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Abstract An optimal control problem governed by an elliptic variational inequal-
ity of the first kind and bilateral control constraints is studied. A smooth penaliza-
tion technique for the variational inequality is applied and convergence of stationary
points of the subproblems to an E -almost C-stationary point of the limit problem
is shown. The subproblems are solved using a full approximation multigrid scheme
(FAS) and alternatively a multigrid method of the second kind for which a conver-
gence result is given. An overall algorithmic concept is provided and its performance
is discussed by means of examples.
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1 Introduction and problem formulation

In this paper we study a new stationarity concept and multigrid algorithms for the
following minimization problem (P ):

min J (y,u) = 1

2
‖y − yd‖2

L2 + ν

2
‖u‖2

L2 over y ∈ V, u ∈ L2(�)

s.t. (subject to) y ∈ K, a(y, v − y) ≥ (f + u,v − y) ∀v ∈ K, (1.1a)

u ∈ Uad, (1.1b)

where

Uad = {v ∈ L2(�) : a ≤ v ≤ b a.e. in �},
and � ⊂ R

n, n ≤ 3, is an open, bounded domain that is either convex and polygonal
or has a C1,1-boundary ∂�. Further a(·, ·) : V × V → R, with V = H 1

0 (�), denotes
the bilinear form

a(v,w) =
n∑

i,j=1

∫

�

aij

∂v

∂xj

∂w

∂xi

dx +
n∑

i=1

∫

�

bi

∂v

∂xi

w dx +
∫

�

cvw dx,

for all v,w ∈ V , where bi , c ∈ L∞(�), aij ∈ C0,1(�̄) and c ≥ 0. We assume that
a(·, ·) is bounded and coercive, i.e., there exist constants CB,CC > 0 such that for all
v,w ∈ V

|a(v,w)| ≤ CB‖v‖V ‖w‖V and a(v, v) ≥ CC‖v‖2
V . (1.2)

The variational inequality (VI) constraint (1.1a) involves the cone

K = {v ∈ V : v ≥ 0 a.e. in �}.
By (·, ·) and ‖ · ‖ we denote the scalar product and norm, respectively, in L2(�) and
by 〈·, ·〉 the duality pairing between V and V ∗ = H−1(�). Moreover, yd, f ∈ L2(�)

are given, ν > 0 is fixed, and the bounds on the control variable u are a, b ∈ L2(�) ∪
{−∞,∞} with (b−a) > 0. The state variable is denoted by y. Note that our notation
allows us to choose a ≡ −∞, b ≡ ∞ if no lower or upper bound acts on the control.
Further, the cone K may be replaced by

Kψ = {v ∈ V : v ≥ ψ a.e. in �},
with ψ ∈ H 2(�), ψ |∂� ≤ 0, and the subsequent results remain true. For the treatment
of the obstacle problem with Kψ we refer to [31].

We recall that, given u ∈ L2(�), the variational inequality (1.1a) admits a unique
solution y ∈ V . If u + f ∈ L2(�) then y ∈ H 2(�) ∩ V due to the so-called shift the-
orem; see, for instance, [13, 15, 25]. In [28] it was proven that (P ) admits a solution.

Our model problem (P ) is a particular instance of a mathematical program with
equilibrium constraints (MPEC) in function space. Problems of this type were con-
sidered earlier in [1–6, 21, 28, 29] and the references therein. In these papers typically
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versions of first order conditions are derived. Let us point out that due to the VI con-
straint classical constraint qualifications [36] are generically violated by (P ). Hence,
alternative proof concepts for deriving stationarity conditions need to be developed.
In the aforementioned papers and monographs mainly two approaches are used: re-
laxation of a primal-dual form of the VI constraint [2] and regularized penalization
([1, 21, 28], for instance). In [24], as in [2], a relaxation approach was pursued in
order to categorize first order conditions similar to finite dimensions [27, 30, 32, 35].
Depending on the realization of the VI constraint and the induced regularity of as-
sociated Lagrange multipliers, new versions of stationarity arise in function space;
see, e.g., “E -almost C-stationarity” (Definition 3.2) and “almost C-stationarity”, con-
cepts which were introduced in [24]. We point out that in finite dimensional space
these notions coincide with C-stationarity. Typically, in the aforementioned refer-
ences, no constraints on the control are considered. Some of the techniques, like the
one in [28] for instance which relies on globally optimal solutions of the MPEC
(though transferable to local optimality) and conical differentiability of the control-
to-state map, do not apply in this situation, in general. Hence, one focus of the present
work is to derive first order characterization in the presence of pointwise constraints
on the control.

The literature on solution algorithms for (P ) is relatively scarce. In [2] a multiplier
method is used but only for the relaxed problems without driving the relaxation para-
meter to zero. The approach in [21] is based on a nonlinear complementarity (NCP)
function based reformulation of the VI constraint and a subsequent least-squares ap-
proach to a first order system establishing weak stationarity. Then, in [22] an active-
set Newton solver is proposed for obtaining some type of C-stationary points which
may be interpreted as a particular version of an implicit programming approach to
MPECs; see [30] for the latter. Further, as the proof technique in [24] is constructive
an associated solution algorithm is proposed in [24] based on a relaxation scheme
and a path-following semismooth Newton solver.

The relaxation approach of [24] is rather general, as it does not rely on the bilevel
structure of the underlying problem. Under relatively weak assumptions E -almost
C-stationarity is derived, and conditions implying stronger optimality conditions,
such as C- and strong stationarity, are formulated. While the optimality conditions
derived on the basis of a regularized penalty approach as in the present paper are
slightly weaker (E -almost C-stationarity without further conditions for the stronger
concepts), the method however preserves certain problem structures, which might be
advantageous in the design of algorithms. For instance, (P ) admits an interpretation
as a bilevel optimization problem in function space due to the fact that the VI con-
straint represents the first order necessary and sufficient condition of a lower level
minimization problem. The penalty approach maintains this structure, i.e., after pe-
nalizing and smoothing the VI constraint the overall problem still admits a bilevel
structure. In addition, the resulting minimization problem resembles an optimal con-
trol problem for a semilinear elliptic partial differential equation with point-wise con-
straints on the control.

Based on [7, 8, 10, 17, 18, 20], in this paper we introduce multigrid solvers for
these problems. In fact, we study the full approximation scheme (FAS) [7, 10] and a
multigrid method of the second kind [18] and embed these methods in a continuation
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scheme for the penalty and/or smoothing parameter. Under a non-degeneracy condi-
tion, we establish a convergence result for the version based on the multigrid method
of the second kind. To the best of our knowledge these are the first multigrid-based
solvers for MPECs in function space.

The rest of the paper is organized as follows. In the next section we introduce our
smoothed penalty approach and study some of its properties. Then we derive first
order optimality conditions in Sect. 3. Here we focus on the concept of E -almost
C-stationarity. Section 4 introduces first a FAS-scheme and then a nonlinear multi-
grid method of the second kind for solving the penalized and smoothed problems.
For the latter approach a convergence result is given. The paper ends by a report on
numerical tests comparing both variants of multigrid solvers and different types of
penalization.

2 Penalization of the variational inequality

A common technique for solving a variational inequality of the form (1.1a) is by
penalization (see, e.g., [14, 25]). Using this technique the variational inequality is ap-
proximated by a sequence of nonlinear boundary value problems. For a given penalty
operator π : V → V ∗ with the following properties:

⎧
⎪⎪⎨

⎪⎪⎩

π is Lipschitz continuous,

Ker(π) = K,

π is monotone,

(2.1)

the VI can be approximated by the penalized equation

a(y, v) + 1

α
〈π(y), v〉 = (f + u,v) ∀v ∈ V, (2.2)

with α > 0 being the penalty parameter. Due to the monotonicity of the nonlinear
operator π , (2.2) has a unique solution (see, e.g., [14]) which we denote by yα(u).
Furthermore if we denote the solution of (1.1a) by y(u), it is well known that

yα(u) → y(u) in V as α ↓ 0 (2.3)

(see, e.g., [14]). In this paper we consider the penalty operator

π(v) := −max(0,−v) ∀v ∈ V,

where the max-operation is to be understood point-wise. As the max(0, ·)-function
is not differentiable at the origin we introduce different regularizations yielding C1-
approximations of max(0, ·). For a fixed smoothing parameter ε > 0 we define the
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Fig. 1 max(0, ·) and
regularizations max g

ε and max l
ε

following regularized/smoothed operators:

max g
ε (0, r) :=

⎧
⎪⎨

⎪⎩

r − ε
2 if r ≥ ε,

r2

2ε
if r ∈ (0, ε),

0 if r ≤ 0,

max l
ε(0, r) :=

⎧
⎪⎨

⎪⎩

r if r ≥ ε,

r2

4ε
+ r

2 + ε
4 if r ∈ (−ε, ε),

0 if r ≤ −ε.

(2.4)

Both regularizations are C1-functions that smooth the kink of the max-operator. As
illustrated in Fig. 1 the regularization max l

ε alters the function locally around the
origin but leaves the operator unchanged outside of this neighborhood, whereas the
smoothing of max g

ε affects the operator on the whole half-plane. We will there-
fore refer to the two operators as “local” and “global” regularizations, respectively.
In the context of penalization we note that the global regularization itself defines a
suitable penalty operator for the variational inequality, i.e., it satisfies (2.1), while the
local regularization max l

ε violates the second condition of (2.1) for every ε > 0.
In the following lemma useful properties of these operators are provided. We also

state some of the differences between the regularizations.

