑

n=1

an cos(nπx), an =
{

2
∫ 1

0 yd(ξ) cos(nπξ)dξ, n > 0,∫ 1
0 yd(ξ) dξ, n = 0.

We obtain a0 = 1/3 and, for n > 0,

an =
∫ 1

0
(1 − x2) cos(nπx)dx = (−1)n+1 2

n2π2
.

Thus it holds

yd(x) = 1

3
− 2

∞∑
n=0

(−1)n

n2π2
cos(nπx), x ∈ [0,1]. (4.4)

By comparing the coefficients of

y(x,T ) = (Su)(x) =
∫ T

0

[
1 + 2

∞∑
n=1

(−1)n cos(nπx)e−n2π2(T −s)

]
u(s) ds

with those of (4.4), the problem of reachability (4.3) can be formulated in terms of
the solvability of the following infinite system of equations:

{∫ T

0 u(s) ds = 1
3 ,∫ T

0 e−n2π2(T −s)u(s) ds = − 1
n2π2 , n > 0.

(4.5)

To generalize (1.3), we consider controls with values contained in [−c, c], c > 0,
and derive a necessary condition for restricted reachability depending on T and c.

In order to circumpass difficulties with signs, we perform the transformation
v(t) := 1

2 (u(t) + c). Then |u(t)| ≤ c is equal to v(t) ∈ [0, c]. From (4.5) we deduce

∫ T

0
v(s) ds = 1

2
cT + 1

6
, (4.6)

∫ T

0
e−n2π2(T −s)v(s) ds = 1

2n2π2

[
c − 1 − ce−n2π2T

]
, n > 0. (4.7)
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Lemma 4.4 The conditions

cT ≥ 1

3
and c − 1 − ce−n2π2T ≥ 0 ∀n > 0

are necessary for restricted reachability of yd by Neumann boundary controls.

Proof Since v(t) ≤ c, it follows that
∫ T

0 v(s) ds ≤ cT , hence from (4.6)

1

2
cT + 1

6
≤ cT , i.e.

1

3
≤ cT .

Because of v(t) ≥ 0 we deduce from (4.7) that 0 ≤ c − 1 − ce−n2π2T ∀n > 0. �

The next theorem follows instantly from the second inequality of Lemma 4.4.

Theorem 4.5 For all c ∈ [0,1], yd(x) = (1 − x2)/2, x ∈ [0,1], is not reachable by
any Neumann boundary control u with |u(t)| ≤ c at any time T > 0.

For c > 1 we deduce the necessary condition

c
[
1 − e−n2π2T

]≥ 1, that is e−n2π2T ≤ 1 − 1

c
,

which has to be satisfied in particular for n = 1. Hence it must hold:

T ≥ − 1

π2
ln

(
1 − 1

c

)
.

4.3 Restricted reachability by Robin boundary controls

By the Fourier series expansion of yd , we get with the notation of Sect. 2

yd(x) =
∞∑

n=1

bnvn(x), bn = 1

2
√

Nn

∫ 1

0
cos(μnx)(1 − x2) dx

and from (3.12) we find

yd(x) =
∞∑

n=1

1

Nn

cos(μnx)

[
sin(μn)

μ3
n

− cos(μn)

μ2
n

]
. (4.8)

Similarly to the previous subsection, the problem of reachability can therefore be
expressed by

∫ T

0
e−μ2

n(T −s)u(s) ds = 1

μ4
n

− 1

αμ2
n

, for all n = 1,2, . . . .

The unrestricted reachability of yd , for every T > 0 is then an immediate conse-
quence of Proposition 4.1 (N = 4, a0 = a1 = a3 = 0, a2 = −1/α, a4 = 1) (see also
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Proposition 4.2). Let us now assume again |u(t)| ≤ c, c > 0. Transforming again u

into v, v(t) ∈ [0, c], by v(t) = 1
2 (u(t) + c), t ∈ [0, T ], we get

∫ T

0
e−μ2

n(T −s)
[
2v(s) − c

]
ds = 1

μ4
n

− 1

αμ2
n

. (4.9)

Consequently, we have the following

Theorem 4.6 The condition

c
[
1 − e−μ2

nT
]≥

∣∣∣∣ 1

μ2
n

− 1

α

∣∣∣∣ ∀n = 1,2, . . . (4.10)

is necessary for restricted reachability of yd by Robin boundary controls.