Lemma 2.1

(i) Both max g
ε and max l

ε are monotone and convex.
(ii) The global variant max g

ε penalizes the set K , i.e., max g
ε (0,−·) satisfies the

conditions (2.1). The local variant max l
ε is not a suitable penalty operator for

K . The violation of (2.1) can be estimated by:

‖max l
ε(0,−v)‖L2 ≤ ε

4

√
meas(�) ∀v ∈ K.

Furthermore if max l
ε(0,−v) = 0 then v ∈ K .
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(iii) We have (max g
ε (0,−v), v) ≤ 0 for all v ∈ L2(�) and the local variant satisfies

(max l
ε(0,−v), v) ≤ ε2

4
meas(�) ∀v ∈ L2(�).

(iv) For all r ∈ R we find that

0 ≤ max(0, r) − max g
ε (0, r) ≤ ε

2
,

0 ≤ max l
ε(0, r) − max(0, r) ≤ ε

4
.

(v) Both (max g
ε (0, r))′ and (max l

ε(0, r))′ ∈ [0,1] for all r ∈ R. As a consequence
both regularizations are Lipschitz continuous with Lipschitz constant 1.

(vi) The global regularization has a Lipschitz property with respect to ε, i.e.,

|max g
ε1

(0, r) − max g
ε2

(0, r)| ≤ 3

2
|ε1 − ε2|

for all r ∈ R and ε1, ε2 > 0.

Proof Assertions (i), (iv) and (v) are evident. For the estimate in (ii) assume that
v ≥ 0 a.e. in �. Then

‖max l
ε(0,−v)‖2

L2 =
∫

{−ε<−v≤0}
max l

ε(0,−v)2 ≤
(

ε

4

)2 ∫

{−ε<−v≤0}
1 ≤

(
ε

4

)2

meas(�),

as 0 ≤ max l
ε(0, r) ≤ ε

4 for all −ε ≤ r ≤ 0. The proof of the estimate for max l
ε in

(iii) is done analogously. In order to prove (vi) w.l.o.g. let ε1 < ε2 and r ∈ R. We
investigate several cases. If r ≤ 0 then max g

ε1(0, r) − max g
ε2(0, r) = 0. If 0 < r < ε1

then

|max g
ε1

(0, r) − max g
ε2

(0, r)| = r2

2

(
1

ε1
− 1

ε2

)
= r2

2

ε2 − ε1

ε1ε2
≤ 1

2
(ε2 − ε1).

If ε1 ≤ r < ε2 then

|max g
ε1

(0, r) − max g
ε2

(0, r)| = r − ε1

2
− 1

2ε2
r2 ≤ ε2 − ε1

2
− ε2

1

2ε2

= ε2

2
− ε1

2
+ ε2

2

2ε2
− ε2

1

2ε2
= 1

2

(
1 + ε2 + ε1

ε2

)
(ε2 − ε1)

≤ 3

2
(ε2 − ε1).

Finally if ε2 ≤ r then

|max g
ε1

(0, r) − max g
ε2

(0, r)| = r − ε1

2
−

(
r − ε2

2

)
= 1

2
(ε2 − ε1). �
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In Sect. 4.1.2 we consider a special multigrid method to solve a penalized version
of our MPEC-problem. Its convergence analysis requires additional smoothness of
the regularization of the max-operation. We therefore introduce a C2-regularization,
which we present in its “global” form only, for the sake of simplicity:

max G
ε (0, r) :=

⎧
⎪⎨

⎪⎩

r − ε
2 if r ≥ ε,

r3

ε2 − r4

2ε3 if r ∈ (0, ε),

0 if r ≤ 0.

(2.5)

Remark 2.2 The results of Lemma 2.1 remain true if max g
ε is replaced by max G

ε and
the Lipschitz constant in (vi) is replaced by 7/2.

Due to the non-smoothness of the max(0, ·)-operator we are interested in a result
similar to (2.3) but using the smoothed operators. As noted earlier the global regular-
ization satisfies the penalization properties whereas the local regularization violates
(2.1) for all ε > 0. This is reflected in the fact that the smoothing parameter ε has to
be driven to zero in order to achieve convergence if the local regularization is used,
while the global regularization permits the choice of a fixed positive smoothing para-
meter. We therefore make the following assumption on the smoothing parameter.

Assumption 2.1 For each α > 0 let ε(α) > 0 be given such that

(i) {ε(α)} is bounded if max g
ε or max G

ε is used and
(ii) ε(α)

α
→ 0 for α → 0 if max l

ε is used.

The following theorem describes the approximation properties of the regularized
penalized equations.

Theorem 2.3 Let {uα} be a sequence in L2(�), u ∈ L2(�) such that uα → u

(strongly) in V ∗. Let {ε(α)} satisfy Assumption 2.1 and yα ∈ V denote the solution of
the regularized penalized equation

Ayα − 1

α
max ε(α)(0,−yα) = uα + f, (2.6)

where max ε stands for either of the regularizations introduced in the beginning of
this section. Then

yα → y(u) in V if α → 0,

where y(u) denotes the solution of (1.1a).

Proof We use similar arguments as in [14], Theorem 3.1, Chap. 1. In the course of
this paper we will frequently operate on subsequences which we will, for the sake of
readability, not always denote specifically.

In the first part of the proof we consider the global regularizations max g
ε and

max G
ε . For the sake of simplicity we give the proof for max g

ε only, but all of our
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arguments apply to the C2-regularization. Let v ∈ K be arbitrarily fixed. Due to the
monotonicity of max g

ε and Lemma 2.1(ii) we estimate

0 ≤
(
−max g

ε(α)(0,−yα) + max g

ε(α)(0,−v), yα − v
)

= −
(

max g

ε(α)
(0,−yα), yα − v

)
. (2.7)

Using (2.6) we then obtain

〈Ayα, yα〉 ≤ 〈uα + f,yα − v〉 + 〈Ayα, v〉. (2.8)

Hence the boundedness and the coercivity of A yield the boundedness of {yα} in V .
From (2.6) we infer

‖max g

ε(α)(0,−yα)‖V ∗ = α‖Ayα − uα − f ‖V ∗ = O(α),

and therefore

max g

ε(α)(0,−yα) → 0 in V ∗ if α → 0. (2.9)

As {yα} is bounded, there exists ȳ ∈ V such that (on a subsequence denoted the same)
yα → ȳ weakly in V and strongly in L2(�). Since {ε(α)} is a bounded sequence there
exists yet another subsequence and a non-negative parameter ε̄, such that ε(α) → ε̄

on that subsequence. Due to the Lipschitz properties (v) and (vi) of Lemma 2.1 we
find that

‖max g
ε̄ (0,−ȳ) − max g

ε(α)(0,−yα)‖V ∗

≤ ‖max g
ε̄ (0,−ȳ) − max g

ε̄ (0,−yα)‖V ∗ + ‖max g
ε̄ (0,−yα) − max g

ε(α)(0,−yα)‖V ∗

≤ C (‖ȳ − yα‖ + |ε̄ − ε(α)|) → 0.

This, combined with (2.9), shows that max g
ε̄ (0,−ȳ) = 0 in V ∗. Due to the density of

V in L2(�) we find that max g
ε̄ (0,−ȳ) also vanishes in L2(�), hence ȳ ∈ K . Due to

the weak convergence of yα and the coercivity of A, taking the lim infα→0 in (2.8)
yields

〈Aȳ, ȳ〉 ≤ 〈u + f, ȳ − v〉 + 〈Aȳ, v〉, ∀v ∈ K.

Therefore ȳ = y(u). Due to the uniqueness of the solution of the variational inequal-
ity we conclude that in fact the whole sequence {yα} converges (not just a subse-
quence). Finally the strong convergence of yα follows from the coercivity of A, (2.6)
and (2.7) since

CC‖yα − ȳ‖2
V ≤ 〈A(yα − ȳ), yα − ȳ〉

= 〈uα + f,yα − ȳ〉 + 1

α
(max g

ε(α)(0,−yα), yα − ȳ) − 〈Aȳ, yα − ȳ〉
≤ 〈uα + f,yα − ȳ〉 − 〈Aȳ, yα − ȳ〉 → 0.
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The proof for max l
ε uses the same arguments, but replaces the estimate (2.7) by

0 ≤ −
(

max l
ε(α)(0,−yα), yα − v

)
+ 1

4
meas(�)1/2ε(α)‖yα − v‖

and uses ε(α)/α → 0. �

3 The optimal control problem

In this paper we solve the MPEC (P ) by approximating the lower-level problem,
i.e., the variational inequality, using the techniques developed in the previous section.
For each set of parameters (α, ε) > 0 we therefore define the smoothed penalized
problem (Pα,ε) by

min J (y,u) = 1

2
‖y − yd‖2

L2 + ν

2
‖u‖2

L2 over y ∈ V, u ∈ L2(�)

s.t. Ay − 1

α
max ε(0,−y) = u + f,

a ≤ u ≤ b a.e. in �,

(3.1)

where max ε is a generic notation that stands for either of the regularizations intro-
duced in Sect. 2. Using arguments similar to those in [24] and considering the prop-
erties listed in Lemma 2.1 the existence of a global optimal point for problem (Pα,ε)

can be shown. The following result describes the convergence behavior of globally
optimal points.

Theorem 3.1 Let α and ε(α) be given such that Assumption 2.1 is satisfied and
denote by (yα,uα) the global solutions of the smoothed-penalized problem (Pα,ε).
Then there exists a global optimal point (ȳ, ū) ∈ V ×L2(�) for the original problem
(P ) such that

(yα,uα) → (ȳ, ū) in V × L2(�).