Proof Because of v(t) ≥ 0 and v(t) ≤ c it follows from (4.9)

c
[
1 − e−μ2

nT
]≥ −

[
1

μ2
n

− 1

α

]
and c

[
1 − e−μ2

nT
]≥ 1

μ2
n

− 1

α
,

respectively, thus (4.10) follows immediately. �

The inequality (4.10) can also be deduced from the general inequality (A.3) in
Schmidt [21].

Considering again our Example 2 (T = 1.58, c = α = 1) the inequality (4.10)
is satisfied for every n ≥ 1. This shows that the necessary condition (4.10) is not
sufficient for the reachability of yd by admissible Robin boundary controls.

For the case T = 1.58, α < 1 and c = 1, the condition (4.10) is not satisfied be-
cause μn → ∞ as n → ∞ and therefore, passing to the limit in (4.10) yields 1 ≥ 1

α

which is not true.

Conclusion 4.7 For α < 1, T = 1.58 and yd(x) = 1
2 (1 − x2), is not reachable by

Robin boundary controls that satisfy (1.3).

Based on these results we have the impression that α = 1 is the limit value, which
separates the optimal control problems (Pα), where yd(x) = 1

2 (1 − x2) is attainable
from those where yd is not, i.e. for α > 1 there exists an admissible control such that
the solution of the state equation (1.2) also satisfies (4.3), cf. our numerical results in
Sect. 6.

5 Optimal controls with two switching points

The method of Theorem 3.1 can be extended to controls with more than one switch-
ing point. For two switching points, we have a similar result at our disposal, where
the first switching point τ1 has to be found yet, while we assume that a second switch-
ing point τ2 = τ2(τ1) exists that coincides with a zero of p(1, t) (for all τ1 out of a
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certain interval). With respect to τ1, the theory is analogous to the case of one switch-
ing point. However, we found it difficult to apply this result. Instead, we present an
application of a theorem by Miranda [15].

We shall investigate the problem (PN ) in the case, where the optimal control u∗
is bang-bang and has exactly two switching points τ1, τ2 ∈ (0, T ), denoted by τ ∗

1 , τ ∗
2 .

Here, we use the star to avoid notational confusion in the next examples. We assume
that u∗ belongs to the class of controls that have the form

u(t) = u(t, τ1, τ2) =
{

−1, t ∈ (0, τ1) ∪ (τ2, T ),

1, t ∈ (τ1, τ2),
(5.1)

where τ1 < τ2.
First, we introduce some necessary notation. We define the faces of the open cube

Q(x0, ρ) in R
n, n ≥ 1, centered at x0 with side length 2ρ, ρ > 0,

Qi+(x0, ρ) =
{
x ∈ Q(x0, ρ)

∣∣ xi − x0
i = ρ

}
,

Qi−(x0, ρ) =
{
x ∈ Q(x0, ρ)

∣∣ xi − x0
i = −ρ

}
.

Then Miranda’s theorem can be stated as follows:

Theorem 5.1 ([15]) Let f : R
n ⊇ Q(x0, ρ) → R

n be a continuous mapping. Assume
that

fi(x)

{
≥ 0 for all x ∈ Qi+(x0, ρ),

≤ 0 for all x ∈ Qi−(x0, ρ)

holds for all i = 1, . . . , n. Then f has at least one zero in Q(x0, ρ).

The following extension of Miranda’s theorem to rectangles was proven in [19].

Corollary 5.2 Assume that x0 ∈ R
n and numbers Li ≥ 0, for i = 1, . . . , n be given.

Let R ⊂ R
n be the rectangle R = {x ∈ R

n | |xi −x0
i | ≤ Li, i = 1, . . . , n} and f : R →

R
n a continuous mapping on R. Define the pairs of parallel opposite faces of the

rectangle R by

Ri+ := {x ∈ R |xi = x0
i + Li}, Ri− := {x ∈ R |xi = x0

i − Li}, i = 1, . . . , n.

If

fi(x) · fi(y) ≤ 0, ∀x ∈ Ri+, y ∈ Ri−,

holds for all i = 1, . . . , n, then there exists some x̄ ∈ R satisfying f (x̄) = 0.