Proof Let ũ ∈ Uad be fixed and denote by yα(ũ) the solution of the regularized pe-
nalized equation (2.6) with right hand side ũ + f . Using Theorem 2.3 we can then
estimate

J (yα,uα) ≤ J (yα(ũ), ũ) = 1

2
‖yα(ũ) − yd‖2

L2 + ν

2
‖ũ‖2

L2 ≤ C ∀α > 0,

with a constant C > 0 independent of α. Hence, from the definition of J we find that
{uα} is bounded in L2(�) and there exists ū ∈ L2(�) such that on a subsequence
(also denoted by {uα}) uα converges to ū weakly in L2(�) and strongly in H−1(�).
As Uad is closed and convex it is also weakly closed and ū ∈ Uad . Using Theo-
rem 2.3 again we find that yα → ȳ := y(ū) in V . Therefore, (ȳ, ū) is feasible for the
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MPEC (P ). Now let (y∗, u∗) ∈ V × L2(�) be a global solution of (P ). Due to the
lower semicontinuity of the involved norm and Theorem 2.3 we find that

J (y∗, u∗) ≤ J (ȳ, ū) ≤ lim inf
α→0

J (yα,uα) ≤ lim sup
α→0

J (yα,uα)

≤ lim sup
α→0

J (yα(u∗), u∗) = lim sup
α→0

(
1

2
‖yα(u∗) − yd‖2

L2 + ν

2
‖u∗‖2

L2

)

= J (y∗, u∗).

Therefore, (ȳ, ū) is optimal for (P ). Furthermore we see that J (yα,uα) → J (ȳ, ū).
Hence, ‖uα‖2

L2 → ‖ū‖2
L2 , which, together with the weak convergence of {uα}, im-

plies strong convergence of {uα} in L2(�). �

From an algorithmic point of view, however, finding global solutions of an opti-
mization problem can be a difficult task. It is therefore preferable to use an analysis
that relies on stationary points only. In [24] some stationarity concepts resembling
those of finite dimensional MPECs (see, e.g., [32, 33, 35]) were introduced for the
infinite dimensional problem (1.1).

In this section we derive optimality conditions for the smoothed-penalized prob-
lem and show that accumulation points of such stationary points satisfy the conditions
of so called E -almost C-stationarity for the original problem (P ); see Definition 3.2,
which generalizes the corresponding definitions to accommodate the bilateral control
constraints. For the sake of brevity we set �+ := {x ∈ � : y(x) > 0}.

Definition 3.2 The point (y,u) ∈ V × L2(�) is called E -almost C-stationary for
problem (1.1), if there exist ξ ∈ L2(�), p ∈ V and λ ∈ V ∗ such that the following
system is satisfied:

y − λ + A∗p = yd, (3.2a)

Ay − u − ξ = f, (3.2b)

u ∈ Uad, (νu − p,v − u) ≥ 0 ∀v ∈ Uad, (3.2c)

ξ ≥ 0 a.e., y ≥ 0, (y, ξ) = 0, (3.2d)

p = 0 a.e. in {ξ > 0}, (3.2e)

〈λ,p〉 ≤ 0, 〈λ,y〉 = 0, (3.2f)

and furthermore for every τ >0 there exists a subset Eτ ⊂�+ with meas(�+\Eτ )≤ τ

such that

〈λ,φ〉 = 0 ∀φ ∈ V, φ = 0 a.e. in � \ Eτ . (3.3)

Note that in the absence of control constraints (Uad = L2(�)) the optimality con-
dition (3.2c) reduces to νu = p ∈ V . Hence the control u gains regularity. For this
particular problem the concept of strong stationarity was introduced in [24], where
individual sign conditions for the multipliers p and λ are imposed. If Uad = L2(�),
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a point (y,u, ξ,p,λ) is called strongly stationary for the MPEC (1.1) if (3.2a)–(3.2e)
hold true and further (3.2f) and (3.3) are replaced by the (stronger) conditions

p ≤ 0 a.e. in B, (3.4)

〈λ,φ〉 ≥ 0, ∀φ ∈ V, φ ≥ 0 a.e. in B, φ = 0 a.e. in {ξ > 0}, (3.5)

where B := {y = 0} ∩ {ξ = 0} is the so-called biactive set.
As the penalty approach acts as a relaxation of the feasible domain of the MPEC,

standard theory can be applied to derive first order optimality conditions for the
smoothed penalized problem (Pα,ε); see, e.g., Zowe and Kurcyusz [36]. For details,
see [26].

Theorem 3.3 Let α, ε > 0 and (y,u) ∈ V × L2(�) be an optimal solution of (3.1).
Then there exists an adjoint state p ∈ V such that

y + A∗p + 1

α
max ′

ε(0,−y)p = yd, (3.6a)

Ay − 1

α
max ε(0,−y) = u + f, (3.6b)

u ∈ Uad, (νu − p,v − u) ≥ 0 ∀v ∈ Uad. (3.6c)

Note that the variational inequality (3.6c) (or (3.2c)) is equivalent to

u = 1

ν
p − max

(
0,

1

ν
p − b

)
+ max

(
0,−

(
1

ν
p − a

))
, (3.7)

which is further equivalent to the projection

u = P[a,b]
(

1

ν
p

)
:=

⎧
⎪⎨

⎪⎩

a where 1
ν
p < a,

1
ν
p where a ≤ 1

ν
p ≤ b,

b where 1
ν
p > b,

(3.8)

see, e.g., [25, 34]. We now state the main result of this paper describing the conver-
gence properties of stationary points of the smoothed penalized problem with respect
to the penalty and smoothing parameters.

Theorem 3.4 Consider the smooth penalized problem with bounds a, b ∈ L2(�) and
a C1-regularization of the max-operator. Let {α} and {ε(α)} satisfy Assumption 2.1.
For every α > 0 let (yα,uα) ∈ V × L2(�) be stationary points of the smooth penal-
ized problem (3.1) with corresponding adjoint state pα ⊂ V .

Then there exist (ỹ, ũ, ξ̃ , p̃, λ̃) ∈ V × L2(�) × L2(�) × V × V ∗ and a sub-
sequence (again denoted by {α}) such that yα → ỹ in V , uα → ũ in L2(�),
1
α

max ε(α)(0,−yα) → ξ̃ in V ∗, pα ⇀ p̃ in V and − 1
α

max′
ε(α)(0,−yα)pα ⇀ λ̃ in

V ∗, where (ỹ, ũ) is E -almost C-stationary for the MPEC (1.1).

Proof For the sake of readability we omit the argument of the smoothing parameter
and write ε instead of ε(α).
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(i) Convergence and feasibility of {(y,u, ξ,p)} First we show the convergence
properties of the sequences {yα}, {uα}, {pα}, {max ε(α)(0,−yα)} and verify that
the limit elements satisfy equations (3.2b)–(3.2d): From the bilateral constraints
uα ∈ Uad it follows that {‖uα‖L2} is bounded. Therefore there exists ũ ∈ L2(�) and
a subsequence (denoted the same) such that uα converges to ũ weakly in L2(�) and
strongly in V ∗. The sets

{v ∈ L2(�) : v ≥ a a.e. in �} and {v ∈ L2(�) : v ≤ b a.e. in �}
are convex and closed and therefore weakly closed. Hence the limit element satisfies

a ≤ ũ ≤ b a.e. in �. (3.9)

Using the convergence of uα in V ∗, Theorem 2.3 yields the existence of ỹ ∈ V with
yα → ỹ in V and (ỹ, ũ) solving the variational inequality (1.1a). Note that due to the
regularity of the domain � and the right hand side ũ + f the solution ỹ gains regu-
larity and is in H 2(�) ∩ V . Hence introducing a slack variable (Lagrange multiplier)
ξ̃ ∈ L2(�) the VI can equivalently be written as

Aỹ − ξ̃ = ũ + f, ỹ ≥ 0, ξ̃ ≥ 0, (ỹ, ξ̃ )L2 = 0,

see, e.g., [25]. Setting

ξα := 1

α
max ε(0,−yα),

we find that

ξα = Ayα − uα − f → Aỹ − ũ − f = ξ̃ in V ∗.

Multiplying the adjoint equation (3.6a) by pα and using the coercivity of the opera-
tor A and the fact that max ′

ε(0, r) ∈ [0,1] for all ε > 0 and r ∈ R, we estimate

CC‖pα‖2
V ≤ 〈A∗pα,pα〉 = 〈yd − yα,pα〉 − 1

α

∫

�

max ′
ε(0,−yα)p2

α dx

≤ ‖yd − yα‖V ∗‖pα‖V .

Therefore, {pα} is bounded in V and there exists another subsequence (again de-
noted the same) and an element p̃ ∈ V such that pα → p̃ weakly in V and strongly
in L2(�). Due to the Lipschitz-continuity of the max(·,0)-operator from L2(�) to
L2(�), (3.7) yields

uα = 1

ν
pα − max

(
0,

1

ν
pα − b

)
+ max

(
0,−

(
1

ν
pα − a

))

→ 1

ν
p̃ − max

(
0,

1

ν
p̃ − b

)
+ max

(
0,−

(
1

ν
p̃ − a

))
= ũ,

where the convergence is to be understood in L2(�).
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(ii) Convergence and feasibility of λ In the next step we show the convergence of
{− 1

α
max ′

ε(0,−yα)pα} to λ̃, satisfying (3.2a), (3.2f) and (3.3). Setting

λα := − 1

α
max ′

ε(0,−yα)pα,

and considering the adjoint equations (3.6a) and (3.2a), we find that λα ⇀ λ̃ in V ∗.
Next we show that 〈λ̃, ỹ〉 = 0.