On the basis of this result, we now discuss optimal control problems, where the
optimal control u∗ is bang-bang with exactly two switching points. For simplicity,
we discuss only the problem with Neumann boundary control.
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Analogously to (3.7), we obtain for a control function u having the form (5.1) that

S∗Su(t, τ1, τ2) = 2(τ2 − τ1) − T + 2
∞∑

n=1

1

n2π2
e−n2π2(T −t)

× [
2
(
e−n2π2(T −τ2) − e−n2π2(T −τ1)

)− e−n2π2T
]
. (5.2)

First, we construct an example in an explicit analytical way. Next, we slightly
perturb the data to show how the theorem of Miranda can be applied to confirm the
existence of an optimal bang-bang control with two switching points. To construct
the analytical example, first we choose a function w �= 0 such that S∗w has exactly
two roots τ ∗

1 , τ ∗
2 ∈ (0, T ). This function w stands for Su∗ − yd . Next, we just define

u∗ := u(·, τ ∗
1 , τ ∗

2 ) which satisfies the sign condition, sign S∗w(t) = 1 on [0, τ ∗
1 ), and

we fix yd := Su∗ − w. Then u∗ satisfies the necessary optimality condition and is
optimal. Let us proceed in this way.

Example 4 We take T = 1, w(x) = x2 − 5

4
x + 3

10
. The roots τ ∗

1 , τ ∗
2 of

(S∗w)(t) =
∫ 1

0

[
1 + 2

∞∑
n=1

(−1)n cos(nπξ)e−n2π2(T −t)

]
w(ξ)dξ

= 1

120
+ 1

2

∞∑
n=1

1

n2π2
e−n2π2(T −t)[5(−1)n + 3]

are approximately located at τ̂1 := 0.74695 and τ̂2 := 0.99496. As previously men-
tioned, we set u∗ := u(·, τ ∗

1 , τ ∗
2 ) and yd := Su∗ − w.

In this example, we know the optimal control exactly. However, from a numerical
point of view this is not entirely true, because we obtain only (very good) approxi-
mations τ̂1, τ̂2 of the switching points.

Since the series for S∗w converges very slowly close to T , other zeros S∗w than
τ ∗

1 and τ ∗
2 might be hidden at the end of [0, T ]. We have to exclude this possibil-

ity. The graph of S∗w is shown in Fig. 6, and it is obvious due to the precision of

Fig. 6 S∗w computed for
nx = nt = 1001 and N = 100;
f = J (ȳ, ū)
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our computations with Fourier series that another zero can only exist in [0.99,1]. It
suffices to prove that S∗w is strictly monotone increasing in the interval (0.99,1).
Therefore, we verify that the derivative of S∗w,

(S∗w)′(t) = 1

2

∞∑
n=1

e−n2π2(T −t)
[
5(−1)n + 3

]
, (5.3)

is strictly positive for every t ∈ (0.99, T ). By splitting the series (5.3) into the part of
odd and even items, we get after an index shift in the odd part

(S∗w)′(t) = 4
∞∑

n=1

e−4n2π2(T −t) − e−π2(T −t)
∞∑

n=1

e−4n(n+1)π2(T −t) − e−π2(T −t)

≥ (
4 − e−π2(T −t)

) ∞∑
n=1

e−4n2π2(T −t) − e−π2(T −t)

> 3e−4π2(T −t) − e−π2(T −t) = e−π2(T −t)
{
3e−3π2(T −t) − 1

}
.

In [0.99,1], the term in braces can be estimated from below by 3e− 3
100 π2 − 1 > 1.23,

hence S∗w is monotone increasing in (0.99,1).
Let us now slightly change the situation. We construct a related example, where

we do not know the exact optimal control but a very good approximation. Then we
confirm by Corollary 5.2 that the optimal control has exactly two switching points in
a prescribed region.

Example 5 We take w as in Example 4 (notice that S∗w has exactly the roots τ ∗
1 , τ ∗

2 )
and define an auxiliary control û by

û(t) = u(t, τ̂1, τ̂2) =
{

−1, t ∈ (0, τ̂1) ∪ (τ̂2, T ),

1, t ∈ (τ̂1, τ̂2),

where τ̂1 = 0.74695 and τ̂2 = 0.99496 are the numerical approximations of τ ∗
1 , τ ∗

2 .
Moreover, we fix yd := Sû − w. Then w = Sû − yd , and S∗w = S∗(Sû − yd) has
roots different from τ ∗

i and τ̂i , i = 1,2, hence û is not optimal for this problem. Also
u∗ is not optimal. We find

yd(x) = (Sû)(x) − w(x)

= 2(τ̂2 − τ̂1) − T − 3

2
x2 + 5

4
x − 2

15

+ 2
∞∑

n=1

(−1)n

n2π2
cos(nπx)

[
2
(
e−n2π2(T −τ̂2) − e−n2π2(T −τ̂1)

)+ e−n2π2T
]
.