For max g
ε we find that (max g

ε )
′(0, r) = 0 for all r ≤ 0. Hence

〈λα, y+
α 〉 =

〈
− 1

α
(max g

ε )
′(0,−yα)pα, y+

α

〉
= 0 ∀α > 0,

where y+
α := max(0, yα). As yα → ỹ in V , also y+

α → ỹ+ = ỹ in V (see Lemma A.1
in the Appendix). Therefore,

〈λ̃, ỹ〉 = lim
α→0

〈λα, y+
α 〉 = lim

α→0
0 = 0.

For max l
ε it is easy to see that (max l

ε)
′(0, r) ∈ [0, 1

2 ] for all r ≤ 0. Exploiting the fact
that ε/α → 0 we find that

|〈λα, y+
α 〉| ≤ 1

α

∫

{0≤yα≤ε}

∣∣∣(max l
ε)

′(0,−yα)pαyα

∣∣∣ dx ≤ ε

2α

∫

{0≤yα≤ε}
|pα| dx → 0,

as pα is bounded in L1(�). Hence also in this case 〈λ̃, ỹ〉 = 0.
We now show that 〈λ̃, p̃〉 ≤ 0. Multiplying the adjoint equation (3.6a) by pα yields

〈A∗pα,pα〉 + 〈yα − yd,pα〉 = − 1

α
〈max ′

ε(0,−yα)pα,pα〉 ≤ 0 ∀α > 0.

Due to boundedness and coercivity of A∗, we find that

〈A∗p̃, p̃〉 + 〈ỹ − yd, p̃〉 ≤ lim inf
α→0

(〈A∗pα,pα〉 + 〈yα − yd,pα〉) ≤ 0.

Using (3.2a), we see that this is equivalent to

〈λ̃, p̃〉 ≤ 0.

Next we verify condition (3.3) for λ̃. Note that yα → ỹ in V and hence also in L2(�).
Therefore there exists a subsequence (denoted the same) such that yα → ỹ point-wise
a.e. in �. Now let x ∈ {ỹ > 0}. Then there exists α1 > 0 such that

yα(x) >
ỹ(x)

2
> 0

for all α < α1. If we use regularization max g
ε , we immediately see that for all α < α1

this yields that (max g
ε )

′(0,−yα(x)) = 0 and hence λα(x) = 0. If regularization max l
ε
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is used, we furthermore know that ε(α) → 0. Hence there exists α2 > 0 such that

ε(α) <
ỹ(x)

2

for all α < α2. We therefore find that

−yα(x) < −ε(α)

for all α < min(α1, α2), and hence λα(x) = 0 for all α < min(α1, α2). We therefore
find that in both cases

λα → 0 p.w. a.e. in {ỹ > 0}.
Using Egorov’s theorem this yields the condition for λ̃ required for E -almost
C-stationarity.

(iii) Condition for p̃ It remains to show that p̃ satisfies (3.2e). First we take a look
at the global regularization max g

ε . For the sake of brevity we define the sets

M1 = M1(α) := {0 < −yα < ε}, M2 = M2(α) := {−yα ≥ ε}.

Due to the convergence of (ξα, yα) → 0 we find that

(ξα, yα) = 1

α

∫

M1

1

2ε
y3
α + 1

α

∫

M2

(
−yα − ε

2

)
yα → 0. (3.10)

As both terms of the sum are non-positive we see that they both individually tend to
zero. For the first term on the right hand side of (3.10) this yields

∥∥∥∥
1√
αε

χM1 |yα|3/2
∥∥∥∥

L2
→ 0. (3.11)

Further note that due to the definition of M2 we have the estimate

∣∣∣∣yα(x) + ε

2

∣∣∣∣ = −yα(x) − ε

2
≤ −yα(x) = |yα(x)|

for almost every x ∈ M2. This estimate together with the second term of the sum on
the right hand side of (3.10) then yields

∥∥∥∥
1√
α

χM2

(
yα + ε

2

)∥∥∥∥
L2

→ 0. (3.12)

Next recall that {λα} and {pα} are bounded in V ∗ and V , respectively. Therefore
|〈λα,pα〉| ≤ C for some constant C > 0 independent of α. The definition of λα then
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yields

|〈λα,pα〉| =

∣∣∣∣∣∣∣
− 1

α

∫

M1

1

ε
(−yα)p2

α − 1

α

∫

M2

p2
α

∣∣∣∣∣∣∣

= 1

α

∫

M1

1

ε
(−yα)p2

α + 1

α

∫

M2

p2
α ≤ C. (3.13)

As again both terms of the sum have the same sign, we find that they are both indi-
vidually bounded by C, i.e.,

∥∥∥∥
1√
αε

χM1 |yα|1/2pα

∥∥∥∥
2

L2
≤ C and

∥∥∥∥
1√
α

χM2pα

∥∥∥∥
2

L2
≤ C. (3.14)

Furthermore as both integrands are non-negative we find that they remain bounded if
we only integrate over a subset. Hence

∥∥∥∥
1√
αε

χM1 |yα|1/2p+
α

∥∥∥∥
2

L2
≤ C and

∥∥∥∥
1√
α

χM2p
+
α

∥∥∥∥
2

L2
≤ C. (3.15)

Combining (3.11), (3.12) and (3.14), we find that

(ξα,pα) = 1

2

(
1√
αε

χM1 |yα|3/2,
1√
αε

χM1 |yα|1/2pα

)

−
(

1√
α

χM2

(
yα + ε

2

)
,

1√
α

χM2pα

)
→ 0. (3.16)

Therefore

(ξ̃ , p̃) = 0. (3.17)

Note that due to (3.15) the computations in (3.16) also apply if pα is replaced by p+
α .

Therefore using the weak convergence of p+
α to p̃+ in V (see Lemma A.1) we find

that also (ξ̃ , p̃+) = 0. The non-negativity of ξ̃ then ensures that p̃ = 0 a.e. in {ξ̃ > 0}.
Finally we show that p̃ = 0 a.e. in {ξ̃ > 0} if regularization max l

ε is used. The
proof is along the same lines as for the global regularization but is somewhat sim-
plified by the fact that we can use the property ε/α → 0. We find that the part of ξα

defined on {|yα| < ε} can be neglected. In fact

‖ξα‖2
L2({|yα |<ε}) = 1

α2

∫

{|yα |<ε}

(
1

4ε
y2
α − 1

2
yα + ε

4

)2

≤
(

ε

α

)2 ∫

{|yα |<ε}

(
1

4
+ 1

2
+ 1

4

)
→ 0.
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Hence we find that

ξ̂α := − 1

α
χM2yα → ξ̃ in V ∗. (3.18)

Using the boundedness of 〈λα,pα〉 it can be shown that both ‖ 1√
α
χM2pα‖L2 and

‖ 1√
α
χM2p

+
α ‖L2 are bounded. Furthermore it follows from the fact that (ξ̂α, yα) → 0

that ‖ 1√
α
χM2yα‖L2 → 0. Then

(ξ̂α,pα) = −
(

1√
α

χM2yα,
1√
α

χM2pα

)
→ 0.

This yields (ξ̃ , p̃) = 0 and similarly (ξ̃ , p̃+) = 0 and thus the desired property
for p̃. �

We note that the availability of a stronger stationarity principle might depend on
the structure of the active and inactive sets of both, the control and the state variable.

Remark 3.5 (i) The results of Theorem 3.4 remain true if max g
ε is replaced by max G

ε .
In the proof the specific definition of the operator is only used to show that p̃ = 0 a.e.
on {ξ̃ > 0}. For the operator max G

ε the same proof technique can be employed as for
max g

ε , if the inequality

0 ≤ y2
α

ε2
+ y3

α

2ε3
≤ 1

2

(
3y2

α

ε2
+ 2y3

α

ε3

)
a.e. in M1

is used in step (3.16).
(ii) If a ≡ −∞ or b ≡ ∞ is chosen, the results of Theorem 3.4 hold true if addi-

tionally the boundedness of {uα} in L2(�) is assumed. In the control-unconstrained
case, i.e., a ≡ −∞, b ≡ ∞, the optimality condition (3.6c) is simplified to uα = 1

ν
pα .

Therefore uα adopts the regularity of pα and we find that ũ ∈ V and uα ⇀ ũ in V .

4 The algorithm

The constructive nature of Theorem 3.4 implies an infinite dimensional solution algo-
rithm for the MPEC problem (P ), where the solution is approximated by the solution
of the smoothed penalized problems (Pα,ε) along a sequence {(α, ε(α))}. This outer
algorithm is described in Algorithm 1. Theorem 3.4 then yields the convergence of
the iterates to a point that is E -almost C-stationary for the MPEC problem. The state
variable yα and the adjoint pα converge in V strongly and weakly, respectively. In
the control unconstrained case the control uα also converges weakly in V . Whereas
if point-wise bilateral constraints are imposed on the control, then uα only converges
(strongly) in L2(�). Numerical results illustrating the approximation error of the
state yα with respect to the penalty parameter are given in Sect. 5.3.
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Algorithm 1 (Outer Algorithm)
Data: yd, f , α0, ε0.

1: Choose (y0, u0,p0) and set k := 0.
2: repeat
3: Solve the first order system (3.6) with (α, ε) = (αk, εk), to obtain (yk+1,

uk+1,pk+1) using initial values (yk, uk,pk) for solution algorithm.
4: Choose αk+1 < αk and εk+1.
5: Set k := k + 1.

6: until some stopping rule is satisfied.