(5.4)

Now, our goal is to confirm that this problem has an optimal bang-bang control
ū of the form (5.1). Along with (5.2), we have for a control u with two switching
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points τ1, τ2,

p(1, t, τ1, τ2) = S∗(Su(τ1, τ2) − yd)(t)

= S∗(Su(τ1, τ2) − (Sû − w))(t)

= 2(τ2 − τ1) − 2(τ̂2 − τ̂1) + 1

120

+ 2
∞∑

n=1

1

n2π2
e−n2π2(T −t)

[
2
(
e−n2π2(T −τ2) − e−n2π2(T −τ1)

)

− 2
(
e−n2π2(T −τ̂2) − e−n2π2(T −τ̂1)

)+ 5

4
(−1)n + 3

4

]
. (5.5)

To calculate the functional value of a control of the form (5.1) we have to solve
the differential equation (1.2) numerically. For that purpose we use a standard central
difference approximation of the Laplace operator and an implicit Euler scheme for the
time integration. In order to achieve a good quality of the numerical approximation
of our example, we used a finer discretisation of the space and time interval than that
used in Sect. 3.

As in the preceding sections, nx and nt stand for the discretization in space and
time used for evaluating all integrals by the trapezoidal rule, while N is the termi-
nation index for the Fourier series. Taking nx = 1001 we can reduce the difference
between the functional value of u(·, τ̂1, τ̂2) and 1

2

∫ 1
0 (w(x))2 dx = 13

2400 to the range of

10−6. Note that 1
2

∫ 1
0 (w(x))2 dx is the optimal value of Example 4. Moreover, since

τ̂2 is very close to the final time T , a smaller grid parameter τ = 1/(nt − 1) with re-
spect to time is needed. Figure 6 shows the adjoint state p(1, ·, τ̂1, τ̂2) corresponding
to û when nx = nt = 1001 and N = 100. We underline again that these numerical
computations are based on the Fourier method. The necessity to compute the series
in (5.5) up to a rather large N , e.g. N = 100, is due to the increasing importance of
higher indexed items as t tends to T .

5.1 Existence of an optimal bang-bang control via Miranda’s theorem

Let R := [0.745,0.749] × [0.994,0.996] be the rectangle with midpoint τ 0 =
(τ 0

1 , τ 0
2 ) = (0.747,0.995) and side lengths L1 = 2 · 10−3 and L2 = 1 · 10−3.

We assume that for every pair of switching points (τ1, τ2) ∈ R, the function
p(1, ·, τ1, τ2), associated with the bang-bang control u(·, τ1, τ2) of the form (5.1),
has exactly two roots denoted by 0 < t1(τ1, τ2) < t2(τ1, τ2) < T . By Miranda’s
theorem, we confirm the existence of a fixed point of the mapping (τ1, τ2) �→
(t1(τ1, τ2), t2(τ1, τ2)) or, equivalently, the existence of a root for

f : R
2 ⊃ R → R

2, f (τ1, τ2) =
[

f1(τ1, τ2)

f2(τ1, τ2)

]
:=

[
τ1

τ2

]
−
[

t1(τ1, τ2)

t2(τ1, τ2)

]
. (5.6)
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Fig. 7 4 possible cases for the
roots of p(1) = p(1, ·, τ1, τ2)

Figure 7 illustrates the situation at the boundary points A = (0.745,0.996), B =
(0.749,0.996), C = (0.745,0.994), and D = (0.749,0.994), of the faces Ri±, i =
1,2. Moving along the north edge R2+ from B to A, we observe that f2 > 0, while
f1 changes its sign. On the other hand, moving along the west edge R1− from A to
C, there holds f1 < 0, but f2 changes its sign. An analogous behaviour is observed
on R2− and R1+. Notice that here we do not prove these inequalities by careful esti-
mations as in the last sections, because this is fairly tedious. Therefore, we do not
really prove the next results, although this should be possible on the basis of exact
estimations. We just take them for granted by our numerical computations.

Figure 8 shows the locations of the roots of p(1, ·, τ1, τ2) subject to the switching
points, when (τ1, τ2) are the points A,B,C,D. A study of Fig. 7 reveals that, at the
corner B , the zeros ti of p(1, ·) are located left of τi , i = 1,2. Therefore, f1(B) > 0
and f2(B) > 0. Similarly, we have f1(C) < 0 and f2(C) < 0.

To apply Corollary 5.2, we need to know the signs of fi , i = 1,2, in every point
of the faces Ri±. The following assumption will make this easier. The points B and C

play a special role in this context.

Assumption 5.3 For every (τ1, τ2) ∈ R, there holds

∂p

∂t
(1, t1(τ1, τ2), τ1, τ2) < 0 and

∂p

∂t
(1, t2(τ1, τ2), τ1, τ2) > 0.

In our example, this obviously holds in the corner points A,B,C,D, cf. Fig. 8.
In the points between, we confirmed this numerically. Also here, we do not perform
exact estimations.

Remark 5.4 Under Assumption 5.3 it suffices to investigate f at the boundary points
B = (0.749,0.996) and C = (0.745,0.994) only. To see this, we argue as fol-
lows: From (5.5) it follows easily that ∂p

∂τ1
(1, t, τ1, τ2) < 0 and ∂p

∂τ2
(1, t, τ1, τ2) > 0
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Fig. 8 Details of p(1, ·, τ1, τ2) around the roots when (τ1, τ2) ∈ {A,B,C,D}, nt = nx = 1001, N = 100

∀t ∈ (0, T ), (τ1, τ2) ∈ R
2. In view of our assumption and p(1, ti(τ1, τ2), τ1, τ2) = 0

∀(τ1, τ2) ∈ R, the implicit function theorem can be applied as in the proof of Theo-
rem 3.1, hence

∂ti

∂τj

(τ1, τ2) = −
∂p
∂τj

(1, ti(τ1, τ2), τ1, τ2)

∂p
∂t

(1, ti (τ1, τ2), τ1, τ2)
> 0, for i, j ∈ {1,2}, i �= j. (5.7)

We already know fi(B) > 0 and fi(C) < 0, i = 1,2. Let us take x = (τ1, τ2) ∈ R2+,
i.e. τ2 = 0.996 is fixed and τ1 ≤ 0.749. For f2(x) = g(τ1) := τ2 − t2(τ1, τ2), it fol-
lows from (5.7) that g′(τ1) = − ∂t2

∂τ1
(τ1, τ2) < 0, hence g(τ1) ≥ f2(B) > 0 ∀τ1 ∈

[0.745,0.749]. In the same way, for y = (τ1, τ2) ∈ R2−, i.e. τ2 = 0.994 is fixed and
τ1 ≥ 0.745, we define f2(y) = h(τ1) := τ2 − t2(τ1, τ2). Again, from (5.7), we ob-
tain h′(τ1) = − ∂t2

∂τ1
(τ1, τ2) < 0 and f2(y) = h(τ1) ≤ f2(C) < 0 ∀τ1 ∈ [0.745,0.749].

Analogously, we show that f1(x) > 0 and f1(y) < 0 ∀x ∈ R1+, y ∈ R1−.

Conclusion 5.5 Suppose that Assumption 5.3 holds. In our example, we have con-
firmed this numerically for T = 1 and yd given as in (5.4), where τ̂1 = 0.74695,
τ̂2 = 0.99496. Then for the problem (PN ) a bang-bang control ū with two switching
points τ̄1, τ̄2 exists which coincide with the associated zeros of p(1, ·).

Proof Let τ 0 = (0.747,0.995), L1 = 2 · 10−3, L2 = 1 · 10−3 and define f as in (5.6).
Since fi(B) > 0, fi(C) < 0, for i = 1,2, and taking into account Remark 5.4, we may
apply Corollary 5.2 to obtain the existence of (τ̄1, τ̄2) ∈ R, such that t1(τ̄1, τ̄2) = τ̄1
and t2(τ̄1, τ̄2) = τ̄2. �
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The theorem of Miranda ensures the existence of a zero in the rectangle R but
does not guarantee its uniqueness. Therefore, a strictly analytical reasoning should
exclude other roots in R. Here, we take it for granted by the numerical results, cf.
also Fig. 8. The principle shape of these graphs will not change while moving (τ1, τ2)

through R.
The bang-bang control (5.1), where τi is replaced by τ̄i , i = 1,2, satisfies the

optimality condition (2.9), if we verify in addition that the sign of the control equals
the negative sign of p(1, ·, τ̄1, τ̄2). In our example, this can be confirmed numerically.
Again, we underline that we did not perform the associated estimates to make this a
real proof.