4.1 Solving the subproblem

For the numerical realization of Algorithm 1 the subproblems are discretized using
a uniform grid with mesh size h. The resulting large nonlinear systems are solved
by employing two different multigrid techniques. The first approach uses the Full
Approximation Scheme (FAS) due to Brandt [10], to solve the optimality system
for the state y and the adjoint state p (see also [7–9]). In the second approach the
optimality conditions are reduced to a fixed-point equation in the control u and solved
using a nonlinear multigrid method of second kind (see Hackbusch, [16–20]).

4.1.1 FAS multigrid

In the optimality system (3.6) equation (3.7) can be used to eliminate the control u.
The resulting reduced nonlinear system reads

y + A∗p + 1

α
max ′

ε(0,−y)p = yd,

Ay − 1

α
max ε(0,−y) − 1

ν
p + max

(
0,

1

ν
p − b

)

− max

(
0,−1

ν
p + a

)
= f.

(4.1)

This system is subsequently solved using a FAS method [10], which is a natural
choice when solving nonlinear PDE-based problems. We briefly outline the method
and propose a smoothing technique which is tailored to the specific problem under
consideration.

For a given sequence of grids let h denote the size of the current grid and H > h

denote the mesh size of the next coarser grid. Furthermore let Uh and UH denote
the finite dimensional subspaces of L2(�) corresponding to the mesh sizes h and H .
Let IH

h : Uh → UH and Î H
h : Uh → UH denote the restriction operators using full

weighting and straight injection, respectively, and let Ih
H : UH → Uh denote the in-

terpolation operator using linear interpolation (see, e.g., [20] for the definition of the
operators). Let yh

d , f h denote the discretized data and let hmax > 0 denote the grid
size of the coarsest mesh, i.e., the mesh on which the system is solved exactly. Then



128 M. Hintermüller, I. Kopacka

Algorithm 2 (FAS-algorithm)

Data: (yh
d , f h), initial values (yh,ph).

1: if h = hmax then
2: solve (4.1) exactly.
3: else
4: Do νpre pre-smoothing steps.
5: Compute residuals rh

a = yh
d − yh − (Ah)∗ph − 1

α
max ′

ε(0,−yh)ph and rh
s =

f h − Ahyh + 1
α

max ε(0,−yh) − 1
ν
ph.

6: Restrict residuals to coarser grid using full weighting rH
a = IH

h rh
a , rH

s = IH
h rh

s .
7: Restrict (yh,ph) to coarser grid using straight injection yH = Î H

h yh, pH =
ÎH
h ph.

8: Compute right hand sides for coarse problem yH
d = rH

a + yH + (AH )∗pH +
1
α

max ε
′(0,−yH )pH , f H = rH

s + AH yH − 1
α

max ε(0,−yH ) − 1
ν
pH .

9: Apply γ -times the FAS-algorithm to coarse grid problem with h = H , right
hand side (yH

d , f H ) and initial values (yH ,pH ) to compute new approxima-
tion (ỹH , p̃H ).

10: Coarse grid correction: yh = yh + Ih
H (ỹH − yH ), ph = ph + Ih

H (p̃H − pH ),
where Ih

H denotes the interpolation operator using linear interpolation.
11: Do νpost post-smoothing steps.
12: end if

the FAS-algorithm for solving the discrete optimality conditions is given by Algo-
rithm 2 (see, e.g., [8, 12]). Note that in step 9 the algorithm is recursively applied γ -
times. Here γ ∈ N is called the cycle index. For γ = 1 the algorithm defines a V-cycle
and for γ = 2 a W-cycle. On the coarsest mesh the system is solved exactly. This ex-
act solve is realized using an iterative solver, e.g., a semismooth-Newton method,
with a small stopping tolerance (e.g.,

√
εm, where εm is the machine precision), [23].

The integers νpre and νpost denote the number of smoothing steps that are applied to
the approximations of the solution. These numbers are crucial for the convergence of
the algorithm. For well conditioned problems νpre = νpost = 2 is usually sufficient but
as the conditioning becomes worse (e.g., the cost of the control ν becomes small) the
number of necessary smoothing steps may increase.

As a smoothing technique we apply a collective nonlinear Gauss-Seidel scheme
where the nonlinear scalar equations are solved analytically. For a standard five-point
finite difference stencil, the discretized version of system (4.1) is:

yij + 4

h2
pij + 1

α
max ′

ε(0,−yij )pij = Bij ,

4

h2
yij − 1

α
max ε(0,−yij ) − 1

ν
pij + max

(
0,

1

ν
pij − bij

)

+ max

(
0,−1

ν
pij + aij

)
= Aij

(4.2)
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with

Bij = (yd)ij + 1

h2
(pi+1,j + pi−1,j + pi,j+1 + pi,j−1),

Aij = fij + 1

h2
(yi+1,j + yi−1,j + yi,j+1 + yi,j−1)

for all inner grid points (i, j). For given vectors y(k−1) and p(k−1) the smoothed
approximations y(k) and p(k) are obtained by solving (4.2) with right hand sides

B
(k)
ij = (yd)ij + 1

h2
(p

(k−1)
i+1,j + p

(k)
i−1,j + p

(k−1)
i,j+1 + p

(k)
i,j−1),

A
(k)
ij = fij + 1

h2
(y

(k−1)
i+1,j + y

(k)
i−1,j + y

(k−1)
i,j+1 + y

(k)
i,j−1)

for each grid point, looping over the columns and rows. Depending on the realization
of max ε , the Gauss-Seidel system (4.2) can be reduced to a cubic equation if a C1-
regularization is used and to an equation of fifth order if the C2-regularization is used.
As the system has to be solved for every grid point in every smoothing iteration the
use of a cost efficient, yet still accurate solution method is of importance. In the C1-
case the cubic equation is solved analytically using Cardano’s method. The solution
of a polynomial of order five, however, is more intricate and in general finding an
analytical solution is a difficult task. In view of the computational cost the use of the
C1-regularization therefore seems favorable.

For the overall algorithm the FAS-method is incorporated into a nested iteration
technique, utilizing a grid hierarchy for the outer loop as well, where the penalty
parameter α is coupled with the mesh size h and an inexact solution technique is used.
In each outer iteration the subproblem is solved on a fixed grid for fixed parameters
(α, ε) using the FAS-method of Algorithm 2 with a stopping tolerance depending
on the current mesh size. After each outer iteration α is decreased. If the penalty
parameter drops below a threshold depending on the mesh size, e.g.,

α ≤ Ch2/s (4.3)

where C > 0 is a suitably chosen constant (e.g., 0.5), and s ∈ (0.5,1), then the mesh
is refined. This condition will be motivated in more detail in Sect. 5.3. The outer
algorithm terminates when αk satisfies (4.3) for the finest mesh.

The results of our numerical tests runs are given in Sect. 5.5. Although the per-
formance of the method is good, the convergence of the algorithm is still an issue
which cannot be guaranteed at this point. We therefore present an alternative multi-
grid method together with a convergence analysis.

4.1.2 Multigrid method of the second kind

An alternative to the FAS-method is the so called “multigrid iteration of the second
kind”, a scheme designed to solve fixed-point equations. It uses the multigrid frame-
work, employing Picard’s iteration as smoothing step. The convergence of the Picard
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iteration (contraction of the operator), however, is not necessary for the convergence
of the overall algorithm.

In order to apply the multigrid method of second kind we reformulate the optimal-
ity conditions of (Pα,ε) as a fixed point problem. We introduce the control-to-state
mapping �S : L2(�) → Y with Y := V ∩ C(�̄), i.e., for a given control v ∈ L2(�)

we define �S(v) = yα(v) as the solution of the state equation

Ayα(v) − 1

α
max ε(α)(0,−yα(v)) = f + v.

We further define the state-to-adjoint mapping �A : Y → V in a similar way. For
given state y the corresponding adjoint state �A(y) = pα(y) is defined as the solution
of the adjoint equation

A∗pα(y) + 1

α
max ′

ε(α)(0,−y)pα(y) = yd − y. (4.4)

The optimality conditions for (Pα,ε) are then equivalent to the fixed-point problem

u = F(u), (4.5)

with the nonlinear operator F : L2(�) → L2(�) given by F(v) = P[a,b](K(v)) for
every v ∈ L2(�), where K = 1

ν
�A ◦�S and P is the projection defined in (3.8). Note

that the evaluation of the operator K requires the solution of one semilinear and one
linear elliptic equation.

For the multigrid framework we denote the discrete problems, obtained by dis-
cretizing the differential operators and the data by

uh = Fh(uh). (4.6)

Furthermore we consider perturbed problems of the form

uh = Fh(uh) + dh,

with sufficiently small perturbations dh. The recursive multigrid method is described
in Algorithm 3.

Algorithm 3 (MG2: Recursive multigrid algorithm of second kind)

Data: perturbation dh, initial value uh.
1: if h = hmax then
2: solve (4.6) exactly.
3: else
4: uh ← Fh(uh) + dh (smoothing).
5: dH := IH

h

(
uh − Fh(uh) − dh

)
.

6: Apply MG2(dH , ũH ) on the next coarser mesh twice to obtain uH . Here ũH

is the solution of (4.6) on the next coarser mesh.
7: uh := uh − Ih

H

(
uH − ũH

)
(coarse grid correction).

8: end if
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Note that in step 5 already the newly assigned uh of step 4 is used. Further note
that for the application of Algorithm 3 to (4.6) on a given mesh the exact solution of
the problem is required on every coarser mesh (ũH is required in step 7). These val-
ues are obtained by using a coarse-to-fine method in an outer loop (see the “for-loop”
in Algorithm 4): The optimality system (4.6) is solved on the coarsest given mesh
of mesh size hmax using a non-smooth solver, e.g., a semismooth Newton method,
[23]. Using this information, the problem is then solved on the next finer grid using
the multigrid method. The exact solutions on the respective next coarser meshes are
hence obtained utilizing a nested iteration initialization technique, similar to the full
multigrid idea [20]. Solving problem (4.6) on the finest mesh of mesh size hmin there-
fore requires several applications of Algorithm 3 on the various meshes, resulting in
a relatively large computational cost.

For fixed (α, ε) only the non-smooth solver on the coarsest mesh requires a good
initialization, as the multigrid algorithms on the various meshes are always initial-
ized by ũH on the respective next coarser meshes. The continuation method via the
penalty and the smoothing parameter (Algorithm 1) described in the previous section
is therefore only necessary for the non-smooth solver on the coarsest grid of mesh
size hmax = h0 (see the “while-loop” in Algorithm 4). The complete method is given
in Algorithm 4.

Algorithm 4 (Outer loop for a multigrid algorithm of second kind)

Data: (α1, ε1, αmin) > 0, initial guess u0 on mesh h0, sequence of grids {hj }Mj=0. Set
k = 1.

1: while αk > αmin do
2: Compute solution uk of (4.6) with α = αk , ε = εk and initial guess uk−1 on

grid h0 using semismooth Newton.
3: Choose αk+1, εk+1 and set k := k + 1.
4: end while
5: Set h := h0, ũh := uk−1, α := αk−1, ε := εk−1.
6: for j = 1 to M do
7: Set H := h, h := hj .
8: Compute ũh, the result of MG2(0, I h

H ũH ).
9: end for

In [18] Hackbusch gives conditions for the convergence of the nonlinear multigrid-
method of second kind. For suitable choices of the restriction and the prolongation
operators it is sufficient to show that F (and the discrete operators Fh) satisfies a
Lipschitz condition of the form

F(v) − F(w) = L(v,w)(v − w), ∀v,w ∈ L2(�), (4.7)

where L is a bounded linear operator, i.e., there exists C1 > 0 such that

‖L(v,w)‖L2,L2 ≤ C1, ∀v,w ∈ L2(�). (4.8)
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Furthermore we have to show that L(·, ·) is continuous at the solution u∗ of (4.5),
i.e.,

‖L(v,w) − L(u∗, u∗)‖L2,L2 → 0, if v,w → u∗ (4.9)

and that I − L(u∗, u∗) is invertible, i.e., there exists a constant C2 > 0, such that

‖(I − L(u∗, u∗))−1‖L2,L2 ≤ C2. (4.10)

If these conditions hold, then the algorithm converges for sufficiently small values
of hmax. We observe that such a property of L(·, ·) can only hold true in non-
degenerate situations, i.e., when the set where F is not differentiable has measure
zero.

Motivated by [17] we construct the operator L using a mean-value representa-
tion for which we require the differentiability of the control-to-adjoint mapping K .
The operator �S , mapping the control to the state variable, is Fréchet differentiable
from L2(�) to Y , see, e.g., [34]. The adjoint equation, however, contains the term
max ′

ε(0,−y). Hence �A need not be differentiable if the regularization max ε is
only C1. We will therefore restrict ourselves to the C2-regularization for this multi-
grid method and show that in this case the state-to-adjoint mapping is differentiable
from Y to V .

Lemma 4.1 Let �A : Y → V denote the state-to-adjoint operator defined by (4.4)
with max ε = max G

ε . Then �A is Fréchet differentiable for every y ∈ Y .

The proof of Lemma 4.1 can be found in the appendix.
Using the chain rule we therefore find that the composite mapping K = 1

ν
�A ◦�S

is Fréchet differentiable from L2(�) to V . Setting B(v,w) = ∫ 1
0 K ′(w+ t (v−w))dt

for every v,w ∈ L2(�), Taylor’s theorem yields

K(v) − K(w) = B(v,w)(v − w). (4.11)

We can now define the Lipschitz operator L : L2(�) × L2(�) → L(L2(�),L2(�))

by setting L(v,w) := θ(v,w)B(v,w) with θ : L2(�)×L2(�) → L∞(�) defined by

θ(v,w) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 in {K(v) < a} ∩ {K(w) < a},
1 in {K(v) ∈ [a, b]} ∩ {K(w) ∈ [a, b]},
0 in {K(v) > b} ∩ {K(w) > b},
(K(v) − a)/(B(v,w)(v − w)) in {K(v) ∈ [a, b]} ∩ {K(w) < a},
(a − K(w))/(B(v,w)(v − w)) in {K(v) < a} ∩ {K(w) ∈ [a, b]},
(K(v) − b)/(B(v,w)(v − w)) in {K(v) ∈ [a, b]} ∩ {K(w) > b},
(b − K(w))/(B(v,w)(v − w)) in {K(v) > b} ∩ {K(w) ∈ [a, b]},
(b − a)/(B(v,w)(v − w)) in {K(v) > b} ∩ {K(w) < a},
(a − b)/(B(v,w)(v − w)) in {K(v) < a} ∩ {K(w) > b}.

(4.12)
With this choice

F(v) − F(w) = P[a,b](K(v)) − P[a,b](K(w)) = L(v,w)(v − w) ∀v,w,∈ L2(�)
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holds true. We can now formulate the following conditions for the convergence of
Algorithm 3.

Lemma 4.2 Let u∗ be the solution of the fixed-point problem (4.5) with correspond-
ing state and adjoint state (y∗,p∗) and assume that

meas{x ∈ � : |K(u∗) − a| ≤ τ } → 0 as τ → 0, (4.13a)

meas{x ∈ � : |K(u∗) − b| ≤ τ } → 0 as τ → 0. (4.13b)

Further, we assume that (4.13) also holds for the discrete problems. If, moreover,

1 − α−1 max ′′
ε (0,−y∗)p∗ ≥ 0 a.e. in �, (4.14)

then the method described in Algorithm 3 converges for sufficiently small mesh sizes
hmax.

Proof Using Corollary 5.3 of [18], it suffices to show that (4.7)–(4.9) are satisfied for
F and its discretization Fh. We give the proof for the continuous operator, analogous
arguments can be used for the discrete operator.

Equation (4.7) holds true due to the definition of the operator L. From (4.12) it
follows that the operator θ takes values only in [0,1]. We show this exemplarily for
the case where K(v)(x) < a(x) and K(w)(x) ∈ [a(x), b(x)]. Here we estimate

0 ≥ a(x) − K(w)(x) > a(x) − K(w)(x) + (K(v)(x) − a(x))

= K(v)(x) − K(w)(x) = B(v,w)(v − w)(x).

Therefore

0 ≤ (a(x) − K(w)(x))/(B(v,w)(v − w))(x) < 1.

For the other cases the proof is similar. As K is Fréchet differentiable the differential
K ′ is bounded in a neighborhood of u∗ and hence B is bounded in a neighborhood
of (u∗, u∗). As a consequence L is also bounded in that neighborhood. Therefore it
remains to show that (4.9) is satisfied.

For given v,w we decompose the domain � into sets according to the feasibility
of K(v) and K(w).

S1 := {K(u∗) < a, K(v) < a, K(w) < a},
S2 := {K(u∗) ∈ [a, b], K(v) ∈ [a, b], K(w) ∈ [a, b]},
S3 := {K(u∗) > b, K(v) > b, K(w) > b},
S4 := � \ (S1 ∪ S2 ∪ S3).

Due to the continuity of B(·, ·) the operator L(·, ·) is continuous on the sets S1, S2,
S3. We therefore only have to show continuity on the set S4 where K(u∗) is projected
onto a different set than K(v) or K(w). We start by considering the set M ⊂ S4 given
by

M := {K(u∗) < a ∧ K(v) ∈ [a, b]}.
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Using the continuity of B(v,w) from L2(�) to V , the fact that ‖θ(v,w)‖L∞ ≤ 1 for
all v,w ∈ L2(�) and the information that θ(u∗, u∗) vanishes on M , we can estimate

‖(L(v,w) − L(u∗, u∗))z‖L2(M) = ‖θ(v,w)B(v,w)z‖L2(M)

≤ meas(M)(q−2)/2q‖B(v,w)z‖Lq

≤ C · meas(M)(q−2)/2q‖z‖L2 , (4.15)

for all z ∈ L2(�), with q > 2 such that V ↪→ Lq(�). The expression on the left hand
side then goes to zero if the measure of the set M tends to zero. In order to show that
this is the case, we introduce the two sets

M1(τ ) := {K(u∗) − a ≤ −τ ∧ K(v) ∈ [a, b]},
M2(τ ) := {|K(u∗) − a| ≤ τ }

such that M ⊂ M1(τ )∪M2(τ ) for all τ > 0. The measure of M1(τ ) can be estimated
by

τ · meas(M1(τ ))1/2 ≤ ‖K(u∗) − K(v)‖L2(M1(τ )) = ‖B(u∗, v)(u∗ − v)‖L2(M1(τ ))

≤ C‖u∗ − v‖L2(M1(τ )).

Therefore

meas(M) ≤
(

C
1

τ
‖u∗ − v‖L2

)2

+ meas(M2(τ )) ∀τ > 0.

Choosing, e.g., τ := ‖u∗ −v‖ρ

L2 with 0 < ρ < 1 we find that meas(M) → 0 if v → u∗

due to (4.13a). Hence L(v,w) → L(u∗, u∗) in L(L2(�),L2(M)). Similar arguments
can also be used for the sets {K(u∗) < a ∧ K(w) ∈ [a, b]}, {K(u∗) > b ∧ K(v) ∈
[a, b]} and {K(u∗) > b ∧ K(w) ∈ [a, b]}.