The uniqueness is a consequence of the countable bang-bang principle, if we con-
firm in addition that the minimal value of the objective functional is positive.

6 Application—approximation of Dirichlet boundary controls

As pointed out in the introduction, we were initially interested in approximating
the Dirichlet boundary condition by a Robin condition as α = β → ∞. For ellip-
tic Dirichlet boundary control problems, this issue was discussed by Casas et al. [2],
who proved convergence and error estimates w.r. to the penalization parameter that
corresponds to α. In the control of parabolic PDEs, the optimality conditions for
Dirichlet controls can also be achieved by passing to the limit, α = β → ∞, in the
optimality conditions for the penalized Robin problem (Pα) (see Arada et al. [1]).
Indeed, our numerical computations confirmed this issue. As an example, we show
in detail the case T = 1.58 and yd defined in (3.6).

For our numerical experiments we selected a fixed grid with nx = nt = 101 and
used a standard central difference approximation of the Laplace operator with an
implicit Euler scheme for the time integration to solve the differential equations nu-
merically. To solving the optimal control problems, we applied a primal-dual active
set strategy. For large α, we preferred a gradient projection method. For simplicity,
we take first u0 ≡ 0 as initial iterate to run the optimization methods.

In the case α < 1, Conclusion 4.7 implies that the problem (Pα) admits a unique
optimal bang-bang control. This is confirmed by our numerical experience, even for
α = 1, cf. Fig. 9.

Fig. 9 Optimal control of (Pα) computed for T = 1.58, yd defined in (3.6) and α = 1, 1
2
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Fig. 10 Optimal control of (PD) and (Pα), for α = 10
9 , 10

8 ,2,10 and 104

Figure 10 shows the numerical solution of (Pα) for α = 10
9 , 10

8 , 2, 10 and 104,
as well as the numerical optimal control of the Dirichlet problem (PD). One can
easily see that for large α the solution of (Pα) approaches the solution of (PD). It is
remarkable that for α > 1 the optimal control is no longer bang-bang. Moreover, it
holds ker ST �= {0} ∀T > 0, which can be seen as follows: Let us take an arbitrary
control u ∈ L∞(0, T

2 ), u �= 0 and fix yd := ST
2
u. By virtue of null-controllability,

0 ∈ RT
2
(yd,L∞), there exists v ∈ L∞(0, T

2 ), v �= 0, with ST
2
v = 0. Setting

ũ(t) =
{

u(t), t ∈ [0, T
2 ),

v(t − T
2 ), t ∈ [T

2 , T ],
we get Sũ = 0. Consequently, an optimal control ū of (Pα) is not necessarily unique
if ū belongs to the interior of Uad , since ū + εu is also optimal for u ∈ kerST and
ε > 0 such that ū + εu ∈ Uad . Indeed, we observed numerically that the optimal
control ū of (Pα), α > 1, depends on the initial iterate u0. The left frame of Fig. 12
shows the optimal controls of (Pα), α = 10, obtained by starting with u0 ≡ 1,−1
and 0, respectively.

To overcome these difficulties, we added a Tikhonov regularization term
η
2 ‖u‖2

L2(0,T )
, η > 0, to the functional J . This yields the coercivity of

J̃ (u, y) := 1

2
‖y(·, T ) − yd‖2

L2(0,1)
+ η

2
‖u‖2

L2(0,T )
,
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Fig. 11 Optimal control of (6.1) for α = β = 10
8 and η = 1, 10−2, 10−5, 10−7, 10−9 and 10−12

Fig. 12 Optimal controls for α = 10, different initial iterates u0 (left) and Tikhonov parameters η (right)

and consequently the uniqueness of the optimal control ūη of the problem

min J̃ (u, y) subject to (1.1) and to (1.3). (6.1)

Another advantage of this regularization process is the stability of the generated re-
sults with respect to perturbations arising from numerical effects.

In [16, Chap. 1, Sect. 2] it is shown that ‖ūη − ūmin‖L2(0,T ) → 0 as η → 0, where
ūmin is the minimum norm solution of the optimal control problem,

ūmin = min
{‖ũ‖ ∣∣ J (ũ, y(ũ)) = minJ (u, y(u)), ũ ∈ L2(0, T )

}
.