Next we show that the operator L(·, ·) is continuous on the sets {K(u∗) ∈ [a, b] ∧
K(v) < a)}, {K(u∗) ∈ [a, b] ∧ K(w) < a)}, {K(u∗) ∈ [a, b] ∧ K(v) > b)} and
{K(u∗) ∈ [a, b] ∧ K(w) > b)}. We do this exemplarily for the set

N := {K(u∗) ∈ [a, b] ∧ K(v) < a)}.
Let z ∈ L2(�) be given. Again using the fact that ‖θ(v,w)‖L∞ ≤ 1 for all v,w ∈
L2(�), together with the information that θ(u∗, u∗) ≡ 1 on N , we estimate

‖(L(v,w) − L(u∗, u∗))z‖L2(N)

= ‖(θ(v,w)B(v,w) − B(u∗, u∗))z‖L2(N)

≤ ‖θ(v,w)(B(v,w) − B(u∗, u∗))z‖L2(N) + ‖(θ(v,w) − 1)B(u∗, u∗)z‖L2(N)

≤ ‖(B(v,w) − B(u∗, u∗))z‖L2(N) + ‖B(u∗, u∗)z‖L2(N)

≤ 3C · meas(N)(q−2)/2q‖z‖L2 ,
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with the exponent q > 2 chosen as in (4.15). For each sufficiently small τ > 0 we
introduce the sets

N1(τ ) := {K(u∗) ∈ [a + τ, b] ∧ K(v) < a},
N2(τ ) := {|K(u∗) − a| ≤ τ }.

Using the same arguments as for the set M it follows that meas(N) → 0 as v → u∗.
Hence L(v,w) → L(u∗, u∗) also in L(L2(�),L2(N)) and (4.9) is satisfied.

It remains to show that condition (4.10) holds true. For this purpose, note that
L(u∗, u∗) is given by

L(u∗, u∗) = χI ∗(ν−1(B(u∗)−1)∗(α−1 max ′′
ε (0,−y∗)p∗ − 1)B(u∗)−1),

where χI ∗ denotes the characteristic function of the inactive set at u∗ given by
I ∗ := {a < K(u∗) < b} and (B(u)−1)∗ represents the solution operator of the ad-
joint equation (4.4) at y = y(u). Below, by C∗ we denote the complement of I ∗ in �,
the so-called coincidence or active set. For the invertibility of I −L(u∗, u∗) we study
the system

(I − L(u∗, u∗))δu = g (4.16)

for arbitrary and fixed g ∈ L2(�). Let EC∗ and EI ∗ denote the extension-by-zero
operators from C∗ respectively I ∗ to �. Their adjoint operators denoted by E∗

C∗ and
E∗

I ∗ are restrictions to the respective set. Due to the definition of I ∗ and C∗ we have
E∗

I ∗EC∗ = 0 and E∗
I ∗EI ∗ = II ∗ with the latter being the identity operator on I ∗.

From the structure of (4.16) we get

δu|C∗ = g|C∗

and further

(II ∗ + ν−1E∗
I ∗(B(u∗)−1)∗(1 − α−1 max ′′

ε (0,−y∗)p∗)B(u∗)−1EI ∗)δu|I ∗ = ĝ∗
(4.17)

with

ĝ∗ := g|I ∗ + ν−1E∗
I ∗(B(u∗)−1)∗(α−1 max ′′

ε (0,−y∗)p∗ − 1)B(u∗)−1EC∗(g|C∗).

Above, g|S is a short hand notation for the restriction of g to the set S ⊂ �; sim-
ilarly for δu|S . Under the assumptions of this theorem we have that (4.17) is in-
vertible and δu = EC∗(g|C∗) + EI ∗(δu|I ∗) ∈ L2(�) solves (4.16), and the bound
for ‖(I − L(u∗, u∗))−1‖L2,L2 follows readily. Since max ′′

ε (0,−y∗)p∗ ∈ L∞(�), for
consistent discretizations the discrete analogue of (4.17) is uniformly invertible for
all sufficiently small mesh sizes. This proves the assertion. �

We mention that the above invertibility result concerning I − L(u∗, u∗) is tightly
related to second order sufficient optimality conditions under a non-degeneracy as-
sumption [34]. In fact, (4.14) is sufficient for second order sufficiency.



136 M. Hintermüller, I. Kopacka

5 Numerical tests

5.1 Examples

For the following test examples the variables are defined on the two dimensional open
unit square � = (0,1)2. As a prototype of the elliptic differential operator the neg-
ative Laplace-operator, discretized using a standard five-point stencil, is chosen. For
all test runs the iterates are initialized by y0 = u0 = p0 ≡ 0. The penalty parameter is
initialized by α0 = 1 and updated by αk+1 = cααk with cα = 0.25. For runs where the
smoothing parameter remains constant it is chosen as ε = ε0 = 10−3. If ε is coupled
with α, it is initialized by ε0 = 1 and updated by εk+1 = (αk+1)

1+δ with δ > 0.

Example 5.1 (Lack of strict complementarity) We construct a test problem for which
the active set at the solution contains a subset where strict complementarity fails to
hold, i.e., where the biactive set B := {y∗ = 0}∩{ξ∗ = 0} has a positive measure. This
situation is challenging, as the active constraint gradients at the solution are linearly
dependent. We define

y†(x1,x2) =
{

160(x3
1 − x2

1 + 0.25x1)(x
3
2 − x2

2 + 0.25x2) in (0,0.5) × (0,0.5),

0 else,

ξ†(x1,x2) = max(0,−2|x1 − 0.8| − 2|x1x2 − 0.3| + 0.5),

and set

f = −�y† − y† − ξ†,

yd = y† + ξ† − ν�y†,

with ν = 1. We consider no control constraints for this test problem, i.e., a ≡ −∞
and b ≡ ∞. The numerical solutions are displayed in Figs. 2–4. Recall that for the
unconstrained case the optimal control u∗ is just a multiple of the adjoint state p∗,
and hence not specifically depicted.

Fig. 2 Optimal state y∗ (left) and slack variable ξ∗ (right) for Example 5.1
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Fig. 3 Adjoint state p∗ (left) and multiplier λ∗ (right) for Example 5.1

Fig. 4 Biactive set (black) for
Example 5.1

Example 5.2 (Degenerate solution) For this example the optimal state y∗ exhibits a
very flat transition into the active set (note the scale in Fig. 5). This makes the active
set detection challenging. Purely primal active set techniques usually perform poorly
in such situations. We set ν = 0.01, a = 0.01 and b = 0.03. The example is defined
by the data

f (x1,x2) = yd(x1,x2) = −|x1x2 − 0.5| + 0.25.

The numerical solution is shown in Figs. 5–7. The multiplier λ∗ shows clear signs of
low regularity. In order to further illustrate the influence of the pointwise constraints
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Fig. 5 Optimal state y∗ (left) and slack variable ξ∗ (right) for Example 5.2

Fig. 6 Optimal control u∗ (left) and adjoint state p∗ (right) for Example 5.2

Fig. 7 Multipliers φ∗ (left) and λ∗ (right) for Example 5.2
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on the control we introduce the quantity

φ∗ := max(0,p∗ − νb) − max(0,−p∗ + νa),

which can be interpreted as the Lagrange multiplier corresponding to the constraint
(1.1b). The set where φ∗ is positive corresponds to the set where the upper bound on
the control u is active. Analogously the set where φ∗ is negative corresponds to the
set where the lower bound is active. The zero-level-set of φ∗ depicts the set where
the control constraints are inactive.

5.2 Numerical performance

Due to Theorem 3.4 the iterates of Algorithm 1 converge to an E -almost C-stationary
point of the MPEC. For all our test runs it could be verified by inspection of the
multipliers on the biactive set, that the numerical solutions that were obtained even
satisfied conditions (3.4) and (3.5) characterizing strong stationarity as p∗ and λ∗
(numerically) vanish on the biactive set.

In Table 1 the iteration numbers on the different grids for the FAS-multigrid
method using our local and global C1-regularizations are displayed. The coupling of
α and h described in Sect. 4.1.1 was used with a coarsest mesh of 15 inner grid points
and a finest mesh of 255 inner grid points per dimension, respectively. Furthermore a
grid dependent stopping tolerance (tol = 0.5h2) was employed. The number of itera-
tions are clearly concentrated on the coarse grids, which illustrates the efficiency of
the nested iteration.

For the multigrid method of second kind discussed in Sect. 4.1.2, the test prob-
lems were solved using the C1- and the C2-max ε-regularizations. Although the con-
vergence analysis requires smoothness of the operator the method converged to the
same solution for all regularization schemes. On each grid the required accuracy was
reached, and even exceeded, after one iteration of the W-cycle. This suggests some
kind of “over-solving” due to the requirement of ũH , the exact solution of (4.6) on
the respective coarser mesh.

Table 1 also shows the ratio between the CPU-time of the FAS-method and the
multigrid method of second kind (MG2). Every Picard-iteration of MG2 requires
the solution of one semilinear and one linear elliptic equation on the fine mesh, the

Table 1 Numerical
performance of the FAS-method
with coupling of α and h

#inner gridpts. Example 5.1 Example 5.2

max g
ε max l

ε max g
ε max l

ε

15 6 9 5 7

31 3 3 3 2

63 3 3 3 3

127 3 3 5 3

255 2 2 2 2

total 17 20 18 17

CPU ratio FAS/MG2 0.4311 0.3738 0.2324 0.2713
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Fig. 8 L2-errors ‖yα − y∗‖ for
Example 5.1

smoothing step is therefore quite costly. This is reflected in the small CPU-ratio.
The computational effort of MG2, however, can be reduced by employing an inexact
version of the multigrid method of second kind, as given in [19].

5.3 Approximation properties of the outer algorithm

In order to numerically determine the approximation properties of the continuation
method (Algorithm 1), the L2-errors ‖yα − y∗‖ were computed for Example 5.1,
where yα is a stationary point of (Pα,ε) and y∗ is a (strongly) stationary point of (P ).
The problems were solved on a fixed mesh with h = 1/256 for the global regu-
larization max g

ε , once with a fixed smoothing parameter ε = 10−3 and once with
ε = ε(α) = α1.1, thereby yielding ε(α)/α → 0. Furthermore the local regularization
max l

ε of the max(0, ·)-operator was considered with ε = ε(α) = α1.1. The results are
given in Fig. 8 in a log-log-scale. The graphic suggests an approximation order of
‖yα − y∗‖ = O(α) if ε(α)/α → 0 and ‖yα − y∗‖ = O(α1/2) for fixed ε and regular-
ization max g

ε . A similar behavior could be observed in a number of further numerical
tests. In general the approximation properties for ε(α)/α → 0 showed no significant
difference for the two types of regularizations considered. Based on these observa-
tions we motivate the stopping criterion introduced in Sect. 4.1.1. If we assume a
discretization error of order h2, i.e.,

‖yh − y∗‖L2 = O(h2),

where yh is the exact solution of the discrete MPEC, as is the case for linear finite
elements (see, e.g, [11]), this leads to an estimate of the form

‖yα,h − y∗‖L2 = O(αs + h2).

Here yα,h is the solution of the discrete version of the smoothed penalized problem
(Pα,ε) and s ∈ (0.5,1) is the respective approximation order. If the smoothed pe-
nalized problem is solved on a fixed grid with mesh size h, the discretization error
dominates the approximation error if α ≤ h2/s .
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Table 2 Number of iterations
on the different grids for the
FAS-method without coupling
of α and h

#inner gridpts. Example 5.1 Example 5.2

max g
ε max l

ε max g
ε max l

ε

15 20 25 23 26

31 25 29 25 27

63 25 30 26 30

127 28 31 29 29

255 28 32 27 29

511 28 32 27 30

Decreasing the penalty parameter further then leads to no improvement of the nu-
merical solution. On a fixed grid the smoothed penalized problem is therefore solved
as long as

α ≥ Ch2/s,

where C > 0 is an appropriately chosen constant. This justifies (4.3). If α drops below
that threshold the grid is refined, or if already on the finest mesh, the algorithm is
terminated.

5.4 Stability under mesh refinement

As Theorem 3.4 proves convergence of the algorithm in a function space setting one
expects that the discrete method exhibits some numerical stability under mesh refine-
ments. For a fixed sequence {αk} (i.e., αk independent of h) and a fixed tolerance
we therefore solved Examples 5.1 and 5.2 on different meshes, but this time neither
coupling α with h, nor employing a grid dependent stopping tolerance. For the sake
of a better comparison a cycle index of γ = 1 (=V-cycle) was used. Table 2 shows
the total number of iterations for the FAS-multigrid method with the local and global
C1-regularizations. The results imply mesh-independent behavior of the method.

5.5 Convergence factors for the FAS algorithm

In order to report the numerical behavior of the FAS-scheme, the optimality system
(4.1) of a smoothed penalized problem with fixed parameters α = ε = 1e−3 was
solved using the FAS-method and the global C1-regularization of the max-operator.
Both test problems were once solved using a cycle index γ = 1 (=V-cycle) and once
with γ = 2, resulting in a W-cycle. Furthermore, different values for the cost para-
meter ν in the objective function were used.

For both test problems the control unconstrained case as well as the case with
point-wise bilateral control constraints were considered. For Example 5.1 the con-
straints a ≡ 0.1, b ≡ 0.4 were enforced. The solution of the MPEC with these con-
straints still showed a biactive set of positive measure. Note that in view of Theo-
rem 3.4 the control constrained case immediately yields convergence of the stationary
points of the smoothed penalized problems, whereas the seemingly simpler control-
unconstrained case requires the additional assumption on the boundedness of {uα} in
order to guarantee convergence.
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Table 3 Estimated FAS
convergence factors for
Example 5.1

ν Constr. Unconstr.

V-cyc. W-cyc. V-cyc. W-cyc.

1 0.0433 0.0219 0.1217 0.0220

1e−1 0.0370 0.0238 0.1615 0.0251

1e−2 0.2777 0.0234 0.7792 0.0724

Table 4 Estimated FAS
convergence factors for
Example 5.2

ν Constr. Unconstr.

V-cyc. W-cyc. V-cyc. W-cyc.

1 0.0387 0.0219 0.0389 0.0218

1e−1 0.0396 0.0217 0.0377 0.0218

1e−2 0.1312 0.0220 0.2425 0.0228

Tables 3 and 4 show the estimated convergence factors for the state variable y,
which are defined as the asymptotic values of the ratios between the discrete H−1-
norms of the residuals of the state equations resulting from two successive multigrid
cycles on a given mesh [7, 9].

Tables 3 and 4 suggest that the convergence factor depends on the cost parameter
for the control ν, i.e., the condition of the problem. If the problem is solved using
V-cycles this dependency is quite distinct, whereas the use of W-cycles results in a
more stable behavior. Furthermore the presence of control constraints seems to have
a stabilizing influence on the performance.
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Appendix

The following results are used in this paper. The proof techniques are independent of
the MPEC context, nevertheless we provide the proofs for the sake of completeness.
For v ∈ L2(�) we use the notation v+ := max(0, v). The following lemma investi-
gates some properties of the max(0, ·)-operator.

Lemma A.1 For {vα} ⊂ V and ṽ ∈ V the following assertions hold:

(i) If vα ⇀ ṽ in V , then also v+
α ⇀ ṽ+ in V .

(ii) If vα → ṽ in V , then also v+
α → ṽ+ in V .

Proof Due to the compact embedding of V into L2(�) and the Lipschitz continuity
of max(0, ·) : L2(�) → L2(�) we find that v+

α converges to ṽ+ strongly in L2(�).
Furthermore for every α > 0

‖∇v+
α ‖L2(�)n ≤ ‖∇vα‖L2(�)n ≤ C



MPEC: smooth penalty and nonlinear multigrid 143

for some C > 0 independent of α. Hence there exists η = (η1, . . . , ηn) ∈ L2(�)n

such that on a suitable subsequence ∂v+
α

∂xi
⇀ ηi for all 1 ≤ i ≤ n. We verify that indeed

η = ∇ṽ+ by multiplying by a test function ϕ ∈ C∞
0 (�). For every 1 ≤ i ≤ n we find

that

(ηi, ϕ) = lim
α→0

(
∂v+

α

∂xi

, ϕ

)
= − lim

α→0

(
v+
α ,

∂ϕ

∂xi

)
= −

(
ṽ+,

∂ϕ

∂xi

)
=

(
∂ṽ+

∂xi

, ϕ

)
.

As the weak limit of the subsequence is uniquely determined, we find that in fact
∇v+

α ⇀ ∇ṽ+ on the whole sequence. Finally if vα converges to ṽ strongly in V then
∇vα converges to ∇ṽ strongly in L2(�)n and strong convergence of ∇v+

α to ∇ṽ+ in
L2(�)n follows from

‖∇v+
α − ∇ṽ+‖2

L2(�)n
= (∇v+

α ,∇v+
α ) − 2(∇v+

α ,∇ṽ+) + (∇ṽ+,∇ṽ+)

= (∇v+
α ,∇vα) − 2(∇v+

α ,∇ṽ+) + (∇ṽ+,∇ṽ+) → 0. �

We next give the proof of Lemma 4.1

Proof of Lemma 4.1 Due to the monotonicity of the max G
ε -operator, the linear oper-

ator

A∗ + 1

α
(max G

ε )′(0,−y) : V → V ∗

is bounded and coercive with constants independent of y. Then from the Lax-
Milgram theorem it follows that the operator is invertible and the norm of the inverse
is bounded independently of y. Hence, the operator �A is well defined. The Lipschitz
continuity of (max G

ε )′(0, ·) : Y → L∞(�) furthermore yields the local Lipschitz con-
tinuity of �A.

Note that the Nemyzki operator y �→ φ(y) := (max G
ε )′(0,−y) is Fréchet differ-

entiable from Y to L∞(�). Now let y, δy ∈ Y be given and set p1 = �A(y + δy),
p2 = �A(y). Subtraction of the corresponding adjoint equations (4.4) then yields

0 = A∗(p1 − p2) + φ(y + δy)p1 − φ(y)p2 + δy

= (
A∗ + φ(y)

)
(p1 − p2) + (φ(y + δy) − φ(y))p1 + δy

= (
A∗ + φ(y)

)
(p1 − p2) + (

φ′(y)δy + ry(y, δy)
)
p1 + δy, (A.1)

where ‖ry(y, δy)‖L∞ = O(‖δy‖Y ). Setting

D�A(y) = − (
A∗ + φ(y)

)−1 (
φ′(y)p2 + I

)
,

r�(y, δy) = − (
A∗ + φ(y)

)−1 (
φ′(y)δy(p1 − p2) + ry(y, δy)p1

)
,

(A.1) can be reformulated as

�A(y + δy) − �A(y) = D�A(y)δy + r�(y, δy).
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Due to the boundedness of (A∗ + φ(y))−1 in L(V ∗,V ) and the boundedness of φ′
in L∞(�) we find that D�A(y) is linear and bounded. The Lipschitz continuity of
�A furthermore yields that ‖r�(y, δy)‖V = O(‖δy‖Y ), hence �A is Fréchet differ-
entiable. �
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