Figure 11 shows the optimal control of the problem (6.1) when α = β = 10/8 and
η ∈ {1,10−2,10−5,10−7,10−9,10−12}. We did not estimate the precision of the ap-
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proximation by computing the relative L2-error of ūη . However, the numerical calcu-
lations showed that ūη → ū, as η → 0, where ū is the optimal control of (Pα) we got
for the initial iterate u0 ≡ 0 (cf. top right frame of Fig. 10). A similar situation is also
illustrated in Fig. 12 for α = 10, where ūη tends to the solution of (Pα), as η → 0 ,
which was obtained for the same u0.

Appendix: Further estimates for the Robin problem

Here, we finish the discussion of Example 2, where we still have to exclude further
zeros of p(1, ·, τ̄ ) on (T2,1.5), [1.5,1.55] and (1.55,1.57].

Case t ∈ (T2,1.5): As before, for t ∈ (T2,1.5) we have

∞∑
n=4

C′
n(t)|Dn(τ)| ≤

∞∑
n=4

C′
n(1.5)|Dn(τ)| ≤ 2.26 · 10−2 ·

∞∑
n=3

qn
1.5,

where q1.5 = e−3π2(1.58−1.5) ∈ [0.0936,0.09361], hence
∑∞

n=3 qn
1.5 = 1

1−q1.5
− 1 −

q1.5 − q2
1.5 < 9.0501 · 10−4 and

∞∑
n=4

C′
n(t)|Dn(τ)| ≤ 2.05 · 10−5.

Taking into account (3.21), we infer

3∑
n=1

C′
n(t)Dn(τ1) ≥ C′

1(1.5)D1(τ1) + C′
2(T2)D2(τ1) + C′

3(1.5)D3(τ1)

> 0.5091777 · (−6.573986 · 10−4) + 0.2613737 · 0.01994057

+ 0.0693151 · (−0.0240712)

> 0.0032.

Therefore ∂
∂t

p(1, ·, τ1) > 0 on (T2,1.5), and with p(1, T2, τ1) > 0 we conclude
p(1, t, τ1) ∀t ∈ [T2,1.5].

We cannot proceed this way neither on (1.5,1.55) nor on (1.55,1.57), since

C′
1(t2)D1(τ1) + C′

2(t1)D2(τ1) + C′
3(t2)D3(τ1) < 0,

when (t1, t2) ∈ {(1.5,1.55), (1.55,1.57)}. Thus, we follow the idea used in the case
t ∈ (1.57, T ).

Case t ∈ [1.5,1.55]: Here q1.55 = e−3π2(1.58−1.55) ∈ [0.4113691,0.4113692] and

∞∑
n=3

qn
1.55 = 1

1 − q1.55
− 1 − q1.55 − q2

1.55 < 0.118264,

therefore
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∞∑
n=4

Cn(t)|Dn(τ1)| ≤
∞∑

n=4

Cn(1.55)|Dn(τ1)| ≤ c0 ·
∞∑

n=3

qn
1.55 < 3.01 · 10−5.

On the other hand, from (3.21) we get

3∑
n=1

Cn(t)Dn(τ1) ≥ C1(1.55)D1(τ1) + C2(1.5)D2(τ1) + C3(1.55)D3(τ1)

> 0.7138522 · (−6.573986 · 10−4) + 0.05695014 · 0.01994057

+ 0.0132817 · (−0.0240712)

> 3.466 · 10−4.

Therefore p(1, ·, τ1) > 0 on [1.5,1.55].
Case t ∈ (1.55,1.57]: As before, q1.57 = e−3π2(1.58−1.57) ∈ [0.743721,0.743722]

and
∞∑

n=3

qn
1.57 = 1

1 − q1.57
− 1 − q1.57 − q2

1.57 < 0.118264,

therefore

∞∑
n=4

Cn(t)|Dn(τ1)| ≤
∞∑

n=4

Cn(1.55)|Dn(τ1)| ≤ c0 ·
∞∑

n=3

qn
1.55 < 4.084 · 10−4.

On the other hand, from (3.21) we get

3∑
n=1

Cn(t)Dn(τ1) ≥ C1(1.57)D1(τ1) + C2(1.55)D2(τ1) + C3(1.57)D3(τ1)

> 0.7244983 · (−6.573986 · 10−4) + 0.1024033 · 0.01994057

+ 0.030422 · (−0.0240712)

> 8.334 · 10−4.

Therefore p(1, ·, τ1) > 0 on (1.55,1.57].
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